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ABSTRACT

In this work, we address the challenging task of long-tailed recognition. Previous
long-tailed recognition methods commonly focus on data augmentation of tailed
classes or re-balancing strategy to give more attention to tailed classes during
training. However, due to the limited training images for tailed classes, the diver-
sity of augmented images are still restricted, which results in poor feature repre-
sentations. In this work, we argue that there are common latent features between
the head and tailed classes that can be used to give better feature representation.
We propose to learn a set of semantic and class-agnostic latent features shared
by the head and tailed classes. Then, we implicitly enrich the training sample di-
versity via leveraging semantic data augmentation for the commonality features.
We evaluate our methods on several popular long-tailed datasets and achieve new
state-of-the-art performance consistently.

1 INTRODUCTION

With the successful development of Convolution Neural Networks (CNNs), image recognition has
achieved great success in both speed and accuracy on the ideal collected balanced datasets, e.g., Ima-
geNet (Russakovsky et al., 2015) and Oxford Flowers-102 (Nilsback & Zisserman, 2008). However,
in most real-world applications, the natural data often follows a long-tail distribution, where a few
classes have abundant labeled images while most classes have only a few instances or a few annota-
tions. The classification performance of the tailed classes on such an unbalanced dataset would drop
quickly with the conventional fully supervised training strategy.

The long-tailed recognition task has been proposed to address the imbalanced training data prob-
lem. The main challenges are the difficulties of handling the small-data learning problems and the
extreme imbalanced classification over all the classes. Most of the long-tailed recognition meth-
ods focus on generating more data samples of tailed classes via data augmentation or using the
re-balancing strategy to provide more important weight for the tailed classes. For example, widely
used data augmentation techniques like cropping, flipping, and mirroring are used to increase the
training samples. However, the diversity of the training samples for the tailed classes is still in-
herently limited due to the limited number of training objects, which leads to subtle performance
improvement by those conventional data augmentation methods.

In contrast to conventional data augmentation, semantic data augmentation (Wang et al., 2019) tries
to augment the image features by adding class-wise conditional perturbations. The perturbations
are sampled from the multivariate normal distribution, where the class-wise covariance matrices are
calculated from all the training samples. However, directly applying semantic data augmentation
to the long-tailed recognition task may not be suitable since the calculated covariance matrix of the
tailed classes may not constitute satisfactory meaningful semantic directions for semantic augmen-
tation due to the limited training samples. MetaSAug (Li et al., 2021a) tries to solve the imbalanced
statistics problem by updating the class-wise covariance matrix through minimizing the LDAM loss
on the validation sets. However, the performance is still constrained to the limited diversity and
training samples for the tailed classes.

To overcome the limitations motioned above, we propose to mine out the commonality features
among the head and tailed classes to increase the diversity of the training samples. The commonality
is obtained with an assumption that objects from the same domain might share some commonalities.
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Figure 1: Our LCReg first projects the image features into the latent category features which share
the commonality, such as the legs of cats and dogs. By performing the class semantic transforma-
tions along with the latent category, we aim to enrich the cat’s feature by leveraging the commonality
features, e.g., change the yellow cat leg by leveraging the dog’s leg features.

For example, the cat and dog share a commonality on legs, where they have similar shapes and ap-
pearances. It is feasible to re-represent the object features with the commonality features belonging
to the ‘sub-categories’: each category contains parts of the target objects. For example, as shown
in Figure 1, we can re-represent the dog and cat with a series of shared ‘sub-categories’ (e.g., head,
leg, body, and tail) with different weights.

In particular, we introduce a latent feature pool to store the commonality features, which can be
learned through the back-propagation during the model training. As shown in Figure 2, the latent
features from the pool are class-agnostic and shareable among all the classes. To ensure the latent
features are meaningful and sufficient to represent object features, we apply a reconstruction loss
to reconstruct the original object features with latent features. Each latent feature contributes to
reconstructing the object with the similarity weights. Our method has several advantages with the
shareable latent features: 1) We transfer all the object features to the shareable latent categories,
making the latent features class-agnostic, which allows our approach no longer constrained to the
imbalance distribution. This leads to 2) the tailed class objects can benefit from the thriving diver-
sity of the head with the shareable latent features. 3) The tailed classes can benefit from the data
augmentation technique with the increased diversity, which allows us to develop a latent semantic
data augmentation in the latent space.

