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Abstract

Parameter Efficient Tuning (PET) techniques001
such as Low-rank Adaptation (LoRA) are ef-002
fective methods to adapt Large Language Mod-003
els to downstream tasks. We propose Sparse004
mixture of low Rank Adaption (SiRA), which005
uses Sparse Mixture of Experts (SMoE) by006
enforcing conditional computation with top k007
LoRA weights. SiRA is optimized through a008
combination of training techniques, including009
an auxiliary loss encouraging load balancing,010
a capacity limit which restricts the maximum011
number of tokens each expert can process, and012
novel expert dropout on top of the gating net-013
work. Through extensive experiments, we014
show that SiRA performs better than LoRA015
and other mixture of expert approaches across016
different single-task and multiple-task settings.017
Results show SiRA has more orthogonal low018
rank spaces and consumes less computing re-019
sources compared to other MoE variants.020

1 Introduction021

Large Language Models (LLMs) have demon-022

strated impressive capabilities in a wide range of023

tasks. To adapt these general-purpose models to024

downstream low resource tasks remains important.025

To this end, parameter efficient tuning (PET) (Hu026

et al., 2021; Li and Liang, 2021; Lester et al.,027

2021; Houlsby et al., 2019; Zhang et al., 2023b;028

Zaken et al., 2021; Chen et al., 2022), which intro-029

duces task specific weights to the frozen founda-030

tion model for gradient descent, has been widely031

adopted with the merit of avoiding the catastrophic032

forgetting (Luo et al., 2023) of fine-tuning.033

However, previous study (Chen et al., 2022) and034

our findings in Figure 2 show PET is more sta-035

ble with fewer parameters and more parameters036

may lead to worse quality. This poses a hidden037

bottleneck for model quality even when we have038

enough computation budget. Thereby it remains039

challenging to introduce capacity under PET in a040

more efficient way.041

We are inspired by recent advancements of the 042

Sparse Mixture of Experts (SMoE) (Bengio et al., 043

2015; Shazeer et al., 2017; Lepikhin et al., 2020). 044

Such conditional computation efficiently scales 045

model capacity without large increases in train- 046

ing or inference costs. Yet the power of sparse 047

and dynamic computation is less investigated under 048

the PET scenario. In recent years, several recent 049

works have proposed mixture-of-expert models on 050

top of parameter-efficient tuning. Adamix (Wang 051

et al., 2022) uses random gating and does not learn 052

specialized experts. MoLoRA (Zadouri et al., 053

2023) applies the dense MoE on the top of LoRA, 054

where all experts are averaged using a learned gat- 055

ing. Such dense computation brings inefficiency 056

compared to SMoE which conserves resources and 057

inference computation with the same parameter 058

count by only using a subset of experts. We put a 059

more broad related work discussion in Section 6.5. 060

To this end, we present SiRA, the Sparse Mix- 061

ture of Low Rank Adaptation. SiRA is building 062

SMoE upon the state of the art PET approach 063

LoRA (Hu et al., 2021). Our research demonstrates 064

that a strategic combination of capacity constraints 065

and expert utilization loss is the key to realizing 066

the potential of sparse LoRA. Additionally, we 067

present a novel dropout mechanism that combats 068

overfitting, proving essential for SiRA’s superior 069

performance. This is non trivial since the sheer 070

diversity of routing strategies (Roller et al., 2021; 071

Fedus et al., 2022; Lepikhin et al., 2020; Zhou 072

et al., 2022; Puigcerver et al., 2023) and the lack 073

of clarity on their effectiveness with PET posed 074

a significant challenge, especially with common 075

SMoE limitations like token dropping (Puigcerver 076

et al., 2023) and overfitting (Elbayad et al., 2022). 077

The fact that the MoLoRA paper attempted sparse 078

MOE, but without convincing results, underscores 079

the significance of our findings. 080

We conducted extensive experiments which 081

verify that the performance of SiRA, is better 082
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than LoRA (Hu et al., 2021), its MoE variants083

