

000 SCALABLE GANs WITH TRANSFORMERS

001 **Anonymous authors**

002 Paper under double-blind review

003 ABSTRACT

004 Scalability has driven recent advances in generative modeling, yet its principles
 005 remain underexplored for adversarial learning. We investigate the scalability of
 006 Generative Adversarial Networks (GANs) through two design choices that have
 007 proven to be effective in other types of generative models: training in a compact
 008 Variational Autoencoder latent space and adopting purely transformer-based gen-
 009 erators and discriminators. Training in latent space enables efficient computation
 010 while preserving perceptual fidelity, and this efficiency pairs naturally with plain
 011 transformers, whose performance scales with computational budget. Building on
 012 these choices, we analyze failure modes that emerge when naively scaling GANs.
 013 Specifically, we find issues as underutilization of early layers in the generator and
 014 optimization instability as the network scales. Accordingly, we provide simple
 015 and scale-friendly solutions as lightweight intermediate supervision and width-
 016 aware learning-rate adjustment. Our experiments show that the proposed **Genera-**
 017 **tive Adversarial Transformers (GAT)**, a purely transformer-based and latent-space
 018 GANs, can be easily trained reliably across a wide range of capacities (S through
 019 XL). Moreover, GAT-XL/2 achieves state-of-the-art single-step, **class-conditional**
 020 **generation performance (FID of 2.18) on ImageNet-256 in just 60 epochs, 4×**
 021 **fewer epochs than strong baselines.**

022 1 INTRODUCTION

023 **Figure 1: Curated examples of GAT-XL/2 on ImageNet-256.** GAT-XL/2 exhibits strong gener-
 024 **ation capability (FID 2.18) within 60 epochs, 4× fewer than 1-NFE baselines (FID 3.43),** while
 025 **keeping the characteristics of GANs such as latent interpolation (bottom two rows).**

026 Recent breakthroughs in generative modeling have become a central driver of progress across core
 027 areas of computer vision. These developments have accelerated in recent years, enabling capabili-
 028 ties that were previously out of reach: state-of-the-art systems now support text-to-image (Rom-
 029 bach et al., 2022; Podell et al., 2023; Esser et al., 2024b; Han et al., 2024) and text-to-video syn-
 030 thesis (Yang et al., 2024; Chen et al., 2024; Bar-Tal et al., 2024), demonstrate practical applica-
 031

054 tions (Brooks et al., 2024; Google DeepMind, 2025c;b), and further enable the creation of 3D con-
 055 tent (Zhao et al., 2025) and large-scale world simulation models (Google DeepMind, 2025a).
 056

057 At the core of this advance is scalability: enlarging model capacity and data coverage reliably im-
 058 proves performance, often near-monotonically. When pushed to sufficiently large regimes, these
 059 trends yield marked gains in fidelity, coverage, and controllability. Crucially, these benefits depend
 060 on scale-friendly choices, including architectures that maintain stable signal flow, training recipes
 061 that remain well-behaved as width, depth, and batch size grow, and computational efficiency. Such
 062 scaling behavior has already been demonstrated in certain types of generative models such as au-
 063 toregressive and diffusion families (Tian et al., 2024; Peebles & Xie, 2023; Liang et al., 2024).
 064

065 By contrast, the scalability of Generative Adversarial Networks (GANs) has not been discussed
 066 yet, despite its attractive single-step sampling efficiency and interesting property of semantic la-
 067 tent space. While there have been attempts to train GANs at large scale (Kang et al., 2023; Zhu
 068 et al., 2025; Sauer et al., 2023), these efforts typically focus on a single high-capacity model with
 069 extensive, task-specific tuning, and thus do not constitute evidence of genuine scalability.
 070

071 In this work, we revisit GANs in the aspect of scalability. We focus on two ingredients that have
 072 proven central to the success of scalable generative models. First, these models are typically trained
 073 in a low-dimensional latent space; **the spatial latent grid produced by a pretrained, frozen VAE (Rom-**
 074 **bach et al., 2022) as an image tokenizer/de-tokenizer**, enabling a dramatic reduction of the computa-
 075 tional burden of both learning and inference while preserving high perceptual fidelity. Second, they
 076 employ transformer architectures, which are known for their scalability against width, depth, data,
 077 and compute.
 078

079 Inspired by these two crucial factors, we combine these two elements to build a novel, scalable GAN
 080 framework: we construct a pure transformer-based GAN that operates in a compact latent space and
 081 study its behavior across substantial capacity ranges. We aim to assess the scalability of this design
 082 and to clarify the architectural and optimization choices. Accordingly, we pinpoint the hurdles that
 083 hinder adversarial training at scale. In detail, we identify the two key problems: (1) the early layers
 084 of the generator become inactive, leading to marginal contribution in image synthesis and (2) naïvely
 085 increasing depth and width with identical configuration leads to failures in convergence.
 086

087 To address the first issue, we propose Multi-level Noise-perturbed image Guidance (MNG), which
 088 provides supervision at multiple intermediate layers of the generator. Specifically, we leverage a
 089 noise hierarchy: the synthesized images from earlier stages are trained to resemble the real data
 090 perturbed by a stronger image-level Gaussian, and the noise level monotonically decreases with
 091 depth. They serve as direct supervision for the generator’s intermediate layers, restoring early-layer
 092 influence and improving layer-wise utilization throughout the network.
 093

094 For the second issue, we focus on the fact that both the static initialization and optimization scheme
 095 amplify output magnitudes as the model grows deeper and wider. Specifically, as model size in-
 096 creases, the entire network tends to exhibit more rapid changes in its outputs per optimization step.
 097 This phenomenon implies that the training speed changes proportionally to the model scale, po-
 098 tentially causing instability in GAN training dynamics. Thus, we devise a simple scaling rule for
 099 adjusting the hyperparameters, especially the learning rate, to preserve the constant magnitude of
 100 changes in network output regardless of scale.
 101

102 We experimentally validate that our framework, Generative Adversarial Transformers (GAT), is
 103 successfully trained on various scales of model (GAT-S to GAT-XL) and **achieves FID of 2.18, which**
 104 **is the state-of-the-art performance in a one-step generation task on the class-conditional generation**
 105 **in ImageNet-256 dataset only within 60 epochs of training**, while keeping the advantages of GAN,
 106 such as a single inference step or latent space manipulation (Fig. 1, more examples are available in
 107 Appendix).
 108

109 2 PROPOSED METHOD

110 2.1 PRELIMINARIES

111 **Generative Adversarial Networks** Generative Adversarial Networks (GAN) (Goodfellow et al.,
 112 2014) is an adversarial learning framework between two networks, the generator $G(z, c)$ and dis-

108 criminator $D(I, c)$. Specifically, for a given randomly sampled latent code $z \in \mathbb{R}^{d_z} \sim p_z$ and
 109 condition c , the generator $G(z, c)$ synthesizes a fake image $\hat{x} \in \mathbb{R}^{H \times W \times 3}$ and the discriminator
 110 learns to distinguish the real image $x \in \mathbb{R}^{H \times W \times 3}$ and the fake image \hat{x} , while the generator learns
 111 to deceive the discriminator.

112 GAN has several interesting properties compared to other types of generative models, diffusion and
 113 AR models. For example, it offers extremely low dimensional latent space (e.g. $d_z = 64$) and
 114 semantic latent space which is suitable for image manipulation. Moreover, its generation process
 115 requires only a single inference step, making inference highly efficient. Despite these advantages,
 116 GAN has not been explored in terms of scalability, which is one of the main cause of the success
 117 of other generative model. In this paper, we study how to scale GAN using on the transformer
 118 architecture that is already verified its scalability across various tasks.

119

120 2.2 GENERATIVE ADVERSARIAL TRANSFORMERS

121

122 We introduce Generative Adversarial Transformers (GAT), a transformer-based GAN framework
 123 at the latent space of VAE, for the first time. Our primary goal is to preserve the design of trans-
 124 former as much as possible to keep its scalability. Basically, we build GAT on the latent space of
 125 VAE (Rombach et al., 2022), following the recent advances in generative models (Rombach et al.,
 126 2022; Peebles & Xie, 2023; Tian et al., 2024). This allows us to efficiently increase the model size
 127 by reducing the computation costs of the generative model largely. For simplicity, we use the terms
 128 “VAE latent” and “image” interchangeably. In the following paragraphs, we describe our design of
 129 generator and discriminator architectures.

130

131 Generator architecture Our generator adopts a standard Vision Transformer (ViT) architecture,
 132 consisting primarily of a stack of transformer blocks. Since the generator does not take input images,
 133 we remove the patchify layer and instead introduce an unpatchify layer (i.e., the RGB layer in
 134 Fig. 2) to synthesize images. Specifically, the unpatchify layer acts as a linear decoder, comprising
 135 normalization, linear projection, and reshaping operations. The output dimension of this linear
 136 decoder scales with the patch size p , increasing proportionally to p^2 .

137

The transformer block (GAT block) follows the standard ViT design, but incorporates additional
 138 conditioning via the latent code z and class condition c . Specifically, we employ a mapping network,
 139 a simple MLP, that generates a style vector w from z and c . This style w is then used to modulate
 140 features through adaptive normalization and Layerscale (Touvron et al., 2021), drawing inspiration
 141 from StyleGAN (Karras et al., 2019) and DiT (Peebles & Xie, 2023). Note that Layerscale denotes
 142 a learnable, near-zero-initialized scale to each residual branch of attention and MLP block. Con-
 143 cretely, we produce scaling parameters γ and α from w , which control the de-normalization and
 144 Layerscale (Touvron et al., 2021), respectively. Since we adopt RMSNorm, the shift parameter is
 145 omitted. To enhance stability during early training, both γ and α are initialized to small values.
 146 Detailed explanations are provided in the Appendix. Throughout this paper, we refer to GAT as a
 147 “pure Transformer” generator in the sense that its backbone strictly follows a ViT/DiT-style architec-
 148 ture without convolutional components; the StyleGAN-inspired part is limited to a lightweight per-
 149 channel modulation on normalized features, similar to conditional LayerNorm/FiLM (Perez et al.,
 150 2018).

151

152 Discriminator architecture The discriminator also adopts a Vision Transformer (ViT) backbone,
 153 with Layerscale applied to the output of each transformer block. As in the generator, the Layerscale
 154 parameters are initialized to small values to ensure stability during the early stages of training. To
 155 perform real/fake classification, a dedicated [cls] token is appended to the sequence of visual tokens
 156 before the first transformer block. This [cls] token is processed jointly with the other tokens and
 157 subsequently passed through a linear projection head to produce the discriminator logit.

