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Abstract

Generating high-fidelity, differentially private (DP) synthetic images offers a
promising route to share and analyze sensitive visual data without compromising
individual privacy. However, existing DP image synthesis methods struggle to
produce high-resolution outputs that faithfully capture the structure of the original
data. In this paper, we introduce a novel method, referred to as Synthesis via
Private Textual Intermediaries (SPTI), that can generate high-resolution DP images
with easy adoptions. The key idea is to shift the challenge of DP image synthesis
from the image domain to the text domain by leveraging state-of-the-art DP text
generation methods. SPTI first summarizes each private image into a concise
textual description using image-to-text models, then applies a modified Private
Evolution algorithm to generate DP text, and finally reconstructs images using
text-to-image models. Notably, SPTI requires no model training, only inferences
with off-the-shelf models. Given a private dataset, SPTI produces synthetic images
of substantially higher quality than prior DP approaches. On the LSUN Bedroom
dataset, SPTI attains an FID = 26.71 under ϵ = 1.0, improving over Private
Evolution’s FID of 40.36. Similarly, on MM-CelebA-HQ, SPTI achieves an FID
= 33.27 at ϵ = 1.0, compared to 57.01 from DP fine-tuning baselines. Overall,
our results demonstrate that Synthesis via Private Textual Intermediaries provides
a resource-efficient and proprietary-model-compatible framework for generating
high-resolution DP synthetic images, greatly expanding access to private visual
datasets. Our code release: https://github.com/MarkGodrick/SPTI

1 Introduction

The past few years have seen an explosion in the capabilities of state-of-the-art generative models.
Large diffusion and autoregressive models can produce photorealistic images, coherent long-form text,
and convincing multi-modal outputs with little more than a prompt [36, 17, 30, 43, 29, 56, 48, 47].
However, when these powerful public models are applied to domain- or user-specific tasks, some
form of adaptation is often required, whether it be expensive fine-tuning on private data or in-
context learning with user examples. At the same time, the use of private or sensitive data raises
serious privacy concerns: direct fine-tuning of a model on proprietary images or user uploads risks
memorization and potential leakage of personal information [7, 34, 49, 55].
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Figure 1: Overview of the Synthesis via Private Textual Intermediaries (SPTI) framework for
differentially private (DP) synthetic data generation. Top left: DP fine-tuning framework. A
pretrained model is fine-tuned on private data under DP constraints, and the resulting model is used
to generate DP synthetic data. Top right: Private Evolution (PE) on images. This method begins
by randomly generating candidate samples, which are then compared to private data. Samples are
selected based on a voting mechanism and further perturbed to produce a new generation of samples.
Bottom: Synthesis via Private Textual Intermediaries (SPTI) framework. Private image data is served
as reference. A modified Augmented Private Evolution (Aug-PE) method [53] is then applied to
generate DP synthetic text data, which is subsequently transformed into DP synthetic images using a
diffusion model API.

Figure 2: DP-synthetic images
from dataset European Art (ϵ =
1.0).

Figure 3: DP-synthetic images
from dataset Wave-ui-25k (ϵ =
1.0).

Figure 4: DP-synthetic images
from dataset LSUN Bedroom
(ϵ = 1.0).

Broadly speaking, there are two strategies to harness private data under formal differential privacy
guarantees [10]. The more direct approach is differentially private (DP) fine-tuning [57, 25, 6, 23, 35,
31, 8], in which gradient updates are clipped and noised (e.g., via DP-SGD [1]). While conceptually
straightforward, this method demands substantial expertise and computational resources. For instance,
fine-tuning a state-of-the-art model such as DeepSeek V3 [29] requires hundreds of GPUs, not to
mention the engineering complexity of per-sample gradient clipping and noise calibration of DP-SGD
[15]. Moreover, many proprietary foundation models do not even permit user fine-tuning, effectively
precluding this route.

An alternative is to generate a DP synthetic dataset that mimics the distribution of the private
data [27, 53, 28, 12] and then use that synthetic data for downstream adaptation—either by fine-
tuning or by providing examples in-context. This “generate-then-adapt” paradigm sidesteps the need
to directly privatize a large model but poses its own challenges: how can one synthesize high-fidelity
images (or other modalities) that both faithfully capture the structure of the original data and satisfy
strong DP guarantees, all without incurring substantial compute overhead?
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In this work, we introduce a Synthesis via Private Textual Intermediaries framework that leverages the
remarkable text understanding of modern models as a bridge between private data and high-quality
generation. Our key insight is twofold:

1. Text generation is one of the most successful modalities for AI, so is the private text generation.
Private text generation can achieve similar performance to directly differentially private fine-tuning
LLMs [53, 59], and text models can be privately adapted far more easily than their image counterparts.

2. Text unifies modalities. In modern models, natural language often serves as a universal interface,
with a wide range of off-the-shelf models available for both generating images, video, audio, and
other modalities from text [43, 40, 30], and for generating text from these modalities [47, 18].

Building on these observations, we propose Synthesis via Private Textual Intermediaries (SPTI)
(Figure 1). Given a private image collection, SPTI first converts the images into concise textual
summaries using a standard captioning model. It then adapts Private Evolution [27, 53, 28, 50], a
DP synthetic data algorithm that only requires model inference, to generate DP-sanitized captions
that reflect the private caption distribution. Finally, it uses an off-the-shelf text-to-image models to
sample candidate images conditioned on these DP captions. Notably, all steps in SPTI rely solely
on the inference APIs of existing models without any additional training, allowing SPTI to leverage
state-of-the-art models behind proprietary APIs—something that DP fine-tuning approaches cannot
achieve.

