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ABSTRACT

Latest insights from biology show that intelligence not only emerges from the
connections between neurons, but that individual neurons shoulder more compu-
tational responsibility than previously anticipated. Specifically, neural plasticity
should be critical in the context of constantly changing reinforcement learning
(RL) environments, yet current approaches still primarily employ static activation
functions. In this work, we motivate the use of adaptable activation functions in RL
and show that rational activation functions are particularly suitable for augmenting
plasticity. Inspired by residual networks, we derive a condition under which rational
units are closed under residual connections and formulate a naturally regularised
version. The proposed joint-rational activation allows for desirable degrees of flexi-
bility, yet regularises plasticity to an extent that avoids overfitting by leveraging
a mutual set of activation function parameters across layers. We demonstrate that
equipping popular algorithms with (joint) rational activations leads to consistent
improvements on different games from the Atari Learning Environment benchmark,
notably making DQN competitive to DDQN and Rainbow.'

1 INTRODUCTION

Neural Networks’ efficiency in approximating any function has made them the default choice in many
machine learning tasks. This is no different in deep reinforcement learning (RL), where the DQN
algorithm’s introduction (Mnih et al., 2015) has sparked the development of various neural solutions.
In concurrence with former neuroscientific explanations of brainpower residing in combinations
stemming from trillions of connections (Garlick, 2002), present advances have emphasised the role of
the neural architecture (Liu et al., 2018; Xie et al., 2019). As such, RL improvements have first been
mainly obtained through enhancing algorithms (Mnih et al., 2016; Haarnoja et al., 2018; Banerjee
et al., 2021) and only recently by searching for performing architectural patterns, via automatic deep
policy search (Pang et al., 2021; Krishnan et al., 2023), or via decoupling object detection (Lin et al.,
2020; Delfosse et al., 2023b) and policy search (Delfosse et al., 2023a; Wu et al., 2024).

However, research has also progressively shown that individual neurons shoulder more complexity
than initially expected, with the latest results demonstrating that dendritic compartments can compute
complex functions (e.g. XOR) (Gidon et al., 2020), previously categorised as unsolvable by single-
neuron systems. This finding seems to have renewed interest in activation functions (Georgescu et al.,
2020; Misra, 2020). In fact, many functions have been adopted across different domains (Redmon
et al., 2016; Brown et al., 2020; Schulman et al., 2017). To reduce the bias introduced by a fixed
activation function and achieve higher expressive power, one can further learn which activation
function is performant for a particular task (Zoph & Le, 2017; Liu et al., 2018), learn to combine
arbitrary families of activation functions (Manessi & Rozza, 2018), or find coefficients for polynomial
activations as weights to be optimised (Goyal et al., 2019).

Whereas these prior approaches have all contributed to their respective investigated scenarios, there
exists a finer approach that elegantly encapsulates the challenges brought on by reinforcement

'Rational library: github.com/k4ntz/activation-functions; Experiments: github.com/ml-research/rational _rl.
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Figure 1: Neural plasticity due to trainable activation functions allows RL agents to adapt to
environments of increasing complexity. Rational activations (bottom), with shared parameters in
each of the last two layers, evolve together with their input distributions (shaded blue) when learning
with DQN on Time Pilot. Each column corresponds to a training state where a new, more challenging
part of the environment (top, e.g. increasing enemy speed and movement complexity) has been
uncovered and is additionally used for training.

learning problems. Specifically, at each layer, we can learn rational activation functions (ratio of
polynomials) (Molina et al., 2020). Not only can rationals converge to any continuous function, but
they have further been proven to be better approximants than polynomials in terms of convergence
(Telgarsky, 2017). Even more crucially, their ability to adapt while learning equips a model with high
neural plasticity ( “capability to adjust to the environment and its transformations” (Garlick, 2002)).
We argue that adapting to environmental changes is essential, making rational activation functions
particularly suitable for dynamic RL environments. To provide a visual intuition, we showcase an
exemplary evolution of two rational activation functions together with their respective changing input
distributions in the dynamic “Time Pilot” environment in Fig. 1.

In this work, we show that plasticity is of major importance for RL agents, as a central element to
satisfy the requirements originating from diverse and dynamic environments and propose the use of
rational activation functions to augment deep RL agents plasticity. Apart from demonstrating the
suitability of adaptive activation functions for Deep RL, we also evaluate how many additional layer
weights can be replaced by rational activations. Our specific contributions are:

(i) We motivate why neural plasticity is a key aspect for Deep RL agents and that rational activations
are adequate as adaptable activation functions. For this purpose, we not only highlight that
rational activation functions adapt their parameters over time, but further prove that they can
dynamically embed residual connections, which we refer to as residual plasticity.

(ii) As additional representational capacity can hinder generalisation, especially in RL (Farebrother
et al., 2018; Roy et al., 2020; Yarats et al., 2021), we propose a joint-rational variant, that
uses weight-sharing in rational activations across different layers.

(iii) We empirically demonstrate that rational activations bring significant improvements to DQN and
Rainbow algorithms on Atari games and that our joint variant further increases performance.

(iv) Finally, we investigate the overestimation phenomenon of predicting too large return values,
which has previously been argued to originate from an unsuitable representational capacity
of the learning architecture (van Hasselt et al., 2016). As a result of our introduced (rational)
neural and residual plasticity, such overestimation can practically be reduced.

We proceed as follows. We start off by arguing in favour of plasticity for deep RL, then show how
rational functions are particularly suitable candidates to provide plasticity in neural networks and
present our empirical evaluation. Before concluding, we touch upon related work.
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Figure 2: Neural plasticity is essential for reinforcement learning. Human normalised mean scores
for rigid (LReLU and CRELU) DQN agents, agents with non-rational, rational, tempered, and regu-
larised plasticity are shown with standard deviation across 5 random seeded experimental repetitions.
Larger scores are better. Tempered plasticity, allowing initial adaptation to the environments, but not
their transformations in experimental repetitions, performs better on stationary environments. Regu-
larised plasticity performs well across all environment types. Best viewed in colour. A description of
the environments’ types is provided in Appendix A.5.

2 RATIONAL PLASTICITY FOR DEEP RL

Let us start by arguing why deep reinforcement learning agents require extensive plasticity and show
that parametric rational activation functions provide appropriate means to augment plasticity.

As motivated in the introduction, RL is subject to inherent distribution shifts. During training, agents
progressively uncover new states (input drift) and, as the policy improves, the reward signal is
modified (output drift). More precisely, for input drifts, we can distinguish environments according to
how much they change through learning. For simplicity, we categorise according to three intuitive
categories: stationary, dynamic and progressive environments. Consider the example of Atari 2600
games. Kangaroo and Tennis can be characterised as stationary since the games’ distributions do
not change significantly through learning. Asterix, Enduro and Q*bert are dynamic environments,
as different distribution shifts (e.g. Cauldron, Helmet, Shield, etc. in Asterix) are provided to the
agents in the first epochs, with no policy improvement required to uncover them. On the contrary,
Jamesbond, Seaquest, and Time Pilot are progressive environments: agents need to master early
stages before being provided with additional states, i.e. exposed to significant input shifts.