158

159 2.3 ACTIVATING EARLY GENERATOR LAYERS VIA MULTI-LEVEL NOISE-PERTURBED 160 IMAGE GUIDANCE

161

With the recent advances in GANs objectives (Huang et al., 2024), we observe that plain ViT-based
 162 generators and discriminators at the base scale can be trained successfully in the VAE latent space.
 163 However, analysis reveals that the early layers of the generator remain largely inactive. This means

Figure 2: Generative Adversarial Transformers (GAT) architecture. Both the generator and discriminator are built from transformer blocks, augmented with modulation in G and Layerscale in D . Our generator synthesizes auxiliary outputs from intermediate layers, which are paired with multiple noise levels and forwarded into the discriminator. Through supervision on intermediate outputs, this Multi-level Noise-perturbed Guidance (MNG) encourages all layers to contribute to images and consequently leverages the model capacity more effectively.

that their computations only marginally contribute to the final output, indicating the generator inefficiently utilizes its model capacity (Fig. 4). To address this inactivity of early layers, we draw inspiration from MSG-GAN (Karnewar & Wang, 2020), which introduces supervision on intermediate generator outputs (i.e., multi-scale supervision). We leverage its multi-level supervision with the explicit objective of increasing layer-wise contribution, particularly activating the early stages.

To this end, we propose the Multi-level Noise-perturbed image Guidance (MNG) strategy for training GANs. Firstly, we divide the generator into multiple K stages and enforce auxiliary outputs at each stage. Each intermediate output is connected to the final synthesis path through residual connections, ensuring that information from early blocks is not discarded but accumulated across depth. Throughout this process, for the intermediate output \hat{x}_k at k^{th} stage, the output of the generator is defined as follows:

$$G(z, c) = [\hat{x}_1, \hat{x}_2, \dots, \hat{x}_k]. \quad (1)$$

Then, we perturb each intermediate output x_k by a Gaussian noise with a predefined noise strength. In detail, the pre-defined strengths build a hierarchy by assigning stronger noise perturbation to earlier stages and weaker corruption to later ones. After perturbation, all perturbed images are forwarded to the discriminator, guiding each generator stage to learn only the level of coarse structure that survives under its pre-defined noise. This process is defined as follows:

$$\mathcal{E}(\hat{x}_k; \alpha_k) = \alpha_k \hat{x}_k + \sqrt{1 - \alpha_k^2} \epsilon, \quad \alpha_1 < \alpha_2 < \dots < \alpha_K, \quad \alpha_K = 1, \quad \epsilon \sim \mathcal{N}(0, I) \quad (2)$$

$$\ell = D(\mathcal{E}([\hat{x}_1, \dots, \hat{x}_k]), c) = D([\mathcal{E}(\hat{x}_1), \dots, \mathcal{E}(\hat{x}_k)], c), \quad (3)$$

where ℓ is the logit and \hat{x}_k is the noised-perturbed counterpart of x_k and α_k controls the degree of perturbation for noise-level k , increasing exponentially with depth. For simplicity, we omit the noise strength α_k for the noise perturbing operator \mathcal{E} . Thus, earlier layers are supervised to match heavily noised images (\hat{x}_1), while later layers are aligned with clean targets (\hat{x}_K), forming a coarse-to-fine trajectory. For real data x , we use identical images for every level k .

This strategy encourages the early layers to capture global structure under strong noise corruption, while later layers progressively refine fine-grained details as the noise diminishes. By incorporating this multi-level noise supervision, applied through intermediate outputs of generator and discriminator-side perturbations, we ensure that all layers contribute actively to the synthesis process, mitigating the problem of inactive early layers. Our method introduces the coarse-to-fine generation process into pure transformer architectures without introducing explicit resolution hierarchies (i.e., multi-scale images). Importantly, this mechanism incurs only negligible computational overhead while improving network utilization, especially in early layers.

216 2.4 SCALING RULE FOR STABILIZING THE TRAINING OF GAN
217

218 Recent diffusion models such as DiT (Peebles & Xie, 2023) demonstrate scalability while adopting
219 identical hyperparameters regardless of model size. In contrast, we find that simply increasing the
220 model size under an identical configuration often leads to training divergence in GANs. This is
221 problematic as the manual tuning of hyperparameters for every scale would severely undermine
222 scalability. To address this, we propose a simple and principled scaling rule.

223 The key idea of the guiding principle is to maintain a consistent update magnitude across different
224 model widths. In practice, when each layer input is normalized to unit variance (as ensured by
225 normalization layers), the expected squared norm of the input grows linearly with the number of
226 channels. Consequently, the update rate of the model becomes proportional to both the learning rate
227 and the channel dimension. Since GAN training is known to be highly unstable and particularly
228 sensitive to the choice of learning rate, preserving a constant update magnitude is crucial for pre-
229 venting divergence and ensuring stable adversarial training dynamics. Therefore, when scaling up
230 the model size, the learning rate should decrease inversely with the number of channels so that the
231 overall update scale remains stable.

232 Formally, let η_{base} denote the learning rate for the *base* model with channel size C_{base} , where the
233 *base* model is the model that we tune the hyperparameters. For a model with channel size C_{model} ,
234 we define the learning rate adapted for this model η_{adapt} as follows:

$$235 \quad \eta_{\text{adapt}} = \eta_{\text{base}} \cdot \frac{C_{\text{base}}}{C_{\text{model}}}. \quad (4)$$

238 Our rule is conceptually related to the equalized learning rate (Karras et al., 2017) used in con-
239 ventional GANs, which normalizes parameter updates to be invariant to the channel size. In ar-
240 chitectures such as transformer-based generators and discriminators, where channel dimensions are
241 approximately constant across layers, our global scaling rule yields a similar stabilizing effect while
242 remaining easy to implement, without any changes in model implementation.

244 2.5 TRAINING OBJECTIVES
245

246 For adversarial learning, we deploy relativistic pairing loss (Jolicoeur-Martineau, 2018) with the
247 approximated version of two-sided gradient penalty (Lin et al., 2025), following R3GAN (Huang
248 et al., 2024). Specifically, this objective is denoted as follows:

$$249 \quad \mathcal{L}_G^{\text{adv}} = f(D(\mathcal{E}(G(z, c)), c) - D(\mathcal{E}(x), c)), \quad (5)$$

$$251 \quad \mathcal{L}_D^{\text{adv}} = f(D(\mathcal{E}(x), c) - D(\mathcal{E}(G(z, c)), c)), \quad (6)$$

$$252 \quad \mathcal{L}_{\text{aR1}} = \frac{1}{\sigma^2} \|D(\mathcal{E}(x), c) - D(\mathcal{E}(x + \epsilon'), c)\|^2, \quad (7)$$

$$254 \quad \mathcal{L}_{\text{aR2}} = \frac{1}{\sigma^2} \|D(\mathcal{E}(G(z, c)), c) - D(\mathcal{E}(G(z, c) + \epsilon'), c)\|^2, \quad (8)$$

255 where $f(\cdot)$ is a softplus function and $\epsilon' \sim \mathcal{N}(0, \sigma I)$ is a gaussian noise with a std σ .

256 In addition, inspired by the rationale of feature-aided GANs (Sauer et al., 2021; Kumari et al., 2022)
257 and recent diffusion work on representation alignment (Yu et al., 2024), we encourage the discrim-
258 inator to learn semantically rich Vision Foundation Models (VFM) features. Different from prior
259 work (Yu et al., 2024), we do not use the generator for alignment, as G takes noise as input and
260 it is difficult to obtain VFM features directly from the generated (fake) data. Let $\phi(\cdot)$ be a frozen
261 vision foundation model (e.g., DINOv2 (Oquab et al., 2023)), and let $H_D(x) = \{h_{\text{cls}}, h_1, \dots, h_N\}$
262 denote the discriminator's [cls] token and N patch tokens at the last layer. We obtain teacher to-
263 kens $\hat{H}_\phi(x) = \{\hat{h}_{\text{cls}}, \hat{h}_1, \dots, \hat{h}_N\}$ by forwarding the same image through ϕ . Then, this alignment
264 objective is defined as follows:

$$266 \quad \mathcal{L}_{\text{REPA}} = \frac{1}{N+1} \sum_{i \in \{\text{cls}, 1:N\}} (\text{sim}(P(h_i), \hat{h}_i))). \quad (9)$$

268 Note that, this alignment objective is only applied with a real data, and P denotes a small learnable
269 MLP to align token dimensions, and sim is a similarity measure such as cosine similarity.

270
 271 Table 1: **Class-conditional generation on ImageNet-256×256 (FID-50K).** (Left) 1 or 2 Number
 272 of Function Evaluation (NFE) generative models. (Right) Other generative models including au-
 273 toregressive models and multi-step diffusion/flow models. Diffusion/flow entries are reported under
 274 CFG, when applicable. Across both tables, ‘×2’ denotes that CFG yields 2 NFEs for each sam-
 275 pling step. [†]: Leveraging ImageNet-pretrained discriminators, lowering FID more than the actual image
 276 quality (Kynkäänniemi et al., 2022).

Method	Params	NFE	Epoch	FID	Method	Params	NFE	FID
2-NFE diffusion/flow from scratch								
iCT-XL/2	675M	2	-	20.30	AR w/ VQGAN	227M	1024	26.52
iMM-XL/2	675M	1×2	3840	7.77	MaskGIT	227M	8	6.18
MeanFlow-XL/2	676M	2	240	2.93	VAR-d30	2B	10×2	1.92
1-NFE diffusion/flow from scratch								
iCT-XL/2	675M	1	-	34.24	MAR-H	943M	256×2	1.55
Shortcut-XL/2	675M	1	250	10.60				
MeanFlow-XL/2	676M	1	240	3.43				
1-NFE GANs from scratch								
StyleGAN-XL [†]	166M	1	-	2.30	ADM	554M	250×2	10.94
BigGAN	112M	1	-	6.95	LDM-4-G	400M	250×2	3.60
GigaGAN	569M	1	480	3.45	SimDiff	2B	512×2	2.77
GAT-XL/2	602M	1	40	3.02	DiT-XL/2	675M	250×2	2.27
GAT-XL/2	602M	1	60	2.18	SiT-XL/2	675M	250×2	2.06
					SiT-XL/2+REPA	675M	250×2	1.42

291 In short, the full discriminator and generator objectives are
 292

$$\mathcal{L}_D = \mathcal{L}_D^{\text{adv}} + \lambda_{\text{aGP}} \mathcal{L}_{\text{aR1}} + \lambda_{\text{aGP}} \mathcal{L}_{\text{aR2}} + \lambda_{\text{REPA}} \mathcal{L}_{\text{REPA}}, \quad \mathcal{L}_G = \mathcal{L}_G^{\text{adv}}, \quad (10)$$

293 where λ_{aGP} and λ_{REPA} are the strength of gradient penalty and alignment objectives, respectively.
 294 For other details, we further elaborate them in Appendix.
 295

3 EXPERIMENTS

300 **Experimental settings.** We conduct all experiments with class-conditional generation on Im-
 301 ageNet (Deng et al., 2009) at a resolution of 256×256. For the evaluation metric, we mainly use
 302 Fréchet Inception Distance (FID) (Heusel et al., 2017) on 5K and 50K images. In line with standard
 303 practice, we employ the pre-trained Stable Diffusion variational autoencoder (SD-VAE) (Rombach
 304 et al., 2022) as a tokenizer for mapping between pixel and latent spaces. Accordingly, we train all
 305 models at a VAE latent spatial resolution of 32×32, as SD-VAE’s downsample ratio is 8. Also, we
 306 evaluate four model capacities, Small (S), Base (B), Large (L), and XLarge (XL), following previous
 307 work (Peebles & Xie, 2023). We mainly perform experiments with patch size p=2. Each model is
 308 named by its model and patch size; for example, GAT-S/2 for small model with a patch size of 2.

