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Abstract—We propose a novel method for computationally
efficient audio-visual voice activity detection (VAD) where
visual temporal information is provided by an energy efficient
event-camera (EC). Unlike conventional cameras, ECs perform
on-chip low-power pixel-level change detection, adapting the
sampling frequency to the dynamics of the activity in the visual
scene and removing redundancy, hence enabling energy and
computational efficiency. In our VAD pipeline, first, lip activity
is located and detected jointly by a probabilistic estimation
after spatio-temporal filtering. Then, over the lips, a feather-
weight speech-related lip motion detection is performed with
minimum false negative rate to activate a highly accurate but
expensive acoustic deep neural networks-based VAD. Our ex-
periments show that ECs are accurate at detecting and locating
lip activity; and EC-driven VAD can result in considerable
savings in computations as well as can substantially reduce false
positive rates in low acoustic signal-to-noise ratio conditions.

I. INTRODUCTION

Voice activity detection (VAD) is the first step in many
speech processing systems. However, in certain applications
like mobile hands free scenarios, where VAD has to contin-
uously run in background, it can be computationally expen-
sive and drain the battery. Computation becomes even more
demanding when robustness is increased by detecting the
type of the noise [15]. As such, many consumer applications
by default rely on the user activation of speech processing,
like button press.

As for the majority of audio-visual applications, during
the use of smartphones or tablets, with specific apps or
video calling, the user typically faces the device and the
facial movements gathered by the frontal camera represents
an additional source of information about speech production.
Prior work exploited this fact to obtain acoustic-noise-robust
VAD using video cameras [3], [7], [11], [13], [17], [21].
Optical flow [7], [17], [21] and Discrete Cosine Transform
(DCT) [3], [13] have commonly been employed for fea-
ture extraction. Authors have performed various statistical
learning methods of significant complexity on the visual as
well as the audio features. Recently deep auto-encoder and
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recurrent networks have been applied on audio-visual data as
well [4]. Although there are no reports of the computational
complexity of the proposed techniques, vision processing
implies a considerable computation burden due to the dense
image data and the fixed video-frame rate. Moreover, we see
that complexity has significantly increased with more recent
methods in order to improve the detection [4], [11], [17].

To achieve energy and computation efficiency for
acoustic-noise-robust VAD, we propose a novel approach
based on event-driven vision sensors (or event cameras,
ECs). ECs implement pixel-level temporal change detection
[19] and only respond to changes in their field of view,
asynchronously generating pixel-events at a rate proportional
to the change of contrast. Their temporal resolution can be
as high as 1µs and the sampling rate adapts to the dynamics
of the stimulus: for stationary inputs they do not produce a
significant amount of events, while the sampling rate can
be very high for fast changing stimuli. This corresponds
to power consumption at 50mW for a static scene and at
175mW maximum for high activity scenes. In comparison,
power consumption of conventional cameras mounted in
mobile phones are around 1W and can go up to 1.5W
depending on the model, and microphones consume slightly
more above 100mW [9], [22]. Thus ECs clearly provide
substantial energy efficiency incomparable to conventional
vision cameras, and intrinsic data compression that in
turn enables design of computationally efficient processing,
where the cost of computation dynamically changes with the
amount of activity in the visual scene.

The VAD method we propose is based on an extremely
efficient EC-driven processing which activates a very robust
but costly audio-only deep neural network (ADNN) detector
only when it detects lip activity. This EC-based gating
mechanism provides dramatical energy and computation
savings, especially at idle time. The temporally and spatially
sparse but highly informative nature of the EC signals has
a great potential for computationally efficient VAD, which
is impossible to achieve with conventional cameras where
dense video-frame images have to be processed at a constant
frame rate (independently of whether there is movement or
not in front of the camera). Moreover, the high sampling rate
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of ECs prevents motion blur problems which have degrading
effects on visual VAD [7]. Another crucial advantage is
the extremely high dynamic range which make ECs work
similarly well under varying and inhomogeneous lighting
conditions where conventional vision methods fail or require
even more complex processing to combat these difficulties.
Prior work with EC-based detection involves [5], [16]. To
our knowledge, the present work is the first study on event-
camera based speech activity detection. The characterization
of this method shows that the visual gate runs very efficiently
(Sec. IV-C), and overall VAD is also efficient by calling the
complex ADNN only when there is potential lip-activity,
yielding remarkable low error rates (Sec. IV-D).

