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ABSTRACT

We study regret minimization for reinforcement learning (RL) in Latent Markov
Decision Processes (LMDPs) with context in hindsight. We design a novel
model-based algorithmic framework which can be instantiated with both a model-
optimistic and a value-optimistic solver. We prove an rO

`
?
MΓSAK

˘

regret
bound where M is the number of contexts, S is the number of states, A is the
number of actions, K is the number of episodes, and Γ ď S is the maximum
transition degree of any state-action pair. The regret bound only scales logarith-
mically with the planning horizon, thus yielding the first (nearly) horizon-free
regret bound for LMDP. Key in our proof is an analysis of the total variance of
alpha vectors, which is carefully bounded by a recursion-based technique. We
complement our positive result with a novel Ω

`
?
MSAK

˘

regret lower bound
with Γ “ 2, which shows our upper bound minimax optimal when Γ is a constant.
Our lower bound relies on new constructions of hard instances and an argument
based on the symmetrization technique from theoretical computer science, both
of which are technically different from existing lower bound proof for MDPs, and
thus can be of independent interest.

1 INTRODUCTION

One of the most popular model for Reinforcement Learning(RL) is Markov Decision Process
(MDP), in which the transitions and rewards are dependent only on current state and agent’s ac-
tion. In standard MDPs, the agent has full observation of the state, so the optimal policy for the
agent also only depends on states (called a history-independent policy). There is a line of research
on MDPs, and the minimax regret and sample complexity guarantees have been derived.

Another popular model is Partially Observable MDPs (POMDPs) in which the agent only has partial
observations of states. Even though the underlying transition is still Markovian, the lower bound for
sample complexity has been proven to be exponential in state and action sizes. This is in part because
the optimal policies for POMDPs are history-dependent.

In this paper we focus on a middle group between MDP and POMDP, namely Latent MDP (LMDP).
An LMDP can be viewed as a collection of MDPs sharing the same state and action spaces, but the
transitions and rewards may vary across them. Each MDP has a probability to be sampled at the
beginning of each episode, and it will not change during the episode. The agent needs to find a
policy which works well on these MDPs in an average sense. Empirically, LMDPs can be used for
a wide variety of applications (Yu et al., 2020; Iakovleva et al., 2020; Finn et al., 2018; Ramamoorthy
et al., 2013; Doshi-Velez & Konidaris, 2016; Yao et al., 2018). In general, there exists no policy that
is optimally on every single MDP simultaneously, so this task is definitely harder than MDPs. On
the other hand, LMDP is a special case of POMDP because for each MDP, the unobserved state is
static in each episode and the observable state is just the state of MDP.

Unfortunately, for generic LMDPs, there exists exponential sample complexity lower bound (Kwon
et al., 2021), so additional assumptions are needed to make the problem tractable. In this paper,
we consider the setting that after each episode ends, the agent will get the context on which MDP
it played with. Such information is often available. For example, in a maze navigation task, the
location of the goal state can be viewed as the context.
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In this setting, Kwon et al. (2021) obtained an rOp
?
MS2AHKq regret upper bound where M is the

number of contexts, S is the number of states, A is the number of actions, H is the planning horizon,
and K is the number of episodes. They did not study the regret lower bound.1 To benchmark this
result, the only available bound is rΘ

`
?
SAK

˘

from standard MDP by viewing MDP as a special
case of LMDP.

Comparing these two bounds, we find significant gaps: ① Is the dependency on M in LMDP nec-
essary? ② The bound for MDP is (nearly) horizon-free (no dependency on H), is the polynomial
dependency on H in LMDP necessary? ③ The dependency on the number of states is

?
S for MDP

but the bound in Kwon et al. (2021) for LMDP is S.

In this paper, we resolve the first two questions and partially answer the third.

1.1 MAIN CNTRIBUTIONS AND TECHNICAL NOVELTIES

We obtain the following new results:

‚ Near-optimal regret guarantee for LMDPs. We present an algorithm framework for LMDPs
with context in hindsight. This framework can be instantiated with a plug-in solver for planning
problems. We consider two types of solvers, one model-optimistic and one value-optimistic, and
prove their regret bound to be rO

`
?
MΓSAK

˘

where Γ ď S is the maximum transition degree
of any state-action pair. Compared with the result in Kwon et al. (2021), ours only requires the
total reward to be bounded whereas they required a bounded reward for each step. Furthermore,
we improve the H-dependence from

?
H to logarithmic, making our bound (nearly) horizon-free.

Lastly, our bound scales with
?
SΓ, which is strictly better than S in their bound.

The main technique of our model-optimistic algorithm is to use a Bernstein-type confidence set
on each position of transition dynamics, leading to a small Bellman error. The main difference
between our value-optimistic algorithm and Kwon et al. (2021)’s is that we use a bonus depending
on the variance of next-step values according to Bennett’s inequality, instead of using Bernstein’s
inequality. It helps propagate the optimism from the last step to the first step, avoiding the H-
dependency. We analyse these two solvers in a unified way, as their Bellman error are of the same
order.

‚ New regret lower bound for LMDPs. We obtain a novel Ω
`
?
MSAK

˘

regret lower bound for
LMDPs. This regret lower bound shows the dependency on M is necessary for LMDPs. Notably the
lower bound also implies rO

`
?
MΓSAK

˘

upper bound is optimal up to a
?
Γ factor. Furthermore,

our lower bound holds even for Γ “ 2, which shows our upper bound is minimax optimal for a class
of LMDPs with Γ “ Op1q.

Our proof relies on new constructions of hard instances, different from existing ones for
MDPs (Domingues et al., 2021). In particular, we use a two-phase structure to construct hard in-
stances (cf. Figure 1). Furthermore, the previous approaches for proving lower bounds of MDPs do
not work on LMDPs. For example, in the MDP instance of Domingues et al. (2021), the random-
ness comes from the algorithm and the last transition step before entering the good state or bad state.
In an LMDP, the randomness of sampling the MDP from multiple MDPs must also be considered.
Such randomness not only dilutes the value function by averaging over each MDP, but also divides
the pushforward measure (see Page 3 of Domingues et al. (2021)) into M parts. As a result, the M
terms in KL divergence in Equation (2) of Domingues et al. (2021) and that in Equation (10) cancels
out — the final lower bound does not contain M . To overcome this, we adopt the symmetrization
technique from theoretical computer science. This novel technique is helps generalize the bounds
from a single-party result to a multiple-party result, which may give rise to a tighter lower bound.

1Their original bound is rOp
?
MS2AH3Kq with the scaling that the reward from each step is bounded by

1. We rescale the reward to be bounded by 1{H in order to make the total reward from each episode bounded
by 1, which is the setting we consider.
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2 RELATED WORK

LMDPs. As shown by Steimle et al. (2021), in the general cases, optimal policies for LMDPs are
history dependent and P-SPACE hard to find. This is different from standard MDP cases where there
always exists an optimal history-independent policy. However, even finding the optimal history-
independent policy is NP-hard (Littman, 1994). Chades et al. (2012) provided heuristics for finding
the optimal history-independent policy.

Kwon et al. (2021) investigated the sample complexity and regret bounds of LMDPs. Specifically,
they presented an exponential lower-bound for general LMDPs without context in hindsign, and then
they derived an algorithm with polynomial sample complexity and sub-linear regret for two special
cases (with context in hindsight, or δ-strongly separated MDPs).

LMDP has been studied as a type of multi-task RL (Taylor & Stone, 2009; Brunskill & Li, 2013; Liu
et al., 2016; Hallak et al., 2015). It has been applied to model combinatorial optimization problems
(Zhou et al., 2022). There are also some related studies such as model transfer (Lazaric, 2012;
Zhang & Wang, 2021) and contextual decision processes (Jiang et al., 2017). In empirical works,
LMDP has has wide applications in multi-task RL (Yu et al., 2020), meta RL Iakovleva et al. (2020);
Finn et al. (2018), latent-variable MDPs (Ramamoorthy et al., 2013) and hidden parameter MDPs
(Doshi-Velez & Konidaris, 2016; Yao et al., 2018).

Regret Analysis for MDPs. LMDPs are generalizations of MDPs, so some previous approaches to
solving MDPs can provide insights. There is a long line of work on regret analysis for MDPs (Azar
et al., 2017; Dann et al., 2017; 2019; Zanette & Brunskill, 2019; Zhang et al., 2021a). In this
paper, we focus on time-homogeneous, finite horizon, undiscounted MDPs whose total reward is
upper-bounded by 1. Recent work showed in this setting the regret can be (nearly) horizon-free for
tabular MDPs Wang et al. (2020); Zhang et al. (2022; 2021a; 2020); Ren et al. (2021). Importantly
these results indicate RL may not be more difficult than bandits in the minimax sense. More recent
work generalized the horizon-free results to other MDP problems (Zhang et al., 2021b; Kim et al.,
2021; Tarbouriech et al., 2021; Zhou & Gu, 2022). However, all existing work with horizon-free
guarantees only considered single-environment problems. Ours is the first horizon-free guarantee
that goes beyond MDP.

Neu & Pike-Burke (2020) summarized up the “optimism in the face of uncertainty” (OFU) principle
in RL. They named two types of optimism: ① model-optimistic algorithms construct confidence sets
around empirical transitions and rewards, and select the policy with the highest value in the best
possible models in these sets. ② value-optimistic algorithms construct upper bounds on the optimal
value functions, and select the policy which maximizes this optimistic value function. Our paper
follows their idea and provide one algorithm for each type of optimism.

