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Abstract

Backdoor attacks pose a serious threat to federated systems, where malicious
clients optimize on the triggered distribution to mislead the global model towards
a predefined target. Existing backdoor defense methods typically require either
homogeneous assumption, validation datasets, or client optimization conflicts.
In our work, we observe that benign heterogeneous distributions and malicious
triggered distributions exhibit distinct parameter importance degrees. We introduce
the Fisher Discrepancy Cluster and Rescale (FDCR) method, which utilizes Fisher
Information to calculate the degree of parameter importance for local distributions.
This allows us to reweight client parameter updates and identify those with large
discrepancies as backdoor attackers. Furthermore, we prioritize rescaling important
parameters to expedite adaptation to the target distribution, encouraging significant
elements to contribute more while diminishing the influence of trivial ones. This
approach enables FDCR to handle backdoor attacks in heterogeneous federated
learning environments. Empirical results on various heterogeneous federated
scenarios under backdoor attacks demonstrate the effectiveness of our method.

1 Introduction

Federated learning is an emerging collaboration learning technique [42, 119, 108, 50, 35], which
allows multiple participants to perform local optimization on its own data and exchanges model
parameters with a central server [67, 54, 51, 22, 28]. This federation paradigm does not require to
aggregate the distributed data and obey the privacy protocol [66, 95, 73]. And the problems that
come with this approach is that the central server fails to capture the client training behavior and is
vulnerable to the backdoor attacks [23, 13, 58, 24, 56, 110]. Specifically, the evils clients makes
normal predictions on benign samples and outputs the pre-defined target when the input contains a
specific pattern trigger [89, 7, 17, 38, 30, 4, 98, 52]. Thus, the federated model would be implanted
with the backdoor trigger pattern, which largely threatens the federated robustness. We argue that
conducting the backdoor defense to erase the backdoor effect is vital for the federated reliability in
the real-world application.

Driven by the serious backdoor attack, existing defense solutions could be mainly categorized into
four types: Distance Difference Defense [6, 21, 93, 10, 10, 118, 27, 18], Statistics Distribution
Defense [112, 25, 79, 117, 9] Proxy Evaluation Defense [48, 101, 12], and Client Side Defense
[104, 123, 116, 1, 75]. The former two groups focus on detecting and mitigating malicious attack
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based on calculating individual distance differences or overall statistical characteristics to detect
the outlier behavior. However, these two forms struggle to work under the data heterogeneous
federation, where distributed data presents non-IID (independently identically distribution) and
local optimization directions are dramatically distinct from each other. Therefore, they normally
require the data homogeneous assumption for realistic settings. As regards the Proxy Evaluation
Defense, they utilize the additional validation datasets with the same semantics for the ensemble
distillation [87], prediction marginal contribution [102], and prediction confidence [8, 74]. Therefore,
the qualified proxy dataset acts as a prerequisite to its feasibility and poses a huge collection obstacle
in challenging scenarios, e.g., medical applications [78] and financial markets [120]. Towards the
Client Side Defense, it designs the client-wise regularization term to control the client updating
direction such as unlearning and smoothing theory [104, 1], Hessian matrix [123], and meta-learning
[75]. However, a strong assumption is that clients are willing to obey specific regularization terms
and face client optimization conflict with existing federated optimization strategies e.g., FedProx
[54], MOON [51], and FPL [34]. Moreover, they fail to resist adaptive attack, where evils refuse to
faithfully conduct the specific strategies.
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Figure 1: Motivation. Client parameter importance degree
similarity (Left) shows difference between benign and ma-
licious groups. The parameter important value distribution
(Right) reveals that benign and malicious highlight different el-
ements. Experiments are conducted on the Cifar-10 (β = 0.5)
with three backdoor and seven benign clients.

Motivated by the aforementioned discus-
sions, we are curious to rethink the Achilles
heel of what malicious attack brings to fed-
erated learning systems. We assume the ker-
nel target for malicious defense is to dis-
criminate between benign and malicious dis-
tributions. Own to the over-parameterized
characteristics of the deep neural network
[26, 45], we notice that not all parameters
contribute equally to fit the target dis-
tribution, which has confirmed soundable
in the relative researches, e.g., sparse and
pruning strategies [49, 20, 60, 90, 88, 113].
Therefore, we argue that benign and mali-
cious distributions share distinct parameter importance degree, as confirmed in Fig. 1.