II. EVENT-CAMERA GATED VAD

Fig. 1 shows a block diagram of the proposed EC-gated
VAD. An event camera is used to monitor the visual scene,
generating ON/OFF pixel-events for increasing/decreasing
contrast. In the resulting event-stream there’s no notion of
the traditional “frame”, as events are continuously and asyn-
chronously produced. Therefore each event is represented as
a tuple ei = (xi, ti, pi) where xi is the 2D pixel position, ti
is the time stamp and pi is the polarity (ON/OFF). An event
at time t is generated as soon as a change in the log intensity,
log I , exceeds a threshold θ, | log I(x, t)− log I(x, tp)| ≥ θ,
where tp is the timestamp of the previous event at the same
pixel. However, as a single event is not informative enough,
we use a spatio-temporal volume of fixed size and duration
of events to perform computation. Given the current volume
of events, we perform event-rate detection to distinguish
activity elicited by global camera motion or a potential user
talking in front of the sensor. This first thresholding activates
an event-based filter with salient activity selection that en-
ables lip-activity localization. Then a lip activity detection-
based gating operation activates (or not) an ADNN-VAD.
In the “Collect” stage, a decision probability is assigned to
each acoustic frame, as either the ADNN posterior or as
“0” if lips have not been detected from the visual stream
and the ADNN-VAD is inactive. The final decision is made
by uniform temporal averaging over a sliding window of 61
frames centered at the current acoustic frame (corresponding
to a 600ms temporal window). This averaging performs
smoothing as well as fusion since negative decisions of the
visual detector are combined with ADNN-VAD posteriors.

A. Event-rate Detection

Given the characteristic activation of EC, the number of
events in an output event-stream is highly variable, corre-
sponding to different computational loads. Still scenes fire
pixel-events very sparsely (only noise), while large camera
motion or sudden and fast movements in front of the camera
produce dense pixel-event clouds in space-time volume. A
person talking in front of the camera, instead, elicits an
intermediate activation level of event-pixels. To limit the

Figure 1. Block diagram of the EC-gated VAD. The acoustic signal is
sent to ADNN-VAD via the gate only when lip activity is detected. At the
top are events accumulated over 200ms (left), spatio-temporal components
of the 3D Gabor filter (middle) and the sparse activation map from the
center-surround suppression (right).

computational demand, we simply avoid processing if the
event-rate (total number of events in a time window) is high
than expected. We determine the threshold as the maximum
event-rate observed in the training set of talking face clips,
sampling with the same rate as of the spatio-temporal filter.

B. Spatio-temporal Filtering

Small head movements in front of EC elicit events corre-
sponding to face, eyes, nose and lip contours. Speech related
lip movements appear as horizontally elongated objects, with
dominant motion component in the vertical axis, modulated
in the 2-7 Hz frequency band [8]. Based on these character-
istics, we apply a spatio-temporal Gabor filter, i.e., temporal
extension of commonly used spatial Gabor filters in image
analysis [18]. The filter (centered at (x0, y0, t0)) is a 3D-
Gaussian modulated by a complex sinusoid on the temporal
axis (t) as well as on the vertical axis (y) to focus only on
horizontally oriented lip shape:

g(x, y, t) = e
−( (x−x0)2

σ2x
+

(y−y0)2

σ2y
+

(t−t0)2

σ2t
)

(1)

· e{−2πj[fy(y−y0)+ft(t−t0)]}.

We set the spatial modulation as fy = 24 pixels/cycle and
temporal modulation as ft = 10Hz. High temporal fidelity
of ECs allow exact calculation of the temporal response.
To determine the Gabor envelope, we use the half-response
frequency bandwidth, using bandwidth of 1.0 octaves for the
temporal component, and 2.7 octaves for the spatial domain,
to better perform spatial localization. The spatial aspect ratio
of the filter is 0.5, hence σy = σx/2. Real and imaginary
profiles of the filter are shown in Fig. 1. The spatio-temporal
filter size is set according to its standard deviation (43 pixels,
200ms). At each location we have separate filters for ON and
OFF events, thus we obtain two separate output maps.



This filtering (convolution) stage is the computationally
dominant part of the whole visual processing. For efficient
computation, we create a 3D look-up table of the spatio-
temporal volume. Depending on the space-time overlap of
the filter kernels, more than one kernel can occupy the same
index in the look-up table. Therefore, for each table index,
the list of occupying kernels are stored together with the
corresponding kernel weight (complex scalar). Thus, unlike
a standard convolution implementation which strides the
kernel in the space-time domain requiring a loop over the
3D look-up table (multiple-passes over an event), we do
event-driven convolution which requires only one-pass over
an event without looping over the space-time table, and only
performing floating point additions per event to accumulate
the Gabor filter responses. The complexity of this technique
is O(NE/r

3), where NE is the number of events and r is
the filters’ overlap ratio; hence it does not depend on the
kernel size unlike in image convolution. We set r = 0.5,
resulting in 21 pixels and 100 ms step sizes and complexity
of O(8×NE). Outputs are calculated at each time step, by
evaluating the Gabor filter magnitude responses.