309 We use identical hyperparameters for every scale of models except the learning rate, which we
 310 adaptively modify as elaborated in Sec. 2.4. For class conditioning of discriminator, we use the
 311 projection discriminator (Miyato & Koyama, 2018). Basically, we instantiate the generator and
 312 discriminator with identically sized transformer backbones for each capacity. Every model is trained
 313 at a training budget of 50K iterations with a 512 batch size, same as 20 epochs in ImageNet dataset,
 314 and evaluated without the truncation trick or guidance (Zhang et al., 2024), unless specified.

3.1 COMPARISON WITH PRIOR ARTS

315 We compare the proposed method with various types of generative models, including one or two-step
 316 and multi-step GAN/diffusion/flow models. **As reported in Tab. 1, our GAT-XL/2 achieves the state-**
 317 **of-the-art FID-50K on ImageNet-256, significantly enhancing the FID on 1-step generation (3.43 to**
 318 **2.18). Notably, it reaches this performance with only 60 epochs, substantially fewer training epochs**
 319 **than prior methods.** This experimental result implies strong data efficiency of the proposed method
 320 and suggests further gains can be achieved with longer training. More importantly, it shows that
 321 GANs possess generative capabilities that are not significantly inferior to those of other generative
 322 models.
 323

Figure 3: Scalability of GAT. (a) Training curve of FID-50K across the various model sizes shows that the performance is monotonically increasing as the model size is scaled up. (b) Training curve of FID-5K across the various patch sizes. With an identical number of parameters, we observe that the higher computational power of models enhances the generation capability. (c) We observe strong negative correlation between FID-50K and GFLOPs, proving that the models with higher compute systematically yield better FID.

3.2 TRAINING GAT ON VARIOUS SCALES

Model size. We trained GAT across various model capacities, then measured the FID-50K for every 10K iterations. As shown in Fig. 3a, we observe that larger models consistently achieve lower FID, and this advantage mostly persists throughout training rather than appearing only at convergence. This scaling behavior shows that the training GAN can be easily scaled up, similar to other types of generative models, with minimal modification in hyperparameters.

Patch size. We further assess the robustness of the proposed method against tokenization granularity by performing experiments with a larger patch size of $p=4$ for the Small and Base configurations. As shown in Fig. 3b, the models are successfully trained and attain acceptable FID across patch sizes, indicating that the proposed method can be easily extended across various patch sizes.

GFLOPs. Model complexity is commonly measured by GFLOPs. Therefore, we also plot FID-50k against the transformer’s computational cost measured in GFLOPs, and compute the correlation between the model’s performance and its GFLOPs. As shown in Fig. 3c, we observe a strong negative correlation (-0.95): models with higher compute systematically yield better (lower) FID. These results indicate that scaling improves performance and that the proposed GAT is scalable and effectively utilizes the scalable characteristics of transformer architectures. Note that, GFLOPs are computed for a single forward pass of the generator.

3.3 ABLATION STUDY

Multi-level Noise-perturbed image Guidance (MNG) (Sec 2.3). As discussed earlier, we first demonstrate that a vanilla GAT without MNG displays inactive features in early layers. Accordingly, we perform a block-level analysis while ablating MNG. To this end, we visualize intermediate features for each transformer block using PCA. As shown in Fig. 4a, early-layer features are highly redundant without MNG, indicating that most early layers remain inactive. In contrast, our method yields well-distributed feature activations throughout the entire network.

As shown in Fig. 4b, to measure per-block influence, we ablate each transformer block, re-synthesize the image, and compute the LPIPS (Zhang et al., 2018) distance to the unablated output; smaller LPIPS implies a lower perceptual contribution on the generated images. We compute these statistics on 10K images. Aligned with the above observation, the model without MNG exhibits weak early-layer contribution on the generated images, that is, most of the generative process is concentrated in the later blocks. By contrast, our model shows a progressively decreasing contribution from early to late layers, which is precisely consistent with MNG’s objective of coarse-to-fine synthesis: intermediate layers receive sufficient guidance, responsibility is distributed across depth, and the network’s capacity is utilized more uniformly. Note that the last layer tends to spike, likely because it is located directly before the final synthesis result.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 4: Visualization of intermediate features of the generator and their effects on the generated images. (a) Both GAT models reveal the coarse-to-fine synthesis process, but without the Multi-level Noise-perturbed image Guidance (MNG), the generator’s early layers become largely inactive, showing feature visualizations change only marginally, whereas our method activates these layers much earlier. (b) LPIPS distances while ablating Transformer blocks one by one. Without MNG, removing early blocks yields only minor changes in the output, despite those blocks producing coarse information, indicating computational inefficiency in the generator’s early layers. GAT-S/2* doubles the number of blocks relative to GAT-S/2 for finer block-level analysis.

Figure 5: Ablation study. (a) Multi-level Noise-perturbed image Guidance (MNG) consistently enhances the performance throughout the entire training (vs. w/o MNG) and also surpasses the original MSG-GAN, which degrades images by resize operation (vs. MSG). (b) Effect of adaptive learning rate scaling. Each model converges stably with its own η_{adapt} , while transferring it with another model’s η leads to severe degradation. (c) The REPA objective substantially improves performance, indicating that advances from diffusion models can transfer effectively to GAT.

Furthermore, we evaluate MNG in a quantitative way. We plot the FID-5K training curves in Fig. 5a. We evaluate four variants: (i) MSG (replacing noising-based degradation with resize-based degradation, following MSG-GAN (Karnewar & Wang, 2020)), (ii) w/o MNG, (iii) MNG-lin (linear noise schedule), and (iv) MNG-exp (exponential noise schedule, our default setting). Across runs, our base setting, MNG-exp, consistently achieves the best (lowest) FID, outperforming both the no-MNG baseline and the linear schedule. Interestingly, MSG delivers the weakest performance. We hypothesize that, as reported in prior work (Lin et al., 2021; Kang et al., 2023), feeding the discriminator multi-scale outputs can overemphasize cross-scale consistency, which in turn suppresses generative quality. In contrast, our MNG perturbs a single degraded counterpart with stochastic noise at multiple levels, providing diversity without enforcing strict cross-scale alignment, and thereby avoiding the aforementioned failure mode.

Adaptive learning rate (Sec. 2.4). For each model, an appropriate learning rate is determined by the adaptive learning rate strategy (Fig. 5b), which ensures stable convergence. To assess the effectiveness of this strategy, we conduct a cross-check experiment by reusing configurations across scales (i.e., training GAT-S/2 with the η_{adapt} of GAT-B/2; and vice versa). In this naive setting where we reuse the configuration of another model, performance degrades substantially: GAT-S/2 converges slowly due to an overly small learning rate, while GAT-B/2 diverges under an excessively large learning rate. These results indicate that our adaptive learning rate strategy reliably selects a proper learning rate across scales without any manual tuning, a key factor for scalability.

Figure 7: Further analysis. (a) Scaling G and D separately shows both impact FID, while scaling D is more effective than G. (b) Feature alignment against DINoV2-g measured by CKNNA using real and fake data. We observe that the features obtained from fake data show higher alignment with VFM than real data.

VFM alignment objective $\mathcal{L}_{\text{REPA}}$ (Eqn. 9). We ablate the REPA objective, which aligns discriminator representations with those from a Vision Foundation Model (VFM), as in Fig. 5c. REPA significantly and consistently enhances the performance of the generator, although we impose a feature alignment objective only on the discriminator. Furthermore, this result implies that recent techniques developed for diffusion models using VFM (Yao et al., 2025; Chen et al., 2025) can transfer effectively to our GAT framework.

3.4 FURTHER ANALYSIS

Decoupled analysis of Generator and Discriminator scaling. We analyze the relative contributions of G and D by scaling them individually. As shown in Fig. 6a, training remains stable and performance improves in both cases, but the gains from scaling the discriminator are notably larger. This suggests that, because the generator only learns through the discriminator’s feedback, overall performance is effectively bottlenecked by how well the discriminator models the data distribution and shapes the real-fake decision boundary, so scaling up the discriminator, thereby providing sharper and more informative gradients, yields larger gains than merely increasing the generator’s capacity. In addition, this observation aligns with our discussion below on the importance of representation learning in discriminators, highlighting its central role in adversarial learning.

Representation Alignment of Generator and Discriminator. Recent work on diffusion models (Yu et al., 2024) shows that generation quality tends to be proportional to the degree of feature alignment to Vision Foundation Models (VFM). Motivated by this, we evaluate the feature-alignment metric CKNNA (Huh et al., 2024) of both the generator and discriminator against DINoV2-g on real and fake data (Fig. 6b). Our intuition is that generated samples tend to fall within the discriminator’s well-established feature space, where representations are most reliable. In this space, the discriminator can provide strong and effective guidance, from which the generator consistently benefits, leading to higher-quality synthesis. Accordingly, as the generative performance of G is tightly coupled with the representation learning ability of D , further strengthening discriminator representations may be a promising direction for future work.

4 RELATED WORKS

Generative Adversarial Networks (GANs) are trained through an adversarial game between a generator and a discriminator. The progress is mainly driven by architectural innovations and improved objectives. Architecturally, advances have largely come from convolutional models, especially the StyleGAN family (Karras et al., 2019; 2020), later extended to large-scale text-to-image generation (Kang et al., 2023; Sauer et al., 2023), though still limited to pixel space generation. Transformer-based approaches have also been explored (Jiang et al., 2021; Zhao et al., 2021; Lee et al., 2021), but their reliance on complex modification from plain transformer architectures and heavy hyperparameter tuning limits scalability. On the objective side, many adversarial losses (Goodfellow et al., 2014; Arjovsky et al., 2017; Lim & Ye, 2017; Mao et al., 2017) and regularization schemes (Mescheder et al., 2018; Gulrajani et al., 2017) have been proposed, with R3GAN (Huang et al., 2024) recently combining gradient penalties with a relativistic objective for greater stability. In parallel, a family of methods explicitly studies discontinuous discriminator functions and gradient normalization, such as GraN-GAN (Bhaskara et al., 2022) and gradient normalization (Wu et al., 2021), further improving stability and robustness. In this work, we establish a GAN framework in the latent space of a VAE, adopt a fully transformer-based design, and provide an empirical study of its scalability.