The main contributions of this work are concluded from three aspects:

• We propose a Latent Categories based long-tail Recognition (LCReg) method to address
the long-tail issue. The proposed LCReg explicitly learns the commonalities shared among
the head and tailed classes for better feature representations.

• We adopt a semantic data augmentation method on our proposed latent category features
to implicitly enrich the diversity of the training samples.

• Experiments on multiple long-tailed recognition benchmark datasets (CIFAR-10-LT,
CIFAR-100-LT, ImageNet-LT, iNaturalist 2018, and Places-LT) validate the effectiveness
of our method and show that our method achieves state-of-the-art performance.

2 RELATED WORK

2.1 RE-SAMPLING AND RE-WEIGHTING

Data re-sampling and loss re-weighting are common approaches to long-tailed recognition. The
core idea of data re-sampling is to forcibly re-balance the datasets by either under-sampling head
classes (Buda et al., 2017; More, 2016; Drummond & Holte, 2003) or over-sampling tail classes
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Figure 2: Our LCReg re-represent each object from the original long-tailed distribution dataset by
the similarity-weighted sum of latent categories. The latent categories are shareable among the head
and tailed classes and form a new balanced distributed dataset.

(Buda et al., 2017; Shen et al., 2016; Sarafianos et al., 2018). Likewise, loss re-weighting (Wang
et al., 2017; Huang et al., 2016; 2018; Mikolov et al., 2013; Japkowicz & Stephen, 2002; Tan et al.,
2020) approaches try to balance the loss of semantic classes according to their respective number of
samples. However, these re-balancing approaches need careful calibration of weighting to prevent
the training from overfitting to tail classes or underfitting to head classes. In particular, the data
re-sampling approaches often result in insufficient training of head classes or overfitting to the tail
classes; the loss re-weighting approaches suffer from unstable optimization during training (Zhong
et al., 2021).

2.2 DECOUPLED TRAINING

The decoupled training scheme (Kang et al., 2020) analyzes and finds that training with the entire
long-tailed dataset is beneficial to the feature extractor but harmful to the classifier. Therefore, this
two-stage approach proposes first to train the feature extractor and the classifier with the whole long-
tailed datasets, and then to finetune the classifier with the data re-sampling to balance the weight
norm of each semantic class in the classifier. The bilateral-branch network equivalently proposes
the decoupled training scheme in the same period as (Kang et al., 2020) by adding an extra classifier
for the finetuning such that the two-stage training becomes one. Besides the two-stage training
scheme, a causal approach (Tang et al., 2020) proposes to learn the long-tail datasets in an end-to-
end manner by removing the lousy momentum effect from the causal graph. As shown later, our
proposed approach is also complementary to the decoupled training.

2.3 DATA AUGMENTATION

Data augmentation is another line of approaches to facilitate long-tailed recognition, as more aug-
mented samples can alleviate the severely imbalanced distribution of datasets. Recent studies (Zhou
et al., 2020; Zhong et al., 2021; Zhang et al., 2021) demonstrate that the mixup helps the tail classes
with enriched information from the head classes. Specifically, (Zhong et al., 2021) additionally
proposes label-aware smoothing for finetuning to boost the classification ability. Here, we take a
step further to explore how the augmentation in the latent category space benefits the long-tailed
classification. We follow another type of augmentation called semantic data augmentation (Wang
et al., 2019) which has been explored recently in domain adaptation (Li et al., 2021b). In long-tailed
visual recognition, (Li et al., 2021a) proposes meta-learning to capture category-wise covariance for
better augmentation. Unlike the existing augmentation approaches, we augment the latent category
features through a latent semantic augmentation loss to diversify the training samples. We build our
proposed method upon (Zhong et al., 2021) to show that our method is also complementary to the
data augmentation approaches.

3 METHOD

Given a long-tail distributed dataset contains N training samples with C classes, we sample the ith
training sample xi and its corresponding label yi from the dataset. The final prediction for ith sample
ŷi is classified from the object feature fi ∈ RD×H×W , which is generated by the encoder with
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Figure 3: The pipeline of our proposed LCReg.

parameters θ. Our training objective is to optimize the parameters θ and the classifier to minimize
the distance between the prediction ŷi and the ground truth yi. However, for long-tail distributed
datasets, due to the imbalance distribution among each class, most of the features fi are obtained
from the head classes, which makes the classification model biased to the head classes, resulting in
unsatisfactory performance on the tailed classes. To alleviate the bias problem, we introduce a set
of class-agnostic latent features f ′m, which store the commonality features among all the classes.
In particular, each latent feature contributes part of the object features weighted by a similarity
score. Moreover, we apply semantic data augmentation on the latent categories to further enrich the
diversity of the training samples. The pipeline of our proposed LCReg is shown in Figure 3.