We evaluate SPTI on standard benchmarks. On LSUN Bedroom, SPTI achieves FID = 26.71,
markedly improving over Private Evolution’s prior best of 40.36 for ϵ = 1. On MM-CelebA-HQ,
it attains FID = 33.27 versus 57.01 for DP fine-tuning baselines for ϵ = 1. In both cases, SPTI
generates high-resolution synthetic images with significantly better quality than either cost-intensive
DP-SGD approaches [43] or previous API-based approaches [27]. Figures 2, 3, 4 show generated
images from SPTI.

Our contributions are as follows:

• Conceptually, we introduce Synthesis via Private Textual Intermediaries, a novel framework
that uses text as an intermediate representation to bridge off-the-shelf multimodal LLMs and
achieve privacy-preserving, high-resolution image generation by leveraging state-of-the-art
DP text generation methods.

• Technically, we develop a novel Private Evolution voting mechanism that privately select
text descriptions by voting in image representation space. It achieves strong privacy while
ensuring strong resemblance to the private image data.

• Empirically, we demonstrate that SPTI generates high-quality, high-resolution images across
diverse datasets, and can readily incorporate future advances in multimodal generation.
Extensive ablation studies validate the effect of each components of the algorithm in
achieving state-of-the-art performance.

The rest of the paper is organized as follows. In Section 2 we review background and preliminaries;
Section 3 details the SPTI method; Section 4 presents experimental results and analyses; Section 5
discusses related work; Section 6 concludes with a discussion of future directions; and Section 7
faithfully describes the potential limitations of the proposed method.

2 Preliminaries: Differential Privacy and DP Synthetic Data via APIs

Differential Privacy. One mechanism M is said to be (ϵ, δ)-DP if for any two neighboring datasets
D and D′ which differ in a single entry and for any observation set S of outputs of M , one has

Pr
(
M(D) ∈ S

)
≤ eϵ Pr

(
M(D′) ∈ S

)
+ δ.

The intuition of (ϵ, δ)-DP requires that any single sample cannot influence the mechanism’s output
too much.

DP Synthetic Data via APIs. The DP synthetic data problem is formulated as DP Wasserstein
Approximation in Lin et al. [27]. Given a private dataset Dpriv = {xi : i ∈ [Npriv]} with Npriv

samples (e.g., images), the goal is to design an (ϵ, δ)-DP algorithm M that outputs a synthetic dataset
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Dsyn = {x′
i : i ∈ [Nsyn]} with Nsyn samples, where the Wasserstein p-distance Wp(Dpriv,Dsyn)

is minimized, w.r.t. the distance function d(·, ·) and some p ≥ 1.

Private Evolution (PE). [27] is a recently proposed differentially private synthetic data generation
that relies solely on API access to off-the-shelf models. The PE algorithm consists of following steps:

• Random Initialization. Call RANDOM_API to draw an initial set of synthetic candidates
from the foundation model.

• Repeat the following routine several times

1. Private Voting. Using the private dataset, each real sample “votes” for its nearest
synthetic candidate under the embedding network, producing a (noisy) histogram via
the DP voting function.

2. Resampling. Draw a new batch of synthetic points by sampling from this private
histogram.

3. Variation. For each drawn point, invoke VARIATION_API to produce novel samples
that are semantically similar to the selected candidate (e.g., variations of an object in
an image).

This procedure can generate synthetic data whose distribution closely matches that of the private
dataset while controlling privacy leakage using a private histogram algorithm.

3 Method: High Quality Image Synthesis via Private Textual Intermediaries

Before describing our method, we first outline the high-level motivation. The goal of differentially
private (DP) synthetic data generation is to mimic the distribution of private data, no matter how rare
or complex the private data are, e.g., high-resolution or UI-like images, while preserving privacy.
However, directly synthesizing such images by using Private Evolution [27] poses two key challenges.
First, rare cases are difficult to generate if they are far from typical data distribution that the model
has learned on. Second, high-resolution images require the model to correctly render all fine-grained
details across a large output space, which is particularly challenging for generation models.

To address these issues, we shift the problem from the image domain to the text domain by introducing
textual intermediaries. Text representations are semantically rich yet lower-dimensional, making them
significantly more amenable to efficient DP synthesis. Recent advances have shown that privately
trained language models [59] or DP synthetic text [53] can achieve strong utility while satisfying
DP. Moreover, text serves as a universal interface for multimodal generation: a single caption can
condition powerful off-the-shelf models to generate images, videos, audio, and more. This makes our
approach have the potential to be broadly applicable across modalities, though we focus on image
synthesis in this work.

We propose Synthesis via Private Textual Intermediaries (SPTI), a novel framework that leverages
this insight. SPTI first converts private images into captions, applies our newly-designed Private
Evolution (PE) algorithm to these descriptions under a DP guarantee, and then synthesizes images
using a text-to-image generator. This design ensures strong privacy while maintaining high utility.
An overview is shown in Figure 1.

3.1 The Design of Synthesis via Private Textual Intermediaries

Our SPTI consists of three stages: (1) using image-to-text model to caption private images to obtain
text descriptions, (2) applying Private Evolution to the text data under DP constraints, and (3) using
text-to-image model to generate synthetic images using the evolved text. The process is outlined in
Algorithm 1.