Adamix (Wang et al., 2022), MoLoRA (Zadouri084

et al., 2023) and other PET approaches across a085

wide range of single task and multitask benchmarks086

with less TPU hours compared to other MoE vari-087

ants. Our ablation study further confirmed the ef-088

fectiveness of the three ingredients as well as the089

generality of our methods. We also explain the090

effectiveness of SiRA by empirically showing it091

facilitates multiple orthogonal low rank spaces to092

capture diverse knowledge.093

2 Sparse Mixture of Low Rank094

Adaptation095

To increase the capacity of LoRA (Hu et al., 2021)096

using Mixture of Experts (MoE) without adding too097

much computational cost, we propose Sparse Mix-098

ture of Experts of Low Rank Adaptation (SiRA),099

which leverages multiple lightweight LoRA adap-100

tors as experts while enforcing sparsity when using101

the expert modules.102

Figure 1 shows an illustration of SiRA. The MoE103

layer for the adapter consists of E experts, each104

with their own LoRA weights, W1, ...,WE . Wk is105

the product of two low rank matrices Wk = BkAk.106

We also assume the base foundation model has W0107

as its frozen weight, which represents either query,108

key, value, or output projection. We replace the109

attention projection in each layer of the network110

with this computation. Our parameter initialization111

and update method for LoRA. Bk is initialized112

as Gaussian while Ak is initialized as zeros. We113

freeze the base model and update the LoRA weight114

through gradient descent, detailed in Appendix 6.3.115

Expert Gating To reduce the computational cost,116

SiRA only activates a subset of all the expert mod-117

ules. Formally, during each forward pass, we select118

K out of E experts using the output scores of a119

gating network θg. The process is mathematically120

expressed as Equation (1) and (2), where s denotes121

the token index of the sequence x and Gs,e is the122

gating network output at s-th token e-th experts.123

The TopK operation renormalizes the gate weights124

to sum to 1.0.125

G(xs) = TopK(softmax(θTg xs)) (1)126

ys =

E∑
e=1

Gs,eWe(xs) +W0(xs) (2)127

Experts Dropout To avoid the situation that cer-128

tain experts are over or under-trained, we propose129

Attention Projection Layer

Topk 

Attention 
Projection
Weights

Weighted Sum

Add

 Used Capacity

……

LoRA weights

……

Overflow

Expert 
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Figure 1: SiRA: Sparse Gated Mixture of LoRA.

gate dropout. Specifically, we introduce dropout to 130

the gating output G as shown in Equation 3. 131

G(xs) = TopK(Dropout(softmax(θTg xs))) (3) 132

Expert Token Capacity We enforce the capacity 133

constraints for experts following GShard (Lepikhin 134

et al., 2020). Specifically, we restrict that the num- 135

ber of tokens processed by each expert should not 136

exceed a predefined threshold. Once the capacity 137

is reached, the expert simply drops the overflow 138

tokens. If all K experts reach their token capacity 139

before all tokens in a training example are pro- 140

cessed, the rest of the tokens will only be encoded 141

using the frozen model parameter W0. 142

Auxiliary Loss Beside the normal LM loss, we 143

use the auxiliary loss term to encourage load bal- 144

ancing among different experts following (Shazeer 145

et al., 2017; Lepikhin et al., 2020). We denote the 146

total number of tokens to be S, and there are E ex- 147

perts. We also denote the number of tokens routed 148

to expert e as ce. By using the mean gates per ex- 149

pertme =Means(Dropout(softmax(θTg xs))) as 150

a differentiable approximation, we express the aux 151

loss in Equation 4. 152

laux =
1

E

E∑
e=1

ce
S

∗me (4) 153

3 Experiments 154

3.1 Evaluation Setup 155

Baselines and Experiment Configs We specif- 156

ically compare our model with the Prompt Tun- 157

ing (Lester et al., 2021), IA3 (Liu et al., 2022), 158

standard LoRA (Hu et al., 2021), Adamix (Wang 159

et al., 2022) and MoLoRA (Zadouri et al., 2023). 160

Note that other adapter approaches are not com- 161

pared with the SiRA approach is orthogonal and 162
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Approach δ Params FinQA (EN) ForumSum (EN) SP (SW) QA-in (SW) NER (SW) SP (BN) QA-in (BN) QA-cross (BN)

em f1 bleurt rougeL f1 accuracy f1 span-f1 accuracy f1 f1

PromptTuning 0.0024% 4.0 4.0 95.80 28.94 18.90 0.22 63.93 45.01 0.76 62.83 55.07
IA3 0.0140% 1.8 2.1 96.98 32.81 23.06 21.65 72.04 86.78 22.87 69.06 64.55
LoRA 0.0419% 5.0 5.6 96.70 33.97 23.54 27.63 82.08 88.95 33.52 80.34 76.81
LoRA(R=8) 0.0838% 3.0 3.2 96.53 34.67 23.98 31.27 81.99 89.41 35.84 74.96 77.32
LoRA(R=16) 0.1676% 2.4 2.4 96.46 34.43 23.12 31.57 81.47 89.14 36.06 72.69 78.94
LoRA(R=32) 0.3353% 2.2 2.2 96.32 34.11 22.64 29.84 78.55 88.58 33.27 70.01 77.07
LoRA(R=64) 0.6706% 1.2 1.2 96.21 33.48 23.37 24.28 79.37 87.81 28.54 69.06 69.37
Adamix 0.6706% 5.6 6.0 95.95 35.10 23.88 33.22 81.24 89.00 39.03 81.70 76.07
MoLoRA 0.7264% 5.6 6.4 97.05 34.37 24.79 32.50 82.33 89.33 36.28 79.06 76.75