C. Center Surround Suppression

Center-Surround Suppression (CSS) – applied to the out-
put of Gabor filters – selects local maxima, considerably
reducing redundant information, improving detection. As
in [18], we implement CSS as difference of Gaussians
and half-wave rectification: D = |G2 − G1|+, where the
2D filter kernels are D,G2,G1 ∈ R5x5. |.|+ is the half-
wave rectifier applied at each kernel element by setting
the negative values to 0. G1 is the matching envelope
of the Gabor filter and G2 is the scaled Gaussian with
σ2 = k2.σ1, where k2 corresponds to the surround which
inhibits the center. For a given inhibition strength factor
α, CSS activations are calculated by a convolution and
subtraction A = M − αM ∗ D/||D||1, where M is the
2D input magnitude response map. We can simply perform
the same operation with a convolution using the suppression
filter kernel CSS = I − α.D/||D||1, where ||.||1 is the L1

norm and I is the identity matrix. For α = 2 and k2 = 4
(see [18]), CSS provides high sparsity, typically activating
5% to 10% of cells in our system, suppressing noise and
reducing false positives.

Fig. 2 shows some example inputs (the first column) and
outputs (the second column) of CSS, however, by combining
the maximum of ON and OFF cells at each cell location as
a single map for visualizing compactly. The third column
shows the input event-data with accumulated pixel-events
where the filter locations are depicted by the overlaid 9×12
cell grid. We see in the first row that in the absence of
activity there are only weak activations due to noise and
slight movements. In the second row talking lips yield strong
activations. The face has a moderate movement in the third
row, however, the spatio-temporal filter does not respond

to the moving vertical edges. Although there are still other
strong responses, the filter-matched CSS disregards them.
In the fourth row we see moderate activations due to the
eyebrow movements, which are not as strong as the lip
activity. However, there can also be cases like in the last
row, albeit rare, where there is no lip activity but other strong
activations like eye blinks. If those activations are detected
as lip activity, the audio detection is activated unnecessarily.
Nevertheless, our method can also handle those cases by
means of an estimation with a location prior as explained in
Section II-D.

Figure 2. Gabor magnitude (the first column) and the center surround
suppression activation (A, in the second column) maps for several moments
in different speech clips, by selecting the maximum values from the filtered
ON and OFF polarity maps. Event-data (in the last column) is displayed
by accumulating pixel-events over 200 ms window (blue: ON events, red:
OFF events, green: combination), where the activation grids are overlaid.

D. Detection and Localization of the Lip Activity

With event cameras, lips are typically observed only if
a subject is moving or talking in front of the camera. In
this scenario, we can formulate lip activity detection and
localization problems jointly. Given a sparse activation map
A, detection and location probability distributions can be
evaluated by marginalizing out from the joint distribution,
p(y,x|A), where the binary random variable y ∈ {0, 1}
denotes the presence of the activity when y = 1, and x is the
2D coordinate of the activity center. The location distribution



is approximated with a probability mass function over the
activation grid cells. Thus the joint distribution is evaluated
via the Bayes rule

p(y,xij |A) =
p(A|y,xij)p(y,xij)

p(A)
(2)

where xij is the location vector at the grid cell (i, j).
Since the location and activity of the lips are independent,
p(y,xij) = p(y)p(xij). We use equal prior probabilities for
the values of y, and a 2D Gaussian density is employed as
the location prior

p(xij) ∝ N(xij ;µx,Σx). (3)

The likelihood function of A given there is a lip activity
like activation (y = 1) is modeled by linear logistic regres-
sion. However, since the activation values are exponentially
distributed, we first do a logarithmic transformation. Thus,

p(A|y = 1,xij) =
1

1 + exp(−w. logAij + b)
(4)

where Aij is the activation value at the grid cell (i, j), w is
the gain and b is the bias. On the other hand, the likelihood
given y = 0 has a uniform shape since when there is no
activity lips are not seen and can be anywhere in the scene.
In that case the posterior (2) equals to the prior p(xij) due
to the Bayes rule.

After calculating the posterior we obtain the location
distribution by marginalizing out y,

p(xij |A) =
∑
y

p(y,xij |A). (5)

Then the detection location is found on the activation grid by
Maximum a-posterior (MAP) estimate (exhaustive search)

i∗, j∗ = argmax
i,j

p(xij |A). (6)

Thus the estimated location is xi∗j∗ . However, we only trust
and use the location if the detection probability is high

p(y|xi∗j∗ ,A) =
p(y,xi∗j∗ |A)

p(xi∗j∗ ,A)
. (7)

In the localization experiments we compare use of two
weak priors: i) talking face scene prior, and ii) face center
prior. While the former models the distribution of the mouth
center in the scene by a Normal density, the latter models
relative to the face bounding box center so that the detector
can benefit from a face detector if available (in that case,
p(xij) ∝ N(xij ;µx + xface,Σx)).