3 PROBLEM SETUP

In this section, we give a formal definition of Latent Markov Decision Processes (Latent MDPs).

Notations. For any event E , we use 1rEs to denote the indicator function, i.e., 1rEs “ 1 if E
holds and 1rEs “ 0 otherwise. For any set X , we use ∆pXq to denote the probability sim-
plex over X . For any positive integer n, we use rns to denote the set t1, 2, . . . , nu. For any
probability distribution P , we use supppP q “ }P }0 to denote the size of support of P , i.e.,
ř

x 1rP pxq ą 0s. There are three ways to denote a d-dimensional vector (function): sup-
pose p is any parameter, xppq “ px1ppq, x2ppq, . . . , xdppqq if the indices are natural numbers,
xp¨|pq “ pxpi1|pq, xpi2|pq, . . . , xpid|pqq and xpp¨q “ pxppi1q, xppi2q, . . . , xppidqq if the indices are
from the set I “ ti1, i2, . . . , idu. For any number q, we use xq to denote the vector pxq

1, x
q
2, . . . , x

q
dq.

For two d-dimensional vectors x and y, we use xJy “
ř

i xiyi to denote the inner product. If x is
a probability distribution, we use Vpx, yq “

ř

i xipyi ´ xJyq2 “ xJpy2q ´ pxJyq2 to denote the
empirical variance. We use ι “ 2 ln

`

2MSAHK
δ

˘

as a log term where δ is the confidence parameter.
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3.1 LATENT MARKOV DECISION PROCESS

Latent MDP (Kwon et al., 2021) is a collection of finitely many MDPs M “ tM1,M2, . . . ,MMu

where M “ |M|. All the MDPs share state set S, action set A and horizon H . Each MDP
Mm “ pS,A, H, νm, Pm, Rmq has its own initial state distribution νm P ∆pSq, transition model
Pm : SˆA Ñ ∆pSq and a deterministic reward function Rm : SˆA Ñ r0, 1s. Let w1, w2, . . . , wM

be the mixing weights of MDPs such that wm ą 0 for any m and
řM

m“1 wm “ 1.

Denote S “ |S|, A “ |A| and Γ “ maxm,s,a supp pPmp¨|s, aqq. Γ can be interpreted as the
maximum degree of each transition, which is a quantity our regret bound depends on. Note we
always have Γ ď S. In previous work, Lattimore & Hutter (2012) assumes Γ “ 2, and Fruit et al.
(2020) also has a regret bound that scales with Γ.

In the worst case, the optimal policy of an LMDP is history-dependent and is PSPACE-hard to find
(Corollary 1 and Proposition 3 in Steimle et al. (2021)). Aside from computational difficulty, storing
a history-dependent policy needs a space which is exponentially large, so it is generally impractical.
In this paper, we seek to provide a result for any fixed policy class Π. For example, we can have Π
to be the set of all history-independent, deterministic policies to alleviate the space issue. Following
previous work (Kwon et al., 2021), we assume access to oracles for planning and optimization. See
Section 4 for the formal definitions.

We consider an episodic, finite-horizon and undiscounted reinforcement learning problem on
LMDPs. In this problem, the agent interacts with the environment for K episodes. At the start
of every episode, one MDP Mm P M is randomly chosen with probability wm. Throughout the
episode, the true context is hidden. The agent can only choose actions based on the history infor-
mation up until current time. However, at the end of each episode (after H steps), the agent gets
revealed the true context m. This permits an unbiased model estimation for the LMDP. As in Cohen
et al. (2020), the central difficulty is to estimate the transition, we also focus on learning P only.
For simplicity, we assume that w, ν and R are known to the agent, because they can be estimated
easily. The assumption of deterministic rewards is also for simplicity. Our analysis can be extended
to unknown and bounded-support reward distributions.

3.2 VALUE FUNCTIONS, Q-FUNCTIONS AND ALPHA VECTORS

By convention, the expected reward of executing a policy on any MDP can be defined via value
function V and Q-function Q. Since for MDPs there is always an optimal policy which is history-
independent, V and Q only need the current state and action as parameters.

However, these notations fall short of history-independent policies under the LMDP setting. The
full information is encoded in the history, so here we use a more generalized definition called alpha
vector (following notations in Kwon et al. (2021)). For any time t ě 1, let ht “ ps, a, rq1:t´1st
be the history up until time t. Define Ht as the set of histories observable at time step t, and H :“
YH

t“1Ht as the set of all possible histories. We define the alpha vectors απ
mphq for pm,hq P rM sˆH

as follows:

απ
mphq :“ E

«

H
ÿ

t1“t

Rmpst1 , at1 q

ˇ

ˇ

ˇ

ˇ

ˇ

Mm, π, ht “ h

ff

,

απ
mph, aq :“ E

«

H
ÿ

t1“t

Rmpst1 , at1 q

ˇ

ˇ

ˇ

ˇ

ˇ

Mm, π, pht, atq “ ph, aq

ff

.

The alpha vectors are indeed value functions and Q-functions on each individual MDP.

Next, we introduce the concepts of belief state to show how to do planning in LMDP. Let bmphq

denote the belief state over M MDPs corresponding to a history h, i.e., the probability of the true
MDP being Mm conditioned on observing history h. We have the following recursion:

bmpsq “
wmνmpsq

řM
m1“1 wm1νm1 psq

and bmphars1q “
bmphqPmps1|s, aq1rr “ Rmps, aqs

řM
m1“1 bm1 phqPm1 ps1|s, aq1rr “ Rm1 ps, aqs

.

The value functions and Q-functions for LMDP is defined via belief states and alpha vectors:

V πphq :“ bphqJαπphq and Qπph, aq :“ bphqJαπph, aq.
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Direct computation (see Appendix B.1) gives

V πphq “
ÿ

aPA
πpa|hq

˜

bphqJRps, aq `
ÿ

s1PS,r

M
ÿ

m1“1

bm1 phqPm1 ps1|s, aq1rr “ Rm1 ps, aqsV πphars1q

¸

loooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooon

“Qπph,aq

.

So planning in LMDP can be viewed as planning in belief states. For the optimal history-dependent
policy, we can select

πphq “ argmax
aPA

˜

bphq
JRps, aq `

ÿ

s1PS,r

M
ÿ

m1“1

bm1 phqPm1 ps1
|s, aq1rr “ Rm1 ps, aqsV π

phars1
q

¸

, (1)

using dynamic programming in descending order of h’s length.

3.3 PERFORMANCE MEASURE.

We use cumulative regret to measure the algorithm’s performance. The optimal policy is π‹ “

argmaxπPΠ V π, which also does not know the context when interacting with the LMDP. Suppose
the agent interacts with the environment for K episodes, and for each episode k a policy πk is
played. The regret is defined as

RegretpKq :“ KV ‹ ´

K
ÿ

k“1

V πk

.

4 MAIN ALGORITHMS AND RESULTS

In this section, we present two algorithms, and show their minimax regret guarantee. The first is to
use a Bernstein confidence set on transition probabilities, which was first applied to SSP in Cohen
et al. (2020) to derive a horizon-free regret. This algorithm uses a bi-level optimization oracle: for
the inner layer, an oracle is needed to find the optimal policy inside Π under a given LMDP; for
the outer layer, an oracle finds the best transition inside the confidence set which maximizes the
optimal expected reward. The second is to adapt the Monotoic Value Propagation (MVP) algorithm
(Zhang et al., 2021a) to LMDPs. This algorithm requires an oracle to solve an LMDP with dynamic
bonus: the bonuses depends on the variances of the next-step alpha vector. Both algorithms enjoy
the following regret guarantee.
Theorem 1. For both the Bernstein confidence set for LMDP (Algorithm 1 combined with Algo-
rithm 2) and the Monotonic Value Propagation for LMDP (Algorithm 1 combined with Algorithm 3),
with probability at least 1 ´ δ, we have that

RegretpKq “ O

ˆ

?
MΓSAK ln

ˆ

MSAHK

δ

˙

` MS2A ln2

ˆ

MSAHK

δ

˙˙

As we have discussed, our result improves upen Kwon et al. (2021), and has only logarithmic depen-
dency on the planning horizon H . We also have a lower order which scales with S2. We note that
even in the standard MDP setting, it remains a major open problem how to obtain minimax optimal
regret bound with no lower order term (Zhang et al., 2021a).

Below we describe the details of our algorithms.

Algorithm framework. The two algorithms introduced in this section share a framework for es-
timating the model. The only difference between them is the solver for the exploration policy. The
framework is shown in Algorithm 1. Our algorithmic framework estimates the model (cf. Line 14
in Algorithm 1) and then selects a policy for the next round based on different oracles (cf. Line 18
in Algorithm 1). Following Zhang et al. (2021a), we use a doubling schedule for each state-action
pair in every MDP to update the estimation and exploration policy.

Common notations. Some of the notations have been introduced in Algorithm 1, but for reading
convenience we will repeat the notations here. For any notation, we put the episode number k in the
superscript. For any observation, we put the time step t in the subscript. For any model component,
we put the context m in the subscript. The alpha vector and value function for the optimistic model
are denoted using an extra “r”.
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Algorithm 1 Algorithmic Framework for Solving LMDPs

1: Input: Number of MDPs M , state space S, action space A, horizon H; policy class Π; confi-
dence parameter δ.