SiRA 0.7264% 5.8 6.6 97.14 35.67 25.83 32.52 83.00 89.95 38.61 82.10 76.93

Table 1: Performance Comparison For Single Tasks

could be applied on top of them as well. We choose163

PALM2-FLAN (Passos et al., 2023) as the founda-164

tion model 1. We follow the default configurations165

in (Hu et al., 2021) to inject LoRA weights into the166

attention projections and set the intrinsic rank as167

4. Larger intrinsic ranks are also applied to LoRA168

for fair comparisons. We use 16 experts by default169

across all MoE based approaches. We set prompt170

length as 25 for prompt tuning following (Lester171

et al., 2021). We use the XXS model size unless172

otherwise specified. We tuned the hyperparame-173

ters to find the optimal point that best suits the174

baselines. To tune SiRA, we freeze those hyper-175

parameters and only tune extra hyperparameters176

which exist only in SIRA. See Appendix 6.3 for177

more hyperparameters.178

Datasets and Metrics We evaluate on the179

datasets which the model wasn’t pre-trained on:2180

XTREME-UP (Ruder et al., 2023) is a multi-181

lingual multitask dataset. We choose two of the182

underrepresented languages—Swahili (SW) and183

Bengali (BN)—and evaluate on several NLP tasks.184

We follow Ruder et al. (2023) for each task’s splits185

and evaluation metrics.186

FinQA (Chen et al., 2021) is a QA dataset in the187

financial domain which requires complex reason-188

ing. The answers in the dataset are DSL programs.189

We only evaluate metrics based on surface form190

matching, i.e., exact match and F1 scores.191

ForumSum (Khalman et al., 2021) is a diverse192

conversation summarization dataset with human193

written summaries. We report BLEURT (Sellam194

et al., 2020), ROUGEL, and F1 scores.195

1We choose the instruction tuned model instead of the
pretrain model as base model which is more practical when
applying LoRA. Thus pretrained models like LLAMA or pre-
trained GPT is not considered here.

2Since our base model (Chung et al., 2022) had been ex-
posed to many public datasets during training, we choose
datasets that are not consumed yet.

Models bleurt rougeL f1

Prompt Tuning 96.34 30.36 20.54
IA3 96.94 33.93 24.27
LoRA 96.91 36.59 26.60
LoRA(r=8) 97.01 36.78 26.89
LoRA(r=16) 96.80 36.63 25.86
LoRA(r=32) 96.50 36.50 25.78
LoRA(r=64) 96.13 35.96 25.02
Adamix 96.52 36.79 25.80
MoLoRA 97.02 36.77 26.96
SiRA 97.35 37.08 27.56

Table 2: Results with PALM2-XS on ForumSum.

3.2 Performance of SiRA 196

We evaluate the single tasks performance in Ta- 197

ble 1. We also conducted experiments on two mul- 198

titask settings on language swahili (SW) and ben- 199

gali(BN), and two multilingual settings for QA in 200

languages task (QA-in) and QA across languages 201

task(QA-cross). We report numbers in Table 7 and 202

Table 8. Results are averaged from 3 experiments. 203

Prompt tuning and IA3 generally perform worse 204

than LoRA based approaches with fewer param- 205

eters. For LoRA, R = 4 achieves better perfor- 206

mance for the multitask and multilingual settings. 207

Although for some single tasks, R = 8 or R = 16 208

achieves better results. But further increasing R 209

will decrease performance in all cases. This sug- 210

gests that more parameters does not necessarily 211

mean quality gains. 212

In general, the MoE based approaches can 213

achieve better performance than LoRA. Notably 214

when compared to MoLoRA, SiRA achieves con- 215

stantly better performance among all the tasks, 216

which demonstrates that “sparse" MoE is better 217

than “full". Adamix shows some small advantage 218

on the Semantic Parsing task, but overall loses to 219

SiRA across all other tasks. SiRA outperforms 220

all other baselines in most single and multi tasks 221

settings. Note that SiRA uses less than 1% extra pa- 222

rameters compared to the foundation model, caus- 223

ing limited memory and computation overhead. 224

PALM2-XS Backbone Model We also change 225

our base model from Flan-PALM2-XXS to Flan- 226
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Configs bleurt rougeL f1

R=4, K=2, C=2, E=16 96.87 34.51 24.73
R=4, K=4, C=4, E=16 96.60 34.66 25.34
R=4, K=6, C=6, E=16 96.75 34.73 24.55
R=4, K=8, C=8, E=16 96.76 35.31 25.64
R=4, K=10, C=10, E=16 97.51 35.10 25.19
R=4, K=12, C=12, E=16 96.96 34.49 24.24