Images to Texts. Given a private image datasetD, we begin by captioning each image into a textual
description using an off-the-shelf image captioning model. This results in a corpus of private text
data T , which serves as a proxy for the original image data during subsequent privacy-preserving
operations.
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Private Evolution in Text Space. Augmented Private Evolution (Aug-PE) [53] is an iterative,
population-based method for generating synthetic text data under DP constraints. We modify it by
replacing its voting mechanism with a new voting strategy. At each iteration, a pool of candidate texts
is generated, evaluated, and selected. For selection, we assign each candidate a probability using
Image Voting process, which is described with detail in Section 3.2. We then select the candidates by
this probability to produce the next generation. This process preserves privacy while exploring the
text space efficiently. We provide a detailed version of this modified algorithm 2 in Appendix A.

Evolved Texts to Images. Once we obtain the evolved synthetic text set T ′, we use a high-quality
text-to-image diffusion model (e.g., state-of-the-art open-source models [44] or commercial APIs) to
convert each text back into an image. Since the evolution occurred entirely in the text domain, the
resulting images are inherently DP-compliant due to post processing properties of DP.

RANDOM_API and VARIATION_API. Our method follows Aug-PE [53] method, also applying
RANDOM_API and VARIATION_API in our algorithm Aug_PE_Image_Voting. For RANDOM_API, we
prompt the LLMs to generate random image captions from scratch, denoted as RANDOM_API(N).
This means RANDOM_API will generate N samples. For VARIATION_API, we also prompt the LLMs
to generate variations of the given image captions, denoted as VARIATION_API(C). This means
VARIATION_API will generate variants of equal quantity from text data C.

Algorithm 1 SPTI: Privately Synthesize High-Resolution Images via Synthesis via Private Textual
Intermediaries
Require: Private image dataset D, Aug_PE_Image_Voting
Ensure: Synthetic images D′

1: Convert D to text descriptions T using a captioning model
2: Apply Private Evolution: T ′ = Aug_PE_Image_Voting(T )
3: Generate images D′ from T ′ using a text-to-image diffusion model
4: return D′

3.2 Private Evolution in Textual Space with Voting by Image Representations

Running Aug-PE on image captions can generate synthetic captions that are similar to those of the
original private images in the text domain. However, the final text-to-image models work in a random
and complex way. As a result, even accurate captions in the text domain may not necessarily produce
images that closely match the original private ones in the image domain.

Based on this insight, we propose Image Voting (Algorithm 2), a cross-modal selection mechanism
integrated into the PE process. Rather than selecting candidate texts solely based on textual similarity,
we first generate images from the candidate texts using the text-to-image model. These synthesized
images are then embedded using an image encoder (e.g., Inception-v3 [46, 39]), along with the
private images.

For each private image embedding, we identify its nearest neighbor among the generated image
embeddings (e.g., via Euclidean distance). The corresponding synthetic text associated with the
nearest image is assigned one vote. After accumulating votes across all private images and adding
noise, we normalize the vote counts into a probability distribution over candidate texts, which is
then used to sample the next generation. This reverse-nearest-neighbor approach prioritizes synthetic
texts that produce images broadly aligned with the private dataset. Additionally, the Image Voting
process notably requires no textual reference, as it directly leverages the private images themselves
as guidance during generation.

3.3 Privacy Analysis

We analyze the privacy guarantees of our proposed SPTI framework, which synthesizes image data
under differential privacy (DP) by operating in the text space. Our goal is to ensure that the final
synthetic imagesD′ are generated through a process that satisfies (ε, δ)-DP with respect to the private
dataset D.
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Privacy-Critical Step. The only step in the SPTI pipeline that accesses the private data is the
Private Evolution module, specifically through the similarity-based voting mechanism in algorithm
Aug_PE_Image_Voting (Algorithm 2). This module operates on embeddings of the private image
dataset D and is used to guide the sampling of synthetic text candidates. Thus, our privacy analysis
focuses on this step.

Voting Mechanism. For each private image embedding, we identify its nearest neighbor among the
generated image embeddings , and increment a vote count histogram H indexed by the candidate text
that produced the nearest image. This step corresponds to a histogram query over the private data.

To ensure differential privacy, we add Gaussian noise N (0, σ2I) to the vote histogram H , which is
equivalent to applying the Gaussian mechanism to a function with bounded sensitivity.

Sensitivity Analysis. The histogram query has L2 sensitivity at most 1, since each private image
contributes a vote to only one candidate (i.e., changing a single image can affect the histogram by at
most 1 in one coordinate). This satisfies the precondition for the Gaussian mechanism.

According to the Gaussian mechanism [4], adding noise of variance σ2 per coordinate to a function
with L2 sensitivity 1 ensures (ε, δ)-DP, provided:

Φ

(
1

2σ
− εσ

)
− eεΦ

(
− 1

2σ
− εσ

)
≤ δ.

Privacy Composition. According to the adaptive composition theorem of Gaussian mechanisms
[9], applying the above Gaussian mechanism across G iterations satisfy (ε, δ)-DP, provided:

Φ

(√
G

2σ
− εσ√

G

)
− eεΦ

(
−
√
G

2σ
− εσ√

G

)
≤ δ. (1)

Post-processing Immunity. All downstream steps in SPTI—including text mutation and image gen-
eration via a fixed diffusion model—depend solely on the privatized output of the voting mechanism.
By the post-processing property of DP, these steps incur no additional privacy cost.

Overall Guarantee. Hence, SPTI satisfies (ε, δ)-differential privacy with respect to the private
image dataset D, provided that the noise scale σ is properly chosen to satisfy Eq. 1.