E. Visual Gating by Lip Activity Detection

After the localization, we perform local analysis over
the lips at every 100 ms for voice activity detection. We
observed that activation value of the cell which is nearest to
the estimated location (within 2 std. of spatial Gabor kernel)
provides accurate voice activity detection (when there is

visible lip activity). Knowing the location, we apply a low
threshold on the nearest activation cell. The threshold is
determined to attain low false negative rate (see Sec. IV-C).
When visual activity is detected at the lips, audio processing
is enabled, however, for more than 100 ms. This visual gate
takes into account possible delay between visible articulation
and voice production [8], and the likely longer duration
of speech segments in the absence of visible articulation.
The minimum duration of the gate-open state is set to 200
ms, and extended up to 500 ms as discussed and assessed
in Sec. IV-C. The visual detector runs continuously – also
during the activation of the ADNN-VAD – and the gate is
kept open for as long as lip activity is detected. Although
this visual gate can possibly detect short non-verbal activity,
in practice ADNN-VAD easily handles them with negligible
cost, since they are rare events of short duration.

F. Acoustic Deep Neural Network based VAD

Recent audio-VAD studies have shown that DNN-based
algorithms achieve state-of-the-art [12], [15]. Therefore we
use a DNN-based audio VAD, as a feed-forward network
with 4 hidden layers, 2000 rectified linear units per layer,
and a 2-node softmax output layer. The acoustic signal is
converted into 40 log mel-filtered spectral coefficients plus
deltas and delta-deltas, computed every 10 ms over a 25
ms window. Then 11 contiguous frames are concatenated to
be used as ADNN input. Thus computation-complexity is
roughly O(frames× layers×nodes2), i.e., 1600 MFlops.

III. DATASET

We collected an audio-visual speech dataset using the
“ATIS” (304×240 pixels resolution) Event Camera [19] for
the visual signal, and a high quality directional microphone
at 44.1 kHz for the auditory signal. The dataset was collected
in a lab environment with standard room illumination and
using 8 mm lens to video-record subjects standing 70 cm
away from microphone and EC. The dataset consists of 18
subjects (9 males and 9 females) with different variations
among eye-glasses, beard, mustaches and head poses (e.g.
with the head slightly rotated to one-side). Subjects were
free to slightly move their head while speaking. A unique
set of 20 utterances were selected from the TIMIT [23]
speech corpus for each subject. There are 5 sentences in
common between only one pair of subjects. In total there
are 360 audio-visual clips for a total duration of 28 minutes.
We also collected non-speech facial actions from all the
subjects, including free head rotations, lip-biting, lip-snap,
breathing with open mouth, smiling and occlusions of face
and lips due to hand gestures. Finally, we collected event
streams corresponding to arbitrary motions of the EC –
without subjects – to evaluate visual gating false positives
in presence of typical hand-held devices handling.

For accurate synchronization of visual and auditory sig-
nals, we manually triggered an audio-visual signal – a LED



light and a buzzer – for each session, and manually marked
the audio-visual signals to re-align possible time-shifts. For
the ground-truth end points, speech segments were manually
marked on the audio waveforms. There are silence sections
at the beginning and ending parts of each clip. The overall
voice percentage on the speech corpus is about 64%.

In order to test performance in different background noise
conditions, the audio clips were mixed with recordings of
subway, cafeteria, square backgrounds [1], at seven levels of
SNR ratio from 15dB to -15dB with 5dB decrements. For
each clean audio clip, we thus obtained 21 noisy clips.

IV. EXPERIMENTAL RESULTS

In the experiments we first evaluate the lip activity local-
ization performance (Section IV-A). We explain our DNN
training procedure to achieve a robust acoustic VAD in
Section IV-B. Then we evaluate our lip activity detection
and the visual gate for VAD (Section IV-C). Finally, audio-
visual EC-Gated VAD evaluation is given in Section IV-D. In
all the experiments, the first 6 speakers are used for training
and the remaining 12 subjects are used for testing.