486 **Scalability of generative models** is a key factor in recent breakthroughs. Diffusion and flow mod-
 487 els have demonstrated clear gains from transformer backbones (Peebles & Xie, 2023; Ma et al.,
 488 2024) and systematic scaling with data and compute (Liang et al., 2024), with latent-space tok-
 489 enizers (Rombach et al., 2022; Yao et al., 2025; Chen et al., 2025), enabling efficient training and
 490 high-resolution synthesis (Esser et al., 2024b; Podell et al., 2023). Likewise, autoregressive models
 491 also have benefited from transformer scaling leading to substantial advances in generation quality in
 492 various domains, from class-conditional image generation to text-to-image synthesis (Chang et al.,
 493 2022; Tian et al., 2024; Han et al., 2024). In this work, we revisit the GANs framework through
 494 transformer-based latent architectures, which preserve single-step inference while inheriting the fa-
 495 vorable scaling behavior of transformers.
 496

497 5 CONCLUSION

498 We revisit GAN scalability by pairing VAE-latent training with plain transformer generators and
 499 discriminators. Addressing early-layer underuse and scale-coupled instability with lightweight in-
 500 termediate supervision and width-aware learning-rate scaling yields GAT, which trains reliably from
 501 S to XL and reaches state-of-the-art one-step ImageNet-256 in **60 epochs (4 \times fewer than strong**
 502 **baselines**). We hope our work will serve as a strong step forward in the potential of scaling GANs.
 503

504 6 REPRODUCIBILITY STATEMENT

505 We provide the experimental settings and detailed hyperparameters in Sec. 3 and Appendix A.1.
 506 Also, we plan to release our code and pretrained model checkpoints for reproducibility.
 507

510 REFERENCES

512 Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
 513 In *International conference on machine learning*, pp. 214–223. PMLR, 2017.

515 Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
 516 words: A vit backbone for diffusion models. In *Proceedings of the IEEE/CVF conference on*
 517 *computer vision and pattern recognition*, pp. 22669–22679, 2023.

518 Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Herrmann, Roni Paiss, Shiran Zada, Ariel Ephrat,
 519 Junhwa Hur, Guanghui Liu, Amit Raj, et al. Lumiere: A space-time diffusion model for video
 520 generation. In *SIGGRAPH Asia 2024 Conference Papers*, pp. 1–11, 2024.

522 Vineeth S Bhaskara, Tristan Aumentado-Armstrong, Allan D Jepson, and Alex Levinshtein. Gran-
 523 gan: Piecewise gradient normalization for generative adversarial networks. In *Proceedings of the*
 524 *IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 3821–3830, 2022.

525 Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
 526 Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
 527 generation models as world simulators. 2024. URL [https://openai.com/research/](https://openai.com/research/video-generation-models-as-world-simulators)
 528 *video-generation-models-as-world-simulators*.

530 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
 531 image transformer. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 532 *recognition*, pp. 11315–11325, 2022.

533 Hao Chen, Yujin Han, Fangyi Chen, Xiang Li, Yidong Wang, Jindong Wang, Ze Wang, Zicheng Liu,
 534 Difan Zou, and Bhiksha Raj. Masked autoencoders are effective tokenizers for diffusion models.
 535 In *Forty-second International Conference on Machine Learning*, 2025.

537 Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying
 538 Shan. Videocrafter2: Overcoming data limitations for high-quality video diffusion models. In
 539 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 7310–7320, 2024.

540 Ting Chen, Xiaohua Zhai, Marvin Ritter, Mario Lucic, and Neil Houlsby. Self-supervised gans
 541 via auxiliary rotation loss. In *Proceedings of the IEEE/CVF conference on computer vision and*
 542 *pattern recognition*, pp. 12154–12163, 2019.

543 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
 544 archical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*,
 545 pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

546 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances*
 547 *in neural information processing systems*, 34:8780–8794, 2021.

548 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 549 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
 550 age is worth 16x16 words: Transformers for image recognition at scale. In *International Confer-*
 551 *ence on Learning Representations*.

552 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
 553 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-*
 554 *tion*, pp. 12873–12883, 2021.

555 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 556 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
 557 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
 558 2024a.

559 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 560 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
 561 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
 562 2024b.

563 Wan-Cyuan Fan, Yen-Chun Chen, DongDong Chen, Yu Cheng, Lu Yuan, and Yu-Chiang Frank
 564 Wang. Frido: Feature pyramid diffusion for complex scene image synthesis. In *Proceedings of*
 565 *the AAAI conference on artificial intelligence*, volume 37, pp. 579–587, 2023.

566 Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
 567 models. *arXiv preprint arXiv:2410.12557*, 2024.

568 Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
 569 one-step generative modeling. *arXiv preprint arXiv:2505.13447*, 2025.

570 Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 571 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in neural information*
 572 *processing systems*, 27, 2014.

573 Google DeepMind. Genie 3: A new frontier for world models. <https://deepmind.google/discover/blog/genie-3-a-new-frontier-for-world-models/>, 2025a. Accessed: 2025-09-24.

574 Google DeepMind. Gemini 2.5 flash image (“nano banana”). <https://developers.googleblog.com/en/introducing-gemini-2-5-flash-image/>, 2025b. Developers Blog; see also <https://aistudio.google.com/models/gemini-2-5-flash-image> and <https://ai.google.dev/gemini-api/docs>; Accessed: 2025-09-24.

575 Google DeepMind. Veo 3: Video generation model. <https://deepmind.google/models/veo/>, 2025c. Accessed: 2025-09-24.

576 Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
 577 Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In *Proceedings of*
 578 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10696–10706, 2022.

579 Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
 580 proved training of wasserstein gans. *Advances in neural information processing systems*, 30,
 581 2017.

594 Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan Yuan, Bingyue Peng, and Xiaobing
 595 Liu. Infinity: Scaling bitwise autoregressive modeling for high-resolution image synthesis. *arXiv*
 596 *preprint arXiv:2412.04431*, 2024.

597

598 Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. Ganspace: Discovering
 599 interpretable gan controls. *Advances in neural information processing systems*, 33:9841–9850,
 600 2020.

601 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 602 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in*
 603 *neural information processing systems*, 30, 2017.

604

605 Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. simple diffusion: End-to-end diffusion for
 606 high resolution images. In *International Conference on Machine Learning*, pp. 13213–13232.
 607 PMLR, 2023.

608 Nick Huang, Aaron Gokaslan, Volodymyr Kuleshov, and James Tompkin. The gan is dead; long
 609 live the gan! a modern gan baseline. *Advances in Neural Information Processing Systems*, 37:
 610 44177–44215, 2024.

611

612 Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. The platonic representation
 613 hypothesis. *arXiv preprint arXiv:2405.07987*, 2024.

614

615 Yifan Jiang, Shiyu Chang, and Zhangyang Wang. Transgan: Two pure transformers can make
 616 one strong gan, and that can scale up. *Advances in Neural Information Processing Systems*, 34:
 617 14745–14758, 2021.

618 A Jolicoeur-Martineau. The relativistic discriminator: A key element missing from standard gan.
 619 *arXiv preprint arXiv:1807.00734*, 2018.

620

621 Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and Taesung
 622 Park. Scaling up gans for text-to-image synthesis. In *Proceedings of the IEEE/CVF conference*
 623 *on computer vision and pattern recognition*, pp. 10124–10134, 2023.

624

625 Animesh Karnewar and Oliver Wang. Msg-gan: Multi-scale gradients for generative adversarial net-
 626 works. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 627 pp. 7799–7808, 2020.

628

629 Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
 630 proved quality, stability, and variation. *arXiv preprint arXiv:1710.10196*, 2017.

630

631 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 632 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 633 *recognition*, pp. 4401–4410, 2019.

634

635 Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
 636 ing and improving the image quality of stylegan. In *Proceedings of the IEEE/CVF conference on*
 637 *computer vision and pattern recognition*, pp. 8110–8119, 2020.

638

639 Nupur Kumari, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Ensembling off-the-shelf models
 640 for gan training. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 641 *recognition*, pp. 10651–10662, 2022.

642

643 Tuomas Kynkänniemi, Tero Karras, Miika Aittala, Timo Aila, and Jaakko Lehtinen. The role of
 644 imangenet classes in fr\echet inception distance. *arXiv preprint arXiv:2203.06026*, 2022.

645

646 Gayoung Lee, Hyunsu Kim, Junho Kim, Seonghyeon Kim, Jung-Woo Ha, and Yunjey Choi. Gen-
 647 erator knows what discriminator should learn in unconditional gans. In *European conference on*
 648 *computer vision*, pp. 406–422. Springer, 2022.

649

650 Kwonjoon Lee, Huiwen Chang, Lu Jiang, Han Zhang, Zhuowen Tu, and Ce Liu. Vitgan: Training
 651 gans with vision transformers. *arXiv preprint arXiv:2107.04589*, 2021.

648 Xingjian Leng, Jaskirat Singh, Yunzhong Hou, Zhenchang Xing, Saining Xie, and Liang Zheng.
 649 Repa-e: Unlocking vae for end-to-end tuning with latent diffusion transformers. *arXiv preprint*
 650 *arXiv:2504.10483*, 2025.

651 Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
 652 generation without vector quantization. *Advances in Neural Information Processing Systems*, 37:
 653 56424–56445, 2024.

654 Zhengyang Liang, Hao He, Ceyuan Yang, and Bo Dai. Scaling laws for diffusion transformers.
 655 *arXiv preprint arXiv:2410.08184*, 2024.

656 Jae Hyun Lim and Jong Chul Ye. Geometric gan. *arXiv preprint arXiv:1705.02894*, 2017.

657 Ji Lin, Richard Zhang, Frieder Ganz, Song Han, and Jun-Yan Zhu. Anycost gans for interactive
 658 image synthesis and editing. In *Proceedings of the IEEE/CVF conference on computer vision and*
 659 *pattern recognition*, pp. 14986–14996, 2021.

660 Shanchuan Lin, Xin Xia, Yuxi Ren, Ceyuan Yang, Xuefeng Xiao, and Lu Jiang. Diffusion adversar-
 661 ial post-training for one-step video generation. *arXiv preprint arXiv:2501.08316*, 2025.

662 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 663 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European*
 664 *conference on computer vision*, pp. 740–755. Springer, 2014.

665 Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
 666 ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
 667 transformers. In *European Conference on Computer Vision*, pp. 23–40. Springer, 2024.

668 Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley.
 669 Least squares generative adversarial networks. In *Proceedings of the IEEE international confer-
 670 ence on computer vision*, pp. 2794–2802, 2017.

671 Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans do
 672 actually converge? In *International conference on machine learning*, pp. 3481–3490. PMLR,
 673 2018.

674 Takeru Miyato and Masanori Koyama. cgans with projection discriminator. *arXiv preprint*
 675 *arXiv:1802.05637*, 2018.