R=4, K=4, C=2, E=16 96.33 34.15 24.13
R=4, K=4, C=4, E=16 96.60 34.66 25.34
R=4, K=4, C=6, E=16 97.14 35.67 25.83
R=4, K=4, C=8, E=16 97.31 34.97 25.24
R=4, K=4, C=10, E=16 97.25 34.75 25.57
R=4, K=4, C=12, E=16 96.50 34.44 23.94

R=2, K=4,C=4,E=16 96.20 34.70 24.76
R=4, K=4,C=4,E=16 96.60 34.66 25.34
R=6, K=4,C=4,E=16 97.05 34.75 25.02
R=8, K=4,C=4,E=16 96.90 34.68 24.19

R=4, K=4,C=4,E=8 96.58 34.61 24.51
R=4, K=4,C=4, E=16 96.60 34.66 25.34
R=4, K=4,C=4, E=24 96.68 34.85 24.77
R=4, K=4,C=4, E=32 96.69 34.78 24.05

Table 3: Self ablations on the hyper-parameter
Rank(R), topK(K), expert capacity(C), and Expert(E)
on ForumSum.

Approach bleurt rougeL f1

SiRA 97.14 35.67 25.83
- aux loss 96.37 35.09 25.11
- Expert Dropout 97.09 34.73 24.55

+ SMoE-Dropout 96.30 34.24 24.32

Table 4: Gating ablations on ForumSum.

PALM2-XS, which has a much larger size. We227

report the ForumSum results in Table 2. When228

switching to a larger LLM, the overall perfor-229

mance is better since the base is stronger. However,230

the overall trend and conclusion has not changed:231

SiRA still outperforms all other baselines. This232

shows SiRA can generalize to larger backbones.233

3.3 Ablation Study234

Hyper-parameter Ablations We choose a sim-235

ple config (R=4, K=4, C=4, E=16) and then change236

each of them while keeping the rest. We share the237

ablations on ForumSum in Table 3. An interesting238

finding is that increasing the number of experts or239

the capacity per expert will not always increase240

the scores, which justifies why the full MoE based241

approach is not as good as SiRA. The overall per-242

formance is slightly better with larger R when R <243

8. Besides, we found that performance improves244

when we change E=8 to E=16, but further increas-245

ing E does not help. These findings suggest that a246

proper value of these hyper-parameters need to be247

found within a reasonable range but they are not248

that sensitive.249

Gating ablations We compare SiRA with 3250

more cases: 1) removing the aux loss, 2) remov-251

ing the gate dropout, and 3) using a static rout-252

Approach Steps/Sec Converge steps(k) TPU time(h)

Lora 1.14 2 0.487
Adamix 1.02 40 10.89
MoLoRA 0.09 1.6 4.94
SiRA 0.30 2 1.85

Table 5: Resource consumption (Training) comparison

Approach Cosine Similarity

Adamix 0.23500
MoLoRA 0.00700
SiRA 0.00028

Table 6: Diversity of Low Rank Spaces

ing based dropout SMoE-Dropout (Chen et al., 253

2023a) instead. Results in Table 4 suggested that 254

the learned gating is better than static, and both the 255

gate dropout and aux loss help the performance. 256

3.4 Comparisons of Resource Consumption 257

We share resource consumption stats in Table 5. 258

SiRA achieves higher steps per second than 259

MoLoRA because SiRA only uses K experts each 260

layer instead of all. Adamix needs many more steps 261

to converge than other methods possibly because of 262

random token distribution. Overall SiRA consumes 263

less TPU time than Adamix and MoLoRA. 264

3.5 Analysis of Expert Weights 265

We analyze the orthogonality of expert weights fol- 266

lowing recent works (Wang et al., 2023). In each 267

layer we measure the absolute value of average co- 268

sine similarity between each pair of expert weights. 269

We compute each expert weight by multiplying the 270

low rank matrices to produce We = Ae ∗Be. We 271

share the cosine similarity in Table 6. The cosine 272

similarity averaged over the layers for SiRA is sig- 273

nificantly lower than other MoE based approaches 274

and pretty close to 0. This indicates that the ex- 275

perts in our method learn more diverse concepts 276

than other MoE based approaches. This is benefi- 277

cial as Liu et al. (2023a) show. Interestingly, we 278

also found the SiRA does not learn to route differ- 279

ent tasks to different experts. We provide further 280

analysis in Appendix 6.4. 281

4 Conclusion 282

This paper introduced SiRA, a Sparse Mixture 283

of Expert variant of LoRA. By leveraging sparse 284

and dynamic computation with a few training opti- 285

mizations, SiRA achieved better performance than 286

LoRA and other baselines across different tasks 287

while consuming less resources. Our analysis sug- 288

gested that SiRA provides more orthogonal low 289

rank sub-spaces than others. 290
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5 Limitation291