4 Experiments

In this section, we evaluate the effectiveness of our proposed method through comprehensive experi-
ments. Section 4.1 describes our experimental setup. Section 4.2 and 4.3 present the main results,
where we compare our approach against state-of-the-art methods across multiple benchmarks to
demonstrate its superior performance. Section 4.4 includes ablation studies analyzing the impact of
the image voting mechanism and different model APIs. Our findings show that the image voting
technique consistently improves performance, while the quality of the synthetic data remains robust
across different language and diffusion model APIs. We also represent extended ablation study in
Appendix C.

4.1 Experiment Setup

Datasets. To mitigate concerns that existing benchmarks may have been included in the pretraining
data of diffusion models, we carefully select only essential benchmarks with known publication
dates, prioritizing those that were introduced recently. Additionally, we create a new dataset by
extracting data from the open-source Blender movie Sprite Fright. We evaluate our SPTI method
on six datasets: LSUN Bedroom [58], Cat [27], European Art [41], Wave-ui-25k [61], MM-
CelebA-HQ [51, 52, 33, 21, 24], and our newly constructed Sprite Fright. These datasets are
selected because each represents a realistic, privacy-sensitive scenario. For instance, LSUN Bedroom
captures aspects of an individual’s private living space, while Wave-ui-25k consists of screenshots
that may reveal personal information from electronic devices.
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Baselines. We compare our method with two state-of-the-art DP baselines:

• Private Evolution [26]: A recently proposed DP image synthesis method that operates in
the image embedding space via private evolutionary strategies.

• DP Fine-tuning [32]: This method fine-tunes a diffusion model on private data under DP
constraints using DP-SGD, allowing direct sample generation while preserving privacy.

Models. Our pipeline requires a captioning model, a large language model (LLM), and a diffusion
model. For the caption model, we use GPT-4o-mini [38] and Qwen-VL-Max [3]. Our experiments
show these two models produce similar performances, and detailed results are presented in Section 4.4.
For the LLM and diffusion model, we use Meta-Llama-3-8B-Instruct [2] for text generation and
SDXL-Turbo [44] for image synthesis. Additional comparisons with newer and more advanced
models are discussed in our ablation study in Section 4.4.

Evaluation Metrics. To evaluate the quality of our differentially private synthetic samples, we use
the Fréchet Inception Distance [16] (FID) between the original private dataset and the synthetic one.
Lower FID scores indicate better alignment between the two distributions in terms of visual features.

4.2 Evaluation

FID score. We compare SPTI with two state-of-the-art approaches: Private Evolution and DP
fine-tuning, across multiple datasets. The results are presented in Table 1 and Table 2. For a fair
comparison, we use a Latent Diffusion Model (LDM) [42, 5] pretrained on LAION-400M [45] as the
backbone for all methods. The experimental results demonstrate the superior performance of SPTI.
For more details on the experimental settings, please refer to Appendix E.

Voted samples and variants. In each iteration, our results generate two categories of samples.
One can be categorized as voted samples selected from previous generation, while the others can
be viewed as variants generated from these samples, which we call variants. During experiment
evaluation, we often find voted samples perform better on FID evaluation, which can be seen in
Figures 5, 6. For consistency, we present all our experiment results using FID calculated from voted
samples. For more figures on experiment results, please refer to Appendix B.1.

Figure 5: Experiment results on LSUN Bedroom
dataset

Figure 6: Experiment results on European Art
dataset

4.3 Downstream Task

To comprehensively evaluate the generalization and transferability of the representations learned by
our proposed SPTI, we conduct a binary classification task on the CelebA dataset. We select the
attribute Wearing_Lipstick as the target label, and approximately 53% of the samples are without
lipstick and 47% are with lipstick. We generate 2,000, 4,000, 6,000, 8,000, and 10,000 samples using
SPTI, and PE, respectively, and compare their accuracy to the model trained by the corresponding
number of ground-truth training samples. A WRN-40-4 model is then trained on each generated data
samples under identical training settings, and the test accuracy is evaluated using the ground-truth
labels.

The test accuracy in Figure 7 shows that SPTI is more effective than PE method. This could be due to
the higher diversity of data generated by SPTI compared to that of PE (see Figures 36, 37). We also
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ε = 10 ε = 5 ε = 1

LSUN Bedroom
SPTI (ours) 25.88 25.87 26.39
PE image 41.72 41.08 40.36
DP-finetune 31.28 31.34 31.76

Cat
SPTI (ours) 101.57 102.31 106.15
PE image 51.00 51.29 64.62
DP-finetune 148.05 148.46 148.75

European Art
SPTI (ours) 41.42 42.71 57.64
PE image 76.25 74.41 76.50
DP-finetune 61.10 61.82 63.97

Wave-ui-25k
SPTI (ours) 20.16 22.53 35.18
PE image 39.28 48.95 50.45
DP-finetune 49.84 52.09 62.08

Sprite Fright
SPTI (ours) 142.48 141.49 157.31
PE image 195.58 181.77 197.13
DP-finetune 148.19 151.94 161.25

Table 1: FID values (lower is better) across multiple datasets to compare three different DP methods:
SPTI, PE Image, and DP-finetune.

Method model ε = 10 ε = 1

SPTI (our method) sdxl-turbo 26.02 34.17
LDM pretrained model 16.59 33.41

PE sdxl-turbo 53.32 50.45

DP-finetune LDM pretrained model 50.13 57.01

Table 2: FID values (lower is better) on the MM-Celeba-HQ dataset to compare different DP
generation methods: SPTI, PE Image, and DP-finetune.

give results from models trained with ground-truth training samples to show that our selected number
of samples is sufficient to train a good binary classifier. Additionally, we provide model performance
during training and examples of generated samples in Appendix B.3.