A. Lip Activity Localization

To evaluate the lip activity localization performance and
to perform training, we annotated mouth and face bounding
boxes on the visual event-data, by creating frame videos with
40 ms window and step sizes, as shown in Fig. 3. However,
since on the event-data face and lips appear only when there
is motion, we annotated the bounding boxes by manually
finding the key motion frames, sometimes separately for
face and lips depending on the motion. If the face was
moving, key frames were selected at the onset and offset
of the movement as well as at several in-between frames.
Using linear key-frame interpolation, bounding boxes are
re-sampled at desired time points. We annotated for all the
18 subjects in the dataset, for over 4 speech clips per subject.

Figure 3. Annotated lip region and face bounding boxes. Event-pixels are
accumulated over 40 ms window.

The Gaussian priors that we evaluate (see Sec. II-D), i.e.,
talking face scene and face center priors, are estimated over
the re-sampled bounding box center coordinates (at 40 ms

frame step). For the face center prior, estimation is done
over the difference vectors (xlips − xface).

To train the linear logistic regression (for the activation
probability), we need positive and negative activation values
of the lip activity. In order to select the apex activation
values, we apply a threshold. This threshold is determined
for each clip independently by taking the average activation
value over a space-time region where the boundaries are
the spatial bounding box of the lip activity and the voiced
segment. Positive activation values are the ones that are
above the threshold in that region. On the other hand, values
outside this region and below the threshold are assigned to
the negative class. This sampling from the activation maps
is performed at 100 ms steps, and results in very unbalanced
sample sizes with much more negatives than the positives.
Therefore we use class weighting in training (also applying
L2 regularization with the hyperparameter value set to 1).

Figure 4. Localization performance over 1520 voiced samples across 12
unseen test subjects (talking face scene prior vs. face center prior).

Fig. 4 shows the lip localization performance curves for
detection, comparing the talking face scene prior and the
face center prior. The curves are cumulative distribution
functions which show the proportion of samples that achieve
less (or equal) than a given error metric. The error metric is

e = ‖x− xgth‖/wface (8)

where x is the estimated lips center coordinate vector, xgth
denotes the ground-truth location, and wface is the ground-
truth face width. These results are obtained over 1520 voiced
samples across 12 unseen test subjects. We see that both of
the detectors result in accurate localization since in all the
test samples lips are located, by at most within 16% of the
face width using the face center prior and with 18% of the
face width using the talking face scene prior. This level of
precision is sufficient since the localization precision is not
as important as the accuracy for the VAD task. We also see
that use of a face center prior clearly increases the precision,
as 80% of the samples are already localized within 10%
of the face width, while with the talking face scene prior



64% of the samples are localized with the same precision.
Recall that we employ only a coarse spatial-sampling for the
activation maps since the final goal is detection in time to
activate audio processing. If higher precision is required for
a local spatial analysis task, for instance, for visual speech
recognition, a fine spatial sampling may be beneficial.

B. Training for Robust Audio VAD

We trained the ADNN-VAD on a balanced subset of the
QUT-NOISE-TIMIT corpus [10], which retains all the noise
types and the noise levels used for training. When tested
on a different subset of the same dataset, our ADNN-VAD
significantly outperforms other well known algorithms, e.g.,
it produces a Half Total Error Rate (HTER, average of
false negative and false positives) of ≈ 1% at low-level
noise, vs. the 6% HTER of a Gaussian Mixture Model (Fig.
2 in [10]). If directly applied to our dataset, it performs
poorly as the training dataset; because the two dataset are
significantly different, both in terms of noise types and
recording conditions. Thus, we performed domain adaptation
[6] by fine tuning the DNN on both clean and corrupted
acoustic data of the 6 speakers in the training set. These
adaptation data were previously down-sampled to 16 kHz in
order to match the sampling rate of QUT-NOISE-TIMIT.

C. Evaluation of the EC-Gate

We first evaluate the EC visual gate regarding its com-
putation efficiency as well as its detection performance by
varying gate threshold and open-duration, while comparing
against a well known computationally efficient acoustic
gating proposed by Sohn [20]. For comparison, we applied
default parameters for the auditory gating, as implemented
in the voicebox toolkit [2]. Speech-likelihoods are computed
every 10ms with 20ms, and a Markov-model based hangover
is applied for the continuity (smoothing) of the voice activity.
As the proposed visual gate runs with 100 ms shift size
and 200ms time-window, we down-sampled the reference
acoustic method at 10 Hz by averaging over 200ms window.

We characterized the complexity of our method in terms
of computational load by estimating the peak of the EC
visual processing, which occurs only during the localization
of the lip region since all the filter cells have to be evaluated.
After localization EC processing is negligible, as computa-
tion is then performed only at the lip region that is cheaply
tracked over time. Although in visual VAD studies, e.g., [7],
[11], [13], the localization aspect is not evaluated (being out-
of-scope), the assessment of its complexity is important as
localization is the dominant part of the visual processing.