We did not report results on open sourced models292

such as LLaMA, GPT, or Roberta. As we choose293

an instruction tuned model as the base model which294

is more practical for adding LoRA. Thus pretrained295

LLaMA or GPT is out of scope. And the affiliation296

of the authors of the paper is not permitted to run297

LLaMA2 models due to Meta’s license, even for298

benchmarking in a research paper. The main focus299

of our experiments is on generative tasks on top300

of LLMs which is more trendy in recent years, so301

we did not choose smaller bert based models like302

Roberta.303

References304

Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau,305
and Doina Precup. 2015. Conditional computation306
in neural networks for faster models. arXiv preprint307
arXiv:1511.06297.308

Guanzheng Chen, Fangyu Liu, Zaiqiao Meng, and309
Shangsong Liang. 2022. Revisiting parameter-310
efficient tuning: Are we really there yet? arXiv311
preprint arXiv:2202.07962.312

Tianlong Chen, Zhenyu Zhang, Ajay Jaiswal, Shiwei313
Liu, and Zhangyang Wang. 2023a. Sparse moe as314
the new dropout: Scaling dense and self-slimmable315
transformers. arXiv preprint arXiv:2303.01610.316

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena317
Shah, Iana Borova, Dylan Langdon, Reema Moussa,318
Matt Beane, Ting-Hao Huang, Bryan Routledge,319
and William Yang Wang. 2021. FinQA: A dataset of320
numerical reasoning over financial data. In Proceed-321
ings of the 2021 Conference on Empirical Methods322
in Natural Language Processing, pages 3697–3711,323
Online and Punta Cana, Dominican Republic. Asso-324
ciation for Computational Linguistics.325

Zitian Chen, Yikang Shen, Mingyu Ding, Zhenfang326
Chen, Hengshuang Zhao, Erik G. Learned-Miller,327
and Chuang Gan. 2023b. Mod-squad: Designing328
mixtures of experts as modular multi-task learners.329
In IEEE/CVF Conference on Computer Vision and330
Pattern Recognition, CVPR 2023, Vancouver, BC,331
Canada, June 17-24, 2023, pages 11828–11837.332
IEEE.333

Joon-Young Choi, Junho Kim, Jun-Hyung Park, Wing-334
Lam Mok, and SangKeun Lee. 2023. Smop: To-335
wards efficient and effective prompt tuning with336
sparse mixture-of-prompts. In Proceedings of the337
2023 Conference on Empirical Methods in Natural338
Language Processing, pages 14306–14316.339

Hyung Won Chung, Le Hou, Shayne Longpre, Barret340
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi341
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-342
bert Webson, Shixiang Shane Gu, Zhuyun Dai,343

Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh- 344
ery, Alex Castro-Ros, Marie Pellat, Kevin Robin- 345
son, Dasha Valter, Sharan Narang, Gaurav Mishra, 346
Adams Yu, Vincent Zhao, Yanping Huang, Andrew 347
Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, 348
Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. 349
Le, and Jason Wei. 2022. Scaling instruction- 350
finetuned language models. 351

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, 352
and Luke Zettlemoyer. 2023. Qlora: Efficient 353
finetuning of quantized llms. arXiv preprint 354
arXiv:2305.14314. 355

Maha Elbayad, Anna Sun, and Shruti Bhosale. 2022. 356
Fixing moe over-fitting on low-resource languages 357
in multilingual machine translation. arXiv preprint 358
arXiv:2212.07571. 359

William Fedus, Barret Zoph, and Noam Shazeer. 2022. 360
Switch transformers: Scaling to trillion parameter 361
models with simple and efficient sparsity. The 362
Journal of Machine Learning Research, 23(1):5232– 363
5270. 364

Yingbo Gao, Christian Herold, Zijian Yang, and Her- 365
mann Ney. 2022. Revisiting checkpoint averag- 366
ing for neural machine translation. arXiv preprint 367
arXiv:2210.11803. 368

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 369
Bruna Morrone, Quentin De Laroussilhe, Andrea 370
Gesmundo, Mona Attariyan, and Sylvain Gelly. 371
2019. Parameter-efficient transfer learning for nlp. 372
In International Conference on Machine Learning, 373
pages 2790–2799. PMLR. 374

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 375
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 376
and Weizhu Chen. 2021. Lora: Low-rank adap- 377
tation of large language models. arXiv preprint 378
arXiv:2106.09685. 379

Misha Khalman, Yao Zhao, and Mohammad Saleh. 380
2021. ForumSum: A multi-speaker conversation 381
summarization dataset. In Findings of the Associ- 382
ation for Computational Linguistics: EMNLP 2021, 383
pages 4592–4599, Punta Cana, Dominican Republic. 384
Association for Computational Linguistics. 385

Sneha Kudugunta, Yanping Huang, Ankur Bapna, 386
Maxim Krikun, Dmitry Lepikhin, Minh-Thang Lu- 387
ong, and Orhan Firat. 2021. Beyond distillation: 388
Task-level mixture-of-experts for efficient inference. 389
arXiv preprint arXiv:2110.03742. 390