4.4 Ablation Study

We conduct a series of ablation studies to investigate the contribution of each component of our
proposed method. Specifically, we analyze the impact of image voting in the main text, while
additional studies on hyperparameters for the LLM and diffusion APIs are provided in appendix due
to space constraints. All experiments are conducted under the same conditions described in Section
4.1.

4.4.1 SPTI Without Image Voting

To evaluate the effect of image voting, we substitute it with a baseline approach and present the
comparative results in Table 3. Specifically, we compare our image voting strategy with the original
Aug-PE method, where synthetic text is voted using generated private text data rather than the original
private image data. We observe a significant improvement in FID, suggesting that image-based voting
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Figure 7: Test Accuracy on CelebA dataset with different training samples. SPTI achieves better accuracy under
the same configuration because SPTI generates samples with more diversity than PE method. The experiment
results demonstrate that our method produces data with sufficient fidelity, enabling the model to effectively learn
from the generated samples.

plays an important role in enhancing the quality of the generated data. For more figures on experiment
results, please refer to Appendix B.2.

ε = 10 ε = 5 ε = 1

LSUN bedroom Image Voting 27.92 29.50 38.00
Text Voting 39.82 37.83 41.17

Cat Image Voting 101.57 102.31 106.15
Text Voting 110.51 106.07 106.02

Europeart Image Voting 46.69 48.45 64.04
Text Voting 74.37 74.04 74.91

Wave-ui-25k Image Voting 34.39 42.02 70.87
Text Voting 92.53 92.11 95.77

Table 3: FID values (lower is better) across multiple datasets to compare the SPTI method with
Image Voting and that with Text Voting.

5 Related Work

Differentially private (DP) synthetic data generation has been studied extensively. Early work focused
on query-based and statistical approaches, such as the Multiplicative Weights Exponential Mechanism
(MWEM) algorithm, which iteratively measures selected queries under DP and synthesizes data to
match those noisy answers [14]. PrivBayes learns a Bayesian network with DP noise added to its
parameters, then samples synthetic records from the privatized network [60]. While these methods
provide provable guarantees, they often struggle with high-dimensional data due to the curse of
dimensionality.

The advent of deep generative models enabled DP-GANs and VAEs. Xie et al. [54] apply DP-SGD
to GAN training to bound privacy leakage, and PATE-GAN uses the Private Aggregation of Teacher
Ensembles framework to train a generator with DP guarantees [20]. Although these models can
capture complex distributions, they incur utility loss from noise and training instability.

Recently, diffusion (score-based) models have shown promise under DP. Ghalebikesabi et al. [11]
privately fine-tune a pre-trained diffusion model on sensitive images, achieving state-of-the-art FID
scores on CIFAR-10 and medical imaging benchmarks. This demonstrates that modern diffusion
architectures can yield high-quality private synthetic data. Liu et al. [31] proposed DP-LDM bench-
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mark to train latent diffusion models for DP image generation. This provided an outstanding baseline
to compare with our method.

A parallel line of work investigates inference-only, API-based DP synthesis. Lin et al. [27] introduce
Private Evolution, which injects noise during generation from a frozen model, matching or surpassing
retrained approaches on image benchmarks. Xie et al. [53] extend this idea to text, querying a large
language model’s API with augmented DP sampling to produce synthetic text with strong utility. Lin
et al. [28] further extend Private Evolution by incorporating non-neural-network data synthesizers,
such as computer graphics tools. This approach delivers better results in domains where suitable
pre-trained models are unavailable and unlocks the potential of powerful non-neural-network data
synthesizers for DP data synthesis. Google has also demonstrated an inference-only LLM mechanism
for DP data generation [13].

A concurrent study also explores generating DP synthetic images by first producing text captions of
private images [22]. Their hierarchical DP fine-tuning approach trains a model to generate privatized
album descriptions and then photo descriptions conditioned on those. In contrast, we adopt the PE
method [53], which requires only API access to foundation models, and further specialize it by using
embeddings of the generated images, rather than text captions, during the voting process.

6 Conclusion

We have presented Synthesis via Private Textual Intermediaries (SPTI), a novel framework for
differentially private (DP) image synthesis by leveraging existing powerful image-to-text and text-to-
image generation models. By first converting each private image into a concise textual summary via
off-the-shelf image-to-text models, then applying a modified Private Evolution algorithm to guarantee
(ϵ, δ)-DP on the text, and finally reconstructing high-resolution images with state-of-the-art text-to-
image systems, SPTI sidesteps the challenges of training DP image generators. Importantly, our
approach requires no additional model training, making it both resource-efficient and compatible with
proprietary, API-access-only models. Empirical results demonstrate significant improvement over
existing methods. These findings validate that shifting the DP burden to the text domain enables the
generation of high-fidelity high-resolution synthetic images under strict privacy guarantees, offering
a practical path toward sharing and analyzing sensitive visual datasets.

7 Limitations

Domain Generalization Synthesis via Private Textual Intermediaries’ performance is intrinsically
tied to the coverage and robustness of the underlying image-to-text and text-to-image models.
Although multimodal large language models are continually improving, they still underrepresent
certain data domains (e.g., specialized medical imagery, remote-sensing data, niche artistic styles). In
such underrepresented or out-of-distribution settings, SPTI may fail to capture critical visual features
or produce coherent synthesis. Moreover, biases and domain shifts in the pre-trained models can
further degrade image fidelity and diversity.