While it is not possible to make direct comparison of
our method to visual non-EC based gating on our dataset –
since we don’t have simultaneous acquisition of traditional
frame-based videos – we can make a rough comparison of
the acquisition and processing costs. Mobile-device cameras
consume about one order of magnitude more power (see

Static Global Lip & Visual
Scene Activity Face Speech

EC-Gate (max.) 0.24 0.33 9.1 10.45
(Event-rate [Meps]) (0.02) (2.68) (1.18) (1.02)

Sohn-Gate 7.7 (*)
ADNN-VAD > 1000 (*)

Table I
COMPUTATIONAL LOAD ESTIMATES [MFLOPS]: EC-GATE (FOR

DIFFERENT SCENARIOS) ARE ESTIMATED AS MFLOPS ADDITIONS AT
THE PEAK OF THE VISUAL PROCESSING TO LOCATE LIPS (EC-GATE

MFLOPS < 0.1, IF LOCALIZED), WHILE SOHN-GATE [20] AND
ADNN-VAD ARE ESTIMATED AS MFLOPS MULTIPLICATIONS (*).

Section I). Video-frame processing is computationally very
demanding, since processing is performed on every pixel
for each frame. On the contrary, event-driven processing is
proportional to the dynamics of the scene content and is per-
formed only on active pixels. After lip-region localization,
while standard methods perform methods like DCT [13],
optical flow [7] and diffusion mapping [11], our method
performs floating point additions proportional to the number
of events (with negligible fixed-rate calculations).

Table I shows MFlops (mega-floating-point-operations-
per-second) estimates of lip search and EC-gate for VAD
over different types of visual activity, including (i) static
scene where only noise event-pixels exist, (ii) maximum
activation when the device is moved (Global Activity), and
(iv) visual speech and (iii) other lip and facial motion
described in Sec. III. EC event-rate shows high variability,
that depends on the amount of activity in the scene and
that changes the computational load of the EC lip-search,
however, our method sets an upper bound to the number
of events that can be processed. The number of operations
peaks if the lip search is required in the whole scene. Once
the lips are localized, complexity becomes negligible due to
local computations, yielding less than 0.1 MFlops additions.
These peak EC MFlops estimates are much less than the
computations required by ADNN, which are more than 1000
MFlops (Sec.II-F). More computationally efficient ADNN
could be achieved through compression techniques, at the
cost of some performance decreases (see, e.g., [14]). The
complexity estimate of the default voicebox implementation
of Sohn [20] was 7.7 MFlops. Sohn’s complexity was
roughly estimated based on the complexity of the used FFT
(O(nlog(n)) with n = number of samples), and the ratio
between FFT execution time and the execution time of all
the remaining operations within Sohn’s VAD.

Fig. 5 shows the receiver operating characteristic (ROC)
curves for the EC and Sohn’s methods at 100ms shift size
with a 200ms time-window, combining clean and noisy
audio examples. With the EC method there is a limit on
the maximum true positive rate (TPR), which is about 80%
(or 20% false negative rate) as seen in Fig. 5. This is due
to the fact that visible articulation only corresponds to a



Figure 5. Receiver operating characteristic curves of the gates together
with different operation points depending on the gate durations (each of 4
durations are shown for 2 thresholds over 2 dashed lines). Chosen operation
points are marked with circles. All the clean and noisy audio samples are
combined.

Figure 6. Audio waveform and lip-region even-rate profile of a four
seconds long utterance “Alimony harms a divorced man’s wealth.” are
shown with phoneme boundaries.

subset of phonemes, as shown in Fig. 6. Fig. 5 shows that
extending the duration for EC-Gate counteracts this effect
and produces a significant improvement: e.g., starting from
two different thresholds on the ROC curve, we can boost the
TPR much faster than the ROC curve. Thus we select the
threshold value at 80% TPR and the gate duration 500ms
to achieve 97% TPR, which is way higher than the natural
limit of the EC. On the other hand, for Sohn-Gate, there
is no significant advantage from extending the duration as
the corresponding operation points are always almost on the
ROC curve. This is as expected because the speech acoustic
signal is informative for VAD during the voiced periods as
opposed to visual VAD, and hence changing the threshold
and extending the duration have similar effect. In order to
perform the comparisons under equivalent conditions, for
the Sohn-Gate, we select the same 500 ms gate duration,
and adjust the threshold value for the same TPR which
nevertheless causes very high FPR.