How do we efficiently improve RL agents’ ability to adapt to environments and their changes? To
deal with distribution shifts, our agents require high neural plasticity and thus benefit from adaptive
architectures. To elaborate further in our work, let us consider the popular DQN algorithm (Mnih
et al., 2015), that employs a @-parameterised neural network to approximate the Q-value function of
a state Sy and action a. This network is updated following the Q-learning equation: @ (S, a; 0) =
Riy1 + ymax, Q (Sty1,a;0). In addition to network connectivity playing an important role, we
now highlight the importance of individual neurons by modifying the network architecture of the
algorithm via the use of learnable activation functions, to show that they are a presently underestimated
component. To emphasise the utility of the upcoming proposed rational and joint-rational activation
functions, we will interleave early results into this section. The latter serves the primary purpose to
not only motivate the suitability of the rational parameterisation to provide plasticity, but also discern
the individual benefits of (joint-) rational activations, in the spirit of ablation studies.

2.1 RATIONAL NEURAL PLASTICITY

P(e) _  Xioa®’

Qz) 1+, bpak’
where z € R, {a;} and {b;} are m+1 and n (real) learnable parameters per layer. To test rational
functions’ plasticity, we use the discrete distribution shifts of the Permutted-MNIST continual learning
experiment. We show in Appendix 4 that rational activation functions improve the plasticity over
both ReLU and over CReLU (Shang et al., 2016), used to augment plasticity by Abbas et al. (2023).
For RL we show in Fig. 2 that the rational parametrisations substantially enhances RL agents. More
precisely, by comparing agents with rigid networks (a fixed Leaky ReLU baseline) to agents with
rational plasticity (i.e. with a rational activation function at each layer), we see that rational functions
boosts the agents to super-human performances on 7 out of 9 games. The acquired extra neural
plasticity seems to play a significant role in these Atari environments, especially in progressive ones.

Rational functions are ratio of polynomials, defined on R by R(z) =
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In order to discern the benefits of general plasticity through any adaptive activation function, over the
proposed use of the rational parametrisation, Fig. 2 additionally includes agents with Concatenated
ReLU and with Parametrised Exponential Linear Unit (Trottier et al., 2017). CReLU, was used in RL
to address plasicity loss (Abbas et al., 2023), outperforms LRELU on 6 out of 9 games, but is always
outmatched by rational plasticities. PELU that uses 3 parameters to control its slope, saturation and
exponential decay, and has been shown to outperform other learnable alternatives on classification
tasks (Godfrey, 2019). However, in contrast to the rational parameterisation, it seems to fall behind
and only boosts the agents to super-human performance on 3 out of 9 games (contrary to 7), implying
that the type of plasticity provided by rational activations is particularly suitable.

To highlight the desirability of rational activations even further, we additionally distinguish between
the plasticity of agents towards their specific environment and the plasticity allowing them to adapt
while the environment is changing. To this end, we show agents equipped with rational activations
that are tempered in Fig. 2. Such agents are equipped with the final, optimised rational functions
of trained rational-equipped agents. They correspond to frozen functions from agents that already
adapted to their specific environment. The plasticity of the rationals is thus tempered (i.e. stopped) in
a repeated application (i.e. another training session) to emphasise the necessity to continuously adapt
the activation functions, together with the layers’ weights during training. Whereas providing agents
with such tempered, tailored to the task, activations already boosts performances, rational plasticity at
all times is essential, particularly in dynamic and progressive environments.

2.2 RATIONAL RESIDUAL PLASTICITY

The prior paragraphs have showcased the advantage of agents equipped with rational activation
functions, rooted in their ability to update their parameters over time. However, we argue that the
observed boost in performance is not only due to parameters adapting to distributional drifts. Rational
activations can embed one of the most popular techniques to stabilise deep networks training; namely,
they can dynamically make use of a residual connection. We refer to this as residual plasticity.

Rationals are closed under residual connection and provide residual plasticity. We here show
that rational functions with strictly higher degree in the numerator embed residual connections. Recall
that residual neural networks (ResNets) were initially introduced following the intuition that it is
easier to optimise the residual mapping than to optimise the original, unreferenced mapping (He et al.,
2016). Formally, residual blocks of ResNets propagate an input X through two paths: a transforming
block of layers that preserves the dimensionality (F) and a residual connection (identity).

Theorem: Let R be a rational function of order (m, n). R embeds a residual connection < m >n.
Proof: Let us consider a rational function R = P/Q of order (m,n), with coefficients A" =
(a;)fio € R™+! of Pand BI" = (b;)7_, € R"*! of Q (with by = 1). We denote by @ (respectively

@) the Hadamard product (respectively division). Let X € R™1**"= be a tensor corresponding to
the input of the rational function of an arbitrary layer in a given neural network. We derive X ©* =

®F_, X. Furthermore, we use GVI¥(X) = [1, X, X®2, .., X®k] ¢ R(mxxn)xk+1 16 denote
the tensor containing the powers up to k of the tensor X . Note that GV *! can be understood as a
generalised Vandermonde tensor, similar as introduced in (Xu et al., 2016). For V¥l = (v;)k_ e RF+1,
let GVIFLVIF = Zf:OUiX ® be the weighted sum over the tensor elements of the last dimension.

Now, we apply the rational activation function R with residual connection to X:
y(X) =R(X) + X = qVI"(X).A" o gvI"(Xx).B" + x
= (GVIM(x).AM + x o avI"(x).B") o gV (X). Bl
= (GVIM(x).Al" 4 gyt (x) Bty o gy (x). Bl
— QY [max(m,n+1)] (X).C[maX(m’nJrl)] o gy (X).B["] - ﬁ(X),
where BY'" ™ = (b))} € R™2 (with by o = 0 and by ; = by fori € {1, ...,n + 1}),
Olmax(mnt Dl = ()P () = a4 b1, ;=05 ¢{0, ..ym}, b;=0Y5 ¢{0, .., n}).

R is a rational function of order (m/,n’), with m’ > n’. In other words, rational activation functions
of order m > n embed residual connections. Using the same degrees for numerator and denominator
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certifies asymptotic stability, but our derived configuration allows rationals to implicitly use residual
connections. Importantly, note that these residual connections are not rigid, as these functions can
progressively learn a; =0 for all j >n, i.e. we have residual plasticity.

Rational plasticity to replace residual blocks’ plasticity. In very deep ResNets, it has been
observed that feature re-combinations does not occur inside the blocks but that transitions to repre-
sentations occur during dimensionality changes Veit et al. (2016); Greff et al. (2017).