Computational Overhead Our full data generation pipeline involves two major components: an
8B-parameter large language model (LLM) and a 3.5B-parameter diffusion model. Under our current
implementation, a complete data generation run takes approximately 19 hours on a single NVIDIA
A800, or 15.5 hours on 2×NVIDIA A100 GPUs, with a peak memory requirement of about 70 GB.

In comparison, the baseline PE method [27]uses only a single 3.5B model, requires no LLM, and
completes in about 7 hours on a single NVIDIA A100 GPU, with a peak memory requirement of
about 35 GB. While our method has higher compute demands, it introduces a semantically enriched
generation process through language-guided synthesis, which we show leads to superior data diversity
and downstream performance.

We believe the additional cost is justified by the significant gains in quality and generalization, and
we note that our pipeline can be modularly optimized (e.g., via model distillation or prompt caching)
in future work to reduce the runtime.

As for API usage, caption process will take 250M tokens for 10,000 images. During data generation,
LLM will process 7.3M tokens during each iteration, and diffusion model will process 5M tokens in
each iteration. A total of 10 iterations will count for 123M tokens.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract in our paper clearly states that our method can improve the quality
of image generation, and the results are listed in the experiment part.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our paper mentioned our the limitations in the last section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Our work has to prove our method follows DP constraints, this theoretical
result is provided with a complete and detailed proof in method section.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We represented our idea in method section, and specified our experiment setup
so that anyone who read our paper can reproduce our results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provided our code in the supplemental material, and we’ll release a more
formal version on Github soon.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The appendices in our paper specified most of our non-default hyper-parameters
in our experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our main contributions and experiment results don’t need information about
statistical significance to illustrate.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Our paper provided a part about compute resources in experiment section for
reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We’re sure that our work conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our paper talked about potential positive societal impacts of our work. Our
work provides a method for high quality private image generation, which better preserves
privacy for private data source.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper releases no data or models that have such risks for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All creators or original owners of assets used in our paper are properly credited.
And licenses and terms of use are explicitly mentioned and properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are introduced in our paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper described a lot about the usage of LLMs since LLMs take a important
role in our methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Details on our Aug_PE_Image_Voting algorithm

We present the pseudo-code for the Aug_PE_Image_Voting algorithm. While it may appear that the
generated private text T is unused in Algorithm 2, this is by design. Image voting serves solely as a
quality enhancement technique within our pipeline. In contrast, the original text voting mechanism
explicitly requires the generated private text. To maintain the completeness and integrity of the overall
pipeline, we retain the captioning process.

Algorithm 2 Aug-PE with Image Voting (Aug_PE_Image_Voting)

Require: Private image dataset D, generated private text T , population size N , number of iterations
G, RANDOM_API(·), VARIATION_API(·), diffusion model API Diffusion(·), image encoder
EncodeImage(·), DP noise multiplier σ,K,L

Ensure: Differentially private synthetic text data T ′

1: C0 = RANDOM_API(N)
2: Epriv = EncodeImage(D)
3: for g = 0 to G− 1 do
4: if K == 0 then
5: Ig = Diffusion(Cg)
6: Egen = EncodeImage(Ig)
7: else if K > 0 then
8: Ckg = VARIATION_API(Cg), k = 1, 2, ...,K

9: Ikg = Diffusion(Ckg ), k = 1, 2, ...,K

10: Ekgen = EncodeImage(Ikg ), k = 1, 2, ...,K

11: Egen = 1
K

∑K
k=1 Ekgen

12: end if
13: H = 0N = [0, 0, ..., 0]
14: for each epriv ∈ Epriv do
15: i← argminj d(epriv, Egen[j])
16: H[i]← H[i] + 1
17: end for
18: H ← H +N (0, σ2I)
19: P ← H/

∑
H

20: if L == 1 then
21: C′g ← draw N samples with replacement from Cg
22: Cg+1 ← VARIATION_API(C′g)
23: save Csyng+1 ← C′g
24: else if L > 1 then
25: C′g ← rank samples by probabilities P and draw top N samples
26: Clg+1 ← VARIATION_API(C′g), l = 1, 2, ..., L− 1

27: Cg+1 = [C ′
g, C

1
g+1, ..., C

L−1
g+1 ]

28: save Csyng+1 ← Cg+1

29: end if
30: end for
31: return Final text candidates CG as synthetic data T ′

B More on our experiment results

Here we post more results of our experiments, and provide more experiment details.

B.1 FID comparison between PE and SPTI

Here we present details of our experiment results. We use FID [16] to compare between SPTI and PE
on a variaty of datasets. We give specific dataset name and DP constraint in the caption of each image.
We find SPTI generally better than PE, and voted samples is generally better than variants in most
iterations. Interestingly, voted samples is often slightly worse than variants in the inital iteration.
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Figure 8: Experiment results on LSUN Bedroom
dataset. (ϵ = 1.0)

Figure 9: Experiment results on LSUN Bedroom
dataset. (ϵ = 10.0)

Figure 10: Experiment results on European Art
dataset. (ϵ = 1.0)

Figure 11: Experiment results on European Art
dataset. (ϵ = 10.0)

Figure 12: Experiment results on Wave-ui-25k
dataset. (ϵ = 1.0)

Figure 13: Experiment results on Wave-ui-25k
dataset. (ϵ = 10.0)
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Figure 14: Experiment results on Cat dataset. (ϵ =
1.0)

Figure 15: Experiment results on Cat dataset. (ϵ =
10.0)

Figure 16: Experiment results on Sprite Fright
dataset. (ϵ = 1.0)

Figure 17: Experiment results on Sprite Fright
dataset. (ϵ = 10.0)

B.2 FID comparison between Image Voting and Text Voting

Here we present details of our experiment results. We use FID [16] to compare between image
voting and text voting on a variaty of datasets. We give specific dataset name and DP constraint
in the caption of each image. We find image voting is generally better than text voting under most
conditions. Interestingly, image voting and text voting show the same behavior in the inital iteration,
i.e. voted samples is slightly worse than variants in the first iteration, no matter image voting or text
voting is used.