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, 391
Dehao Chen, Orhan Firat, Yanping Huang, Maxim 392
Krikun, Noam Shazeer, and Zhifeng Chen. 2020. 393
Gshard: Scaling giant models with conditional com- 394
putation and automatic sharding. arXiv preprint 395
arXiv:2006.16668. 396

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. 397
The power of scale for parameter-efficient prompt 398
tuning. arXiv preprint arXiv:2104.08691. 399

5

https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.1109/CVPR52729.2023.01138
https://doi.org/10.1109/CVPR52729.2023.01138
https://doi.org/10.1109/CVPR52729.2023.01138
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2210.11416
https://doi.org/10.18653/v1/2021.findings-emnlp.391
https://doi.org/10.18653/v1/2021.findings-emnlp.391
https://doi.org/10.18653/v1/2021.findings-emnlp.391


Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman400
Goyal, and Luke Zettlemoyer. 2021. Base layers:401
Simplifying training of large, sparse models. In In-402
ternational Conference on Machine Learning, pages403
6265–6274. PMLR.404

Xiang Lisa Li and Percy Liang. 2021. Prefix-405
tuning: Optimizing continuous prompts for genera-406
tion. arXiv preprint arXiv:2101.00190.407

Boan Liu, Liang Ding, Li Shen, Keqin Peng, Yu Cao,408
Dazhao Cheng, and Dacheng Tao. 2023a. Diversi-409
fying the mixture-of-experts representation for lan-410
guage models with orthogonal optimizer.411

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay412
Mohta, Tenghao Huang, Mohit Bansal, and Colin A413
Raffel. 2022. Few-shot parameter-efficient fine-414
tuning is better and cheaper than in-context learning.415
Advances in Neural Information Processing Systems,416
35:1950–1965.417

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam,418
Zhengxiao Du, Zhilin Yang, and Jie Tang. 2021. P-419
tuning v2: Prompt tuning can be comparable to fine-420
tuning universally across scales and tasks. arXiv421
preprint arXiv:2110.07602.422

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,423
Yujie Qian, Zhilin Yang, and Jie Tang. 2023b. Gpt424
understands, too. AI Open.425

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie426
Zhou, and Yue Zhang. 2023. An empirical study427
of catastrophic forgetting in large language mod-428
els during continual fine-tuning. arXiv preprint429
arXiv:2308.08747.430

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma-431
hairi, Hao Ma, Jiawei Han, Wen-tau Yih, and Ma-432
dian Khabsa. 2021. Unipelt: A unified frame-433
work for parameter-efficient language model tuning.434
arXiv preprint arXiv:2110.07577.435

Alex Passos, Andrew Dai, Bryan Richter, Christopher436
Choquette, Daniel Sohn, David So, Dmitry (Dima)437
Lepikhin, Emanuel Taropa, Eric Ni, Erica Mor-438
eira, Gaurav Mishra, Jiahui Yu, Jon Clark, Kathy439
Meier-Hellstern, Kevin Robinson, Kiran Vodrahalli,440
Mark Omernick, Maxim Krikun, Maysam Mous-441
salem, Melvin Johnson, Nan Du, Orhan Firat, Paige442
Bailey, Rohan Anil, Sebastian Ruder, Siamak Shak-443
eri, Siyuan Qiao, Slav Petrov, Xavier Garcia, Yan-444
ping Huang, Yi Tay, Yong Cheng, Yonghui Wu,445
Yuanzhong Xu, Yujing Zhang, and Zack Nado. 2023.446
Palm 2 technical report. Technical report, Google447
Research.448

Edoardo Maria Ponti, Alessandro Sordoni, Yoshua449
Bengio, and Siva Reddy. 2023. Combining450
parameter-efficient modules for task-level generali-451
sation. In Proceedings of the 17th Conference of the452
European Chapter of the Association for Computa-453
tional Linguistics, pages 687–702.454

Joan Puigcerver, Carlos Riquelme, Basil Mustafa, and 455
Neil Houlsby. 2023. From sparse to soft mixtures of 456
experts. arXiv preprint arXiv:2308.00951. 457

Stephen Roller, Sainbayar Sukhbaatar, Jason Weston, 458
et al. 2021. Hash layers for large sparse models. 459
Advances in Neural Information Processing Systems, 460
34:17555–17566. 461