676 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 677 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 678 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

679 Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. Styleclip: Text-
 680 driven manipulation of stylegan imagery. In *Proceedings of the IEEE/CVF international confer-
 681 ence on computer vision*, pp. 2085–2094, 2021.

682 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 683 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

684 Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
 685 reasoning with a general conditioning layer. In *Proceedings of the AAAI conference on artificial*
 686 *intelligence*, volume 32, 2018.

687 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 688 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 689 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

690 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 691 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 692 models from natural language supervision. In *International conference on machine learning*, pp.
 693 8748–8763. PMLR, 2021.

702 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 703 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 704 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

705

706 Axel Sauer, Kashyap Chitta, Jens Müller, and Andreas Geiger. Projected gans converge faster.
 707 *Advances in Neural Information Processing Systems*, 34:17480–17492, 2021.

708

709 Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse
 710 datasets. In *ACM SIGGRAPH 2022 conference proceedings*, pp. 1–10, 2022.

711

712 Axel Sauer, Tero Karras, Samuli Laine, Andreas Geiger, and Timo Aila. Stylegan-t: Unlocking the
 713 power of gans for fast large-scale text-to-image synthesis. In *International conference on machine
 learning*, pp. 30105–30118. PMLR, 2023.

714

715 Noam Shazeer. Glu variants improve transformer. *arXiv preprint arXiv:2002.05202*, 2020.

716

717 Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. *arXiv
 preprint arXiv:2310.14189*, 2023.

718

719 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 720 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

721

722 Ming Tao, Hao Tang, Fei Wu, Xiao-Yuan Jing, Bing-Kun Bao, and Changsheng Xu. Df-gan: A sim-
 723 ple and effective baseline for text-to-image synthesis. In *Proceedings of the IEEE/CVF conference
 724 on computer vision and pattern recognition*, pp. 16515–16525, 2022.

725

726 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
 727 Scalable image generation via next-scale prediction. *Advances in neural information processing
 728 systems*, 37:84839–84865, 2024.

729

730 Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going
 731 deeper with image transformers. In *Proceedings of the IEEE/CVF international conference on
 computer vision*, pp. 32–42, 2021.

732

733 Yi-Lun Wu, Hong-Han Shuai, Zhi-Rui Tam, and Hong-Yu Chiu. Gradient normalization for genera-
 734 tive adversarial networks. In *Proceedings of the IEEE/CVF international conference on computer
 vision*, pp. 6373–6382, 2021.

735

736 Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang, and Xiaodong
 737 He. Attngan: Fine-grained text to image generation with attentional generative adversarial net-
 738 works. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 739 1316–1324, 2018.

740

741 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 742 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
 743 with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024.

744

745 Jingfeng Yao, Bin Yang, and Xinggang Wang. Reconstruction vs. generation: Taming optimization
 746 dilemma in latent diffusion models. In *Proceedings of the Computer Vision and Pattern Recog-
 747 nition Conference*, pp. 15703–15712, 2025.

748

749 Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and
 750 Saining Xie. Representation alignment for generation: Training diffusion transformers is easier
 751 than you think. *arXiv preprint arXiv:2410.06940*, 2024.

752

753 Han Zhang, Jing Yu Koh, Jason Baldridge, Honglak Lee, and Yinfei Yang. Cross-modal contrastive
 754 learning for text-to-image generation. In *Proceedings of the IEEE/CVF conference on computer
 755 vision and pattern recognition*, pp. 833–842, 2021.

756

757 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 758 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on
 759 computer vision and pattern recognition*, pp. 586–595, 2018.

756 Yifei Zhang, Mengfei Xia, Yujun Shen, Jiapeng Zhu, Ceyuan Yang, Kecheng Zheng, Lianghua
757 Huang, Yu Liu, and Fan Cheng. Exploring guided sampling of conditional gans. In *European*
758 *Conference on Computer Vision*, pp. 36–53. Springer, 2024.

759
760 Long Zhao, Zizhao Zhang, Ting Chen, Dimitris Metaxas, and Han Zhang. Improved transformer
761 for high-resolution gans. *Advances in Neural Information Processing Systems*, 34:18367–18380,
762 2021.

763 Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable augmentation for
764 data-efficient gan training. *Advances in neural information processing systems*, 33:7559–7570,
765 2020.

766 Zibo Zhao, Zeqiang Lai, Qingxiang Lin, Yunfei Zhao, Haolin Liu, Shuhui Yang, Yifei Feng,
767 Mingxin Yang, Sheng Zhang, Xianghui Yang, et al. Hunyuan3d 2.0: Scaling diffusion models for
768 high resolution textured 3d assets generation. *arXiv preprint arXiv:2501.12202*, 2025.

770 Hongkai Zheng, Weili Nie, Arash Vahdat, and Anima Anandkumar. Fast training of diffusion models
771 with masked transformers. *arXiv preprint arXiv:2306.09305*, 2023.

772 Linqi Zhou, Stefano Ermon, and Jiaming Song. Inductive moment matching. *arXiv preprint*
773 *arXiv:2503.07565*, 2025.

775 Yufan Zhou, Ruiyi Zhang, Changyou Chen, Chunyuan Li, Chris Tensmeyer, Tong Yu, Jiuxiang
776 Gu, Jinhui Xu, and Tong Sun. Towards language-free training for text-to-image generation. In
777 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 17907–
778 17917, 2022.

779 Jiapeng Zhu, Ceyuan Yang, Kecheng Zheng, Yinghao Xu, Zifan Shi, Yifei Zhang, Qifeng Chen, and
780 Yujun Shen. Exploring sparse moe in gans for text-conditioned image synthesis. In *Proceedings*
781 *of the Computer Vision and Pattern Recognition Conference*, pp. 18411–18423, 2025.

783 Minfeng Zhu, Pingbo Pan, Wei Chen, and Yi Yang. Dm-gan: Dynamic memory generative ad-
784 versarial networks for text-to-image synthesis. In *Proceedings of the IEEE/CVF conference on*
785 *computer vision and pattern recognition*, pp. 5802–5810, 2019.

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A APPENDIX
811812 A.1 IMPLEMENTATION DETAILS
813814 We provide the configurations for all model sizes, including the parameter counts of the generator
815 and discriminator in Fig. 2. Also, we report the detailed FID-50K score at 50K iterations in Tab. ??,
816 which is used for visualizing Fig. 3c.817 **Generator** We design our models following common conventions from ViT (Dosovitskiy et al.)
818 and StyleGAN (Karras et al., 2020). We use a latent code z of dimension $d_z = 64$, and initialize
819 the class embedding with the standard ViT token scale of 0.02. The mapping network is a shallow
820 MLP whose width matches the transformer hidden dimension; it consists of two linear layers with a
821 single nonlinearity, using SiLU in line with transformer practice.
822823 Following StyleGAN, we train the mapping network with a learning rate that is 100 \times smaller than
824 the rest of the generator. The main GAT block is as described in the paper, and we additionally adopt
825 techniques reported to improve transformer performance, Rotary Positional Embeddings (RoPE) (Su
826 et al., 2024), SwiGLU-FFN (Shazeer, 2020), and qk-normalization. Finally, all scaling parameters
827 produced from style codes are initialized to have a variance 0.1.
828828 For the number of intermediate outputs K , we use $k = 4$ for every model size. These outputs are
829 synthesized at uniform intervals across the generator’s GAT blocks. For example, in GAT-XL/2 with
830 28 layers, we take an output every 7 layers.
831832 **Discriminator** The discriminator largely follows a standard ViT, with the sole exception that each
833 module output is gated by a Layerscale factor; all Layerscale vectors are initialized to 0.1. Similar
834 to the generator, every transformer block uses RoPE, a SwiGLU feed-forward network, and qk-
835 normalization. The projection layer, for the VFM-alignment objective, P follows REPA (Yu et al.,
836 2024) and is implemented as a 3-layer MLP with a hidden dimension of 2048. Also, we deploy
837 DINOv2-B as a vision foundation model to align with.
838838 During training, we apply differentiable augmentation (Zhao et al., 2020). To combine it with the
839 noise-adding operations (approximated GP and multi-level noise-perturbation guidance), we pro-
840 ceed as follows: upon receiving an input image, we first add the perturbation used for the approx-
841 imated GP, then apply the augmentation, and finally apply the multi-level noise perturbations. For
842 the approximated GP, the same noise magnitude is used for all noise levels ($\sigma = 0.01$).
843843 **Noise sampling and schedule for MNG** We design the image signal doubles at each successive
844 output. Since the final output should be a clean image, for $k = 4$ we set
845

846
$$(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = (0.125, 0.25, 0.5, 1.0).$$

847 In addition, we build the noise at each level cumulatively, starting from the noise added to the clean
848 image and accumulating the newly sampled noise for constructing lower-level noise.
849850 Given noise ϵ_k at level k , we obtain the noise ϵ_{k-1} at level $k-1$ as follows:
851

852
$$\epsilon_{k-1} = r_k \epsilon_k + \sigma_k \eta_k, \quad \eta_k \sim \mathcal{N}(0, I),$$

853 where the signal schedule is $\alpha_1 < \dots < \alpha_K$ with $\alpha_K = 1$, and

854
$$r_k = \frac{\alpha_{k-1}}{\alpha_k}, \quad \sigma_k = \sqrt{1 - r_k^2}.$$

855 This noise sampling preserves the variance of ϵ_k at every level while keeping the noise already
856 sampled at the higher levels.
857859 **Other hyperparameter** Basically, every hyperparameter is shared across any size of models, ex-
860 cept the learning rate. We train with a gradient-penalty coefficient $\lambda_{\text{aGP}} = 1 \times 10^{-1}$ and VFM align-
861 ment objective coefficient $\lambda_{\text{REPA}} = 1$. The optimizer is AdamW with $(\beta_1, \beta_2) = (0.0, 0.99)$ (fol-
862 lowing common GAN practice such as StyleGAN). We apply exponential moving average (EMA)
863 to the generator with decay 0.999. Also, we use a batch size of 512, `bfloat16` precision, gradient
864 checkpointing, and PyTorch Scaled Dot-Product Attention (SDPA) implementation.
865

864
865
866 Table 2: Model configuration and parameter counts (M = million).
867
868
869
870
871

Model	Layers	Dim	Heads	G params	D params
GAT-S	12	384	6	29.36M	39.21M
GAT-B	12	768	12	116.75M	104.68M
GAT-L	24	1024	16	408.75M	323.04M
GAT-XL	28	1152	16	602.25M	467.68M

872 Table 3: FID at 50K iter. across model sizes.
873

Model	FID-50K
GAT-XL/2	4.021
GAT-L/2	4.600
GAT-B/2	9.534
GAT-S/2	15.237

874 Table 4: Ablation on MNG (FID-5K).
875
876
877
878
879
880

Model	FID-5K
GAT-S/2 ($lr=4e-4$)	22.080
GAT-B/2 ($lr=2e-4$)	15.610
GAT-S/2 ($lr=2e-4$, w/o η_{adapt})	26.410
GAT-B/2 ($lr=4e-4$, w/o η_{adapt})	56.720

881 For learning rate, we use 4×10^{-4} as the *base* learning rate for the GAT-S model. After applying our
882 adaptive learning rate rule, the per-size learning rates are: (GAT-S, GAT-B, GAT-L, GAT-XL) =
883 $(4 \times 10^{-4}, 2 \times 10^{-4}, 1.5 \times 10^{-4}, 1.33 \times 10^{-4})$.