In our work, we introduce a simple yet effective Fisher Discrepancy Cluster and Recale, abbreviated
as FDCR to enhance backdoor defense ability from both client selection and parameter aggregation
aspects. Preliminary, we take inspiration from the success of Fisher Information Matrix (FIM)
[19, 2], which identifies the parameters information content by accessing the loss surface sharpness
[76, 41, 69]. Thus, we estimate the importance of client parameters using the Fisher Information
Matrix FIM on the corresponding local distribution. First, we introduce the Fisher Client Discrepancy
Cluster (FCDC) to quantify the client gradient discrepancy via respective parameter importance.
Clients with substantial gradient divergences are flagged as potentially malicious and excluded from
the aggregation process. To be precise, After client optimization, we collect updated gradients along
with their respective parameter importance, which adjusts the weight of the uploaded gradients with
the expectation to accentuate crucial element updates and weaken trivial ones for the local distri-
bution. Subsequently, we cluster the gradient updates discrepancy, identifying clients with notable
discrepancies as potentially malicious. Second, we argue that during the parameter aggregation, each
parameter element is allocated equal attention, which ignores the fact that parameters behave with
different importance towards the target distribution. Then, we propose the Fisher Parameter Rescale
Aggregation (FPRA) to rescale the element updates based on the assessed parameter importance.
We argue that allocating high updating rangeability for those important parameters would increase
the optimization stage and potentially weaken the trivial elements effect. For thorough examination,
we conduct experiments on various heterogeneous federated scenarios [43, 46, 103], with various
malicious defense solutions under the backdoor attacks [16, 84]. Experimental results reveal that ours
consistently achieves stronger robustness than others. The main contributions are summarized as:

• We focus on mitigating backdoor attacks in heterogeneous federated learning. Existing solutions
rely on different assumptions, i.e., data homogeneity, validated samples, and faithful optimization. It
motivates us to rethink the kernel behavior difference between benign and malicious clients.
• We posit that benign heterogeneous and malicious triggered distributions assign different levels of
importance to parameters. To address this, we introduce the Fisher Discrepancy Cluster and Recale
(FDCR), which quantifies client gradient discrepancies based on the respective parameter importance,
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effectively identifying and excluding malicious participants. Additionally, we prioritize important
parameter elements to enhance the optimization speed, while weakening trivial ones.
• We conduct experiments on different federated heterogeneous scenarios: Cifar-10, Fashion-MNIST,
USPS, under backdoor attacks,. With ablation studies, we validate the efficacy of FDCR and the
indispensability of essential modules in different setting.

2 Related Work

2.1 Federated Learning with Data Heterogeneity

Federated learning has aroused widespread interest in achieving multiple-party collaboration under
security-sensitive settings [63, 50, 111]. However, its performance is limited by the distributed data,
which poses non-independent and identically distribution (called data heterogeneity) [119, 53, 96, 28].
Derived from the milestone methodology, FedAvg [67], a growing body of literature has been devoted
to rectifying the local drift caused by the data heterogeneity. Typical works mainly leverage the global
signals such as shared model [86, 54, 51, 47, 106, 97], statistical distribution [61, 115, 122, 70, 34,
91, 92], and gradient collection [39, 22]. Some focus on self regularization [55, 114, 115, 68, 85, 32]
to calibrate the biased updating direction. However, existing federated optimization methods focus
on calibrating the client optimization objective to acquire a well-performing global model under the
assumption of trustworthy clients. Thus, they fail to establish a defense against backdoor attacks
and their effectiveness can be arbitrarily manipulated by malicious clients [29, 5, 89, 109]. In our
work, we consider the client parameter importance difference and argue that malicious clients focus
on fitting a largely different distribution and thus appear the different parameter important attitude.
Our method is orthogonal with the above methods and is plug-and-fly to collaborate with them to
improve the robustness under heterogeneous federated learning.

2.2 Backdoor Defense in Federated Learning

Malicious backdoor attackers bring serious threats to the federation system. To deal with backdoor
attackers, existing Backdoor Defense solutions could be basically classified into four categories:
i) Distance Difference Defense [6, 21, 93, 10, 10, 118, 27, 18, 33] mainly focus on distinguishing
benign clients from malicious attackers via the local party updates difference and regard those
significantly far from the overall direction as evils, excluded from the aggregation process. For
instance, Multi Krum [6] selects the candidate gradient that is the closest to its neighboring clients.
DnC [83] leverages singular value decomposition-based spectral methods for outliers detection
and removal. ii) Statistics Distribution Defense [112, 25, 79, 117, 9] construct diverse statistical
criteria to select and remove the evil clients. RFA [79] calculates the geometric median with an
alternating minimization function. FLDetector [117] considers the historical client updates and votes
for those with large discrepancies between the predicted and received client updates as attackers.
Despite these advantages, the above two streams are sensitive to the degree of data heterogeneity
and require complicated hyper-parameter configurations to adapt to various heterogeneous federated
scenarios. iii) Proxy Evaluation Defense turn to seek help from the relative proxy datasets to conduct
additional evaluation [8, 74, 31]. Specifically, FLTrust [8] collects a clean small training dataset
and thus introduces Relu-clipped cosine similarity to allocate high trust scores for those reliable
clients. However, the central server faces the qualified dataset collection burden, which hampers
their practicability. iv) Client Side Defense [104, 123, 116, 1, 75] proposes the client-side defense
based on different optimization targets, e.g., clipping and smoothing operations [104]. However,
these approaches necessitate that clients adhere to specific optimization regularization, rendering
them vulnerable under adaptive tasks. Overall, current defense solutions demand one or more of
the following: specialized hyper-parameter configuration, accessible supplementary datasets, or
uniform regularization strategies. In our research, driven by the distinct characteristics of deep
neural networks, we contend that parameters exhibit varied levels of importance relative to the target
distribution. Therefore, we maintain that a substantial parameter importance difference between
benign and malicious distributions acts as a detection signal for evils.
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3 Methodology