To investigate this hypothesis, Veit et al. have conducted lesioning experiments, where a residual block
is removed from the network, and surrounding ones are fine-tuned to recover. Whereas we emphasize
that we do not claim that the residual in rationals can replace entire convolutional blocks or that they
are generally equivalent, we hypothesize that under the conditions investigated by Veit et al. of very
deep networks, residual blocks could learn complex activation function-like behaviours. To test this
conjecture, we repeat the lesioning experiments, but also test replacing the lesioned block with a
rational function that satisfies the residual connection condition derived above. Results are provided
in appendix (c¢f A.2) and show that rational functions’ plasticity can efficiently compensate for
the lost capacity of lesioned residual blocks in very deep residual networks.

2.3 NATURAL RATIONAL REGULARISATION

We have motivated and shown that the combination of neural and residual plasticity form the central
pillars for why rational activation functions are desirable in deep RL. In particular for dynamic and
progressive environments, rational plasticity has been observed to provide a substantial boost over
alternatives. However, if we circle back to Fig. 2 and take a more careful look at the stationary
environments, we can observe that our previously investigated tempered rational plasticity (for
emphasis, initially allowed to tailor to the task but later “stopped” in experimental repetition) can
also have an upper edge over full plasticity. The extra rational plasticity at all times might reduce
generalisation abilities, particularly on non-diverse stationary environments. In fact, prior works have
highlighted the necessity for regularisation methods in deep reinforcement learning (Farebrother
et al., 2018; Roy et al., 2020; Yarats et al., 2021).

We thus propose a naturally regularised rational activation version, inspired from residual blocks. In
particular, Greff et al. have indicated that sharing the weights can improve learning performances,
as shown in Highway (Lu & Renals, 2016) and Residual Networks (Liao & Poggio, 2016). In the
spirit of these findings, we propose the regularised joint-rationals, where we constrain the input to
propagate through different layers but always be activated by the same learnable rational activation
function. Rational functions thus share a mutual set of parameters across the network, (instead of
layers, cf. Fig. 11). As observable in Fig. 2, this regularised form of plasticity increases the agents’
scores in the stationary environments and does not deteriorate performances in the progressive ones.

3 EMPIRICAL EVIDENCE FOR PLASTICITY

Our intention here is to investigate the benefits of neural plasticity through rational networks for deep
reinforcement learning. That is, we investigated the following questions:

(Q1) Do neural networks equipped with rational plasticity outperform rigid baselines?

(Q2) Can neural plasticity make up for more heavy algorithmic RL advancements?

(Q3) Can plasticity address the overestimation problem?

(Q4) How many more parameters would rigid networks need to measure up to rational ones?

To this end, we compare” our rational plasticity using the original DQN algorithm and its convolutional
network (Mnih et al., 2015) on 15 different games of the Atari 2600 domain (Brockman et al., 2017).
We compare these architectures to ones equipped with Leaky ReLU (as experiments on Breakout
and Spacelnvaders showed that agents with Leaky ReLU outperform ReLU ones), the learnable
PELU function, as well as SiLU (SiLU(z) = « - sigmoid(z)) and its derivative dSiLU. Elfwing
et al. showed that SiLU or a combination of SiLU (on convolutional layers) and its derivative (on
fully connected layers) perform better than ReLU in DQN agents on several games (2018). SiLU
and dSiLU are —to our knowledge— the only activation functions specifically designed for RL
applications. More details on the architecture and hyperparameters can be found in Appendix A.8.

230.000 GPU hours, carried out on a DGX-2 Machine with Nvidia Tesla V100 with 32GB.
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Figure 3: Learnable functions’ plasticity boosts RL agents. For reliable evaluation, we report the
performance profiles (top left) as well as superhuman probabilities (with CIs, bottom left) of baselines
(i.e. DQN and DDQN with Leaky ReLU, DQN with SiLU and SiLU + dSiLU), as well as DQN
with plasticity: using PELU, rational and joint-rational (5 random seeds). While the learnable PELU
already augment performances of its agents, rational and joint-rational ones lift them above human
performances on more than 70% of our runs. Detailed score tables are provided in Appendix A.3.

We then compare increased neural plasticity provided by (joint-)rational networks to algorithm
improvements, namely the Double DQN (DDQN) method (van Hasselt et al., 2016), that tackles
DQN’s overestimation problem, as well as Rainbow (Hessel et al., 2018). Rainbow incorporates
multiple algorithm improvements brought to DQN—Double Q-learning, prioritised experience replay,
duelling network, multi-step target, distributional learning and stochastic networks—and is widely
used also as a baseline (Lin et al., 2020; Hafner et al., 2021). We further explain how neural plasticity
can help readdress overestimation. Finally, we evaluate how many additional weights rigid networks
need to approximate rational ones.

In practice, we used safe rational functions (Molina et al., 2020), i.e. we used the absolute value of
the sum in the denominator to avoid poles. This stabilises training and makes the function continuous.
Rational activation functions are shared across layers (adding only 10 parameters per layer) or through
the whole network for the regularised (joint) version, with their parameters optimised together with
the rest of the weights. For ease of comparison and reproducibility, we conducted the original DQN
experiment (also used by DDQN and SiLU authors) using the mushroomRL (D’Eramo et al., 2020)
library, with the same hyperparameters (cf. Appendix A.8) across all the Atari agents, for a specific
game, but we did not use reward clipping. For a fair comparison, we report final performances using
the human-normalised (cf. Eq. 2 in Appendix) mean and standard deviation of the scores obtained
by fully trained agents over five seeded reruns for every (D)DQN agent. However, since often only
the best performing RL agent is reported in the literature, we also provide tables of such scores
(cf. Appendix A.3). For the Rainbow algorithm, we unfortunately can only report the results of
single runs. A single run took more than 40 days on an NVIDIA Tesla V100 GPU; Rainbow is
computationally quite demanding (Obando-Ceron & Castro, 2021).

(Q1) DQN with activation plasticity is better than rigid baselines. To start off, we compared RL
agents with additional plasticity (from PELU and rationals) to rigid DQN baselines: Leaky ReL.U, as
well as agents equipped with SiLU and SiLU+dSiLU activation functions.

The results summarised in Fig. 3 confirm what our earlier figure had shown, but on a larger scale.
While RL agents with functions of the SiLU family do not outperform Leaky ReLU ones in our games,
plastic DQN agents clearly outperform their rigid activation counterparts. DQN with regularised
plasticity even obtains a higher superhuman probability and highest mean scores 64% of the time.
Scores on (difficult credit assignment) Skiing are in Appendix A.3. This clearly shows that plasticity,
and above all rational plasticity, pays off for deep agents, providing an affirmative answer to Q1.
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Figure 4: Networks with rational (Rat.) and regularised (Reg.) rational plasticity compared to rigid
baselines (DQN, DDQN and Rainbow) over five random seeded runs on eight Atari 2600 games. The
resulting mean scores (lines) and standard deviation (transparent area) during training are shown.
As one can see, DDQN does not resolve performance drops but only delays them (e.g. particularly
pronounced on Seaquest). A figure including the evolution of every agent on all Atari 2600 games is
provided in Appendix A.4. Figure best viewed in colour.

