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Abstract

Training deep learning models requires large labelled datasets, which are expensive and
scarce in medical imaging. This study investigates semi-supervised active learning for left
ventricle segmentation in echocardiography, aiming to reduce the need for extensive manual
expert annotations. A novel technique for identifying reliable pseudo-labels is proposed.
Results show a significant reduction in annotation efforts by up to 93%, achieving 99% of
the maximum accuracy using only 7% of labelled data. The study contributes to efficient
annotation strategies in medical image segmentation.
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1. Introduction

Left ventricle (LV) segmentation is vital for accurately assessing clinical parameters like
LV ejection fraction (Azarmehr et al., 2020; Cole et al., 2015). Deep learning (DL) models,
such as U-Net, have gained popularity in medical image analysis (Ronneberger et al., 2015).
However, these models require large annotated datasets for training, posing challenges in
medical imaging where annotations are scarce and costly. Active Learning (AL) and Semi-
supervised Learning (SSL) have emerged as solutions to annotation challenges (Alajrami
et al., 2024; Chen et al., 2021). Semi-supervised active learning (SSAL) combines AL and
SSL to maximise the utilisation of unlabelled data. One popular approach in SSAL is the
Cost-Effective Active Learning (CEAL), which uses pseudo-labels for confident model pre-
dictions and combines them with expert annotations of the most uncertain samples (Wang
et al., 2016). However, CEAL lacks robust evaluation of pseudo-label quality, potentially
impairing model training. We introduce a new approach for SSAL to address these chal-
lenges. Our method determines a range of candidate pseudo-labels from the samples of
the highest uncertainty frequency in the uncertainty histogram. Predictions in this range
will be sorted based on confidence scores to select reliable pseudo labels for training, com-
bined with expert annotations of the uncertain images. It incorporates post-processing for
pseudo-labels, refining them before adoption for training. We aim to evaluate the efficacy of
the proposed approach in LV segmentation, rarely studied in this field, compared to existing
methods, filling a gap in the literature.
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2. Method and dataset

Development dataset: Unity dataset contains 1224 videos of apical 4-chamber echocar-
diographic view, obtained from Imperial College Healthcare NHS Trust’s database, cap-
tured between 2015 and 2016. The images were acquired following standard protocols by
experienced echocardiographers using ultrasound equipment from GE and Philips. Ethical
approval was granted by the Health Regulatory Agency. From these videos, 2800 images
were sampled at various points in the cardiac cycle and labelled by individual experts us-
ing our in-house online platform (https://unityimaging.net). This dataset was utilised for
model training and validation.

Testing dataset: This dataset included 100 videos collected over three consecutive work-
ing days in 2019, from which 200 end-diastolic and end-systolic frames were selected and
labelled by 11 experts. The consensus of experts’ annotations was used as ground truth in
the testing dataset.

U-Net model of depth 5 was implemented in TensorFlow and trained on an Nvidia RTX3090
GPU for 100 epochs with early stopping and patience at 10.
We compared our method to Random, AL, and CEAL using Entropy for uncertainty scor-
ing (Alajrami et al., 2024). Each method was evaluated on the testing dataset using Dice
Coefficient (DC) (Naidoo et al., 2022).
From the training dataset, 4% (82 images) were selected for the initial labelled set L; the
rest was considered as the unlabelled pool U . For AL methods, the batch size K is 21
images (1%) of the training dataset. For CEAL and SSAL methods, the uncertain sample
size, Ku, stands at 11, while the size of the pseudo label, Kp, is set to 5.

Proposed method Our SSAL method suggests selecting reliable pseudo-labels from the
mid-range of uncertainty scores in the unlabelled pool, representing majority of samples,
alongside expert labels of uncertain images to optimise annotation. A validation step is
applied to choose the most confident pseudo-labels. Phases of our method are as follows:

• U-Net model is initially trained on L. At each AL iteration, uncertainty scores are
computed for every image in U using the model’s prediction. Images in U are ranked
based on these scores, and the most uncertain samples, Ku, are queried for annotation.

• Uncertainty scores for remaining U samples are normalised; The highest frequency
bin in the uncertainty histogram determines the range of images as candidate pseudo-
labels Cp.

• A threshold-shifting is applied to validate Cp quality . In binary segmentation, a 0.5
threshold categorises pixels as foreground (1) or background (0), based on predicted
probability. we analysed masks created at 0.4, 0.5, and 0.6 thresholds, focusing on
variance. Low variance indicates strong model confidence, signifying stable segmen-
tation across threshold adjustments. Reliable Kp, the size of pseudo-labels, is chosen
from low variance predictions, with post-processing applied to Kp prior to training.

• The batch, K, including Ku and Kp, is transferred from U to L, and the model is
fine-tuned with the updated L. These steps are iterated until AL iterations are met.
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Figure 1: Performance profiles for Random, AL, CEAL, and SSAL (ours) using Entropy.
Black and green dashed lines indicate the upper bound and 99% upper bound, respectively.
(a) shows the performance in (Mean DC) at each AL iteration; (b) presents the performance
of each method and the number of expert-labelled images utilised.

3. Results and Discussion

In Figure 1, our proposed SSAL Entropy method surpassed Random, AL Entropy, and
CEAL Entropy techniques, reaching 98% maximum accuracy with only 7% annotations,
while Random required 30% labelled images for comparable performance.
Similarly, SSAL Entropy achieved 99% accuracy with 10% annotations, compared to the
24% needed by AL Entropy, indicating a 14% reduction in annotation cost (equivalent to
294 fewer labelled images). CEAL approach maintained performance around 97% of the
upper bound throughout AL iterations. Table 1 displays our method’s performance against
the competitors.
Our method’s efficiency is due to its ability to select pseudo-labels from a range of images
representing most of the unlabelled set.
In conclusion, SSAL Entropy outperformed competing strategies, achieving high segmenta-
tion accuracy with significantly fewer annotations, thus offering substantial labelling cost
savings. Future work will enhance our method by integrating a verification network to eval-
uate the pseudo-label quality and exploring its generalisability to diverse medical imaging.

Table 1: Segmentation performance for SSAL Entropy compared to various AL methods at
selective percentages of annotations; performance is given as the ratio of upper bound.

Percentage of labels 0.06 0.08 0.10 0.15 0.20 0.25

SSAL Entropy 97% 98.7% 99% 99% 99% 99.3%
CEAL Entropy 96.7% 97.1% 97% 97.5% 97% 97%
AL Entropy 96.5% 98% 98% 98.7% 98.5% 99.3%
Random 93.5% 95.5% 96.7% 97% 97.6% 97.2%
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