3.1 Preliminary

Following the general federated paradigm [67, 54, 51], multiple clients collaboratively learn a shared
global model w. For a federated system, there are K clients (indexed by k) with the corresponding
private dataset, Dk = {xi, yi}Nk

i=1, where Nk means the private data number for the kth client. At
the beginning of the tth communication, we denote the current global model as wt. Then the
central server broadcasts wt to each participant as wt

k←wt. Participating clients conduct the local
optimization to fit the local distribution. Then each client uploads the optimized parameter back to
the server for parameter aggregation:

Lk(w
t
k, Dk) =

1

Nk

∑
ξi∈Dk

LCE(xi, yi), (1a)

wt+1 =
∑
k

αkw
t
k(αk =

Nk

N
). (1b)

N =
∑

k Nk denotes the overall client data scale. ξi denotes the query sample. αk denotes
the pre-defined aggregation weight based on the data scale. However, some malicious clients
would deliberately implant the trigger into the victim models by poisoning the training dataset
[23, 13, 94, 57, 37, 99]. Specifically, we define Φ as the trigger pattern and m as the trigger location
mask. The modified backdoor instance is represented as ξ̃ = (x̃, ỹ). For x̃, we apply the formula
x̃ = (1 − m) ⊙ x + m ⊙ Φ, incorporating the trigger pattern Φ into the original instance x at
locations specified by the mask m. We then alter the original label y to the predefined attack target ỹ.
Consequently, this necessitates a reformulation of the original local direction as outlined in Eq. (1a).

Lk(w
t
k, Dk) =

1

|Dk|
[
∑
ξ∈Dk

LCE(x, y) +
∑
ξ̃∈Dk

LCE(x̃, ỹ)︸ ︷︷ ︸
Backdoor

] (2)

3.2 Fisher Discrepancy Cluster and Recale

3.2.1 Motivation

To motivate our method, we first introduce one crucial observation of the relationship between benign
and malicious clients, shown in Eqs. (1a) and (2). It reveals that benign and malicious fit the distinct
distributions and naturally hold different parameter importance attitudes. Thus, in our work, we now
turn to designing a strategy that can measure the parameter importance degree for each client. One
effective way to measure the parameter importance is to consider how much changing the parameter
will change the model output. We denote p(y|x,w) as the output distribution over y produced by a
parameterized model w ∈ R|w|, given input x. One way to measure how much a change in parameters
would change a model prediction is to compute KL Divergence, KL(p(y|x,w)||p(y|x,w + δ)) [44],
where δ ∈ R|w| is a small perturbation. As confirmed in [64, 77], we can approximate the KL
divergence by its second-order Taylor series as follows:

ExLKL((p(y|x,w)||p(y|x,w + δ)) =
1

2
δTFwδ +O(δ3), (3)

where O(δ3) is short-hand to mean terms that are order 3 or higher in the entries of δ. Fw ∈
R|w|×|w| is the Fisher Information Matrix (FIM) [19], which quantifies the information carried by
the observable random variable about the unknown parameters w on the target distribution D and is
formulated as the following expression:

Fw = Ex∼p(x)[Ey∇ log ∼ p(y|x,w) · (∇ log ∼ p(y|x,w))T ]. (4)
Given this relation, it can be seen that the FIM is closely connected to how much each parameter
affects the model predictions, which has been widely used in different fields [41, 86, 59, 65, 121,
81, 107]. However, due to the over-parameterized network, the computation of Fisher information is
unacceptable, i.e., Fw ∈ R|w|×|w|. To save the computational effort, Fisher Information Matrix could
be approximated as the diagonal matrix, i.e., Fw ∈ R|w|. Furthermore, considering the expectation in
Eq. (4), it is hard to draw sample x ∼ p(x) in most tasks, We approximate it by sampling over N
training samples within the dataset D as follows:

Fw(D)≈E(x,y)∈D∇ log p(y|x,w)2 ∈ R|w|. (5)
This approximation carries an intuitive explanation: A query element in Fw, corresponds to the
average squared gradient of the output concerning a particular parameter. If a parameter significantly
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influences the model output, its respective value in Fw will be sizable. Consequently, we can interpret
Fw as a measure of the relative importance of each parameter.