2: Set an arbitrary policy π1, initialize all n,N with 0 and set constant ι Ð 2 ln
`

2MSAHK
δ

˘

.
3: for k “ 1, 2, . . . ,K do
4: for t “ 1, 2, . . . ,H do
5: Observe state skt .
6: Choose action akt “ πkpskt q.
7: end for
8: Observe state skH`1 and get mk as hindsight.
9: for t “ 1, 2, . . . ,H do

10: Set nmkpskt , a
k
t q Ð nmkpskt , a

k
t q ` 1 and nmkpskt`1|skt , a

k
t q Ð nmkpskt`1|skt , a

k
t q ` 1.

11: if Di P N, nmkpskt , a
k
t q “ 2i then

12: Set TRIGGERED = TRUE.
13: Set Nmkpskt , a

k
t q Ð nmkpskt , a

k
t q.

14: Set pPmps1|skt , a
k
t q Ð

n
mk ps1

|skt ,a
k
t q

n
mk pskt ,a

k
t q

for all s1 P S.
15: end if
16: end for
17: if TRIGGERED then
18: Set πk`1 Ð Solver() (by Algorithm 2 or Algorithm 3).
19: else
20: Set πk`1 Ð πk.
21: end if
22: end for

4.1 BERNSTEIN CONFIDENCE SET OF TRANSITIONS FOR LMDPS

We introduce a model-optimistic approach by using a confidence set of transition probability.

Optimistic LMDP construction. The Bernstein confidence set is constructed as below:

Pk`1 “

$

&

%

rP :
ˇ

ˇ

ˇ

´

rPm ´ pP k
m

¯

ps1|s, aq

ˇ

ˇ

ˇ
ď 2

d

pP k
mps1|s, aqι

Nk
mps, aq

`
5ι

Nk
mps, aq

, @pm, s, a, sq P rMs ˆ S ˆ A ˆ S

,

.

-

. (2)

Notice that we do not change the reward function, so we still have the total reward of any trajectory
upper-bounded by 1.

Policy solver. The policy solver is in Algorithm 2. It solves a two-step optimization problem on
Line 2: for the inner problem, given a transition model rP and all other known quantities w, ν,R, it
needs a planning oracle to find the optimal policy; for the outer problem, it needs to find the optimal
transition model. For planning, we can use the method presented in Equation (1). For the outer
problem, we can use Extended Value Iteration as in Auer et al. (2008); Fruit et al. (2020); Filippi
et al. (2010); Cohen et al. (2020). For notational convenience, we denote the alpha vectors and value
functions calculated by rP k and πk as rαk and rV k.

Algorithm 2 Solver-L-Bernstein

1: Construct Pk`1 using Equation (2).
2: Find rP k`1 Ð argmax

rPPPk`1

´

maxπPΠ V π
rP

¯

.

3: Find πk`1 Ð argmaxπPΠ V π
rP k`1

.
4: Return: πk`1.

4.2 MONOTONIC VALUE PROPAGATION FOR LMDP

We introduce a value-optimistic approach by calculating a variance-dependent bonus. This tech-
nique was originally used to solve standard MDPs (Zhang et al., 2021a).
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Optimistic LMDP construction. The optimistic model contains a bonus function, which is in-
ductively defined using the next-step alpha vector. In episode k, or any policy π, assume the alpha
vector for any history with length t ` 1 is calculated, then for any history h with length t, the bonus
is defined as follows:

Bk
mph, aq :“ max

$

’

&

’

%

4

g

f

f

e

supp
´

pP k
mp¨|s, aq

¯

V
´

pP k
mp¨|s, aq, rαπ

mphar¨q

¯

ι

Nk
mps, aq

,
16Sι

Nk
mps, aq

,

/

.

/

-

, (3)

where r “ Rmps, aq. Next, the alpha vector of history h is:

rαπ
mphq :“ min

!

Rmps, aq ` Bk
mph, aq ` pP k

mp¨|s, aqJ
rαπ
mphar¨q, 1

)

, where a “ πphq. (4)

Finally, the value function is:

rV π :“
M
ÿ

m“1

ÿ

sPS
wmνmpsqrαπ

mpsq. (5)

Policy solver. The policy solver is in Algorithm 3. It finds the policy maximizing the optimistic
value, with a dynamic bonus function depending on the policy itself. This solver is tractable if we
only care about deterministic policies in Π. This restriction is reasonable because for the original
LMDP there always exists an optimal policy which is deterministic. Further, according to the proof
of Lemma 13, we only need a policy which has optimistic value no less than that of the optimal
value. Thus, there always exists an exhaustive search algorithm for this solver, which enumerates
each action at each history.

Algorithm 3 Solver-L-MVP
1: Use the optimistic model defined in Equation (3), Equation (4) and Equation (5).
2: Find πk`1 Ð argmaxπPΠ

rV π.
3: Return: πk`1.

5 REGRET LOWER BOUND

In this section, we present a regret lower bound for the unconstrained policy class, i.e., when Π
contains all possible history-dependent policies.

First, we note that this lower bound cannot be directly reduced to solving M MDPs (with the context
revealed at the beginning of each episode). Because simply changing the time of revealing the
context results in the change of the optimal policy and its value function.

At a high level, our approach is to transform the problem of context in hindsight into a problem of
essentially context being told beforehand, while not affecting the optimal value function. To achieve
this, we can use a small portion of states to encode the context at the beginning, then the optimal
policy can extract information from them and fully determine the context.

After the transformation, we can view the LMDP as a set of independent MDPs, so it is natural to
leverage results from MDP lower bounds. Intuitively, since the lower bound of MDP is

?
SAK, and

each MDP is assigned roughly K
M

episodes, the lower bound of LMDP is M
b

SA ¨ K
M

“
?
MSAK.

To formally prove this, we adopt the symmetrization technique from the theoretical computer science
community (Phillips et al., 2012; Woodruff & Zhang, 2014; Fischer et al., 2017; Vempala et al.,
2020). When an algorithm interacts with an LMDP, we can focus on each MDP, while viewing
the interactions with other MDPs as irrelevant – we hard code the other MDPs into the algorithm,
deriving an algorithm for an MDP. In other words, we can insert an MDP into any of the M positions,
and they are all symmetric to the algorithm’s view. So, the regret can be averagely distributed to
each MDP.

The main theorem is shown here, before we introduce the construction of LMDP instances. Its proof
is placed in Appendix B.4.
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Theorem 2. Assume that S ě 6, A ě 2 and M ď
X

S
2

\

!. For any algorithm π, there exists an LMDP
Mπ such that, for K ě rΩpM2 ` MSAq, its expected regret in Mπ after K episodes satisfies

RpMπ,π,Kq :“ E

«

K
ÿ

k“1

pV ‹ ´ V kq

ˇ

ˇ

ˇ

ˇ

ˇ

Mπ,π

ff

“ Ω
´?

MSAK
¯

.

Several remarks are in the sequel. ① This is the first regret lower bound for LMDPs with context in
hindsight. To the best of our knowledge, the introduction of the symmetrization technique is novel
to the construction of lower bounds in the field of RL. ② This lower bound matches the minimax
regret upper bound (Theorem 1) up to logarithm factors, because in the hard instance construction
Γ “ 2. For general cases, our upper bound is optimal up to a

?
Γ factor. ③ There is a limitation of

M , which could be at most
X

S
2

\

!, though an exponentially large M is not practical.

5.1 HARD INSTANCE CONSTRUCTION

Since M ď
X

S
2

\

!, we can always find an integer d1 such that d1 ď S
2

and M ď d1!. Since S ě 6 and
d1 ď S

2
, we can always find an integer d2 such that d2 ě 1 and 2d2 ´ 1 ď S ´ d1 ´ 2 ă 2d2`1 ´ 1.

We can construct a two-phase structure, each phase containing d1 and d2 steps respectively.

The hard instance uses similar components as the MDP instances in Domingues et al. (2021). We
construct a collection of LMDPs C :“ tMpℓ‹,a‹q : pℓ‹,a‹q P rLsM ˆ rAsMu, where we define
L :“ 2d2´1 “ ΘpSq. For a fixed pair pℓ‹,a‹q “ ppℓ‹

1, ℓ
‹
2, . . . , ℓ

‹
mq, pa‹

1, a
‹
2, . . . , a

‹
mqq, we construct

the LMDP Mpℓ‹,a‹q as follows.

5.1.1 THE LMDP LAYOUT

All MDPs in the LMDP share the same logical structure. Each MDP contains two phases: the
encoding phase and the guessing phase. The encoding phase contains d1 states, sufficient for en-
coding the context because M ď d1!. The guessing phase contains a number guessing game with
C :“ LA “ ΘpSAq choices. If the agent makes a correct choice, it receives an expected reward
slightly larger than 1

2
. Otherwise, it receives an an expected reward of 1

2
.

5.1.2 THE DETAILED MODEL

Now we give more details about our construction. Figure 1 shows an example of the model with
M “ 2, S “ 11, arbitrary A ě 2 and H ě 6.