(Q2) Neural plasticity can boost performances of complex deep reinforcement learning ap-
proaches, such as Rainbow. In Fig. 4, we show the learning curves of Rainbow and DQN agents,
both with Leaky ReLU baselines, as well as with full and regularised rational plasticity types. While
Rainbow is computationally much heavier (~ 8 times slower than DQN in our experiments, with
higher memory needs), its rigid form never outperforms the much simpler and more efficient DQN
with neural plasticity, and its rational versions dominate in only 1 out of 8 games (Enduro). In our
experiments, Rainbow even lost to vanilla DQN on 3 games. These results show that augmenting the
plasticity of an RL agent’s modeling architecture can be of higher importance than bringing complex
and computationally expensive improvements to the learning algorithm.

Therefore, DQN with rational plasticity is a competitive alternative to the complicated and expensive
Rainbow method. Plasticity also improves Rainbow agents, answering question (Q2) affirmatively.

(Q3) Neural plasticity directly tackles the overestimation problem. Revisiting Fig. 4, one can
see that Rainbow variants are worst on dynamic environments such as Jamesbond, Time Pilot and
particularly Seaquest. For these games, the performance of rigid (Leaky ReLU) DQN progressively
decreases. Such drops are well known in the literature and are typically attributed to the overestimation
problem of DQN. This overestimation is due to the combination of bootstrapping, off-policy learning
and a function approximator (neural network) operating by DQN. van Hasselt et al. showed that
inadequate flexibility of the function approximator (either insufficient or excessive) can lead to
overestimations of a state-action pairs (2016). The max operator in the update rule of DQN then
propagates this overestimation while learning with the replay buffer. The overestimated states can
stay in the buffer long before the agent revisit (and thus update) them. This can lead to catastrophic
performance drops. To mitigate this problem, van Hasselt et al. introduced a second network to
separate action selection from action evaluation, resulting in Double DQN (DDQN).

We have compared rigid DDQN (equipped with Leaky ReLU), to vanilla DQN with neural plasticity
on Atari games. As one can see in Fig. 3, DQN with rational plasticity outperforms the more complex
(rigid) DDQN algorithm on every considered Atari game. This reinforces the affirmative answer to
(Q1) from earlier on. More importantly, we have computed the relative overestimation values of the
(D)DQN, both with and without neural plasticity, following: overestimation = W, where the
return R corresponds to R = Efi o V'r¢, with the observed reward r, and the discount factor ~.

The results are summarised in Fig. 5. Plasticity helps to reduce overestimation drastically. DDQN
substantially reduces overestimation on Jamesbond, Kangaroo, Tennis, Time Pilot and Seaquest.
For these games, DDQN obtains the best performances among all rigid variants only on Jamesbond
(cf- Tab. 3 in Appendix). Moreover, Fig. 4 reveals that the DDQN agents’ performance drops are only
delayed and not prevented. The performance drops thus happen after the 200th epoch, after which the
agents’ training is usually stopped, as no more performance increase seems achievable.
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Figure 5: Plasticity naturally reduces overestimation. Relative overestimation values (J,, log scale)
of rigid DQN and DDQN, as well as DQN with rational and regularised rational plasticity. Each
trained agent is evaluated on 100 completed games (5 seeds per game per agent). Agents with
rational plasticity lower overestimation values as much or further than rigid DDQN ones, which has
specifically been introduced to this end. Figure best viewed in colour.

Overestimation might play a role in the performance drops on progressive environments (cf. Fig. 4:
Jamesbond, TimePilot and Seaquest), but cannot fully explain the phenomena. RL agents with higher
plasticity handle these games much better while embedding only a few more parameters. Hence, we
advocate that neural plasticity better deals with distribution shifts of dynamic and progressive envi-
ronments. Perhaps surprisingly, (regularised) rational plasticity not only works well on challenging
progressive environments but also on simpler ones such as Enduro, Pong and Q*bert, where more
flexibility is likely to hurt. Flexibility does not lead to overestimation (cf. Fig. 5). The rational func-
tions for these games have a simpler profile than ones of more complicated games like Kangaroo and
Time Pilot (c¢f. Appendix A.6). The rational functions seem to adapt to the environment’s complexity
and the policy they need to model. This clearly provides an affirmative answer to (Q3).

(Q4) Adding parameters through rationals efficiently augments plasticity. Compared to rigid
alternatives, the joint-rational networks embed in total 10 additional parameters and always out-
perform (cf. Fig. 4) PELU (12 more parameters) ones. Our proposed method to add plasticity via
rational functions thus efficiently augments the capacity of the network. However, ReLLU layers can
theoretically approximate rational functions (Telgarsky, 2017). Augmenting the number of layers
(or neurons per layer) is thus, theoretically, a costly alternative to augment the plasticity. How many
parameters are practically needed in rigid networks to obtain similar performances? Searching for
bigger equivalent architectures for RL agents is tedious, as RL training curves possess considerably
more variance and noise than SL ones (Pang et al., 2021), but this question is not restricted to RL. We
thus answer it by highlighting the generality of our insights, demonstrated by further investigation on
a classification scenario (cf. Appendix A.1). In short, rigid baselines need up to 3.5 times as many
parameters as the architectures that use rational functions in order to obtain similar performances.

All experimental results together clearly show that increasing neural plasticity, particularly through
the integration of rational activations functions, considerably benefits deep reinforcement learning
agents in a highly computational efficient manner.

4 RELATED WORK

Next to the related work discussed throughout the paper, our work on neural plasticity is also related
to several research lines on neural architecture search and to the choice of activation functions,
particularly in deep reinforcement learning settings.

The choice of activation functions. Many functions have been adopted across domains (e.g. Leaky
ReLU in YOLO (Redmon et al., 2016), hyperbolic tangent in PPO (Schulman et al., 2017), GELU
in GPT-3 (Brown et al., 2020)), indicating that the relationship between the choice of activation
functions and the performances is highly dependent on the task, architecture and hyper-parameters.
As shown, parametric functions augment on plasticity. Molina et al. showed that rational functions can
outperform other learnable activation function types on supervised learning tasks (2020). Telgarsky
(2017) showed that rationals are locally better approximants than polynomials. Loni et al. (2023)
showed that searching for activation functions mitigates the performance drops of sparsity in networks.