3.2.2 Fisher Client Discrepancy Cluster

From the Eq. (5), the Fw(D) quantifies the degree of importance of the parameter w for the target
data distribution D. Consequently, for each client in the federated system, we compute the parameter
importance on their local data distribution Dk via privately optimized model wt

k. Additionally, we
observe that the Fisher Information Matrix (FIM) does not remain within a fixed range, potentially
leading to instability in the importance metrics across participants. To address this, we apply the
min-max normalization to provide a stable description of client parameter importance as follows:

Ik =
Fwt

k
(Dk)−min(Fwt

k
(Dk))

max(Fwt
k
(Dk))−min(Fwt

k
(Dk))

∈ R|w|. (6)

Then, the central server would collect the optimized model wt
k from different clients. The updated

gradient for the client k could be denoted as follows:
gtk = (wt

k − wt)/η ∈ R|w|, (7)
where η denotes the default local learning rate. Therefore, we reweight the client gradient update to
highlight the parameter update with the parameter importance degree, Ik in Eq. (6) as:

g̃tk = gtk ⊙ Ik. (8)
Then the aggregated global gradient update could be derived as the following form. Then, we measure
the gradient update difference between the aggregated global with each client view.

g̃t =
∑
k

Nk

N
g̃tk, (9a)

Vk =
∑
v∈w

(g̃t − g̃tk)
2/|w|. (9b)

Intuitively, Vk measures the gradient difference between the global and client aspects. We propose
that malicious clients tailor their models to a distribution that has been artificially manipulated and
consequently demonstrate a large discrepancy in gradient updates compared to the global aggregation.
Hence, clients with pronounced disparities in their gradient updates may be indicative of malicious
intent. To methodically identify such outliers, we employ unsupervised clustering to segregate the
evil effect and provide a detailed comparison of popular clustering solutions in Tab. 1. We illustrate
the process with five participating clients and the last two are evils:

V =[V1,V2,V3,V4,V5]

⇓ Cluster

=[ V1,V2,V3︸ ︷︷ ︸
”Benign”

, V4,V5︸ ︷︷ ︸
”Evil”

] (
V1 + V2 + V3

3
<

V4 + V5

2
)

(10)

We mitigate the malicious effect during the aggregation and rescale the default parameter aggregation
weight α in Eq. (1b) as the following formulation.

α̂ = [
α1

αB
,
α2

αB
,
α3

αB
, 0, 0 ] (αB=α1 + α2 + α3) (11)

3.2.3 Fisher Parameter Rescale Aggregation

Furthermore, we notice that normal parameter aggregation treats all elements equally, failing to
recognize their differing impacts on the target distribution. To rectify this limitation, our approach
introduces the Fisher Parameter Rescale Aggregation (FPRA), designed to emphasize the parameter
elements that are deemed more crucial during the aggregation phase. To be precise, we adjust the
scaling of each parameter element value change, based on the importance measurement Ik derived
from the client parameters. Additionally, to ensure that the Ik falls within a practical range for
rescaling operation, we apply the sigmoid function to convert each parameter importance element
v ∈ w as the following formulation:
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ĝtk,v =
2

1 + exp(−Ik,v)︸ ︷︷ ︸
∈[1, 2e

1+e
]

×gtk,v (Ik,v ∈ [0, 1]),

ŵt
k = wt − η ĝtk.

(12)

Then, based on the rescaled client parameters ŵt
k in Eq. (12) and the reallocated aggregation weight α̂

in Eq. (11), we acquire the aggregated global parameter wt+1 =
∑

k α̂kŵ
t
k. Furthermore, we provide

the detailed description in the Algorithm 1.
Algorithm 1: FDCR
Input: Communication rounds T , participant scale K, kth client private model wt

k and local data Dk

Output: The final global model wT

for t = 1, 2, ..., T do
Participant Side;
for k = 1, 2, ...,K in parallel do

wt
k ← LocalUpdating(wt, Dk) // Each client optimizes on private data
Ik ← (wt

k, Dk) via Eqs. (5) and (6) // Calculate parameter importance degree
end
Server Side;
wt+1 ← FDCR ({wt

k}Kk=1, {Ik}Kk=1, w
t)

end
FDCR ({wt

k}Kk=1, {Ik}Kk=1, w
t):