Sebastian Ruder, Jonathan H. Clark, Alexander Gutkin, 462
Mihir Kale, Min Ma, Massimo Nicosia, Shruti Ri- 463
jhwani, Parker Riley, Jean-Michel A. Sarr, Xinyi 464
Wang, John Wieting, Nitish Gupta, Anna Katanova, 465
Christo Kirov, Dana L. Dickinson, Brian Roark, 466
Bidisha Samanta, Connie Tao, David I. Adelani, 467
Vera Axelrod, Isaac Caswell, Colin Cherry, Dan Gar- 468
rette, Reeve Ingle, Melvin Johnson, Dmitry Pan- 469
teleev, and Partha Talukdar. 2023. Xtreme-up: 470
A user-centric scarce-data benchmark for under- 471
represented languages. 472

Thibault Sellam, Dipanjan Das, and Ankur P Parikh. 473
2020. Bleurt: Learning robust metrics for text gen- 474
eration. In Proceedings of ACL. 475

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, 476
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff 477
Dean. 2017. Outrageously large neural networks: 478
The sparsely-gated mixture-of-experts layer. arXiv 479
preprint arXiv:1701.06538. 480

Noam Shazeer and Mitchell Stern. 2018. Adafactor: 481
Adaptive learning rates with sublinear memory cost. 482
In International Conference on Machine Learning, 483
pages 4596–4604. PMLR. 484

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong 485
Bao, Rui Zheng, Qi Zhang, Tao Gui, and Xuan- 486
jing Huang. 2023. Orthogonal subspace learning for 487
language model continual learning. arXiv preprint 488
arXiv:2310.14152. 489

Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, 490
Xiaodong Liu, Jing Gao, Ahmed Hassan Awadal- 491
lah, and Jianfeng Gao. 2022. Adamix: Mixture- 492
of-adaptations for parameter-efficient model tuning. 493
arXiv preprint arXiv:2210.17451. 494

Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza 495
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6 Appendix 520

6.1 Effect of LoRA rank 521

We investigate the effect of LoRA rank in Figure 2. 522
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Figure 2: SiRA vs LoRA on ForumSum Task. We in-
crease the rank of LoRA (rank=4, 8, 16, 32, 64, 128)
and report the RougeL as a metrics. Notably increas-
ing the rank does does not help the performance. SiRA
(rank=4) can achieve higher quality by leveraging the
sparse mixture of experts.

6.2 Multitask Results 523

We put the multitasking and multilugual results in 524

Table 7 and Table 8. 525

6.3 Training and Model selection 526

During supervised finetuning, SFT, we use 8 Tensor 527

Processing Units (TPU) V3 chips for fine-tuning. 528

The batch size is 64, and the maximum training step 529

is 30000. We use the Adafactor optimizer (Shazeer 530

and Stern, 2018) with a learning rate of 0.0005. 531

Both the input and output sequence lengths are set 532

to match the dataset requirements. The training 533

dropout rate is 0.05. The expert dropout rate is 534

set to 0.5. In our experiments, Adamix, MoLoRA 535

and SiRA are based on the same hyper-parameter 536

setups to be fair. For our method, we only tune the 537

hyperparameters which are specific to our method, 538

for example the gate dropout rate. We decode on 539

the validation sets of each task every 100 steps. 540

And we report test results from the best checkpoints 541

according to the validation scores. For multitask 542

results, the checkpoint is picked by the average of 543

each tasks metrics. For the reported numbers in 544

section 3.2, we use topk K = 4 as default. Yet 545

we found K = 8 is better for BN multitask and 546

QA (in-lang) multilingual setting, and K = 12 547

better for QA (cross-lang) experiments. Capacity 548

wise, C = K yields constant good results across 549

experiments, yet C = K+2 achieves better results 550

for ForumSum. 551

7



Table 7: Performance Comparison For Multi Tasks

Approach δ params SW Multitask BN Multitask

SP(accuracy) QA-in(f1) NER(span-f1) Average SP(accuracy) QA-in(f1) QA-cross(f1) Average

PromptTuning 0.0024% 0.59 65.34 0.21 29.21 1.05 61.04 68.75 43.62
IA3 0.0140% 18.98 64.58 83.86 55.81 20.87 61.63 68.44 50.31
LoRA 0.0419% 28.06 77.71 88.28 64.69 32.06 79.27 75.03 62.12
LoRA(R=8) 0.0838% 29.71 74.13 88.69 64.17 35.65 76.17 72.17 61.33
LoRA(R=16) 0.1676% 32.52 71.55 88.92 64.33 34.41 72.69 71.70 59.60
LoRA(R=32) 0.3353% 29.08 66.48 88.39 61.32 33.87 67.16 70.49 57.17
LoRA(R=64) 0.6706% 27.11 67.29 85.09 59.83 30.28 68.37 71.39 56.68
Adamix 0.6706% 35.14 76.99 89.01 67.10 38.41 79.49 75.09 64.33
MoLoRA 0.7264% 33.44 79.91 88.92 65.66 35.98 78.14 76.37 63.49

SiRA 0.7264% 33.98 81.26 89.04 68.10 37.71 82.17 75.50 65.13

Table 8: Performance Comparison for Multilingual
Tasks with diverse LoRA variants.