Figure 18: Experiment results on LSUN Bedroom
dataset. (ϵ = 1.0)

Figure 19: Experiment results on LSUN Bedroom
dataset. (ϵ = 10.0)
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Figure 20: Experiment results on Wave-ui-25k
dataset. (ϵ = 1.0)

Figure 21: Experiment results on Wave-ui-25k
dataset. (ϵ = 10.0)

Figure 22: Experiment results on European Art
dataset. (ϵ = 1.0)

Figure 23: Experiment results on European Art
dataset. (ϵ = 10.0)

Figure 24: Experiment results on Cat dataset. (ϵ =
1.0)

Figure 25: Experiment results on Cat dataset. (ϵ =
10.0)

B.3 Downstream Task

Despite the high quality of generated images in our method, we also consolidate their value in usage
for downstream tasks. To be more specific, we test the classification accuracy on CelebA dataset
using WRN-40-4 model. Here we provide figures of model performance during training.
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Figure 26: Training performance (test accuracy) on
CelebA dataset with the same number of generated
samples. (ϵ = 10.0, sample_size=2000)

Figure 27: Training performance (train accuracy) on
CelebA dataset with the same number of generated
samples. (ϵ = 10.0, sample_size=2000)

Figure 28: Training performance (test accuracy) on
CelebA dataset with the same number of generated
samples. (ϵ = 10.0, sample_size=4000)

Figure 29: Training performance (train accuracy) on
CelebA dataset with the same number of generated
samples. (ϵ = 10.0, sample_size=4000)

Figure 30: Training performance (test accuracy) on
CelebA dataset with the same number of generated
samples. (ϵ = 10.0, sample_size=6000)

Figure 31: Training performance (train accuracy) on
CelebA dataset with the same number of generated
samples. (ϵ = 10.0, sample_size=6000)
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Figure 32: Training performance (test accuracy) on
CelebA dataset with the same number of generated
samples. (ϵ = 10.0, sample_size=8000)

Figure 33: Training performance (train accuracy) on
CelebA dataset with the same number of generated
samples. (ϵ = 10.0, sample_size=8000)

Figure 34: Training performance (test accuracy) on
CelebA dataset with the same number of generated
samples. (ϵ = 10.0, sample_size=10000)

Figure 35: Training performance (train accuracy) on
CelebA dataset with the same number of generated
samples. (ϵ = 10.0, sample_size=10000)

Figure 36: Generated samples by SPTI (ϵ = 10.0, sample_size=10000)

Figure 37: Generated samples by PE image (ϵ = 10.0, sample_size=10000)
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C Extended Ablation Study

C.1 Large Language Model and Diffusion Model APIs

Along with the effect of our image voting trick, we also tested our method with different LLM and
diffusion model APIs along with other hyperparameters. For large language models, we choose qwen-
plus [3] as comparison to our original Meta-Llama-3-8B-Instruct [2] model. For diffusion model
APIs, we choose stable-diffusion-xl-base-1.0 [44] to compare with our original model. We also
present Figure 38, 39, 40, 41 generated from DP synthetic data by Imagen3 [19] and DALLE3 [37], i.e.
we acquire DP synthetic images by running SPTI using Meta-Llama-3-8B-Instruct [2] and stable-
diffusion-xl-base-1.0 [44], but generate final DP synthetic images using different image-generation
API.

SDXL-Turbo SDXL-base-1.0 Infinity

Meta-Llama-3-8B-Instruct 26.71 25.42 30.66
qwen-plus 26.65 24.44 31.28

Table 4: FID (lower is better) on LSUN Bedroom with ϵ = 1.0, tested using different LLM and
diffusion APIs. All other settings are kept identical to the default configuration. The results indicate
that while different API backends (e.g., SDXL-Turbo, SDXL-base-1.0, Infinity) and language
models (e.g., Meta-Llama-3-8B-Instruct, Qwen-Plus) introduce minor variations in FID, their
overall influence on the final image quality is limited. This demonstrates the robustness of our method
to the choice of model and API implementation.

Figure 38: Images generated by Imagen3 [19]
from DP-synthetic text of dataset LSUN Bedroom
(ϵ = 1.0). FID (lower is better) is 26.58, which is
slightly better than using SDXL-Turbo 26.71.

Figure 39: Images generated by Imagen3 [19]
from DP-synthetic text of dataset Wave-ui-25k
(ϵ = 1.0). FID (lower is better) is 72.13, which is
worse than using SDXL-Turbo 36.52.
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Figure 40: Images generated by DALLE3 [37]
from DP-synthetic text of dataset LSUN Bedroom
(ϵ = 1.0). FID (lower is better) is 29.96, which is
slightly worse than using SDXL-Turbo 26.71

Figure 41: Images generated by DALLE3 [37]
from DP-synthetic text of dataset Wave-ui-25k
(ϵ = 1.0). FID (lower is better) is 150.68, which
is worse than SDXL-Turbo 36.52

D Explanation of Special Conditions

In the previous experiment on Cat dataset, we find our method to be less effective compared to
baseline method (PE). So we conducted a contrast experiment to analyze the cause behind the
phenomenon.