for k = 1, 2, ...,K in parallel do
gtk = (wt

k − wt)/η
g̃tk = gtk ⊙ Ik // Reweight the client gradient updates

end
g̃t =

∑
k αkg̃

t
k

V ← (g̃t, {g̃tk}Kk=1) through Eq. (9b) // Measure the gradient difference
α̂← (V , α) by Eqs. (10) and (11) // Cluster and reallocate aggregation weight
ŵt

k ← (wt, Ik) with Eq. (12) // Rescale client parameter updates
return wt+1 =

∑
k α̂kŵ

t
k

3.3 Discussion and Limitation

Relation wit Fisher Information Matrix Exploration. Fisher Information Matrix (FIM) has
attracted wide interest in measuring the parameter weight importance [40, 64, 36]. For example, in
the continual learning field, [41, 59, 69] measures the parameter stiffness based on the historical
distribution to alleviate prediction performance degradation on the previous classes. Besides, FIM is
also utilized to boost the invariance representation [71, 81, 121] for domain generalization. As for
federated learning, [107] argues that the initial learning phase plays a critical role in the federation,
and [86] protects important parameters to enhance the federated generalization. Thus, existing
works all focus on ranking the parameter importance for the target distribution. But in our work,
we focus on the backdoor attack in heterogeneous federated learning and argue that backdoor
attackers deliberately overfit the triggered distribution. Therefore, the backdoored model appears
large parameter discrepancy with the benign client distribution. We measure the client parameter
importance to reweight the client gradient updates, highlighting those clients with similar important
distributions and excluding those with divergent ones.

Clustering in FCDC Eq. (10). Clustering strategies have been introduced to discover natural
grouping property among samples [14, 62, 3, 82, 100, 11]. For example, K-Means [62, 3] iteratively
assigns points to a fixed group number. DBSCAN [15] requires to pre-define distance value. However,
they are sensitive to hyper-parameter selection under different scenarios. Then, we utilize the FINCH
[82], which is parameter-free and thus suitable for backdoor defense with agnostic client scale and
diverse data heterogeneity. We demonstrate the superiority in Tab. 1 Specifically, we leverage the
Euclidean metric to evaluate the gradient difference value Vk between any two clients and view the
weight with minimum distance as its "neighbor". After clustering, we regard the set with the larger
mean gradient discrepancy as the malicious clients and then eliminate their aggregation weights.
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Table 1: Compare Clustering strategy in Eq. (10) for FCDC in Cifar-10 and Fashion-MNIST datasets, with
β ∈ {0.5, 0.3} and Υ=30%. Please refer to the Sec. 3.3 for detailed explanations.

Cifar-10 Fashion-MNIST
β = 0.5 β = 0.3 β = 0.5 β = 0.3FCDC

A R V A R V A R V A R V
K-Means 54.50 88.73 71.61 49.79 90.28 70.03 86.77 18.30 52.53 84.71 86.01 85.36
DBSCAN 65.03 49.46 57.24 61.91 38.51 50.20 87.09 0.70 43.89 85.16 0.54 42.85

FINCH (Our) 65.60 90.54 78.06 61.25 93.60 77.42 86.92 88.32 87.62 85.59 89.62 87.60

Table 2: Ablation for Ik in FCDC Eq. (8) on
Cifar-10 (Υ = 30%). Refer to Sec. 3.3.

A R V A R V
β = 0.5 β = 0.3

w/o Ik 58.02 29.02 43.52 57.68 72.67 65.17
w Ik 63.52 89.56 76.54 60.20 93.44 76.82

Conceptual Difference. To some extent, our approach
aligns with the Distance Difference Defense paradigm. For
instance, Multi Krum and FoolsGold, respectively measure
squared Euclidean norm among neighboring gradients
and calculate contribution similarity. Additionally, recent
advancements such as DnC [83], which employs singular
value decomposition to remove outliers, and MMA [30], which utilizes multiple metrics including
Manhattan, Euclidean, and Cosine distances. However, existing works regards the parameter elements
as the equal importance and fail to highlight the distinct between benign and malicious clients.
Therefore, we utilize the FIM to differentially highlight clients updated based on the local distribution.
We conduct the experiments without considering the parameter importance degree Ik in Tab. 2. It
appears limited performance in heterogeneous federation withou parameter importance characteristics.

Limitation. Our approach recognizes that benign heterogeneous and malicious triggered distributions
exhibit distinct parameter importance profiles. Despite its strengths, our method primarily addresses
the mitigation of the backdoor effect during the aggregation phase. Consequently, it does not
effectively eliminate previously triggered parameters that persist in the model. This limitation is
shared by other existing federated backdoor defense solutions that do not implement server-side
optimizations, such as proxy dataset usage or post-calibration techniques (e.g., finetuning, smoothing
clipping [124, 104]). While our method, referred to as Fisher Parameter Rescale Aggregation,
effectively identifies and prioritizes crucial parameters, the challenge of removing or unlearning
already poisoned parameters remains a crucial challenge in the federation.