States. The states in the encoding phase are e1, . . . , ed1
. The states in the guessing phase are

s1, . . . , sN where N “
řd2´1

i“0 2i “ 2d2 ´ 1. There is a good state g for reward and a terminal state
t. All the unused states can be ignored.

Transitions. The weights are equal, i.e., wm “ 1
M

. We assign a unique integer in m P rM s

to each MDP as a context. Each integer m is uniquely mapped to a permutation σpmq “

pσ1pmq, σ2pmq, . . . , σd1
pmqq. Then the initial state distribution is νmpeσ1pmqq “ 1. The transitions

for the first d1 steps are: for any pm, aq P rM s ˆ A,

Pmpeσi`1pmq | eσipmq, aq “ 1, @1 ď i ď d1 ´ 1; Pmps1 | eσd1
pmq, aq “ 1.

This means, in the encoding phase, whatever the agent does is irrelevant to the state sequence it
observes.

The guessing phase is a binary tree which we modify from Section 3.1 of Domingues et al. (2021)
(here we equal each action a to an integer in rAs): for any pm, aq P rM s ˆ A,

Pmps2i`pa mod 2q | si, aq “ 1, @1 ď i ď 2d2´1 ´ 1.

For the tree leaves L “ tsℓ : 2d2´1 ď ℓ ď 2d2 ´ 1u (notice that |L| “ L), we construct: for any
pm, ℓ, aq P rM s ˆ L ˆ A,

Pmpt | sℓ, aq “
1

2
´ ε1rℓ “ ℓ‹

m, a “ a‹
ms, Pmpg | sℓ, aq “

1

2
` ε1rℓ “ ℓ‹

m, a “ a‹
ms.
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Figure 1: Illustration of the class of hard LMDPs used in the proof of Theorem 2. Solid arrows are deter-
ministic transitions, while dashed arrows are probabilistic transitions. The probabilities are written aside of the
transitions. For any of the MDP, the agent first goes through an encoding phase, where it observes a sequence
of states regardless of what actions it take. The state sequence is different for each MDP, so the agent can fully
determine which context it is in after this phase. When in the guessing phase, the agent needs to travel through
a binary tree until it gets to some leaf. Exactly one of the leaves are “correct”, and only performing exactly one
of the actions at the correct leaf yields an expected higher reward.

Recall that we denote C “ LA as the effective number of choices. The agent needs to first find the
correct leaf by inputting its binary representation correctly, then choose the correct action.

The good state is temporary between the guessing phase and the terminal state: if the agent is at g
and makes any action, it enters t. The terminal state is self-absorbing. For any pm, aq P rM s ˆ A,

Pmpt | g, aq “ 1, Pmpt | t, aq “ 1.

All the unmentioned probabilities are 0. Clearly, this transition model guarantees that
supppPmp¨|s, aqq ď 2 for any pair of pm, s, aq P rM s ˆ S ˆ A.

The rewards. The only non-zero rewards are Rmpg, aq “ 1 for any pm, aq P rM s ˆ A. Since
this state-action pair is visited at most once in any episode, this reward guarantees that in a single
episode the cumulative reward is either 0 or 1.

6 CONCLUSION

In this paper, we present two different RL algorithms (one model-optimistic and one value-
optimistic) for LMDPs with context in hindsight, both achieving rOp

?
MΓSAKq regret. This is

the first (nearly) horizon-free regret bound for LMDP with context in hindsight. We also provide
a regret lower bound for this setting, which is Ωp

?
MSAKq. In this lower bound, Γ “ 2, so the

upper bound is minimax optimal for the subclass of LMDPs with constant Γ. One future direction
is to obtain a minimax regret bound for LMDPs for the Γ “ ΘpSq case. For example, can we derive
a regret lower bound of Ωp

?
MS2AKq? On the other hand, it is also possible to remove the

?
Γ

in our upper bound. We believe this will require properties beyond the standard Bellman-optimality
condition for standard MDPs.
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A TECHNICAL LEMMAS

Lemma 3 (Anytime Azuma, Theorem D.1 in Cohen et al. (2020)). Let pXnq8
n“1 be a martingale

difference sequence with respect to the filtration pFnq8
n“0 such that |Xn| ď B almost surely. Then

with probability at least 1 ´ δ,
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

Xi

ˇ

ˇ

ˇ

ˇ

ˇ

ď B

c

n ln
2n

δ
, @n ě 1.

Lemma 4 (Bennett’s Inequality, Theorem 3 in Maurer & Pontil (2009)). Let Z,Z1, . . . , Zn be i.i.d.
random variables with values in r0, bs and let δ ą 0. Define VrZs “ ErpZ ´ ErZsq2s. Then we
have

P

«
ˇ

ˇ

ˇ

ˇ

ˇ

ErZs ´
1

n

n
ÿ

i“1

Zi

ˇ

ˇ

ˇ

ˇ

ˇ

ą

c

2VrZs lnp2{δq

n
`

b lnp2{δq

n

ff

ď δ.

Lemma 5 (Theorem 4 in Maurer & Pontil (2009)). Let Z,Z1, . . . , Zn pn ě 2q be i.i.d. random
variables with values in r0, bs and let δ ą 0. Define Z̄ “ 1

n
Zi and V̂n “ 1

n

řn

i“1pZi ´ Z̄q2. Then
we have

P

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ErZs ´
1

n

n
ÿ

i“1

Zi

ˇ

ˇ

ˇ

ˇ

ˇ

ą

d

2V̂n lnp2{δq

n ´ 1
`

7b lnp2{δq

3pn ´ 1q

fi

fl ď δ.

Lemma 6 (Lemma 30 in Tarbouriech et al. (2021)). Let pMnqně0 be a martingale such that M0 “ 0
and |Mn ´ Mn´1| ď c for some c ą 0 and any n ě 1. Let Varn “

řn

k“1 ErpMk ´ Mk´1q2|Fk´1s

for n ě 0, where Fk “ σpX4, . . . ,Mkq. Then for any positive integer n and δ P p0, 2pnc2q1{ ln 2s,
we have that

P
”

|Mn| ě 2
a

2Varnplog2pnc2q ` lnp2{δqq ` 2
a

log2pnc2q ` lnp2{δq ` 2cplog2pnc2q ` lnp2{δqq

ı

ď δ.

Lemma 7 (Lemma 11 in Zhang et al. (2021a)). Let λ1, λ2, λ4 ě 0, λ3 ě 1 and i1 “ log2 λ1. Let
a1, a2, . . . , ai1 be non-negative reals such that ai ď λ1 and ai ď λ2

a

ai`1 ` 2i`1λ3 ` λ4 for any
1 ď i ď i1. Then we have that a1 ď maxtpλ2 `

a

λ2
2 ` λ4q2, λ2

?
8λ3 ` λ4u.

B SKIPPED PROOFS

B.1 OMITTED CALCULATION

Here we give the details for ommitted calculations.

V πphq “
ÿ

aPA

πpa|hq

˜

bphqJRps, aq `
ÿ

s1PS,r

M
ÿ

m“1

bmphqPmps1|s, aq1rr “ Rmps, aqsαπ
mphars1q

¸

“
ÿ

aPA

πpa|hq

˜

bphqJRps, aq `
ÿ

s1PS,r

M
ÿ

m1“1

bm1 phqPm1 ps1|s, aq1rr “ Rm1 ps, aqs

M
ÿ

m“1

bmphars1qαπ
mphars1q

¸

“
ÿ

aPA
πpa|hq

˜

bphqJRps, aq `
ÿ

s1PS,r

M
ÿ

m1“1

bm1 phqPm1 ps1|s, aq1rr “ Rm1 ps, aqsV πphars1q

¸

looooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooon

“Qπph,aq

.

B.2 UNIFIED ANALYSES OF ALGORITHM 1, ALGORITHM 2 AND ALGORITHM 3

In this subsection, we present the proof of Theorem 1 by showing each step. However, when en-
countered with some lemmas, the proofs of lemmas are skipped and deferred to Appendix B.3.
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Good events. The entire proof depends heavily on the good events defined below in Definition 8.
They show that the estimation of transition probability is very close to the true value. We show in
Lemma 9 that they happen with a high probability.
Definition 8 (Good events). For every episode k, define the following events:

Ωk
1 :“

$

&

%

@pm, s, a, s1q P rMs ˆ S ˆ A ˆ S,
ˇ

ˇ

ˇ

´

pP k
m ´ Pm

¯

ps1|s, aq

ˇ

ˇ

ˇ
ď 2

d

pP k
mps1|s, aqι

Nk
mps, aq

`
5ι

Nk
mps, aq

,

.

-

, (6)

Ωk
2 :“

#

@pm, s, a, s1q P rMs ˆ S ˆ A ˆ S,
ˇ

ˇ

ˇ

´

pP k
m ´ Pm

¯

ps1|s, aq

ˇ

ˇ

ˇ
ď

d

2Pmps1|s, aqι

Nk
mps, aq

`
ι

Nk
mps, aq

+

. (7)

Further, define Ω1 :“ XK
k“1Ω

k
1 and Ω2 :“ XK

k“1Ω
k
2 .

Lemma 9. PrΩ1s,PrΩ2s ě 1 ´ δ.