Approach δ params QA-in (9) QA-cross (25)

PromptTuning 0.0024% 74.55 62.05
IA3 0.0140% 80.68 61.70
LoRA 0.0419% 85.09 69.41
LoRA(R=8) 0.0838% 85.12 69.94
LoRA(R=16) 0.1676% 84.68 69.50
LoRA(R=32) 0.3353% 82.43 66.38
LoRA(R=64) 0.6706% 80.26 64.10
Adamix 0.6706% 84.75 70.42
MoLoRA 0.7264% 85.14 70.70

SiRA 0.7264% 86.38 70.86

6.4 Does the gate learn task specifies552

We use the Swahili multitask experiment to study553

what the gate is learning. We measure the aver-554

age entropy of each gate weight distribution before555

TopK is applied. The average entropy for the QA556

(in language) task decreases from 1.6 to 1.13 nats557

during training. This indicates that the model learns558

to give certain gates more weight as it trains.559

We also measure the average correlation coeffi-560

cients between each task index and each gate index561

similar to (Chen et al., 2023b). We convert the task562

index to a one hot encoding for this. At the end563

of training, the average correlation was about .025,564

which is not significant. The correlation between565

gates and languages in the multilingual experiment566

is not significant either. This suggests that our gat-567

ing mechanism does not learn to route different568

tasks to different gates.569

6.5 Related Works570

Parameter Efficient Tuning (PET) Parameter571

Efficient Tuning has a variety of flavors such as572

Adapters (Houlsby et al., 2019), Prefix Tuning (Li573

and Liang, 2021; Liu et al., 2021), Prompt Tun-574

ing (Lester et al., 2021), P-tuning (Liu et al.,575

2023b), attention-injection (Zhang et al., 2023b),576

LoRA (Hu et al., 2021; Dettmers et al., 2023), and577

combinations of PET methods (Mao et al., 2021).578

In this paper, our focus is on LoRA as it has been 579

found to achieve better results, although the meth- 580

ods could be applied to other flavors as well. Some 581

previous works such as AdaLoRA (Zhang et al., 582

2023a) tried to solve the problem of allocating the 583

parameter budget in the low budget settings. Our 584

method, on the other hand, is targeting the prob- 585

lem of scaling up the parameter through dynamic 586

computing. 587

Mixture of Experts (MoE) Leveraging Mixture 588

of Experts in neural networks has been exten- 589

sively studied, with different approaches to find 590

the optimal assignment between expert and to- 591

kens, including reinforcement learning (Bengio 592

et al., 2015), linear programs (Lewis et al., 2021), 593

fixed rules (Roller et al., 2021), top-1 gating (Fe- 594

dus et al., 2022), top-2 gating (Lepikhin et al., 595

2020), top-k gating (Shazeer et al., 2017), reverse 596

expert choosing (Zhou et al., 2022), and soft as- 597

signment (Puigcerver et al., 2023). However, most 598

of the previous works focus on foundation model 599

architectures, where MoE is applied on the Feed- 600

Forward parts of the transformer layer. 601

Several recent works have proposed mixture-of- 602

expert models on top of parameter-efficient tun- 603

ing(Choi et al., 2023; Wang et al., 2022; Zadouri 604

et al., 2023). SMoP (Choi et al., 2023) focues 605

on prompt tuning and uses per sequence routing, 606

while our work is using per token routing based 607

on LoRA. Adamix (Wang et al., 2022) randomly 608

chooses an expert in training and averages all the 609

experts during inference. This method is similar 610

to checkpoint averaging (Gao et al., 2022) as the 611

experts are randomly chosen and don’t learn to spe- 612

cialize. It also empirically has significant longer 613

training time caused by uniform token distribut- 614

ing. MoLoRA (Zadouri et al., 2023) applies the 615

dense MoE on the top of LoRA, where all experts 616

are averaged using a learned gating. Compared to 617
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this work, our method can achieve better efficiency618

since we only use a subset of experts which con-619

serves training resources and inference computa-620

tion with the same parameter count. The MoLoRA621

paper attempted sparse MOE, but without convinc-622

ing results, presumably since they did not use the623

dropout and capacity constraints we describe in our624

work.625

Multitask Parameter Efficient Tuning An-626

other track of the MoE work is for multitasking,627

such as Task-MoE (Kudugunta et al., 2021) and628

Skill Selection (Ponti et al., 2023). These ap-629

proaches assume the external task-id as an extra630

input for training and inference. Although we ex-631

periment with MoE in multitask settings, it does632

not require the task-id of inputs. Interestingly, our633

experiments suggest that the gating does not learn634

anything regarding the task specific or language635

specific information to distribute the token, demon-636

strating the fundamental difference from the above637

approaches.638
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