Published as a conference paper at ICLR 2024

Neural Architectures for Deep Reinforcement Learning. Cobbe et al. showed that the architecture
of IMPALA (Espeholt et al., 2018), notably containing residual blocks, improved the performances
over the original Nature-CNN network used in DQN (2019). Motivated by these findings, Pang et al.
(2021) recently applied neural architecture search to RL tasks and demonstrated that the optimal
architecture highly depend on the environment. Their search provides different architectures across
environments, with varying activation functions across layers and potential residual connections.
Continuously modifying the complexity of the neural network based on the noisy reward signal in a
complex architectural space is extremely resource demanding, particularly for large scale problems.
Many reinforcement learning specific problems, such as noisy rewards (Henderson et al., 2018),
input interdependency (Mnih et al., 2015), policy instabilities (Haarnoja et al., 2018), sparse rewards,
difficult credit assignment (Mesnard et al., 2021), complicate an automated architecture search.

Plasticity in deep RL. A lot of attention has recently been brought to the plasticity of RL agents’
learning structures. Abbas et al. (2023) have also identified their loss of plasticity and answered
it using concatenated ReLU (CReLU) in Rainbow. Nikishin et al. (2022) periodically reset parts
of the networks, Sokar et al. (2023) improved the resets by targeting identified dormant neurons.
Similarly, Nikishin et al. (2023) inject plasticity via incorporating new trainable weights. Lyle
et al. (2022) mitigate capacity (or plasiticity) loss, regularizing some features back to their starting
values, and later showed that layer normalization help with plasticity (Lyle et al., 2023). Dohare
et al. (2023) tackle dynamics with continual backprop and apply it to RL on PPO (Dohare et al.,
2021), also varying between different non-learnable activation functions. Dynamically adapting the
hyperparameter landscape is also improves agents’ adaptability to distribution shifts (Zahavy et al.,
2020; Mohan et al., 2023). Testing how much much of these techniques can be covered by the use of
rational plasticity is an interesting line of future work, as rational functions dynamically change the
weights optimisation landscape. Fuks et al. (2019) adjust sub-policies on sub-games to find suitable
hyperparameters that bootstrap a main evolution-based optimised agent. Apart from using CReLU,
all of these techniques are complementary to the use of rational plasticity.

5 LIMITATIONS, FUTURE WORK AND SOCIETAL IMPACT

‘We have shown the benefits of rational activation functions for RL, as a consequence of both their
neural and residual plasticity. In our derivation for closure under residuals, we have deduced that
the degree of the polynomial in the numerator needs to be greater than that of the denominator.
Correspondingly, we have based our empirical investigations on the degrees (5, 4). Interesting future
work would be to further automatically select suitable such degrees, or even integrating rationals into
dynamic hyperparameters’ optimisation techniques. One should also explore neural plasticity in more
advanced RL approaches, including short term memory (Kapturowski et al., 2019), neurosymbolic
approaches (Delfosse et al., 2024), finer exploration strategy (Badia et al., 2020), and in continual
learning (Kudithipudi et al., 2022) techniques. Finally, the noisy optimisation performed in our RL
experiments contribute to carbon emissions. However, this is usually a means to an end, as RL
algorithms are also used to optimise energy distribution and consumption in several applications.

6 CONCLUSION

In this work, we have highlighted the central role of neural plasticity in deep reinforcement learning
algorithms, and have motivated the use of rational activation functions, as a lightweight way of
boosting RL agents performances. We derived a condition, under which rational functions embed
residual connections. Then the naturally regularised joint-rational activation function was developed,
inspired by weight sharing in residual networks.

The simple DQN algorithm equipped with these (regularised) rational forms of plasticity becomes
a competitive alternative to more complicated and costly algorithms, such as Double DQN and
Rainbow. Fortunately, the complexity of these rational functions also seem to automatically adapt
to the one of the environment used for training. Their use could be a substitute for more expensive
architectural searches. We thus hope that they will be adopted in future deep reinforcement learning
algorithms, as they can provide agents with the necessary neural plasticity required by stationary,
dynamic and progressive reinforcement learning environments.
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A APPENDIX

As mentioned in the main body, the appendix contains additional materials and supporting information
for the following aspects: rational activation functions improving plasticity (4), comparison of rational
and rigid networks with different sizes on supervised learning experiments (A.1), results on replacing
residual blocks with rational activation functions (A.2), every final and maximal scores obtained by
the reinforcement learning agents used in our experiments (A.3), the evolutions of these scores (A.4),
the different environment types with illustrations of their changes (A.5), graphs of the learned rational
activation functions (A.6) and technical details for reproducibility (A.8).

Rational functions improve plasticity

To prove that rational can help with plasiticy, we 100
tested them in continual learning settings (with
more abrupt distribution shifts). We included Con-
catenated RELU and rational functions to an ex-
isting implementation of continual AI®, in which
4 layers (2 convolutional ones and to fully con-
nected ones) networks are trained on MNIST. The 20
network then continues training on PERM.1, a o
variation of the dataset, for which a fixed random 0 50 100 150 200 250 300 350
permutation is applied to every image. Another Training images (K)

permutation is used for PERM. 2, used after the Figure 6: Rational function improve plasticity
training on PERM1. As shown in Fig. 6, networks 0n the permutted MNIST experiment. Ratio-
with rationals are both better at modelling the new nal networks obtain better accuracies on each
data (higher accuracies on the currently trained ~currently and previously trained datasets.

data), but are also able to retain more information about the data previously trained on. Networks
with Continual ReLU (Shang et al., 2016) better retain information on Task 1, while performing on
par with ReLU ones for the 2 other tasks.
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A.1 RATIONAL EFFICIENT PLASTICITY CAN REPLACE LAYER’S WEIGHT PLASTICITY

We here show that networks with rational activations not only outperform Leaky ReL.U ones with
the same amount of parameters, but also to outperform deeper and more heavily parametrised neural
networks (indicated by the colours). For example, a rational activated VGG4 not only performs better
than a rigid Leaky ReLU VGG4 at 1.37M parameters, but even performs similarly to the 4.71M
parameters rigid VGG6. Activation’s plasticity allowing to reduce the number of layers weights
is also shown by the experiments summarized in Tab. 2 in the next section, where blocks from a
pretrained ResNet are replaced by a rational function, and the resulting networks are able to recover
and surpass their accuracies.

Architecture | VGG4 | VGG6 | VGG
Activation function | LReLU Rational | LReLU Rational | LReLU Rational

CIFAR 10 Training Acc@1 | 83.0+.3 87.1+.6 | 86.9+2 89.2+2 | 90.1x.1 92.4+2
Testing Acc@1 80.0+1. 84.3+5 | 83.1+6 854+.6 | 85.0x1. 86.9+3

CIEAR 100 Training Acc@1 | 64.6+.8 70.4+9 | 70.7£.6 86.0+9 | 87.7+2 87.8+.1
Testing Acc@1 56.5+£9 589+.6 | 59.0+5 59.9+9 | 60.0+9 59.9+4

# Network parameters \ 1.37M 4.71M \ 9.2T™M

Table 1: Shallow rational networks perform as deeper Leaky ReLU ones. VGG networks training and
testing top-1 accuracies with different numbers of layers are evaluated on CIFAR10 and CIFAR100.
Rational VGG4 has similar performances as VGG6 network, with 3.5 times less parameters, and
Rational VGG6 outperforms VGG8, with two times less parameters. Shaded colour pairs included
for emphasis.