Assume that good events hold, then we have the following useful property:

Lemma 10. Conditioned on Ω1, we have that for any pm, s, a, kq P rM s ˆ S ˆ A ˆ rKs, and any
S-dimensional vector α such that }α}

8
ď 1,

ˇ

ˇ

ˇ

´

pP k
m ´ Pm

¯

p¨|s, aqJα
ˇ

ˇ

ˇ
ď 2

g

f

f

e

supp
´

pPmp¨|s, aq

¯

V
´

pPmp¨|s, aq, α
¯

ι

Nk
mps, aq

`
5Sι

Nk
mps, aq

.

Similarly, conditioned on Ω2, we have that,

ˇ

ˇ

ˇ

´

pP k
m ´ Pm

¯

p¨|s, aqJα
ˇ

ˇ

ˇ
ď

d

2supp pPmp¨|s, aqqV pPmp¨|s, aq, αq ι

Nk
mps, aq

`
Sι

Nk
mps, aq

.

Trigger property. Let K be the set of indexes of episodes in which no update is triggered. By the
update rule, it is obvious that

ˇ

ˇKC
ˇ

ˇ ď MSAplog2pHKq ` 1q ď MSAι. Let t0pkq be the first time
an update is triggered in the k-th episode if there is an update in this episode and otherwise H ` 1.
Define X0 “ tpk, t0pkqq : k P KCu and X “ tpk, tq : k P KC , t0pkq `1 ď t ď Hu. We will study
quantities multiplied by the trigger indicator 1rpk, tq R X s, which we denote using an extra “q”.

We will encounter a special type of summation, so we state it here.

Lemma 11. Let twk
t ě 0 : pk, tq P rKs ˆ rHsu be a group of weights, then

K
ÿ

k“1

H
ÿ

t“1

1rpk, tq R X s

Nk
mkpskt , a

k
t q

ď 3MSAι,
K
ÿ

k“1

H
ÿ

t“1

d

wk
t 1rpk, tq R X s

Nk
mkpskt , a

k
t q

ď

g

f

f

e3MSAι
K
ÿ

k“1

H
ÿ

t“1

wk
t 1rpk, tq R X s.

B.2.1 OPTIMISM

As a standard approach, we need to show that both Algorithm 2 and Algorithm 3 have optimism in
value functions.

For Algorithm 2, it is straightforward. For each episode k, we choose the optimistic transition rP k

with the maximum possible value. Lemma 9 shows that with probability at least 1 ´ δ, Ω1 holds,
hence the true transition P is inside the confidence set Pk for all k P rKs. Therefore, rV k ě V ‹.

Algorithm 3 relies on an important function introduced by Zhang et al. (2021a), so we cite it here:

Lemma 12 (Adapted from Lemma 14 in Zhang et al. (2021a)). For any fixed dimension D and
two constants c1, c2 satisfying c21 ď c2, let f : ∆prDsq ˆ RD ˆ R ˆ R Ñ R with fpp, v, n, ιq “

pv ` max

"

c1

b

Vpp,vqι

n
, c2

ι
n

*

. Then for all p P ∆prDsq, }v}8 ď 1 and n, ι ą 0,

1. fpp, v, n, ιq is non-decreasing in v, i.e.,

@v, v1 such that }v}8, }v1}8 ď 1, v ď v1, it holds that fpp, v, n, ιq ď fpp, v1, n, ιq;

14



2. fpp, v, n, ιq ě pv ` c1
2

b

Vpp,vqι

n
` c2

2
ι
n

.

Due to the complex structure of LMDP, we cannot prove the strong optimism in Zhang et al. (2021a).
This is because in LMDP, the optimal policy cannot maximize all alpha vectors simultaneously,
hence the optimal alpha vectors are not unique. As Algorithm 2, we can only show the optimism at
the first step, which is stated in Lemma 13.
Lemma 13 (Optimism of Algorithm 3). Algorithm 3 satisfies that: Conditioned on Ω1, for any
episode k P rKs, rV k ě V ‹.

B.2.2 REGRET DECOMPOSITION

We introduce the Bellman error here. It contributes to the main order term in the regret.
Lemma 14 (Bellman error). Both Algorithm 2 and Algorithm 3 satisfy the following Bellman error
bound: Conditioned on Ω1 and Ω2, for any pm,h, a, kq P rM s ˆ H ˆ A ˆ rKs,

rαk
mph, aq ´ Rmps, aq ´ Pmp¨|s, aqJ

rαk
mphar¨q

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

①

ď mintβk
mph, aq, 1u, (8)

where r “ Rmps, aq and

βk
mph, aq “ 7

d

ΓV pPmp¨|s, aq, rαk
mphar¨qq ι

Nk
mps, aq

`
30Sι

Nk
mps, aq

.

Throughout the proof, we denote qβk
t “ βk

mkphk
t , a

k
t q1rpk, tq R X s.

Assume that optimism holds, then it is more natural to bound rV k´V πk

instead of V ‹´V πk

, because
the underlying policies are the same for the former case. With simple manipulation, we decompose
the regret into X1 the Monte Carlo estimation term for the optimistic value, X2 the Monte Carlo
estimation term for the true value, X3 the model estimation error, X4 the Bellman error (main order
term), and

ˇ

ˇKC
ˇ

ˇ the correction term for 1rpk, tq R X s.

RegretpKq “

K
ÿ

k“1

´

V ‹ ´ V πk
¯

ď

K
ÿ

k“1

´

rV k ´ V πk
¯

“

K
ÿ

k“1

´

rV k ´ rαk
mkpsk1q

¯

looooooooooomooooooooooon

X1

`

K
ÿ

k“1

˜

rαk
mkpsk1q ´

H
ÿ

t“1

qrkt

¸

`

K
ÿ

k“1

˜

H
ÿ

t“1

qrkt ´ V πk

¸

looooooooooomooooooooooon

X2

(i)
“ X1 ` X2 `

K
ÿ

k“1

H
ÿ

t“1

`

qαk
mkphk

t q ´ qrkt ´ Pmkp¨|skt , a
k
t qJ

rαk
mkphk

t a
k
t r

k
t ¨q1rpk, tq R X s

˘

looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

ďqβk
t

`

K
ÿ

k“1

H
ÿ

t“1

`

Pmkp¨|skt , a
k
t qJ

qαk
mkphk

t a
k
t r

k
t ¨q ´ qαk

mkphk
t`1q

˘

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

X3

`

K
ÿ

k“1

H
ÿ

t“1

Pmkp¨|skt , a
k
t qJ

rαk
mkphk

t a
k
t r

k
t ¨qp1rpk, tq R X s ´ 1rpk, t ` 1q R X sq

(ii)
ď X1 ` X2 ` X3 `

K
ÿ

k“1

H
ÿ

t“1

qβk
t

loooomoooon

X4

`
ÿ

k,t“t0pkq

rP k
mkp¨|skt , a

k
t qJ

rαk
mkphk

t a
k
t r

k
t ¨q

(iii)
ď X1 ` X2 ` X3 ` X4 `

ˇ

ˇKC
ˇ

ˇ ,

where (i) is by pk, 1q P X so rαk
mkpsk1q “ qαk

mkpsk1q; (ii) follows by Lemma 14 and checking the
difference between 1rpk, tq R X s and 1rpk, t ` 1q R X s; (iii) is from the fact that rαk ď 1, and the
definition of t0pkq and K.
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B.2.3 BOUNDING EACH TERM

We start from the easier terms X1 and X2.

Lemma 15. With probability at least 1 ´ δ, we have that X1 ď
?
Kι.

Lemma 16. With probability at least 1 ´ δ, we have that X2 ď
?
Kι.

X3 is a martingale difference sequence. However, if we want to avoid polynomial dependency of H ,
we cannot apply the Azuma’s inequality which scales as

?
H . Instead, we use a variance-dependent

martingale bound, and this changes X3 into a lower-order term of X4.

Lemma 17. With probability at least 1 ´ δ, we have that X3 ď 2
?
2X4ι ` 5ι.

Here we show the bound for X4 and its proof first, next we prove Theorem 1. When bounding X4,
we are faced with another quantity X5, which is the summation of variances. We do not bound X5

explicitly. Instead, we derive a relation between X5 and X4 (Lemma 19), so finally we solve an
inequality of X4.

Lemma 18. Conditioned on Ω1 and Ω2, with probability at least 1 ´ δ, we have that X4 ď

46
?
MS2AKι ` 947MS2Aι2.

Proof. From Lemma 14 and Lemma 11, we have that

X4 ď 13

g

f

f

f

f

e

MΓSAι2
K
ÿ

k“1

H
ÿ

t“1

V
`

Pmkp¨|skt , a
k
t q, rαk

mkphk
t a

k
t r

k
t ¨q

˘

1rpk, tq R X s

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

X5

` 90MS2Aι2.

Applying Lemma 19, using
?
x ` y ď

?
x`

?
y, and loosening the constants, we have the following

inequality:

X4 ď 23
?
MΓSAKι2 ` 209MS2Aι2 ` 23

?
MΓSAι2 ¨

a

X4.

Since x ď a ` b
?
x implies x ď b2 ` 2a, we finally have

X4 ď 46
?
MΓSAKι ` 947MS2Aι2.

This completes the proof.

We use the technique of higher-order variance expansion used by (Zhang et al., 2021a) to draw the
relation between X5 and X4.

Lemma 19. Conditioned on Ω1 and Ω2, with probability at least 1 ´ δ, we have that X5 ď 3pK `

X4q ` 83ι.