4 Experiments

4.1 Experimental Setup

Datasets. Adhere to [105, 70, 51, 30], we evaluate the efficacy and robustness on three scenarios:
• Cifar-10 [43] contains 50k, 10k images for training, validation. Each image is in 32 × 32 size
from 10 different classes, e.g., airplanes, cars, and birds.
• MNIST [46] is a famous digits dataset with 70,000 images in 10 classes.
• Fashion-MNIST [103] has 60k train and 10k test examples from 10 classes.
Data Heterogeneity. As for the data heterogeneity simulation, we utilize the Dirichlet distribution,
Dir(β) to simulate the label skew, as previous methods [54, 51, 115], where β > 0 is the concentra-
tion parameter to adjust the class-wise skew level. The smaller β is, the more imbalanced the local
distribution is. We set the β as 0.5 and 0.3 for the following experimental comparison.

Backdoor Attack. We construct the backdoor attack based on the popular backdoor paradigm
[23, 24]. The size of the trigger pattern is set to 2×6, and its location is in the top-left corner of the
images. We convert the attacked label to the third class (i.e., digit 2 in Digits scenario). The malicious
client ratio Υ is 20% and 30%. The local data poisoned portion is default set as 0.5.

Counterparts. We compare with several Backdoor Defensesolutions in federated learning, cate-
gorized into four types. i) Distance Difference Defense: Multi Krum [NeurIPS’17] [6], FoolsGold
[arXiv’18] [21], RLR [AAAI’21] [72], DnC [NDSS’21] [83], and MMA [ICCV’23] [30]. ii) Statistics
Distribution Defense: Trim Median [ICML’18] [112], Bulyan [ICML’18] [25], and RFA [TSP’22] [79].
iii) Proxy Evaluation Defense: FLTrust [NDSS’21] [8], Sageflow [NeurIPS’21] [74], and Finetuning
[80]. iv) Client Side Defense: CRFL [104] [ICML’21].

Implement Details. We provide the details from four views as follows:
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Table 3: Ablation on key components for FDCR in Cifar-10 and Fashion-MNIST, with β ∈ {0.5, 0.3} and
Υ=30%. See Sec. 4.2 for detailed discussion.

Cifar-10 Fashion-MNIST
β = 0.5 β = 0.3 β = 0.5 β = 0.3FCDC FPRA

A R V A R V A R V A R V
64.08 41.22 52.65 61.85 44.96 53.40 87.15 0.26 43.70 85.82 3.42 44.62

✓ 63.52 89.56 76.54 60.20 93.44 76.82 86.81 61.92 74.36 82.53 53.05 67.78
✓ 65.41 42.59 54.00 61.53 38.34 49.93 87.36 0.40 43.88 85.33 3.42 44.37

✓ ✓ 65.60 90.54 78.06 61.25 93.60 77.42 86.92 88.32 87.62 85.59 89.62 87.60
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Figure 2: Observation of gradient difference Vk Eq. (9b) (Left) and aggregation weight α̂k Eq. (11) (Right)
on Cifar-10 and Fashion-MNIST scenarios (β=0.5,Υ=30%). Backdoor attackers appear large Vk and thus are
gradually removed via aggregation weight α̂k = 0. Please see details in Sec. 4.3.

• Dataset Split: We partition the original training data into training and validation sets with a 9:1
ratio to support Proxy Evaluation Defense methods. We select a small-scale validation with the size
as 256 for the methods. e.g., FLTrust ad Sageflow.
• Network Structure: Following [51, 70, 34], we utilize the CNN as the backbone for Cifar-10,
Fashion-MNIST, and MNIST scenarios.
• Training Setting: For a fair comparison, we follow [54, 51, 70]. We configure the communication
epoch T as 50, where all approaches have little or no accuracy gain with more communications. The
client number K is 10 for different datasets. For local training, we leverage the FedAvg [67] as the
default local optimization objective. The local updating round is E : 10 for different settings. We
utilize the SGD as the local updating optimizer. The corresponding weight decay is η : 1e− 5 and
momentum is 0.9. The local client learning rate is 0.01 in the above three scenarios. We fix the
random seed to ensure reproduction and conduct experiments on the NVIDIA 3090Ti.
• Evaluation Metric: Following [67, 54, 51, 27], Top-1 accuracy is adopted for federated benign
performance, A in. We further denote the backdoor failure rate asR. Furthermore, we define the
V to measure the heterogeneity and robustness trade-off as:

V =
1

2
(A+R). (13)

We utilize the mean performance value of the last five communication epochs as the final results.