D. Evaluation of the EC-Gated VAD

As the complexity of the gating is much lower than the
ADNN-VAD (see Sec. IV-C), the overall computational and
energy efficiency of the gated-VAD is mainly related to how
often the ADNN is activated (call rate). Table II compares
call and FP rates of different VAD methods on speech clips,
on unvoiced lip- and face-activity clips, and on unvoiced
static scenes. The results are calculated over all acoustic
noise types and levels, by setting a threshold on the outputs
of each VAD to achieve 1% FN over the speech clips,
including both clean and noisy audio. In addition to gated-
VADs, we also considered the vision-only EC-VAD and the

Activity: Visual Speech Lip & Face Static Scene
Voice: 64.5% Voice: 0.0% Voice: 0.0%

FN: 1% FN: 0% FN: 0%
Method Call FP Call FP Call FP
EC-VAD 0.0 74 0.0 65 0.0 0

EC-ADNN 86.7 27 58.6 6 0.0 0
Sohn-ADNN 99.6 28 93.8 9 93.8 9
ADNN-VAD 100 26 100 10 100 10

Table II
ADNN CALL PERCENTAGES (CALL) AND FALSE POSITIVE

PERCENTAGES (FP) OVER ALL NOISE TYPES AND LEVELS. OPERATION
POINT IS SET SO THAT THE FALSE NEGATIVE PERCENTAGE (FN) IS 1%

OVER THE SPEECH CLIPS COMBINING ALL NOISE CASES.

audio-only ADNN-VAD. For the EC method, we set the
probability score to 1.0 if the gate is open. EC-VAD achieves
1% FN only after the temporal averaging of the outputs at
the final stage of detection (Fig. 1).

For the unvoiced static scenes, which can be assumed to
be either rare or frequent, depending on the application, EC-
driven VAD methods naturally lead to 0% call and FP rates.
Due to the acoustic noise, Sohn-Gate yields 93.8% call rate
and the very high FP rate of the gate is reduced to 9%, thanks
to ADNN which alone has 10% FP rate. Negative cases, such
as unvoiced lip- and facial-activity scenes are difficult to
handle with vision-based methods, mostly because lip open-
close actions open the gate, that correspond to 65% FP rate.
In this case, EC-ADNN has 58.6% call rate, and the use of
ADNN drops FP rate to 6%. Finally, in visual speech scenes
(64.5% voice over non-voice activity), the call rate is 86.7%
for EC-ADNN and 99.6% with Sohn-ADNN. Also in this
case, the high FP rates of the gates drop by the help of
ADNN, however, to rather moderate values (around 27%).
Observing a slightly higher FP rate compared to ADNN
(26%) looks contradictory, however, it is because at the 1%
FN rate EC-ADNN attains a lower threshold value due to
the temporal averaging with 0 probability values (Fig. 1).

Fig. 7 compares call, FP and FN rates of EC-ADNN and
Sohn-ADNN under varying SNRs over all acoustic noise
types, with the same operating points. Notice that since
operating points for 1% FN is fixed by combining clips
of all SNR levels including the clean audio, FN rates vary
depending on the SNR (the third row in Fig. 7). Sohn-
ADNN is inefficient as it calls ADNN most of the time.
Efficiency is comparable or less than EC-ADNN only when
the audio is clean and the scene has difficulties in handling
lip- and face-activity, as 58.6% call rate with EC and 48.3%
with Sohn’s method. However, the FN plot shows that Sohn-
ADNN achieves a poor (2.0% ) FN rate with clean audio
at this operation point, while EC-ADNN achieves 0.4%.
This higher error rate is due to the fact that Sohn’s method
sometimes misses true positives, while the noise added to the
voice always makes the Sohn’s method open the gate which
in turn activates the robust ADNN. In this context, acoustic
gating proves to be inefficient. Additionally, EC-ADNN also



Figure 7. ADNN call, FP and FN rates varying with SNR over all noise
types. Operation point is set so that the FN is 1% over the speech clips
combining all noise cases.

considerably reduces the FP rate at higher acoustic noise
levels, even in the presence of unvoiced lip- and face-activity,
showing higher gating efficiency.

V. CONCLUSIONS

We have developed a novel audio-visual approach to
VAD where efficient visual processing derived from the
use of non-conventional low-power vision sensors enables
the sparse activation of deep neural network based acoustic
voice activity detection. The proposed event-driven vision
processing tailors a spatio-temporal filter to the features
of speech-related lip motion and coarsely removes activity
that is not related to speech, hence provides an effec-
tive gating mechanism. We demonstrate that our method
drastically reduces the overall computation and potentially
the power consumption thanks to low-power compressed
vision sensing, the very low computation-time complexity
of the visual gate, and to a gating mechanisms that prevents
complex processing when there is no potential lip activity.
It also decreases the detection of false positives in high
levels of acoustic noise, further reducing the activation of
speech processing. The proposed method is hence extremely
valuable, where VAD must continuously run in background
while a user is facing towards the device, without occupying
most of the resources and wasting battery power.