B.2.4 PROOF OF THEOREM 1

Finally, we are able to prove the main theorem.

Proof. From Lemma 15, Lemma 16, Lemma 17 and property of K, we have that, with probability
at least 1 ´ 3δ,

RegretpKq ď 2
?
Kι ` 2

a

2X4ι ` 5ι ` X4 ` MSAι.

Plugging in Lemma 18, using
?
x ` y ď

?
x `

?
y, we finally have

RegretpKq ď 68
?
MS2AKι ` 1041MS2Aι2

holds with probability at least 1 ´ 6δ (using Lemma 9). Rescaling δ Ð δ
6

completes the proof.
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B.3 PROOF OF THE LEMMAS USED IN THE MINIMAX REGRET GUARANTEE

Lemma 9. PrΩ1s,PrΩ2s ě 1 ´ δ.

Proof. From Lemma 5 we have that, for any fixed pm, s, a, s1, kq P rM s ˆ S ˆ A ˆ S ˆ rKs and
2 ď Nk

mps, aq ď HK,

P

»

–

ˇ

ˇ

ˇ

´

pP k
m ´ Pm

¯

ps1|s, aq

ˇ

ˇ

ˇ
ą

d

2 pP k
mps1|s, aqι1

Nk
mps, aq ´ 1

`
7ι1

3pNk
mps, aq ´ 1q

fi

fl ď
δ

M ¨ S ¨ A ¨ S ¨ K ¨ HK
,

where ι1 “ ln
´

2MS2AHK2

δ

¯

ď ι. From 1
x´1

ď 2
x

when x ě 2 (Nk
mps, aq “ 1 is trivial), and

applying union bound over all possible events, we have that PrXK
k“1Ω

k
1s ě 1 ´ δ.

From Lemma 4 we have that, for any fixed pm, s, a, s1, kq P rM s ˆ S ˆ A ˆ S ˆ rKs and 1 ď

Nk
mps, aq ď HK,

P

«

ˇ

ˇ

ˇ
p pPm ´ Pmqps1|s, aq

ˇ

ˇ

ˇ
ą

d

2Pmps1|s, aqι1

Nk
mps, aq

`
ι1

Nk
mps, aq

ff

ď
δ

M ¨ S ¨ A ¨ S ¨ K ¨ HK
.

By taking a union bound over all possible events, we have that PrXK
k“1Ω

k
2s ě 1 ´ δ.

Lemma 10. Conditioned on Ω1, we have that for any pm, s, a, kq P rM s ˆ S ˆ A ˆ rKs, and any
S-dimensional vector α such that }α}

8
ď 1,

ˇ

ˇ

ˇ

´

pP k
m ´ Pm

¯

p¨|s, aqJα
ˇ

ˇ

ˇ
ď 2

g

f

f

e

supp
´

pPmp¨|s, aq

¯

V
´

pPmp¨|s, aq, α
¯

ι

Nk
mps, aq

`
5Sι

Nk
mps, aq

.

Similarly, conditioned on Ω2, we have that,

ˇ

ˇ

ˇ

´

pP k
m ´ Pm

¯

p¨|s, aqJα
ˇ

ˇ

ˇ
ď

d

2supp pPmp¨|s, aqqV pPmp¨|s, aq, αq ι

Nk
mps, aq

`
Sι

Nk
mps, aq

.

Proof. We fix the episode number k and omit it for simplicity.
ˇ

ˇ

ˇ

´

pPm ´ Pm

¯

p¨|s, aqJα
ˇ

ˇ

ˇ

(i)
“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

s1PS

´

pPm ´ Pm

¯

ps1|s, aq

´

αps1q ´ pPmp¨|s, aqJα
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

s1PS

ˇ

ˇ

ˇ

pPm ´ Pm

ˇ

ˇ

ˇ
ps1|s, aq

ˇ

ˇ

ˇ
αps1q ´ pPmp¨|s, aqJα

ˇ

ˇ

ˇ

(ii)
ď

ÿ

s1PS

¨

˝2

d

pPmps1|s, aqι

Nmps, aq
`

5ι

Nmps, aq

˛

‚

ˇ

ˇ

ˇ
αps1q ´ pPmp¨|s, aqJα

ˇ

ˇ

ˇ

ď 2

c

ι

Nmps, aq

ÿ

s1PS
1

”

pPmps1|s, aq ą 0
ı

b

pPmps1|s, aq

ˇ

ˇ

ˇ
αps1q ´ pPmp¨|s, aqJα

ˇ

ˇ

ˇ
`

5Sι

Nmps, aq

(iii)
ď 2

c

ι

Nmps, aq

d

ÿ

s1PS
1

”

pPmps1|s, aq ą 0
ı

¨
ÿ

s1PS

pPmps1|s, aq

´

αps1q ´ pPmp¨|s, aqJα
¯2

`
5Sι

Nmps, aq

“ 2

g

f

f

e

supp
´

pPmp¨|s, aq

¯

V
´

pPmp¨|s, aq, α
¯

ι

Nmps, aq
`

5Sι

Nmps, aq
,

where (i) comes from that Pmp¨|s, aqJα is a constant and pP , P are two distributions; (ii) is by the
definition of Ωk

1 (Equation (6)) and }α}
8

ď 1; (iii) is from the Cauchy-Schwarz inequality. The
second part is similar.
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Lemma 11. Let twk
t ě 0 : pk, tq P rKs ˆ rHsu be a group of weights, then

K
ÿ

k“1

H
ÿ

t“1

1rpk, tq R X s

Nk
mkpskt , a

k
t q

ď 3MSAι,
K
ÿ

k“1

H
ÿ

t“1

d

wk
t 1rpk, tq R X s

Nk
mkpskt , a

k
t q

ď

g

f

f

e3MSAι
K
ÿ

k“1

H
ÿ

t“1

wk
t 1rpk, tq R X s.

Proof. From Algorithm 1 and the definition of K, we have that for any i P N, pm, s, aq P rM s ˆ

S ˆ A,
K
ÿ

k“1

H
ÿ

t“1

1rpmk, skt , a
k
t q “ pm, s, aq, Nk

mps, aq “ 2i, pk, tq R X s ď

"

2, i “ 0,
2i, i ě 1.

So
K
ÿ

k“1

H
ÿ

t“1

1rpk, tq R X s

Nk
mkpskt , a

k
t q

“
ÿ

pm,s,aqPrMsˆSˆA

tlog2pHKqu
ÿ

i“0

K
ÿ

k“1

H
ÿ

t“1

1rpmk, skt , a
k
t q “ pm, s, aq, Nk

mps, aq “ 2is
1rpk, tq R X s

2i

ď
ÿ

pm,s,aqPrMsˆSˆA

˜

2 `

tlog2pHKqu
ÿ

i“1

1

¸

ď 3MSAι.

Therefore,
K
ÿ

k“1

H
ÿ

t“1

d

wk
t 1rpk, tq R X s

Nk
mkpskt , a

k
t q

(i)
“

K
ÿ

k“1

H
ÿ

t“1

d

wk
t 1rpk, tq R X s ¨

1rpk, tq R X s

Nk
mkpskt , a

k
t q

(ii)
ď

g

f

f

e

˜

K
ÿ

k“1

H
ÿ

t“1

wk
t 1rpk, tq R X s

¸˜

K
ÿ

k“1

H
ÿ

t“1

1rpk, tq R X s

Nk
mkpskt , a

k
t q

¸

ď

g

f

f

e3MSAι
K
ÿ

k“1

H
ÿ

t“1

wk
t 1rpk, tq R X s,

where (i) is by the property of indicator function; (ii) is by the Cauchy-Schwarz inequality.

Lemma 13 (Optimism of Algorithm 3). Algorithm 3 satisfies that: Conditioned on Ω1, for any
episode k P rKs, rV k ě V ‹.

Proof. We first argue that for any policy π and any episode k, we have that rV π
Mk ě V π. Throughout

the proof, the episode number k is fixed and omitted in any superscript. We proceed the proof
for h in the order HH ,HH´1, . . . ,H1, using induction. Recall that for any h P HH`1 we define
rαπ
mph, aq “ απ

mph, aq “ 0. Now suppose for time step t, we already have rαπ
mph1, aq ě απ

mph1, aq

for any h1 P Ht`1, then rαπ
mph1q “ rαπ

mph1, πph1qq ě απ
mph1, πph1qq “ απ

mph1q. For any h P Ht,

rαπ
mph, aq

(i)
“ min

!

Rmps, aq ` Bmph, aq ` pPmp¨|s, aqJ
rαπ
mphar¨q, 1

)

“ min

$

’

’

&

’

’

%

Rmps, aq ` max

$

’

&

’

%

4

g

f

f

e

supp
´

pPmp¨|s, aq

¯

V
´

pPmp¨|s, aq, rαπ
mphar¨q

¯

ι

Nmps, aq
,

16Sι

Nmps, aq

,

/

.

/

-

` pPmp¨|s, aqJ
rαπ
mphar¨q, 1

,

/

/

.

/

/

-
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(ii)
“ min

!

Rmps, aq ` f
´

pPmp¨|s, aq, rαπ
mphar¨q, Nmps, aq, ι

¯

, 1
)

(iii)
ě min

!