884 **Compute resource** For our largest experiment, training GAT-XL/2 within 40 epochs in ImageNet-
885 256 dataset requires about 12 days with 8×NVIDIA RTX A6000 GPU.

887 A.2 ADDITIONAL RELATED WORKS

888 We simply explain the baselines that we compare with in Tab. 1.

- 889 • **VQGAN** (Esser et al., 2021) introduce the GPT-like autoregressive model on the dis-
890 cretized visual tokens to build the generative model.
- 891 • **ADM** (Dhariwal & Nichol, 2021) proposes the U-Net-based diffusion architecture with a
892 classifier guidance, firstly beating the GAN counterpart in image generation task.
- 893 • **MaskGIT** (Chang et al., 2022) proposes a parallelized decoding strategy to improve the
894 inference speed of autoregressive models.
- 895 • **LDM** (Rombach et al., 2022) proposes to train diffusion model on the latent space of pre-
896 trained VAE, enhancing the generation capability and inference speed.
- 897 • **SimDiff** (Hoogeboom et al., 2023) improves the standard denoising diffusion model to train
898 directly in pixel space on high-resolution images.
- 899 • **DiT** (Peebles & Xie, 2023) proposes replacing the conventional U-Net backbone in diffu-
900 sion models with plain (non-hierarchical) transformers with AdaLN-zero layer.
- 901 • **iCT** (Song & Dhariwal, 2023) introduces distillation-free consistency training recipe,
902 which surpasses previous consistency distillation.
- 903 • **SiT** (Ma et al., 2024) conducts an in-depth study showing that transitioning from discrete
904 diffusion to continuous flow matching makes DiT training more efficient.
- 905 • **VAR** (Tian et al., 2024) introduces visual autoregressive model that substitutes spatial au-
906 toregression with progression across scales.
- 907 • **MAR** (Li et al., 2024) proposes a framework for training autoregressive models on contin-
908 uous tokens by introducing a shallow diffusion model to sample the next token.
- 909 • **Shortcut** (Frans et al., 2024) learns the shortcut between two apart timestep to predict the
910 single-step denoising direction.
- 911 • **iMM** (Zhou et al., 2025) proposes the method to train few-step generators from scratch by
912 using self-consistent interpolants and matching all moments along the data.
- 913 • **MeanFlow** (Geng et al., 2025) introduces one-step generative framework which predicts
914 average velocity, the time integral of the instantaneous velocity.

918 A.3 EXACT FID VALUES FOR FIG. 3C AND FIG. 5A
919920 Fig. 3c and Fig. 5a present the GFlops vs. FID-50K comparison and the ablation results on MNG,
921 respectively. To improve clarity, we provide the exact FID scores corresponding to these plots.
922 Specifically, Tab. 3 lists the FID values used in Fig. 3c, and Tab. 4 reports the FID results for the
923 MNG ablation in Fig. 5a.924 925 A.4 TRAINING CURVE OF GAT-XL/2 (FID-50K)
926

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 Figure 8: Training curve of GAT-XL/2 until 40 epochs.

941 We additionally report the FID-50K training curve for GAT-XL/2 up to 100K iterations (i.e., 40
942 epochs). The metric decreases monotonically, suggesting that further training would likely yield
943 additional improvements.
944945 A.5 EXTENDED TRAINING ON IMAGENET-256 WITH GAT-XL/2
946947 Table 5: Comparison between GAT-XL/2 and Diffusion Transformer (DiT) on ImageNet-256. Our
948 GAT-XL/2 achieves a lower FID-50K score under substantially fewer training epochs.
949

Model	Dataset	Epochs	FID-50K
GAT-XL/2 (ours)	ImageNet-256	60	2.18
DiT-XL/2 (Peebles & Xie, 2023)	ImageNet-256	1400	2.27

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 To probe the performance ceiling of GAT-XL/2, we extended training beyond the reported 40 epochs.
955 Specifically, we increased the gradient-penalty weight to 1×10^1 and trained for an additional 20
956 epochs, after which GAT-XL/2 achieved an **FID-50K of 2.18** on ImageNet-256. This result *not only*
957 improves upon our original 40-epoch performance, but also *surpasses* the FID 2.27 reported for
958 the Diffusion Transformer (DiT-XL/2) (Peebles & Xie, 2023), which requires 1400 training epochs
959 on the same dataset, thereby achieving better quality with over an order-of-magnitude fewer epochs.
960 Moreover, as a single-step generator, GAT-XL/2 also enjoys substantially faster inference: compared
961 to the diffusion transformer, which typically requires around 250 denoising steps, our model attains
962 comparable or better FID with $250 \times$ fewer function evaluations (NFE) per sample.
963964 A.6 TRAINING TIME AND INFERENCE COST OF GAT
965966 **Training time** Because GAT updates both the generator and discriminator at every iteration, a
967 single training step is expensive than that of a purely generative diffusion model. In our measure-
968 ments, processing the same number of images takes roughly $5 \times$ longer per iteration compared to
969 a DiT-style diffusion transformer. However, this does *not* imply a longer overall time-to-quality.
970 For example, DiT-XL/2 requires about 1400 epochs on ImageNet-256 to reach FID 2.27, which is
971 reported to take roughly 36 days on $8 \times$ A100 GPUs (Zheng et al., 2023). In contrast, our GAT-XL/2
attains a better FID-50K of 2.18 after only 60 epochs, corresponding to approximately 18 days on

972 a less powerful setup with $8 \times$ RTX A6000 GPUs. In addition to the lower wall-clock training time,
 973 this also means GAT observes fewer total passes over the data, indicating better data efficiency. Im-
 974 portantly, the modern one-step diffusion model, such as MeanFlow (Geng et al., 2025), also requires
 975 additional computation of the gradient, so it also requires additional time.

976 Furthermore, most of this training cost is dominated by the discriminator, which must repeatedly
 977 distinguish real from fake samples and evaluate the gradient-penalty term. We therefore expect that
 978 the pretrained feature extractor as a discriminator, in the spirit of projected GANs (Sauer et al.,
 979 2021), and then fine-tuning only the later layers for real/fake discrimination could substantially
 980 reduce this cost, as follows previous GANs (Sauer et al., 2022; 2023). Exploring such pretrained
 981 discriminator and its impact on training time and stability is an interesting direction for future work.

982
 983 **Table 6: Inference latency and memory footprint when generating 64 ImageNet-256 samples on a**
 984 **single Titan RTX GPU.**

Model	NFE	Time / image (s)	Peak memory (MB)
DiT-XL/2	250	15.2612	4525.85
GAT-XL/2 (ours)	1	0.0773	6028.11

985
 986
 987 **Inference cost.** GAT shares almost the same pure transformer backbone as DiT (Peebles & Xie,
 988 2023), since we deliberately keep the architecture close to a plain transformer block. Consequently,
 989 the *per-step* inference cost and memory footprint for a single NFE are very similar between GAT
 990 and DiT at matched width and depth. The key difference comes from the number of function eval-
 991 uations (NFE): while DiT typically requires around 250 denoising steps, GAT is a single-step gen-
 992 erator (1 NFE). In practice, this translates into roughly two orders of magnitude speedup; in our
 993 measurements (Table. 6), GAT-XL/2 is about $200 \times$ faster than DiT-XL/2 at comparable quality.

994 Furthermore, most of the end-to-end inference memory in both models is dominated by the trans-
 995 former backbone. Since GAT performs truncation and guidance directly in the latent space before
 996 the backbone, it does not require additional passes through the heavy network, so the backbone-
 997 side memory usage remains essentially comparable to DiT. Any residual difference in peak VRAM
 998 mainly comes from lightweight auxiliary heads (e.g., MNG feature caching), rather than from the
 999 core architecture.

1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 Concretely, we measure inference latency and memory on a single Titan RTX GPU when generating
 64 ImageNet-256 samples, as shown in Table. 6. For DiT-XL/2, using the standard 250-step sampler,
 generating one image takes 15.2612 seconds with a peak memory usage of 4.5 GB. In contrast, GAT-
 XL/2 with 1-NFE generation requires only 0.0773 seconds per image, corresponding to roughly a
 $200 \times$ speedup, with a peak memory usage of 6.0 GB. The slightly higher VRAM footprint for
 GAT is mainly due to caching intermediate features for the MNG guidance head; the transformer
 backbone itself has a comparable memory cost to DiT at similar width and depth.

1011 A.7 MOTIVATION FOR MULTI-LEVEL NOISE-PERTURBED GUIDANCE

1012
 1013 **Motivation** The central motivation for MNG comes from how other generative models couple
 1014 their inputs with the final generated image that takes the supervision. In diffusion and autoregres-
 1015 sive models, the input and output at each step are tightly linked by the training objective: step-wise
 1016 denoising in diffusion, or next-token prediction in autoregressive models. This step-wise super-
 1017 vision explicitly enforces a strong relationship between intermediate step inputs and clean targets
 1018 throughout the depth of the network, so that intermediate representations must remain informative
 1019 with respect to the final sample.

1020 In contrast, a standard GAN generator typically receives a low-dimensional latent code that is
 1021 mapped to a constant input, while the adversarial loss is applied only to the final image via the
 1022 discriminator. As long as the last few blocks can synthesize images that fool the discriminator, there
 1023 is little incentive for earlier blocks to maintain rich structure or to remain sensitive to the latent code.
 1024 Optimization can therefore push most of the representational burden toward the blocks closest to the
 1025 output, leaving early layers underutilized or close to constant mappings, as observed in our empirical
 analysis.

(a) Feature similarity between block input and output. (b) Feature similarity across different input noises z .

Figure 9: Quantitative analysis of early-layer inactivity with and without MNG. (a) Cosine similarity between the input and output features of each block, averaged over all spatial locations, tokens, and images. (b) Cosine similarity between features obtained from different input noises z for the same class. Without MNG, both similarities are close to 1 in the early blocks, indicating that they induce only minor feature changes and are weakly influenced by the input noise. With MNG, the similarities in early blocks are reduced for both measures, showing that MNG increases early-layer update magnitude and noise responsiveness.

Table 7: Generation performance of GAT-XL/2 on ImageNet at different resolutions. Training at 512×512 achieves a similar FID-50K to the 256×256 setting with fewer epochs.