4.2 Diagnostic Experiments

To thoroughly test the efficacy of crucial components of our model, we conduct a series of diagnostic
studies on Cifar-10 and Fashion-MNIST datasets under the backdoor attack.

Overall Design. We first investigate the effectiveness of our FDCR. The results in Tab. 3 show that
combining Fisher Client Discrepancy Cluster (FCDC) and Fisher Parameter Rescale Aggregation
(FPRA) acquires satisfying federated benign task and backdoor removal performance that coincides
with our motivation of exploiting the client parameter importance difference to mitigate the backdoor
effect and enhance the relatively important parameters optimizations.

Gradient Discrepancy and Aggregation Weight. As shown in Fig. 2, we monitor the gradient
discrepancy value Vk Eq. (9b) for the arbitrary two benign and malicious clients. It shows that evils
normally maintain a high Vk, and our method effectively detects backdoor attackers and removes the
corresponding aggregation weight, i.e., α̂k = 0.
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Table 4: Comparison with the state-of-the-art backdoor robust solutions: in Cifar-10, Fashion-MNIST,
and USPS scenarios with skew ratio β ∈ {0.5, 1.0} and malicious proportion Υ ∈ {30%, 20%}. - means the
optimization failure. Best in bold and second with underline. These notes are the same as others. Please refer to
Sec. 4.3 for detailed explanations.

Cifar-10 Fashion-MNIST USPS
β = 0.5 β = 0.3 β = 0.5 β = 0.3 β = 0.5 β = 0.3Methods

A R V A R V A R V A R V A R V A R V
with malicious ratio Υ = 30%

Vanilla 64.08 41.22 52.65 61.85 44.96 53.40 87.15 0.26 43.70 85.82 3.42 44.62 95.61 6.13 50.87 95.75 2.25 49.00
Multi Krum 50.43 78.59 64.51 40.15 86.50 63.32 77.52 95.07 86.29 78.85 87.00 82.92 93.01 89.44 91.22 90.34 87.60 88.97

FoolsGold 30.71 23.43 27.07 53.79 79.53 66.66 56.10 0.36 28.23 69.26 0.81 35.03 64.70 11.08 37.89 39.20 55.41 47.30
RLR 64.45 41.19 52.82 61.89 44.22 53.05 87.11 0.41 43.76 85.75 3.66 44.70 95.72 6.56 51.14 95.68 2.27 48.97
DnC 60.01 90.24 75.12 56.45 80.07 68.25 85.40 91.46 88.43 83.95 1.99 42.97 95.26 77.88 86.57 94.15 58.79 76.47

MMA 54.02 94.26 74.14 41.69 61.49 51.59 79.26 0.10 39.68 79.31 0.06 39.68 93.50 89.80 91.65 82.62 1.57 42.09
Trim Median 46.98 64.53 55.75 37.45 50.12 43.78 10.00 100.0 55.00 41.59 71.26 56.42 44.28 77.22 60.75 87.79 2.21 45.00

Bulyan 41.90 94.19 68.04 10.00 100.0 55.00 10.00 100.0 55.00 65.02 98.90 81.96 83.83 5.31 44.57 68.87 1.19 35.03
RFA 62.92 32.77 47.84 61.02 35.51 48.26 85.66 0.07 42.86 85.09 0.43 42.76 95.68 4.30 49.99 95.01 1.97 48.49

FLTrust 53.46 79.40 66.43 41.82 71.27 56.54 67.45 5.37 36.41 70.48 6.90 38.69 91.50 66.15 78.82 92.39 40.70 66.54
Sageflow 63.71 35.88 49.79 61.22 38.63 49.92 88.05 1.169 44.60 86.40 3.52 44.96 95.78 6.02 50.90 95.86 2.81 49.33

Finetuning 63.12 44.63 53.87 62.49 48.96 55.72 87.42 4.09 45.75 85.63 6.11 45.87 94.65 9.90 52.27 94.50 4.31 49.40
CRFL 58.92 53.04 55.98 55.69 50.16 52.92 85.55 4.28 44.91 82.56 15.39 48.97 93.90 19.16 56.53 92.83 6.34 49.58
FDCR 65.60 90.54 78.06 61.25 93.60 77.42 86.92 88.32 87.62 85.59 89.62 87.60 95.80 89.34 92.57 95.44 77.81 86.62

with malicious ratio Υ = 20%

Vanilla 65.32 56.11 60.72 62.23 48.02 55.12 87.34 3.44 45.39 86.25 12.17 49.21 95.67 7.46 51.57 95.93 30.57 63.25
Multi Krum 50.93 85.27 68.10 39.19 88.38 63.79 43.16 97.41 70.28 10.00 100.0 55.00 90.73 90.09 90.41 91.84 89.18 90.51