Rmps, aq ` f
´

pPmp¨|s, aq, απ
mphar¨q, Nmps, aq, ι

¯

, 1
)

(iv)
ě min

$

’

’

&

’

’

%

Rmps, aq ` pPmp¨|s, aqJαπ
mphar¨q

` 2

g

f

f

e

supp
´

pPmp¨|s, aq

¯

V
´

pPmp¨|s, aq, απ
mphar¨q

¯

ι

Nmps, aq
`

8Sι

Nmps, aq
, 1

,

/

/

.

/

/

-

(v)
ě min

␣

Rmps, aq ` Pmp¨|s, aqJαπ
mphar¨q, 1

(

“ απ
mph, aq,

where (i) is by taking r “ Rmps, aq; (ii) is by recognizing c1 “ 4

c

supp
´

pPmp¨|s, aq

¯

, c2 “ 16S

in Lemma 12, which satisfy c21 ď c2; (iii) and (iv) come by successively applying the first and
second property in Lemma 12; (v) is an implication of Lemma 10, conditioning on Ω1 and taking
α “ απ

mphar¨q.

The proof is completed by the fact that πk “ argmaxπPΠ
rV π, hence rV k ě rV π‹

ě V ‹.

Lemma 14 (Bellman error). Both Algorithm 2 and Algorithm 3 satisfy the following Bellman error
bound: Conditioned on Ω1 and Ω2, for any pm,h, a, kq P rM s ˆ H ˆ A ˆ rKs,

rαk
mph, aq ´ Rmps, aq ´ Pmp¨|s, aqJ

rαk
mphar¨q

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

①

ď mintβk
mph, aq, 1u, (8)

where r “ Rmps, aq and

βk
mph, aq “ 7

d

ΓV pPmp¨|s, aq, rαk
mphar¨qq ι

Nk
mps, aq

`
30Sι

Nk
mps, aq

.

Proof. Here we decompose the Bellman error in a generic way. We use rP for the transition and B

for the bonus used in the optimistic model. For Algorithm 2, B “ 0; while for Algorithm 3, rP “ pP .

The upper bound of 1 is trivial. Fix any pm,h, a, kq P rM s ˆ H ˆ A ˆ rKs, then

① “ Rmps, aq ` Bk
mph, aq ` rP k

mp¨|s, aqJ
rαk
mphar¨q ´ Rmps, aq ´ Pmp¨|s, aqJ

rαk
mphar¨q

“ Bk
mph, aq `

´

rP k
m ´ Pm

¯

p¨|s, aqJ
rαk
mphar¨q.

Next we proceed in two ways.

For Algorithm 2, we utilize Lemma 20 and a similar argument as Lemma 10. It gives

①Bernstein ď 4

d

supp pPmp¨|s, aqqV pPmp¨|s, aq, αq ι

Nk
mps, aq

`
30Sι

Nk
mps, aq

.

For Algorithm 3, we plug in the definition of B and use Lemma 10. It gives

①MVP ď 4

g

f

f

e

supp
´

pP k
mp¨|s, aq

¯

V
´

pP k
mp¨|s, aq, rαk

mphar¨q

¯

ι

Nk
mps, aq

`

d

2supp pPmp¨|s, aqqV pPmp¨|s, aq, rαk
mphar¨qq ι

Nk
mps, aq

`
17Sι

Nk
mps, aq

.
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Next we bound V
´

pP k
mp¨|h, aq, rαk

mphar¨q

¯

.

V
´

pP k
mp¨|h, aq, rαk

mphar¨q

¯

“
ÿ

s1PS

pP k
mps1|s, aq

´

rαk
mphars1q ´ pP k

mp¨|s, aqJ
rαk
mphar¨q

¯2

(i)
ď

ÿ

s1PS

pP k
mps1|s, aq

`

rαk
mphars1q ´ Pmp¨|s, aqJ

rαk
mphar¨q

˘2

(ii)
ď

ÿ

s1PS

˜

Pmps1|s, aq `

d

2Pmps1|s, aqι

Nk
mps, aq

`
ι

Nk
mps, aq

¸

`

rαk
mphars1q ´ Pmp¨|s, aqJ

rαk
mphar¨q

˘2

ď
ÿ

s1PS

ˆ

3

2
Pmps1|s, aq `

2ι

Nk
mps, aq

˙

`

rαk
mphars1q ´ Pmp¨|s, aqJ

rαk
mphar¨q

˘2

ď
3

2
V
`

Pmp¨|s, aq, rαk
mphar¨q

˘

`
2Sι

Nk
mps, aq

,

where (i) is by that z‹ “
ř

i pixi minimizes fpzq “
ř

i pipxi ´ zq2; (ii) is by Ω2. Finally, using
?
x ` y ď

?
x `

?
y and supp

´

pP k
mp¨|s, aq

¯

ď supp pPmp¨|s, aqq, we have

①MVP ď 7

d

supp pPmp¨|s, aqqV pPmp¨|s, aq, rαk
mphar¨qq ι

Nk
mps, aq

`
23Sι

Nk
mps, aq

.

Therefore, setting

βk
mph, aq “ 7

d

ΓV pPmp¨|s, aq, rαk
mphar¨qq ι

Nk
mps, aq

`
30Sι

Nk
mps, aq

completes the proof.

Lemma 15. With probability at least 1 ´ δ, we have that X1 ď
?
Kι.

Proof. By definition, V k “
řM

m“1

ř

sPS wmνmpsqαk
mpsq. Thus, αk

mkpsk1q is a random vari-
able with mean V k. Also, αk

mkpsk1q is measurable with respect to Ūk´1. Using Lemma 3 and
ˇ

ˇαk
mkpsk1q ´ V k

ˇ

ˇ ď 1, we have

P
”

X1 ą
?
Kι

ı

ď δ.

This completes the proof.

Lemma 16. With probability at least 1 ´ δ, we have that X2 ď
?
Kι.

Proof. By definition, X2 ď
řK

k“1

´

řH

t“1 r
k
t ´ V πk

¯

. From Monte Carlo simulation,

E
”

řH

t“1 r
k
t

ı

“ V πk

. Also,
řH

t“1 r
k
t is measurable with respect to Ūk´1. Using Lemma 3 and

ˇ

ˇ

ˇ

řH

t“1 r
k
t ´ V πk

ˇ

ˇ

ˇ
ď 1, we have

P

«

K
ÿ

k“1

˜

H
ÿ

t“1

rkt ´ V πk

¸

ą
?
Kι

ff

ď δ.

This completes the proof.

Lemma 17. With probability at least 1 ´ δ, we have that X3 ď 2
?
2X4ι ` 5ι.
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Proof. Observe that 1rpk, t ` 1q R X s ď 1rpk, tq R X s, so

X3 ď

K
ÿ

k“1

H
ÿ

t“1

`

Pmkp¨|skt , a
k
t qJ

rαk
mkphk

t a
k
t r

k
t ¨q ´ rαk

mkphk
t`1q

˘

1rpk, tq R X s.

This is a martingale. By taking c “ 1 in Lemma 6, we have

P
”

X3 ą 2
a

2X4ι ` 5ι
ı

ď δ.

This completes the proof.

Lemma 19. Conditioned on Ω1 and Ω2, with probability at least 1 ´ δ, we have that X5 ď 3pK `

X4q ` 83ι.

Proof. For any non-negative integer d, define

F pdq :“
K
ÿ

k“1

H
ÿ

t“1

´

Pmkp¨|skt , a
k
t qJ

`

rαk
mkphk

t a
k
t r

k
t ¨q

˘2d

´
`

rαk
mkphk

t`1q
˘2d¯

1rpk, tq R X s,

Gpdq :“
K
ÿ

k“1

H
ÿ

t“1

V
´

Pmkp¨|skt , a
k
t q,

`

rαk
mkphk

t a
k
t r

k
t ¨q

˘2d¯

1rpk, tq R X s.

Then X5 “ Gp0q. Direct computation gives that

Gpdq

“

K
ÿ

k“1

H
ÿ

t“1

ˆ

Pmkp¨|skt , a
k
t q
`

rαk
mkphk

t a
k
t r

k
t ¨q

˘2d`1

´

´

Pmkp¨|skt , a
k
t q
`

rαk
mkphk

t a
k
t r

k
t ¨q

˘2d¯2
˙

1rpk, tq R X s

(i)
ď

K
ÿ

k“1

H
ÿ

t“1

´

Pmkp¨|skt , a
k
t q
`

rαk
mkphk

t a
k
t r

k
t ¨q

˘2d`1

´
`

rαk
mkphk

t`1q
˘2d`1¯

1rpk, tq R X s `
`

rαk
mkphk

H`1q
˘2d`1

looooooooooomooooooooooon

“0

`

K
ÿ

k“1

H
ÿ

t“1

´

`

rαk
mkphk

t q
˘2d`1

´
`

Pmkp¨|skt , a
k
t qrαk

mkphk
t a

k
t r

k
t ¨q

˘2d`1¯

1rpk, tq R X s ´
`

rαk
mkpsk1q

˘2d`1

loooooooomoooooooon

ď0

(ii)
ď F pd ` 1q ` 2d`1

K
ÿ

k“1

H
ÿ

t“1

max
␣

rαk
mkphk

t , a
k
t q ´ Pmkp¨|skt , a

k
t qJ

rαk
mkphk

t a
k
t r

k
t ¨q, 0

(

1rpk, tq R X s

“ F pd ` 1q ` 2d`1
K
ÿ

k“1

H
ÿ

t“1

max
␣

rαk
mkphk

t q ´ Pmkp¨|skt , a
k
t qJ

rαk
mkphk

t a
k
t r

k
t ¨q, 0

(

1rpk, tq R X s

(iii)
ď F pd ` 1q ` 2d`1

K
ÿ

k“1

H
ÿ

t“1

pqrkt ` qβk
t q

(iv)
ď F pd ` 1q ` 2d`1pK ` X4q,

where (i) is by convexity of function x2d

; (ii) is by x2d

´ y2
d

ď 2d maxtx ´ y, 0u for x, y P

r0, 1s; (iii) comes from Lemma 14; (iv) is by the assumption that reward within an episode is upper-
bounded by 1 and the definiton of X4.