3https://github.com/Continual Al/colab/blob/master/notebooks/permuted_and_split_mnist.ipynb
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A.2 RESIDUAL BLOCK LEARN OF DEEP RESNET LEARN ACTIVATION FUNCTION-LIKE
BEHAVIOUR.

We present in this section lesioning experiments, where a residual block is lesioned from a pretrained
Residual Network, and the surrounding blocks are fine-tuned (with a learning rate of 0.001) for 15
epochs. These lesioning experiments were first conducted by Veit et al. (2016). We also perform
rational lesioning, where we replace a block by an (identity initialised)* rational activation function
(instead of removing the block), and train the activation function along with the surrounding blocks.
The used rational functions have the same order as in every other experiment ((m,n) = (5, 4)), that
satisfies the rational residual property derive in the paper). We report recovery percentages, computed
following:

recovery = 100 finetuned — surgered

ey

original — surgered
We also provide the amount of dropped parameters of each lesioning.

Table 2: Rational functions improve lesioning. The recovery percentages for finetuned networks
after lesioning (Veit et al., 2016) of a ResNet layer’s (L) block (B) are shown. Residual blocks
were lesioned, i.e. replaced with the identity (Base) or a rational from a pretrained ResNet101 (44M
parameters). Then, the surrounding blocks (and implanted rational activation function) are retrained
for 15 epochs. Larger percentages are better, best results are in bold.

Recovery (%) Lesioning L2B3 L3B19 L3B22 L4B2
Trainin Original (Veit et al., 2016) 100.9 90.5 100  58.9
& Rational (ours) 101.1 104 120 91.1
Testin Original (Veitet al., 2016) 93.1 97.1 81.6 81.7
& Rational (ours) 90.5 976 915 853
% dropped params 0.63 251 251 100

As the goal is to show that flexible rational functions can achieve similar modelling capacities to the
residual blocks, we did not apply regularisation methods and mainly focused on training accuracies.
We can clearly observe that rational activation functions lead to performance improvements that
even surpass the original model, or are able to maintain performances when the amount of dropped
parameters rises.

A.3 COMPLETE SCORES TABLE FOR DEEP REINFORCEMENT LEARNING

Through this work, we showed the performance superiority of reinforcement learning agents that
embed additional plasticity provided by learnable rational activation functions. We used human
normalised scores (c¢f. Eq. 2) for readability. For completeness, we provide in this section the final
raw scores of every trained agent. As many papers provide the maximum obtained score among
every epoch and every agent, even if we consider it to be an inaccurate and noisy indicator of the
performances, for which random actions can still be taken (because of e-greedy strategy also being
used in evaluation). A fairer indicator to compare methods is the mean score. We thus also provide
final mean scores (of agents retrained among 5 seeded reruns) with standard deviation. We start off
by providing the human scores used for normalisation (provided by van Hasselt et al., in Table 5),
then provide final mean and maximum obtained raw scores of every agent.

4all weights are initially set to 0 but a; (and by), both set to 1.
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Algorithm DQN DDQN DQN with Plasticity

Activation LReLU SiLU d+SiL.U LReLU PELU rational  joint-rational
Asterix 1.85+12 0.52+06 214414 48.9+177 | 25.8437 242125 16843260
Battlezone 114170 2124150  11.3x67 68.24348 | 46.6x195  70.112.10 774157
Breakout 558+166 9394576 11.7+140 | 2864122 7884792 113411308 12104360
Enduro 1634213 37.0£177  0.37+0s 47 7+181 | 24.5+426 1411150 12941470
Jamesbond 8.62+64 6.08+37 5.28+44 107111 | 7424515 308+4ss5¢ 3121595
Kangaroo 11.8+125  128+9s68  13.9+185 | 17.2+145 | 57.7+146 1074431 193-t363
Pong 101455 96.1+120 104433 9134308 | 106.4+22 107.0+24¢  107.3+27
Qbert 554+ 1424170  2.74%02 74.04217 | 101x66 120+25 117 +490
Seaquest 0.57+04 3.67+41 0.18+02 2.17+09 9.21+25 16.3+050  18.4+33
Skiing -90.7+379  -111+-07  -85.5+434 | -86.9+466 | -111+-7 -59.5+607  -60.2+s6.10
Space Inv. 33.9+443 33. 14119 3244124 | 31.0+10 50.1+330 423431 95.1+177
Tennis 8944173 26.3+533  78.5+643 | 32.14s516 | 1064533 257.8+258 2583152
Timepilot 1494143 193430 183+381 | 6.61475 124421 341+105 253+1100
Tutankham 0.03+23 5824486  2.89+40 244404 | 91.64203  130x1070 1341203
Videopinball 440+123 55.84619  -4.03+325 | 626+241 299+ 168 1616+1026 9065398
# Wins 0/15 0/15 0/15 | 0/15 | 0/15 6/15 9/15
# Super-Human 3/15 1/15 1/15 2/15 6/15 11/15 11/15

Table 3: Neural plasticity leads to vast performance improvements. Normalised mean scores and
standard deviations (in percentage, cf. Appendix A.8 for the equation) of rigid baselines (i.e. DQN
and DDQN with Leaky ReLLU, DQN with SiLU and SiLU + dSiLU), as well as DQN with plasticity:
using PELU, rational (full) and joint-rational (regularised), are reported over five experimental
random seeded repetitions (larger mean values are better). The best results are highlighted in bold
and runner-ups denoted with e markers. The last rows summarise the number of times best mean
scores were obtained by each agent and the number of super-human performances.

Final mean and maximum obtained scores of Rainbow agents:

Evaluation Final Mean Scores Max. Obtained Scores
Plasticity | rigid full regularised | rigid full regularised
Breakout 52 279 303 383 569 569
Enduro 844 1473 1470 1388 1973 1964
Kangaroo | 40 2157 2139 6300 6000 4800
Q*bert 149 11931 11551 16125 23550 23550
Seaquest 82 247 282 920 1280 1280
Space Inv. | 595 1263 1157 2070 3395 2875
Time Pilot | 3926 5386 6411 12700 15900 15900

Table 4: Final mean and maximum obtained scores obtained by rigid Rainbow agents (i.e. using
Leaky ReL.U), as well as Rainbow with full (i.e. using rational activation functions) and regularised
(i.e. using joint-rational ones) plasticity (only 1 run because of computational cost, larger values are

better).
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Final mean scores of all agents:

Algorithm Random DQN DDQN DQN with Plasticity
Network type - LReLU SiLU d+SiLU LReLU PELU full regularised
Asterix 679422 20649 107 +45 228+108 3723+1324 | 1998+275  18109+1755  12621+2436
Battlezone |788+38 446442201  7612+4877 442942183 |22775+11265| 15807 +6320 234034701 2574942837
Breakout 0.14=+01 155+46 26.2+16 3.443.89 79.4+338 219422 315436 336+10
Enduro 0+0 121+158 274+131 2774341 3534134 181+315 1043 +111 957 +109

Jamesbond [6.39+041 |37.64236  28.4+138 25.5+162  |45.2+407 275+187 1122+176 1137 +216
Kangaroo 14.2+09 |335+342 350042607  393+504 4844395 15864398 29401175 5266+2365

Pong -20.2+0 [15.9+2 14.1+43 16.9+12 12.4+n 17.8+038 18+0.9 18.1+1
Q*bert 40.6+28 |6715+2058 175442048 371428 895442616 | 121434795 144364336  14080+593
Seaquest 20.14+04 |250+162 150441677 94.6+87.2 8984353 3740+991 66034200 7461 +1321
Skiing -16104+92|-27365+4794 -29890+4  -26725+5485 [ -26892+5881 [-29912+10  -23487+7624 -23582-+£7058
Space Inv.  [51.6+1.1 |531+62 520+169 509+176 490+15 759+48 650+45 13954251
Tennis -23.9400 |-22.4+30  -19.4492  -104+111  |-18.4489 -5.6492 20.5+05 20.6+0.9
TimePilot 688+30 1428+739 1644+1566 1594+1918 | 1016401 6818+1323  17632+5242 132614576
Tutankham |3.51+054 |3.55+43 81.9+66 7.414596 36.4+0 127440 179+15 184+40

VideoPinb. |6795+461 |45683+11383 1173045041 6439+3336  |62151+21791 |42051+15356 149712491219 86942448143

Table 5: Final mean raw scores (with std. dev.) of rigid baselines (i.e. DQN and DDQN with Leaky
ReLU, DQN with SiLU and SiLU + dSiLU), as well as DQN with full plasticity (i.e. using rational
activation functions) and regularised plasticity (i.e. using joint-rational ones) on Atari 2600 games,
averaged over 5 seeded reruns (larger mean values are better).

Maximum obtained scores:

Algorithm Random DQN DDQN DQN with Plasticity

Network type - LReLU SiLU d+SiLU LReLU PELU full regularised
Asterix 71 9250 3400 3800 20150 9300 84950 49700
Battlezone 843 88000 81000 70000 97000 68000 78000 94000
Breakout 0 427 370 344 411 430 864 864
Enduro 0 1243 928 1041 1067 1699 1946 1927
Jamesbond | 6 5600 5750 700 7500 6150 9250 13300
Kangaroo 15 14800 15600 10200 13000 12400 16200 16800
Pong -20 21 21 21 21 21 21 21
Q*bert 45 19425 11700 5625 19200 18900 24325 25075
Seaquest 20 7440 8300 740 15830 14860 9100 26990
Skiing -15997 -5987 -6505 -6267 -5359 -5495 -5368 -5612
Space Inv. 53 2435 2205 2460 2290 2030 2490 3790
Tennis -23 8 1 -1 4 -1 24 36
Time Pilot 730 11900 15500 12500 12200 16300 72000 28000
Tutankham | 4 249 267 267 274 397 334 309
VideoPinb. 7599 998535 950250 338512 | 991669 | 322655 997952 998324

Table 6: Maximum obtained scores (with std. dev.) of rigid baselines (i.e. DQN and DDQN with
Leaky ReLU, DQN with SiLU and SiLLU + dSiLU), as well as DQN with full plasticity (i.e. using
rational activation functions) and regularised plasticity (i.e. using joint-rational ones) on Atari 2600
games, averaged over 5 seeded reruns (larger values are better).

Human scores used for normalisation:

Asterix: 7536, Battlezone: 33030, Breakout: 27.9, Enduro: 740.2, Jamesbond: 368.5,
Kangaroo: 2739, Pong: 15.5, Q¥*bert: 12085, Seaquest: 40425.8, Skiing: —3686.6, Space
Invaders: 1464.9, Tennis: —6.7, Time Pilot: 5650, Tutankham: 138.3, Video Pinball: 15641.1
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A.4 EVOLUTION OF THE SCORES ON EVERY GAME

The main part present some graphs that compares performance evolutions of the Rainbow and DQN
agents with plasticity, as well as Rigid DQN, DDQN and Rainbow agents. We here provide the
evolution of the scores of every tested DQN and the DDQN agents on the complete game set. DQN
agents with higher plasticity are always the best-performing ones. Experiments on several games (e.g.
Jamesbond, Seaquest) show that using DDQN does not prevent the performance drop but only delays
it.

Asterix BattleZone Breakout

—— DQNRN

—— DQN RRN
—— DOQN Leaky RelLU
15K~ —— DDQN LRelLU
—— DQN PELU
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Figure 7: Smoothed (cf. Eq. 3) evolutions of the scores on every tested game for DQN agents with
full (i.e. using rational activation functions) and regularised (i.e. using joint-rational ones) plasticity,
and original DQN agents using Leaky ReLLU, SiLU and SiLU+dSiLU, as well as for DDQN agents
with Leaky ReLU.
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A.5 ENVIRONMENTS TYPES: STATIONARY, DYNAMICS AND PROGRESSIVE

The used environments have been separated in 3 categories, describing their potential changes through
agents learning. This categorisation is here illustrated with frames of the tested games. As one can
see: Breakout, Kangaroo, Pong, Skiing, Space Invaders, Tennis, Tutankham and VideoPinball can
be categorised as stationary environment, as changes are minimal for the agents in these games.
Asterix, BattleZone, Q*bert and Enduro present environment changes, that are early reached by the
playing agents, and are thus dynamic environments. Finally, Jamesbond, Seaquest and Time Pilot
correspond to progressive environments, as the agents needs to master early changes to access new
parts of these environments.

Asterix Q*bert

Battle Zone Breakout Enduro Jamesbond Kangaroo

&

Pong
1] i}

— ——

Seaquest Skiing  Space lnv. Tennis Time Pilot Tutankham Video Pinb.

003500 ]

515800

Figure 8: Images extracted from DQN agents with full plasticity playing the set of 15 Atari 2600
games used in this paper. Stationary environments (e.g. Pong, Video Pinball) do not evolve during
training, dynamic ones provide different input/output distributions that are early accessible in the
game (e.g Q*bert, Enduro) and progressive ones (e.g. Jamesbond, Time Pilot) require the agent to
improve for the it to evolve.
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A.6 LEARNED RATIONAL ACTIVATION FUNCTIONS

We have explained in the main text how rational functions of agents used on different games
can exhibit different complexities. This section provides the learned parametric rational functions
learned by DQN agents with full plasticity (left) and by those with regularised plasticity (right) after
convergence for every different tested game of the gym Atari 2600 environment. Kernel Density
Estimations (with Gaussian kernels) of input distributions indicates where the functions are most
activated. Rational functions from agents trained on simpler games (e.g. Enduro, Pong, Q*bert) have
simpler profiles (i.e. fewer distinct extremas).