3.1 LATENT CATEGORY FEATURES

Firstly, we introduce a set of shareable latent features f ′0, f
′
1, ...f

′
m, ...f

′
M . Each latent feature depicts

a latent category representing part of the object features, which is initialized by a random learnable
embedding with a dimension of D and able to be trained through back-propagation. The shape of
the latent features is D ×M .

To enforce each latent feature to learn different object parts and distinguish with each other, we
apply a 1 × 1 convolutional layer FC to encode the latent features to M classes. In particular, we
set the first latent category as the first class, the second one as the second class, and the rest in the
same manner.

We further calculate the similarity maps between latent features and image features f ∈ RD×HW

from the image encoder, which benefits the following classification process.

Sm(a, b) = σ(f(a, b)TFC(f ′m)), (1)

where Sm(a, b) indicates the mth similarity map at the spatial location (a, b) obtained by the mth

latent feature FC(f ′m) ∈ RD×1 and the image feature f . We normalize the map with a Sigmoid
function σ(·).

3.2 RECONSTRUCTION LOSS

To encourage the latent features containing more object information, we use the latent features to
reconstruct the image features f by employing a reconstruction loss. Specifically, with the similarity
maps S ∈ RM×H×W generated by latent features, we apply a Softmax function over all the M
similarity maps to identify the most discriminative object parts:

Ŝm(a, b) =
exp(Sm(a, b))∑M
k=1 exp(Sk(a, b))

. (2)
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Then we reconstruct image features f by summarizing all the latent categories with the weights from
the normalized similarity maps:

f̂(a, b) =

M∑
m=1

FC(f ′m)Ŝm(a, b). (3)

To compare the reconstructed features f̂ ∈ RD×HW and the origin features f ∈ RD×HW , we
calculate the correlation matrix Cf = f̂T f , where Cf ∈ RHW×HW and H,W are the feature size.
Finally, we employ a cross-entropy loss to maximize the log-likelihood of the diagonal elements of
the correlation matrix diag(Cf ) to encourage each latent feature to learn distinct features:

LRecon = −
HW∑
j=1

tj log(ψ(diag(Cf )j)), (4)

where j is the jth diagonal element of the correlation matrix, and tj ∈ 1, 2, ...,HW is the ground
truth of the diagonal element, we define the first element to be the first class, the second one as the
second class, and the rest in the same manner.. The ψ(diag(Cf )j) denotes the Softmax probability
for the jth category.

3.3 LATENT FEATURE AUGMENTATION

Data augmentation is a powerful technique that has been widely used in recognition tasks to increase
training samples to reduce the over-fitting problem. Traditional data augmentation, such as rotation,
flipping, and color-changing, are utilized to increase the training samples by changing the image
itself. In contrast to conventional data augmentation techniques, semantic data augmentation aug-
ments the semantic features by adding class-wise conditional perturbations (Wang et al., 2019). The
performance of such class-conditional semantic augmentation heavily relies on the diversity of the
training samples to calculate significant, meaningful co-variance matrices for perturbation sampling.
However, in the long-tail recognition task, the diversity of tailed classes is low due to the limited
training samples. The calculated class-conditional statistics will not include sufficient meaningful
semantic direction for feature augmentation.

Latent implicit semantic data augmentation In contrast with ISDA (Wang et al., 2019), we pro-
pose to augment the latent categories to implicitly generate more training samples. To implement
the semantic augmentation in the latent feature categories directly, we calculate the co-variance ma-
trices for each latent class by updating the latent features f ′m at each iteration over total M classes:
Σ′ = {Σ′1,Σ′2, ...,Σ′M}. Then, we augment the features by sampling a semantic transformation
perturbation from a Gaussian distribution N (0, λΣy′

m
), where λ indicate the hyperparameter of the

augmentation strength and y′m ∈ 1, ...,M indicates the groundtruth of the M latent categories. For
each augmented latent feature fam we have

fam ∼ N (f ′m, λΣy′
m

). (5)

Furthermore, when we sample infinite times to explore all the possible meaningful perturbations in
the N (0, λΣy′

m
), there is an upper bound of the cross-entropy loss (Wang et al., 2019) on all the

augmented features over N training samples:

Llatent aug =

N∑
i=1

L∞(f(xi; θ), y
′
m;Σ′) (6)

=
1

N

N∑
i=1

log(

M∑
j=1

e
(wT

j −w
T
y′m

)fam+(bj−by′m )+λ
2 (wT ′

m −w
T
y′m

)Σy′m
(wj−wy′m )

)

where θ indicates the encoder parameters for the latent category features. w and b are the weight and
biases corresponding to the a 1× 1 convolution layer FC motioned above. Following ISDA (Wang
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Figure 4: We visualize the weight histogram of latent categories contributing to the reconstruction
of the image features. As shown in the figures, the 79th latent category (green) is highlighted by
the ‘hare’(Image D), and ‘dogs’(Image E and F), while all of them contain the similar shape of the
limbs. Furthermore, the ‘cow’(Image A), ‘human arm’(Image B), and ‘fisher’(Image C) share some
commonalities captured by the 98th latent category(red).

et al., 2019), we let λ = (t/T )×λ0 to reduce the augmentation impact in the beginning of the
training stage, where T indicates the total iteration.

With the augmented latent category features, we are able to increase the diversity of training samples
by reconstructing the augmented latent features back to the image features f with the reconstruction
loss LRecon.

3.4 TRAINING PROCESS

We adopt decoupled training for the long-tailed task as in (Zhong et al., 2021). Specifically, in
the first stage of the training process, our training objective includes the reconstruction loss LRecon

which is applied on the latent category features, a latent augmentation loss Llatent aug that augments
the latent features, and a cross-entropy classification loss which is applied on final prediction ŷi
generated with the decoder. In the second stage of training, we further add the label-aware smoothing
to finetune. We optimize the network parameter by combining all the losses:

L = αLlatent aug + βLRecon + γLcls, (7)

where Lcls indicates the final classification loss (CE loss) between the ground truth y and the predic-
tion ŷi. α, β, and γ are the trade-off parameters, which have been set to 0.1, 0.1 and 1, respectively.

4 EXPERIMENTS

4.1 DATASET

We follow the training pipeline as in (Zhong et al., 2021; Zhou et al., 2020) and conduct exper-
iments on five datasets, including CIFAR-10-LT, CIFAR-100-LT, ImageNet-LT, iNaturalist 2018,
and Places-LT.

CIFAR-10-LT and CIFAR-100-LT. Following (Cao et al., 2019a), we use long-tail version CIFAR
datasets to conduct experiments. CIFAR-10 and CIFAR-100 contain 50000 images and 10000 for
training and validation, including 10 and 100 categories, respectively. In particular, we discard the
training samples to reorganize a unbalanced dataset with imbalance factor(IF) β = Nmax/Nmin.
The Nmax and Nmin are the numbers of training samples for the largest and the smallest classes.
Following (Cao et al., 2019a; Zhong et al., 2021; Zhou et al., 2020), we conduct the experiments on
the CIFAR-LT with imbalance factor(IF) β = 10, 50 and 100.
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Method
CIFAR-10-LT CIFAR-100-LT

100 50 10 100 50 10

CE (Cross Entropy) 70.4 74.8 86.4 38.4 43.9 55.8
mixup (Zhang et al., 2018) 73.1 77.8 87.1 39.6 45.0 58.2
LDAM+DRW (Cao et al., 2019b) 77.1 81.1 88.4 42.1 46.7 58.8
BBN(include mixup) (Zhou et al., 2020) 79.9 82.2 88.4 42.6 47.1 59.2
Remix+DRW (Chou et al., 2020) 79.8 - 89.1 46.8 - 61.3
MiSLAS (Zhong et al., 2021) 82.1 85.7 90.0 47.0 52.3 63.2
MetaSAug CE(Li et al., 2021a) 80.5 84.0 89.4 46.9 51.9 61.7

Ours 83.1 86.5 91.2 47.6 52.5 63.8

Table 1: Top-1 accuracy (%) for ResNet-32 based models trained on CIFAR-10-LT and CIFAR-100-
LT.