FoolsGold 56.24 95.54 75.89 50.96 99.47 75.21 67.13 17.56 42.34 66.13 0.163 33.14 80.76 94.91 87.84 47.39 30.12 38.75
RLR 64.86 54.86 59.86 63.51 50.42 56.97 87.36 4.34 45.85 86.06 8.38 47.22 95.93 7.77 51.85 95.65 29.21 62.43
DnC 60.87 84.70 72.78 57.39 84.78 71.09 86.49 89.47 87.98 84.58 2.94 43.76 93.75 49.67 71.71 95.18 79.91 87.54

MMA 52.78 92.62 72.70 49.60 82.98 66.29 78.19 85.76 81.98 74.62 16.77 45.70 93.81 89.64 91.72 93.21 89.89 91.55
Trim Median 46.80 73.69 60.25 38.23 90.11 64.17 81.48 95.68 88.58 75.10 86.20 80.65 92.29 14.22 53.25 83.31 30.12 56.72

Bulyan 42.79 97.87 70.33 25.37 76.06 50.72 77.75 93.60 85.67 66.58 94.90 80.74 87.80 83.87 85.84 77.82 48.28 63.05
RFA 64.69 46.59 55.64 61.41 38.83 50.12 86.61 0.46 43.53 86.12 2.68 44.40 95.51 16.70 56.10 94.79 35.40 65.09

FLTrust 50.54 81.40 65.97 43.35 75.66 59.50 68.06 16.81 42.44 71.28 38.53 54.90 93.43 89.48 91.46 92.31 77.26 84.78
Sageflow 65.29 44.40 54.84 61.97 41.24 51.61 88.29 8.07 48.18 86.86 8.65 47.75 96.31 9.17 52.74 95.99 33.93 64.96

Finetuning 64.02 58.09 61.06 63.63 57.57 60.60 87.28 13.07 50.17 85.56 13.74 49.65 95.06 15.23 55.14 94.60 41.85 68.22
CRFL 60.01 73.79 66.90 56.89 66.11 61.50 85.40 17.60 51.50 83.34 40.62 61.98 94.18 45.49 69.83 93.27 46.02 69.64
FDCR 65.19 93.59 79.39 54.49 93.89 74.19 85.44 87.47 86.46 82.67 84.80 83.73 91.55 89.79 90.67 95.63 90.51 93.07
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Figure 3: Comparison of federated benign performance A and backdoor failure rateR during communi-
cation on Cifar-10 with Υ=30%. FDCR appears the satisfying benign performance and backdoor failure rate.
Furthermore, our method acquires stable convergence tendencies. Please see specific discussion in Sec. 4.3.

4.3 Comparison to State-of-the-Arts

The Tab. 4 illustrates the final metric by the end of the federated learning process with popular
Backdoor Defense methods. It clearly depicts that our method achieves a satisfying performance
than different counterparts on different evaluation metrics, which confirms that FDCR effectively
enhances the backdoor-robust in heterogeneous federated learning. Take the result of Cifar-10 with
β = 0.3 and Υ=30% as an example, our method outperforms the best counterpart with a gap of
9.17% on the V metric. Furthermore, existing backdoor defensive methods fail to resist the backdoor
attack under either the large malicious client ratio Υ=30% and serious label skew β=0.3. It reveals
that existing solutions fail to conduct the malicious discrimination selection under large-scale evils or
serious data heterogeneity. We further plot both the federated benign performance A and backdoor
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failure rateR during the communication process on the Cifar-10 setting in Fig. 3. We observe that
FDCR presents faster and stabler convergence speed than others with different heterogeneity degrees.

5 Conclusion

In response to backdoor attacks in heterogeneous federated learning, we introduce the Fisher Discrep-
ancy Cluster and Recale (FDCR), which distinguishes between benign and malicious distributions
based on distinct degrees of parameter importance. We employ the Fisher Information Matrix to
calculate the degree of parameter importance within client distributions and adjust the weighting of
client parameter updates accordingly. Clients exhibiting large differences in gradient updates are
identified as potential backdoor attackers, allowing us to mitigate their influence during the parameter
aggregation process. Additionally, we prioritize and accelerate parameter elements related to the
target distribution, which promotes meaningful parameter optimization and weakens the impact of
non-essential elements. The effectiveness and robustness of our approach have been validated against
popular counterparts in various heterogeneous federated learning scenarios. This work aims to offer a
novel perspective and pave the way for future research in this field.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Please refer to Sec. 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Sec. 3.3.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Please see Sec. 3.2.1.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to Sec. 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Please refer to Sec. 4.1

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to Sec. 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please refer to Sec. 4.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Sec. 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Please see the supplementary file.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Please refer to Sec. 4.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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