Pong Kangaroo Jamesbond Enduro Breakout BattleZone Asterix

Qbert

Seaquest
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TimePilot Tennis Spacelnvaders Skiing

Tutankham

VideoPinball
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Figure 9: Profiles (dark blue) and input distributions (light blue) of rational functions (left) and
joint-rational ones (right) of DQN agents on the different tested games. (Joint-)rational functions
from agents of simpler games have simpler profiles (i.e. fewer distinct extrema).
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A.7 EVOLUTION OF RATIONALS ON THE PERM-MNIST CONTINUAL LEARNING EXPERIMENT

Figure 10 depicts the evolutions of rational functions through the permuted MNIST experiment. One
can see that while the function of the first layer remains stable through the successive datasets, the
second one flatten at its most activated region (around 0), while the third one increase its slope in
this region, leading to higher gradients. This suggests that rational functions can help adapting the
gradient scales at each layer. Further investigating this is an interesting line of future work.

Evolution of the rational functions on the Permuted MNIST experiment
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Figure 10: Evolution of the rational activation functions on the permuted MNIST experiment (cf. 4).
The 3 rational activation functions used for training (and retraining) are adapting to fit the data
(depicted in semi transparent).

A.8 TECHNICAL DETAILS TO REPRODUCE THE EXPERIMENTS

We here provide details on our experiments for reproducibility. We used the seed 0, 1, 2, 3, 4 for
every multi-seed experiment.

SUPERVISED LEARNING EXPERIMENTS

For the lesioning experiment, we used an available’ pretrained Residual Network. We then remove
the corresponding block (and potentially replace it with an identity initialised rational activation
function) (surgered). We finetune the new models, allowing for optimisation of the previous and next
layers (and potentially the rational function) for 15 epochs with SGD (learning rate of 0.001).

Shttps://download.pytorch.org/models/resnet101-5d3b4d8f.pth
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For the classification experiments, we run on CIFAR10 and CIFAR100 (Krizhevsky et al., MIT
License), we let every network learn for 60 epochs. We use the code provided by Molina et al. (2020),
with only one classification layer in these smaller VGG versions (VGG4, VGG6 and VGG8, against
3 for VGG16 and larger). We use SGD as the optimisation algorithm, with a learning rate of 0.02
and 128 as batch size. The VGG networks contain successive VGG blocks that all consist of n
convolutional layers, ¢ input channels and o output channels, stride 3 and padding 1, followed by an
activation function, and 1 Max Pooling layer. For each used architecture, the (n, i, 0) parameters of
the successive blocks are:

« VGG4: (1,3,64) — (1,64, 128) — (2,128, 256)
« VGG6: (1,3,64) — (1,64,128) — (2,128,256) — (2,256, 512)
« VGGS: (1,3,64) — (1,64, 128) — (2,128,256) — (2,256,512) — (2,512, 512)

The output of these blocks is then passed on to a classifier (linear layer). Only activation functions
differ between the Leaky ReLLU and the Rational versions.

REINFORCEMENT LEARNING EXPERIMENTS

To ease the reproducibility of our the reinforcement learning experiments, we used the Mushroom RL
library (D’Eramo et al., 2020) on the Arcade Learning Environment (GNU General Public License).
We used states consisting of 4 consecutive grey-scaled images, downsampled to 84 x 84. Computing
the gradients for rational functions takes longer than e.g. ReLU. However, we used a CUDA optimized
implementation of the rational activation functions that we open source along with this paper. In
practice, we did not notice any significant training time difference.

Network Architecture. The input to the network is thus a 84x84x4 tensor containing a rescaled, and
gray-scaled, version of the last four frames. The first convolution layer convolves the input with 32
filters of size 8 (stride 4), the second layer has 64 layers of size 4 (stride 2), the final convolution layer
has 64 filters of size 3 (stride 1). This is followed by a fully-connected hidden layer of 512 units.
All these layers are separated by the corresponding activation functions (either Leaky ReLU, SiLU,
SiL.U for convolution layers and dSiL.U for linear ones, PELU, rational functions (at each layer) and
joint-rational ones (shared accross layers) of order m = 5 and n = 4, initialised to approximate
Leaky ReLU). We used the default PeLU initial hyperparameters (a=1, b=1, c=1) and let the weights
optimizer tune them through training, as for rational functions. For CRELU, we took the implementa-
tion from ML Compiled ©, and halves the number of filters in the following convolutional layers to
keep the same network structure intact, as done by Shang et al. (2016).

Hyper-parameters. We evaluate the agents every 250K steps, for 125K steps. The target network is
updated every 10K steps, with a replay buffer memory of initial size 50K, and maximum size 500K,
except for Pong, for which all these values are divided by 10. The discount factor  is set to 0.99 and
the learning rate is 0.00025. We do not select the best policy among seeds between epochs. We use
the simple e-greedy exploration policy, with the e decreasing linearly from 1 to 0.1 over 1M steps,
and an € of 0.05 is used for testing.

The only difference from the evaluation of Mnih et al. (2015) and of van Hasselt et al. (2016)
evaluation is the use of the Adam optimiser instead of RMSProp, for every evaluated agent.

Normalisation techniques. To compute human normalised scores, we used the following equation:

SCOIC agent — SCOTC random

SCOr€normalised = 100 X , 2)
SCOT€ hyman — SCOT€ random
For readability, the curves plotted in the Fig. 4 and Fig. 8 are smoothed following:
score; = a X scorep—1 + (1 — a) X scoress, 3)
with a = 0.9.
Overestimation computation. We used the following formulae to compute relative overestimation.
overestimation = % “4)

Shttps://ml-compiled.readthedocs.io/en/latest/activations.html
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RL NETWORK ARCHITECTURE

The DQN, DDQN and Rainbow agents networks architecture, rational plasticity (with rational
activations functions at each layer) and of the regularized ones (with one joint-rational activation
function shared across layers). For the other activation functions, the "Rat." blocks are replaced with
Leaky ReLU, CReLU, SiLU, or PELU. For the d+SiLU networks, SiL.U is used on the convolutional
layers (i.e. first two), and dSiLU in the fully connected ones (i.e. last two).
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Joint Rat.|(64 324, 4) (69 )
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Figure 11: left: The DQN agents’ neural network equipped with Rational Activation Functions (Rat.).
Any other network with classical activation functions (as Leaky Relu or SiL.U) would be similar, with
the corresponding activation function instead of the rational one. right: The agents’ network using the
regularized joint-rational version of the network. The same activation is used across the layers. The
parameters of the rational activation (in orange) function are shared. In both graphs, operations are
placed in the grey boxes and parameters in the blue ones, (or orange for the rationals’ ones).
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