	Resolution	Model	Epochs	FID-50K
256×256	GAT-XL/2		20	4.02
512×512	GAT-XL/2		15	4.04

The proposed multi-level noise-perturbed guidance is designed to counteract this asymmetry. By injecting noise signals at multiple depths and supervising the corresponding intermediate outputs with different noise strengths, the generator is encouraged to respond meaningfully to these perturbations across its entire depth rather than relying predominantly on the final blocks. This induces a coarse-to-fine usage of layers: earlier stages are trained to capture global, noise-robust structure under strong perturbations, while later stages progressively refine fine details as the noise level decreases. Consequently, the generator is nudged away from degenerate solutions where early layers collapse, and toward a regime where representational responsibility is more evenly distributed across layers, which we show leads to improved utilization and stronger overall performance.

Additional analysis on inactivity of early layers To quantify the inactivity of early layers, we performed a block-ablation study, as summarized in Fig. 4b. For each transformer block, we remove the block, regenerate the corresponding images, and measure the resulting change using a perceptual distance metric. We observe that, without MNG, ablating early blocks causes only minor changes in the generated images, even though these layers are expected to encode global, structural information. This suggests that the early part of the network is underutilized.

We further analyze this phenomenon by measuring feature similarity during generation. To this end, we sample 64 images per class for all classes using GAT-S/2. Then, we compute (1) the feature similarity between the input and output of each block, and (2) the similarity across different input noises z (Fig. 9a and Fig. 9b). Similarity is defined as the cosine similarity at corresponding spatial locations, averaged over all tokens and images. For the model without MNG, both similarities are very high in the early layers (often close to 1), indicating that these blocks (i) induce only small changes in the features and (ii) are weakly influenced by the input noise. This is consistent with early-layer inactivity. In contrast, with MNG the similarities in early blocks are noticeably reduced for both measures, indicating that MNG increases the amount of feature change in early layers and makes them more responsive to the input noise.

A.8 EXPERIMENTS ON IMAGENET-512

We verify that our model scales favorably to higher resolutions by training GAT-XL/2 on ImageNet at 512×512 resolution (7). We train for 15 epochs and obtain an FID-50K of 4.04, which is comparable to the 20 epochs result at 256×256 resolution. This suggests that our framework can achieve

Figure 10: Examples from GAT-XL/2 on ImageNet-512.

Table 8: Text-to-image generation on MS-COCO at 256 resolution. We report FID and the number of function evaluations (NFE) at sampling time (lower is better). Methods marked with * use a CLIP image encoder.

Method	Type	NFE	FID
Frido (Fan et al., 2023)	Diffusion	200	8.97
VQ-Diffusion (Gu et al., 2022)	Discrete diffusion	100	19.75
U-Net (Bao et al., 2023)	Diffusion	50	7.32
U-ViT-S/2 (Bao et al., 2023)	Diffusion	50	5.95
U-ViT-S/2 (Deep) (Bao et al., 2023)	Diffusion	50	5.4
AttnGAN (Xu et al., 2018)	GAN	1	35.49
DM-GAN (Zhu et al., 2019)	GAN	1	32.64
DF-GAN (Tao et al., 2022)	GAN	1	19.32
XMC-GAN (Zhang et al., 2021)	GAN	1	9.33
LAFITE* (Zhou et al., 2022)	GAN	1	8.12
MM-GAT (Ours)	GAN	1	7.98

similarly strong performance with fewer epochs even at higher resolutions. Qualitative samples at 512x512 are provided in Fig. 10.

A.9 EXPERIMENTS ON TEXT-TO-IMAGE GENERATION (MS-COCO)

We further evaluate our framework on text-to-image generation using MS-COCO (Lin et al., 2014) at 256² resolution. Following the U-ViT (Bao et al., 2023) setting (Bao et al., 2023), we train on the MS-COCO training split and report FID on the validation set. For text encoding, we use a frozen CLIP text encoder, and adopt an MM-DiT (Esser et al., 2024a)-style conditioning scheme where the generator additionally receives the CLIP (Radford et al., 2021) word tokens as input (we refer to this model as MM-GAT), while the CLIP sentence embedding (i.e., the [eot] token) is used as a global conditioning signal. We set a hidden dimension of 768 and a model depth of 24.

As shown in Table 8, MM-GAT attains competitive performance: although it slightly underperforms the best U-ViT variants in FID, it outperforms prior GAN-based approaches with 1-NFE. In particular, MM-GAT achieves a lower FID than LAFITE (Zhou et al., 2022), despite not using a CLIP image encoder. We emphasize that this is a deliberately lightweight, first-pass extension of GAT to the text-conditional setting, and we expect that modest additional tuning of this design could further improve performance. We also show the generated examples in Fig. 11.

Figure 11: Examples of text-to-image generation on MS-COCO-256.

Figure 12: Unconditional generation examples from GAT-B/2 on FFHQ-256.

A.10 EXPERIMENTS ON UNCONDITIONAL GENERATION (FFHQ-256)

Our main experiments on ImageNet were designed to study how a transformer-based GAN scales in a complex, diverse, large-scale setting. To additionally verify the feasibility of unconditional training, we also train GAT-B/2 on FFHQ-256 (Fig. 12) for 25M images. When compared against a DiT-B/2 baseline trained under the identical size of generator and the same amount of data, our model achieves an FID of 9.74 versus 10.49 for DiT-B/2, indicating that GAT can successfully support unconditional generation and attains competitive performance with diffusion transformers even in unconditional generation.

A.11 INTUITION BEHIND THE WIDTH-AWARE LEARNING RATE RULE

Eqn. 4 defines our width-aware learning rate schedule $\eta(C)$, which is designed to keep the *functional* update of the network approximately invariant as we change the channel dimension C . Here we provide additional intuition for this choice without a full mathematical proof.

Throughout the paper, when we refer to the *speed of change* of a network f_θ , we mean the typical change in its outputs after a single optimization step, for example

$$\mathbb{E}_x [\|f_{\theta_{t+1}}(x) - f_{\theta_t}(x)\|], \quad (11)$$

1188 where the expectation is over training samples x . Intuitively, this quantity measures how aggressively
 1189 the function implemented by the network is updated per step, as opposed to the raw magnitude
 1190 of parameter updates.

1191 We make the following simplifying assumption, which is standard in analyses of wide neural
 1192 networks: a hidden vector can be modeled as
 1193

$$1194 \quad x \in \mathbb{R}^C, \quad x_i \sim \mathcal{N}(0, 1) \text{ i.i.d.}, \quad (12)$$

1195 where C is the channel dimension and we treat the channels as approximately independent and
 1196 unit-variance. In this regime, the squared norm of the activation vector satisfies
 1197

$$1198 \quad \|x\|^2 = \sum_{i=1}^C x_i^2 \approx C, \quad (13)$$

1201 so the “energy” of a feature vector grows approximately linearly with width.

1202 For intuition, consider a single linear layer with scalar output
 1203

$$1204 \quad f_\theta(x) = w^\top x. \quad (14)$$

1205 If the loss gradient with respect to this scalar output is g , and the learning rate is η , then a single
 1206 SGD step updates the weights as
 1207

$$w' = w - \eta g x. \quad (15)$$

1208 Evaluating the updated layer on the *same* input x , the output changes by
 1209

$$1210 \quad f_{\theta'}(x) - f_\theta(x) = (w')^\top x - w^\top x \quad (16)$$

$$1212 \quad = (w - \eta g x)^\top x - w^\top x \quad (17)$$

$$1213 \quad = -\eta g \|x\|^2. \quad (18)$$

1214 Under the standardized-channel assumption $\|x\|^2 \approx C$, the typical magnitude of this per-step output
 1215 change scales roughly as
 1216

$$1217 \quad |f_{\theta'}(x) - f_\theta(x)| \propto \eta C. \quad (19)$$

1218 In words, for a *fixed* learning rate η , wider networks (larger C) tend to change their outputs more
 1219 per step, simply because their activations (and hence their effective updates) carry more energy.
 1220 The same mechanism applies layer by layer, so the end-to-end change in $f_\theta(x)$ inherits a similar
 1221 dependence on C .

1222 To keep the functional update scale approximately stable when we vary the width, we therefore
 1223 choose a learning rate that decreases inversely with the channel dimension, as in Eq. (4),
 1224

$$1225 \quad \eta(C) \propto \frac{1}{C}, \quad (20)$$

1226 so that the product ηC remains roughly constant. This, in turn, stabilizes the per-step change of
 1227 intermediate features and final outputs as we transition from smaller to larger GAN architectures.
 1228

1229 A.12 RELATION TO DEPTH AND BATCH-SIZE SCALING

1230 Our width-aware learning-rate rule in Eqn. 4 is derived from the goal of keeping the per-step change
 1231 in the network outputs approximately constant. This principle is not inherent to width alone and, in
 1232 principle, can be extended into a more comprehensive scaling law that also accounts for depth and
 1233 batch size.

1234 For deep transformer-style residual networks, stacking L blocks increases the cumulative effect of
 1235 each update. Under the same “constant functional update” view, one could combine our width-based
 1236 rule with an additional depth-dependent factor, e.g., a \sqrt{L}^{-1} -type correction, or equivalently, adjust
 1237 Layerscale initialization as a function of L so that the overall update magnitude of the network re-
 1238 mains similar across depths. Along the batch axis, our rule can be composed with standard learning-
 1239 rate scaling heuristics used for large-batch transformer training, such as linear scaling ($\eta \propto B$) or
 1240 square-root scaling ($\eta \propto \sqrt{B}$), where B denotes the batch size.

Figure 13: **Image editing by GANSpace (Härkönen et al., 2020).** We modify the top-2 principal components in the W space, which produces a smooth zooming effect in the generated images.

Figure 14: **Image editing by StyleCLIP (Patashnik et al., 2021).** The generated images faithfully follow the given text prompts, demonstrating that the edits successfully capture the desired semantics.

In this work, however, we intentionally focus on width for both conceptual clarity and empirical support. We conducted preliminary experiments in which we modified Layerscale initialization to compensate for depth, but within the depth range considered in our GAN architectures, this did not yield noticeable gains in stability or performance. Moreover, all of our main experiments use a fixed batch size of 512, so we do not yet have systematic evidence to justify incorporating batch-size dependence directly into the rule. Extending our width-aware learning-rate schedule to jointly cover width, depth, and batch size remains a promising direction for future work.