Method ResNet-50

CE (Cross Entropy (CE)) 44.6
CE+DRW (Cao et al., 2019b) 48.5
Focal+DRW (Lin et al., 2017) 47.9
LDAM+DRW (Cao et al., 2019b) 48.8
NCM (Kang et al., 2020) 44.3
τ -norm (Kang et al., 2020) 46.7
cRT (Kang et al., 2020) 47.3
LWS (Kang et al., 2020) 47.7
MiSLAS (Zhong et al., 2021) 52.7
RIDE† (Wang et al., 2021) 54.4
MetaSAug CE (Li et al., 2021a) 47.4

Ours 55.3

(a) ImageNet-LT

Method ResNet-50

CB-Focal (Cui et al., 2019) 61.1
LDAM+DRW (Cao et al., 2019b) 68.0
OLTR (Liu et al., 2019) 63.9
cRT (Kang et al., 2020) 65.2
τ -norm (Kang et al., 2020) 65.6
LWS (Kang et al., 2020) 65.9
BBN(include mixup) (Zhou et al., 2020) 69.6
Remix+DRW (Chou et al., 2020) 70.5
MiSLAS (Zhong et al., 2021) 71.6
RIDE† (Wang et al., 2021) 71.4
MetaSAug CE (Li et al., 2021a) 68.8

Ours 72.6

(b) iNaturalist 2018

Method ResNet-152

Range Loss (Zhang et al., 2017) 35.1
FSLwF (Gidaris & Komodakis, 2018) 34.9
OLTR (Liu et al., 2019) 35.9
OLTR+LFME (Xiang & Ding, 2020) 36.2

Ours 40.2

(c) Places-LT

Table 2: Top-1 accuracy (%) on ImageNet-LT, iNaturalist 2018 and Places-LT. † indicate the results
with 2 experts.

ImageNet-LT. Liu et al. (Liu et al., 2019) propose the ImageNet-LT dataset, which contains 115,846
training images and 50,000 validation images, including 1000 categories, with the imbalance fac-
tor(IF) of 1280/5. This dataset is a subset of ImageNet (Russakovsky et al., 2015). They follow the
Pareto distribution with power value α = 6 to sample the images and rearrange to a new unbalanced
dataset.

iNaturalist 2018. iNaturalist 2018 (Van Horn et al., 2018) is a large-scale dataset collected from
the real world, whose distribution is extremely unbalanced. It contains 435,713 images for 8142
categories with imbalanced factor(IF) of 1000/2.

Places-LT. Places-LT is a long-tailed distribution dataset generated from the large-scale scene clas-
sification dataset Places (Zhou et al., 2017). It consists of 184.5K images for 365 categories with an
imbalanced factor(IF) of 4980/5.
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Dataset Number of latent class Dataset Number of latent class

20 30 40 50 60 20 60 100 200

Cifar10 81.9 82.4 83.1 82.5 79.6 ImageNet-LT 54.5 55.0 55.3 55.2
Cifar100 47.1 47.2 47.4 47.6 46.1 Naturalist 2018 - 71.6 71.6 72.6

Table 3: Ablation studies of the effectiveness of the number of latent categories. We conduct the
experiments on the small dataset (CIFAR-10-LT and CIFAR-100-LT with IF 100) and large dataset
(ImageNet-LT and Naturalist 2018). The larger the dataset (more training samples and classes), the
more latent categories are needed to represent better performances.

Components Dataset

latent category latent aug latent recon CIFAR-10 CIFAR-100 Naturalist 2018

82.1 47.0 68.9
X 82.2 47.0 69.4
X X 82.5 47.4 69.8
X X 83.0 47.3 70.0
X X X 83.1 47.6 70.5

Table 4: Ablation studies of each component, including whether utilizing our proposed latent cate-
gory, latent augmentation loss(latent aug) and latent reconstruction loss (latent recon). We conduct
the experiments on the small dataset (CIFAR-10-LT and CIFAR-100-LT with IF 100) and large
dataset (Naturalist 2018). The results show that each of our proposed components improves the
baseline (without any component).

4.2 COMPARISONS WITH STATE-OF-THE-ARTS

Experiments on CIFAR-LT. Following (Zhong et al., 2021; Tang et al., 2020; Cao et al., 2019b;
Zhou et al., 2020), we conduct the experiments on CIFAR-10-LT and CIFAR-100-LT with different
IF 10, 50, and 100. As shown in Table 1. Our proposed method outperforms all previous methods.

Experiments on large-scale datasets. We further validate the effectiveness of our method on the
large-scale imbalanced datasets, i.e., ImageNet-LT, iNaturalist 2018, and Places-LT. Table 2 lists the
experimental results. Our proposed method outperforms all the other methods and achieves the new
state-of-the-art performance on all the large-scale datasets.