REFERENCES

[1] Aurora. http://aurora.hsnr.de/.
[2] Voicebox. http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/

voicebox.html/.

[3] I. Almajai and B. P. Milner. Using audio-visual features for
robust voice activity detection in clean and noisy speech. In
European Signal Processing Conference, August 2008.

[4] I. Ariav, D. Dov, and I. Cohen. A deep architecture for audio-
visual voice activity detection in the presence of transients.
Signal Processing, 142(Supplement C):69 – 74, 2018.

[5] S. Barua, Y. Miyatani, and A. Veeraraghavan. Direct face
detection and video reconstruction from event cameras. In
IEEE Winter Conf. on App. of Computer Vision, March 2016.

[6] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira,
and J. W. Vaughan. A theory of learning from different
domains. Machine learning, 79(1):151–175, 2010.

[7] M. Buchbinder, Y. Buchris, and I. Cohen. Adaptive weighting
parameter in audio-visual voice activity detection. In IEEE
Int. Conf. on the Science of Electrical Eng., Nov 2016.

[8] C. Chandrasekaran, A. Trubanova, S. Stillittano, A. Caplier,
and A. A. Ghazanfar. The natural statistics of audiovisual
speech. PLOS Computational Biology, 5(7):1–18, 07 2009.

[9] X. Chen, Y. Chen, Z. Ma, and F. C. A. Fernandes. How
is energy consumed in smartphone display applications? In
Workshop on Mobile Computing Sys. and App., 2013.

[10] D. B. Dean, S. Sridharan, R. J. Vogt, and M. W. Mason.
The qut-noise-timit corpus for the evaluation of voice activity
detection algorithms. In Interspeech, Japan, September 2010.

[11] D. Dov, R. Talmon, and I. Cohen. Audio-Visual Voice
Activity Detection Using Diffusion Maps. IEEE/ACM Trans.
on Audio, Speech, and Language Proc., 23(4):732–745, 2015.

[12] Y. Fujita and K.-i. Iso. Robust dnn-based vad augmented
with phone entropy based rejection of background speech. In
Interspeech, 2016.

[13] H. Ghaemmaghami, D. Dean, S. Kalantari, S. Sridharan, and
C. Fookes. Complete-linkage clustering for voice activity de-
tection in audio and visual speech. In Interspeech, Germany,
September 2015.

[14] G. E. Hinton, O. Vinyals, and J. Dean. Distilling the
knowledge in a neural network. CoRR, abs/1503.02531, 2015.

[15] I. Hwang, H.-M. Park, and J.-H. Chang. Ensemble of deep
neural networks using acoustic environment classification for
statistical model-based voice activity detection. Comput.
Speech Lang., 38:1–12, 2016.

[16] J. Li, F. Shi, W. Liu, D. Zou, QiangWang, W. Liu, D. Zou,
Q. Wang, H. Lee, P.-K. Park, and H. E. Ryu. Adaptive
Temporal Pooling for Object Detection using Dynamic Vision
Sensor. In British Machine Vision Conference, 2017.

[17] F. Patrona, A. Iosifidis, A. Tefas, N. Nikolaidis, and I. Pitas.
Visual voice activity detection in the wild. IEEE Transactions
on Multimedia, 18(6):967–977, June 2016.

[18] N. Petkov and E. Subramanian. Motion detection, noise
reduction, texture suppression, and contour enhancement by
spatiotemporal Gabor filters with surround inhibition. Biol.
Cybern., 97(5-6):423–439, 2007.

[19] C. Posch, D. Matolin, and R. Wohlgenannt. A QVGA 143
dB Dynamic Range Frame-Free PWM Image Sensor With
Lossless Pixel-Level Video Compression and Time-Domain
CDS. IEEE J. Solid-State Circuits, pages 1–16, 2011.

[20] J. Sohn, N. S. Kim, and W. Sung. A statistical model-based
voice activity detection. IEEE Signal Proc. Letters, 6(1):1–3,
Jan. 1999.

[21] S. Takeuchi, T. Hashiba, S. Tamura, and S. Hayamizu. Voice
Activity Detection based on Fusion of Audio and Visual
Information. In Auditory-Visual Speech Proc. (AVSP), 2009.

[22] S. Tarkoma, M. Siekkinen, E. Lagerspetz, and Y. Xiao.
Smartphone energy consumption: modeling and optim.. 2014.

[23] A. Wrench. Mocha-timit. http://www.cstr.ed.ac.uk/research/
projects/artic/mocha.html, November 2006.