A.13 IMAGE EDITING BY MANIPULATING THE LATENT SPACE OF GAT

To assess the transferability and robustness of the learned GAT latent space beyond unconditional sampling, we additionally evaluate the compatibility of the learned latent space with off-the-shelf editing methods. In particular, we apply GANSpace (Härkönen et al., 2020), which discovers unsupervised editing directions and manipulates the generation process along them, and StyleCLIP (Patashnik et al., 2021), which steers generated images to match a given text prompt. As illustrated in Fig. 13 and 14, both editing techniques transfer cleanly to GAT, producing smooth and

1296 semantically meaningful variations, indicating that the learned latent space supports robust, reusable
1297 controls rather than overfitting to a single generative task.
1298

1299 A.14 QUALITATIVE COMPARISON WITH OTHER METHODS 1300

1301 For qualitative comparison against strong one-step generative baselines, we evaluate MeanFlow and
1302 StyleGAN-XL on ImageNet-256. For MeanFlow, we use the PyTorch implementation and publicly
1303 released checkpoint¹, which achieves a slightly better FID than reported in the original paper (3.39
1304 FID compared to originally reported 3.43 FID (Geng et al., 2025)). As shown in Fig. 15-20, our
1305 method produces samples with noticeably higher fidelity than both baselines. For a fair comparison,
1306 we use a truncation value of 0.3 for both our model and StyleGAN-XL/2, while MeanFlow is trained
1307 by a guided flow field.

1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

¹<https://github.com/zhuuyu-cs/MeanFlow>

Figure 15: Qualitative comparison on ImageNet-256 by uncurated examples with 1-step generative models (MeanFlow (Geng et al., 2025) and StyleGAN-XL (Sauer et al., 2022), Class 88).

Figure 16: Qualitative comparison on ImageNet-256 by uncurated examples with 1-step generative models (MeanFlow (Geng et al., 2025) and StyleGAN-XL (Sauer et al., 2022), Class 22).

Figure 17: Qualitative comparison on ImageNet-256 by uncurated examples with 1-step generative models (MeanFlow (Geng et al., 2025) and StyleGAN-XL (Sauer et al., 2022), Class 354).

1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434

Figure 18: Qualitative comparison on ImageNet-256 by uncurated examples with 1-step generative models (MeanFlow (Geng et al., 2025) and StyleGAN-XL (Sauer et al., 2022), Class 587).

1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Figure 19: Qualitative comparison on ImageNet-256 by uncurated examples with 1-step generative models (MeanFlow (Geng et al., 2025) and StyleGAN-XL (Sauer et al., 2022), Class 388).

Figure 20: Qualitative comparison on ImageNet-256 by uncurated examples with 1-step generative models (MeanFlow (Geng et al., 2025) and StyleGAN-XL (Sauer et al., 2022), Class 817).

1458
1459 Table 9: Robustness of GAT to different image tokenizers on ImageNet-256. Both tokenizers use a
1460 downsampling ratio of 8.
1461
1462

Tokenizer	Latent dim	Model	Epochs	FID-50K
SD-VAE	4	GAT-L/2	20	4.60
FLUX-e2e (Leng et al., 2025)	16	GAT-L/2	20	3.73

1463
1464
1465
1466 **A.15 EXPERIMENTS ON A DIFFERENT TOKENIZER**
1467

1468 We further assess the robustness of our framework to the choice of image tokenizer by training
1469 GAT on latents produced by an alternative encoder. Specifically, we encode ImageNet-256 using
1470 the recent FLUX-e2e tokenizer (Leng et al., 2025), which produces 16-dimensional latents with the
1471 same downsampling ratio of 8 as SD-VAE. In this latent space, we train a GAT-L/2 model for 20
1472 epochs and obtain an FID-50K of 3.73, which surpasses the performance achieved with SD-VAE
1473 latents after 20 epochs of training (Table. 9). This result indicates that the proposed GAT framework
1474 is robust to the tokenizer choice and can potentially benefit even further from advances in image
1475 tokenizers.
1476

1477 **A.16 FORMAL SCALING LAW**
1478

1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490 Figure 21: Compute-FID scaling of GAT models. We plot all training checkpoints of GAT-S/2,
1491 B/2, L/2, and XL/2 on a log-log plane, with total training compute C (GFLOPs) on the x-axis and
1492 FID-50K on the y-axis. The dashed line shows a power-law fit over one summary point per model,
1493 following $\text{FID}(C) \approx 3.52 \times 10^5 \cdot C^{-0.456}$.
1494

1495
1496 Fig. 21 analyzes the scaling behavior of our models with respect to training compute. We plot all
1497 training checkpoints for each model as trajectories on a log-log compute-FID plane, where the x-
1498 axis denotes the total training compute C in GFLOPs (FLOPs per iteration \times number of iterations
1499 with batch size 512, including G, D, VAE decoding, and the approximated GP), and the y-axis
1500 reports FID-50K. On top of these trajectories, we fit a power law using a single summary point
1501 per model, namely the final-iteration FID of GAT-S/2, B/2, L/2, and XL/2 (for GAT-XL/2 we use
1502 the 100K-iteration checkpoint reported in this paper and others for 50K-iteration). This yields the
1503 empirical relation

$$\text{FID}(C) \approx 3.52 \times 10^5 \cdot C^{-0.456}, \quad (21)$$

1504
1505 indicating a smooth, approximately power-law improvement of FID with training compute, consis-
1506 tent with scaling trends observed in diffusion and autoregressive models.
1507

1508 **A.17 ROBUSTNESS ACROSS RANDOM SEEDS**
1509

1510 Due to the high computational cost, it was challenging to run exhaustive multi-seed experiments
1511 for all configurations. To get a rough sense of seed sensitivity, we trained GAT-S/2 on ImageNet-
256 for 10 epochs (25K iterations) with three different random seeds. The resulting FID-5K scores

1512 Table 10: Effect of VFM alignment (REPA) on FID-5K for different model sizes.
1513

Model	Epochs	REPA	FID-5K
GAT-S/2	10		51.43
GAT-S/2	10	✓	30.09
GAT-S/2	20		38.99
GAT-S/2	20	✓	22.08
GAT-B/2	10		35.67
GAT-B/2	10	✓	23.07

1522
1523 were 31.157, 28.907, and 31.069, compared to 30.085 for the originally reported run. These results
1524 suggest that the performance is not highly sensitive to the choice of random seed.
1525

1526 A.18 DETAILED ANALYSIS OF VFM ALIGNMENT OBJECTIVE 1527

1528 **Computational overhead** In this configuration (batch size 512, 4×RTX A6000 GPUs), comput-
1529 ing the VFM alignment (REPA) term adds about 166 ms per iteration, corresponding to under 10%
1530 of the wall-clock time per training step even for the GAT-S/2 model. This overhead remains modest
1531 because the VFM encoder (DINOv2-B/16) is frozen and used only in forward mode (no backprop-
1532 agation through the teacher), and the alignment is applied only to real images, not to generated
1533 samples. If this cost is still a concern, one can precompute and cache the teacher features for all real
1534 images before training, in which case the runtime cost of the VFM alignment during GAN training
1535 is almost negligible (only a lightweight projection and similarity computation remain).

1536 **Effectiveness of VFM alignment across various model size** We initially evaluated the effect
1537 of the VFM alignment objective (Eq. 9) through an ablation study on the GAT-S/2 model in the
1538 manuscript 5c. As summarized in Table 10, adding REPA consistently improves FID-5K: at 10
1539 epochs, it reduces FID-5K from 51.43 to 30.09, and at 20 epochs, from 38.99 to 22.08. To verify
1540 that this effect is not tied to a particular model size, we additionally conduct an ablation on GAT-
1541 B/2. After training GAT-B/2 for 10 epochs without the VFM alignment term, the FID-5K degrades
1542 to 35.67, compared to 23.07 when the VFM alignment objective is used.

1543 **Ablation of VFM alignment when fine-tuning the GAT** We explicitly tested this scenario by
1544 fine-tuning a GAT-B/2 model after pretraining with VFM alignment. Starting from a 50K-iteration
1545 checkpoint trained with VFM alignment, we continued training for an additional 10K iterations
1546 without the VFM alignment term. In this setting, FID-5K increased slightly from 15.6 to 17.7,
1547 indicating that removing alignment does not cause catastrophic training collapse, but does lead to
1548 a moderate degradation in performance. We interpret this as the discriminator gradually losing the
1549 semantically meaningful features acquired during VFM alignment pretraining and thus providing
1550 weaker gradients, which is consistent with observations from self-supervised GANs (Chen et al.,
1551 2019) where discriminator features erode under prolonged adversarial training alone.

1552 We expect that, even without VFM alignment, similar effects of losing features could be mitigated
1553 via alternative regularizers such as self-supervision (Oquab et al., 2023) or distilling generator fea-
1554 tures into the discriminator (e.g., GGDR-style objectives (Lee et al., 2022)), and we regard a sys-
1555 tematic study of these alternatives as an interesting direction for future work.
1556

1557 A.19 ADDITIONAL VISUALIZATIONS 1558

1559 In the following, we provide additional visualizations of our model. The section comprises parts as
1560 belows:

- 1561 • Generated samples across model scales (20 epochs).
- 1562 • Latent interpolation examples from GAT-XL/2.
- 1563 • PCA visualizations of intermediate features from GAT-XL/2.
- 1564 • Additional generation results from GAT-XL/2.

1566 A.20 GENERATED EXAMPLES FROM MODELS WITH VARIOUS SCALES (20 EPOCHS)
15671568 We provide uncurated examples generated from models with various scales. For fair comparison,
1569 we use the models trained for 20 epochs.
15701615 Figure 22: Uncurated examples across model scales. From left to right, model size increases from
1616 GAT-S to GAT-XL. All models are trained for 50K iterations (i.e., 20 epochs).
1617
1618
1619

Figure 23: Uncurated examples across model scales. From left to right, model size increases from GAT-S to GAT-XL. All models are trained for 50K iterations (i.e., 20 epochs).

1674 A.21 LATENT INTERPOLATION EXAMPLES (GAT-XL/2)
1675
1676
1677
1678
1679

1724 1725 1726 1727 Figure 24: Latent interpolation examples between intra-class images.

Figure 25: Latent interpolation examples between inter-class images.

1782 A.22 VISUALIZATION OF INTERMEDIATE FEATURES OF G AND D (GAT-XL/2)
1783

1784 We visualize intermediate features of G and D (GAT-XL/2) by projecting onto the top-3 PCA
1785 components. Visualizations are taken from every other block, with rows ordered as: image, feature, and
1786 attention map.

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

Figure 26: Feature visualization of G .Figure 27: Feature visualization of D .

1836
1837 A.23 ADDITIONAL QUALITATIVE EXAMPLES
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
18841885
1886 Figure 28: Uncurated examples from GAT-XL/2 (40
1887 epochs). Class 207, truncation $\psi=0.85$
1888
18891885
1886 Figure 29: Uncurated examples from GAT-XL/2 (40
1887 epochs). Class 992, truncation $\psi=0.85$
1888
1889

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Figure 30: Uncurated examples from GAT-XL/2 (40 epochs). Class 27, truncation $\psi=0.85$

Figure 31: Uncurated examples from GAT-XL/2 (40 epochs). Class 63, truncation $\psi=0.85$

1944 A.24 USAGE OF LLM

1945

1946 We used an LLM as a writing assistant to help with the writing of the manuscript.

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997