Firstly, we build a small sub-dataset from ImageNet100 dataset called bird dataset. This dataset
consists of 100 images labeled goldfinch and 100 images labeled indigo bird, which corresponds to
label id 70 and 2 in the ImageNet100 dataset. We found similar results to Cat dataset, so we take
bird dataset as an alternate baseline.

Secondly, we proposed two possible reasons for the phenomenon that SPTI performs poorer than
PE on Cat and bird dataset. One is that the composition of dataset is not diverse, while SPTI uses
Aug-PE to generate DP data, which brings more diversity than PE image method, causing worse
results. The other is that the SPTI performs naturally poorer than PE when the total number of dataset
is small. We build another 3 datasets 5 according to these two reasons.

Here we reference our newly-built dataset using their composition in the following table. We only use
images from ImageNet100 when building all the four dataset. The experiment settings follows the
experiments on Cat dataset in Table 6. The experiment results in Table 5 shows that the reason why
SPTI performs poorer than PE on Cat and bird dataset is because diversity. SPTI performs naturally
poorer on dataset that is less diverse. This provides us with insight that text modality may bring more
diversity on DP data generation than using image.

E Details of Experimental Configurations

To facilitate reproducibility, we detail the hyperparameter settings used for all experiments in Section
4. For hyperparameters not mentioned, the default values are used. For experiment settings of ablation
studies between image voting and text voting, we use the same hyperparameters in Table 6 below.
For comparison experiments on SPTI, PE and DP fine-tuning, we present our configuration details in
Table 7. For specific configuration of DP fine-tuning, we present our settings in Table 8.

F Datasets

In this section, we summarize datasets used in our experiments with their stats, i.e. total number
of images, resolution, etc. We represent all information in Table 9. Here we record the number of
images and resolution in our experiments.
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Table 5: FID (lower is better) comparison of SPTI and PE on Different Datasets

Dataset Composition Total Number of Images SPTI (ours) PE
goldfinch*100

+ 200 144.18 110.96
indigo bird*100

20 kinds of different birds,
200 111.84 168.39

each kind 10 images

goldfinch*1000
+ 2000 106.26 78.66

indigo bird*1000

20 kinds of different birds,
2000 84.25 172.93

each kind 100 images

31



Dataset Configurations SPTI(ours) PE image

LSUN bedroom

PE.run() num_samples_schedule 2000 2000
iterations 10 10

ImageVotingNN()
NNhistogram()

lookahead_degree 0 -
lookahead_degree - 4

PEPopulation() initial_variation_api_fold 6 0
next_variation_api_fold 6 1

Cat

PE.run() num_samples_schedule 200 200
iterations 10 10

ImageVotingNN()
NearestNeighbors()

lookahead_degree 4 -
lookahead_degree - 4

PEPopulation() initial_variation_api_fold 0 0
next_variation_api_fold 1 1

Wave-ui-25k

PE.run() num_samples_schedule 2000 2000
iterations 10 10

ImageVotingNN()
NNhistogram()

lookahead_degree 0 -
lookahead_degree - 4

PEPopulation() initial_variation_api_fold 6 0
next_variation_api_fold 6 1

Europeart

PE.run() num_samples_schedule 2000 2000
iterations 10 10

ImageVotingNN()
NNhistogram()

lookahead_degree 0 -
lookahead_degree - 4

PEPopulation() initial_variation_api_fold 6 0
next_variation_api_fold 6 1

Sprite Fright

PE.run() num_samples_schedule 1000 1000
iterations 10 10

ImageVotingNN()
NNhistogram()

lookahead_degree 0 -
lookahead_degree - 4

PEPopulation() initial_variation_api_fold 6 0
next_variation_api_fold 6 1

Table 6: Experiment Settings for FID evaluation.

Configurations SPTI(ours) PE image

PE.run() num_samples_schedule 2000 2000
iterations 10 10

ImageVotingNN()
NNhistogram()

lookahead_degree 0 -
lookahead_degree - 4

PEPopulation() initial_variation_api_fold 6 0
next_variation_api_fold 6 1

Table 7: Experiment Settings of SPTI and PE for FID evaluation of MM-Celeba-HQ dataset
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Table 8: Hyperparameters for fine-tuning diffusion models with DP constraints ϵ = 10, 1 and
δ = 10−5 on text-conditioned CelebAHQ.

ϵ = 10 ϵ = 1

batch size 256 256
base learning rate 1× 10−7 1× 10−7

learning rate 2.6× 10−5 2.6× 10−5

epochs 10 10
clipping norm 0.01 0.01
noise scale 0.55 1.46
ablation -1 -1
num of params 280M 280M

use_spatial_transformer True True
cond_stage_key caption caption
context_dim 1280 1280
conditioning_key crossattn crossattn
transformer depth 1 1

Dataset Total number of images Resolution Source

LSUN 300,000 256× 256 https://github.com/fyu/lsun

Cat 200 512× 512 https://www.kaggle.com/datasets/fjxm
lzn/cat-cookie-doudou/

Wave-ui-25k 24,798 256× 256 https://huggingface.co/datasets/agen
tsea/wave-ui-25k

European Art 15,154 256× 256 https://huggingface.co/datasets/bigl
am/european_art

Sprite Fright 13,077 256× 256 https://studio.blender.org/projects/
sprite-fright/

MM-Celeba-HQ 30,000 256× 256 https://github.com/IIGROUP/MM-Celeb
A-HQ-Dataset

CelebA 202,599 178× 178 https://mmlab.ie.cuhk.edu.hk/projects/
CelebA.html

Table 9: Statistics of datasets used in our experiments.
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