4.3 ABLATION STUDIES

The number of the latent categories. We conduct the experiments to analyze how the latent cat-
egories affect the performance on different datasets. As shown in Table 3, we experiment on both
small and large scale datasets to explore the effectiveness with the number of latent categories. For
the larger datasets, which contain more training samples and classes, we suggest using more latent
categories to represent the original image features to achieve better performances. However, enlarg-
ing the number of latent categories could not continuously increase the performances. For example,
40 categories yield the best performance on the CIFAR-10-LT dataset. Continually increasing the
number of categories would drop the performances very quickly. We speculate that if there are too
many latent categories, each object feature might be split too finely by the latent features, failing to
obtain the meaningful parts.

Effect of each component. We investigate the contribution of each component of our proposed
method: the latent categories, the latent augmentation loss, and the latent reconstruction loss. We
conduct the ablation experiments on both the small and large scale datasets to validate our method.
Specifically, we choose IF = 100 and set the latent categories as 40 and 50 for CIFAR-10-LT and
CIFAR-100-LT datasets, respectively. For the experiment on the large challenge datasets, we set the
number of latent categories to 100 with a small training batch size(16) due to the resource limitation.
As shown in Table 4, only adding our proposed latent categories could have a significant improve-
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Dataset Methods Many Medium Few

CIFAR10-LT IF 100 Ours∗ 90.9 80.8 73.7
Ours 92.6 81.5 75.4

CIFAR100-LT IF 100

OLTR (Liu et al., 2019) 61.8 41.4 17.6
LDAM + DRW (Cao et al., 2019a) 61.5 41.7 20.2
τ -norm (Kang et al., 2020) 65.7 43.6 17.3
cRT (Kang et al., 2020) 64.0 44.8 18.1
Ours∗ 63.1 48.4 25.3
Ours 64.2 49.2 25.3

ImageNet-LT

cRT (Kang et al., 2020) 62.5 47.4 29.5
LWS (Kang et al., 2020) 61.8 48.6 33.5
Ours∗ 61.7 51.3 35.8
Ours 66.2 52.9 35.8

iNaturalist 2018

cRT (Kang et al., 2020) 73.2 68.8 66.1
τ -norm (Kang et al., 2020) 71.1 68.9 69.3
LWS (Kang et al., 2020) 71.0 69.8 68.8
Ours∗ 73.2 72.4 70.4
Ours 73.8 73.4 71.5

Table 5: We report accuracy on three splits of classes: Many, Medium, and Few. We validate our
methods on multiple datasets, including small-scale datasets (CIFAR10-LT, CIFAR100-LT with IF
100) and large-scale datasets (ImageNet-LT, and iNaturalist 2018). Ours∗ indicates ours baseline
(without the latent category features, reconstruction loss lrecon and latent augmentation loss laug).

ment over the baseline method (MiSLAS (Zhong et al., 2021)) for all the datasets. The performances
are further improved by applying the latent augmentation loss and the latent reconstruction loss.

Visualization of the latent categories As shown in Figure 4, we visualize the latent category his-
togram on the ImageNet-LT dataset with 100 latent categories. We reconstruct the image features
with the latent categories, and each latent category contributes with a normalized similarity weight
generated by equation 2. As shown in the figure, the 79th latent category (green) is highlighted by
the ‘hare’ and ‘dogs’ (Image E and F), while both of them contain similar limb patterns. Further-
more, the ‘cow’, ‘human arm’, and ‘fisher’ also share some commonalities captured by the 98th

latent category(red).

4.4 PERFORMANCE ON DIFFERENT SPLITS OF CLASSES

We further report the classification accuracy for the many (more than 100 images per class), medium
(20 to 100 images per class), and the few (less than 20 images per class) classes, respectively. As
shown in Table 5, our method achieves the best performance on the many, medium, and few classes
by a large margin for all the datasets. Specifically, on the ImageNet-LT ‘many’ dataset, our LCReg
achieves 4.4% accuracy gain over the previous SOTA methods while keeping the performances of
medium and few classes not dropped.

5 CONCLUSION

In this paper, we have proposed a latent category recognition(LCReg) method to increase the diver-
sity of the training samples for long-tailed recognition tasks by mining out the commonality features
among the head and tailed classes. We apply the semantic data augmentation method on our pro-
posed latent category features to implicitly enrich the diversity of the training samples. Experiments
on several long-tailed recognition benchmarks validate the effectiveness of our method and show
our method achieves state-of-the-art performance.
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