For a fixed d, F pdq is a martingale. By taking c “ 1 in Lemma 6, we have

P
”

F pdq ą 2
a

2Gpdqplog2pHKq ` lnp2{δqq ` 5plog2pHKq ` lnp2{δqq

ı

ď δ.

Taking δ1 “ δ{plog2pHKq ` 1q, using x ě lnpxq ` 1 and finally swapping δ and δ1, we have that

P
”

F pdq ą 2
a

2Gpdqp2 log2pHKq ` lnp2{δqq ` 5p2 log2pHKq ` lnp2{δqq

ı

ď
δ

log2pHKq ` 1
.
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Taking a union bound over d “ 1, 2, . . . , log2pHKq, we have that with probability at least 1 ´ δ,

F pdq ď 4
a

pF pd ` 1q ` 2d`1pK ` X4qqι ` 10ι.

From Lemma 7, taking λ1 “ HK, λ2 “ 4
?
ι, λ3 “ K ` X4, λ4 “ 10ι, we have that

F p1q ď maxtp4
?
ι `

?
26ιq2, 8

a

2pK ` X4qι ` 10ιu
(i)
ď K ` X4 ` 83ι,

where (i) uses
?
xy ď

x`y
2

and maxtx, yu ď x ` y for x, y ě 0. Hence

X5 “ Gp0q ď F p1q ` 2pK ` X4q ď 3pK ` X4q ` 83ι.

This completes the proof.

Lemma 20. Conditioned on Ω1, we have that for any pk,m, s, a, s1q P rKs ˆ rM s ˆ S ˆ A ˆ S ,

ˇ

ˇ

ˇ
Pmps1|s, aq ´ rP k

mps1|s, aq

ˇ

ˇ

ˇ
ď 4

d

Pmps1|s, aqι

Nk
mps, aq

`
30ι

Nk
mps, aq

.

Proof. From Ω1 we have

pP k
mps1|s, aq ď 2

d

pP k
mps1|s, aqι

Nk
mps, aq

`
5ι

Nk
mps, aq

` Pmps1|s, aq.

This is a quadratic inequality in
b

pP k
mps1|s, aq. Using the fact that x2 ď ax` b implies x ď a`

?
b

with a “ 2
b

ι
Nk

mps,aq
, b “ 5ι

Nk
mps,aq

` Pmps1|s, aq, and
?
x ` y ď

?
x `

?
y, we have

b

pP k
mps1|s, aq ď

a

Pmps1|s, aq ` 5

c

ι

Nk
mps, aq

.

Substituting this into Ω we have

ˇ

ˇ

ˇ
Pmps1|s, aq ´ pP k

mps1|s, aq

ˇ

ˇ

ˇ
ď 2

d

Pmps1|s, aqι

Nk
mps, aq

`
15ι

Nk
mps, aq

.

From the construction of rP k
m we also have

ˇ

ˇ

ˇ

pP k
mps1|s, aq ´ rP k

mps1|s, aq

ˇ

ˇ

ˇ
ď 2

d

Pmps1|s, aqι

Nk
mps, aq

`
15ι

Nk
mps, aq

.

Therefore, from triangle inequality we have the desired result.

B.4 PROOF OF THE REGRET LOWER BOUND

Theorem 2. Assume that S ě 6, A ě 2 and M ď
X

S
2

\

!. For any algorithm π, there exists an LMDP
Mπ such that, for K ě rΩpM2 ` MSAq, its expected regret in Mπ after K episodes satisfies

RpMπ,π,Kq :“ E

«

K
ÿ

k“1

pV ‹ ´ V kq

ˇ

ˇ

ˇ

ˇ

ˇ

Mπ,π

ff

“ Ω
´?

MSAK
¯

.

Proof. We need to introduce an alternative regret measure for an MDP based on simulating an
LMDP algorithm. Let Mpm, ℓ‹, a‹q be an MDP which contains an encoding phase with permuta-
tion σpmq, and a guessing phase with correct answer pℓ‹, a‹q. Given any LMDP algorithm π, a
target position m and a pair of LMDP configuration pℓ‹,a‹q, we can construct an MDP algorithm
πpm, ℓ‹,a‹q as in Algorithm 4.

This algorithm admits two types of training: ① When K is specified, it returns after K episodes,
regardless of how many times it interacts with the target MDP; ② When Km is specified, it does not
return until it interacts with the MDP for Km times, regardless of how many episodes elapse.
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Algorithm 4 πpm, ℓ‹,a‹q: an algorithm for an MDP.

1: Input: an MDP Mpm, ℓ‹, a‹q; an LMDP algorithm π; a pair of LMDP configuration pℓ‹,a‹q;
specify exactly one: a simulation episode budget K or a target interaction episode Km.

2: Initialize actual interaction counter Km Ð 0.
3: for k “ 1, 2, . . . do
4: Randomly choose m1 „ UnifpMq.
5: if mk ‰ m then
6: Use π to interact with the mkth MDP of Mpℓ‹,a‹q.
7: else
8: Use π to interact with Mpm, ℓ‹, a‹q.
9: Km Ð Km ` 1.

10: end if
11: if (K is specified and k “ K) or (Km is specified and Km “ Km) then
12: Break.
13: end if
14: end for

Let V ‹ and V k be the optimal value function and the value function of πpm, ℓ‹,a‹q,Kq under the
MDP Mpm, ℓ‹, a‹q. The alternative regret for MDP (corresponding to ①) is:

rRpMpm, ℓ‹, a‹q,πpm, ℓ‹,a‹q,Kq :“ E

«

K
ÿ

k“1

1rmk “ mspV ‹ ´ V kq

ˇ

ˇ

ˇ

ˇ

ˇ

Mpm, ℓ‹, a‹q,πpm, ℓ‹,a‹q

ff

.

Roughly, this is a regret for Km episodes, though Km is stochastic.

In our hard instances, the MDPs in the LMDP can be considered separately. So V ‹ “ 1
M

řM

m“1 V
‹
m,

where V ‹
m is the optimal value function of (which is equal to the value function of the optimal policy

applied to) the mth MDP. According to Monte-Carlo sampling,

RpMpℓ‹,a‹q,π,Kq “ E

«

K
ÿ

k“1

pV ‹
mk ´ V k

mkq

ˇ

ˇ

ˇ

ˇ

ˇ

Mpℓ‹,a‹q,π

ff

“

M
ÿ

m“1

E

«

K
ÿ

k“1

1rmk “ mspV ‹
mk ´ V k

mkq

ˇ

ˇ

ˇ

ˇ

ˇ

Mpℓ‹,a‹q,π

ff

“

M
ÿ

m“1

rRpMpm, ℓ‹
m, a‹

mq,πpm, ℓ‹,a‹q,Kq.

The last step is because the behavior of “focusing on the mth MDP in the LMDP” and “using the
simulator” are the same. Denote Km as the number of episodes spent in the mth MDP, which is a
random variable. According to Lemma 4,

P

»

–

ˇ

ˇ

ˇ

ˇ

Km

K
´

1

M

ˇ

ˇ

ˇ

ˇ

ą

d

2
M

`

1 ´ 1
M

˘

ln
`

2MCM

δ

˘

K
`

ln
´

2MCM

δ

¯

K

fi

fl ď
δ

MCM
,

which implies

P

«

ˇ

ˇ

ˇ

ˇ

Km ´
K

M

ˇ

ˇ

ˇ

ˇ

ą

d

2K ln

ˆ

2MC

δ

˙

` M ln

ˆ

2MC

δ

˙

ff

ď
δ

MCM
.

When K ą p6 ` 4
?
2qM2 ln

`

2MC
δ

˘

, we have
b

2K ln
`

2MC
δ

˘

` M ln
`

2MC
δ

˘

ă K
2M

. By a union
bound over all possible hard instances Mpℓ‹,a‹q P C and all indices m P rM s, the following event
happens with probability at least 1 ´ δ:

E :“

"

Km ě
K

2M
for all Mpℓ‹,a‹q P C and m P rM s

*

.
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Now look into Equation (8), (11) and (12) of Domingues et al. (2021). For any K 1 ě SA and any
fixed encoding number m, we have that

1

C

ÿ

ℓ‹,a‹

RpMpm, ℓ‹, a‹q,πpm, ℓ‹,a‹q,K 1q ě
1

4
?
2

ˆ

1 ´
1

C

˙

?
CK 1 ě

?
CK 1

8
?
2

, (9)

when set ε “ 1
2

?
2

`

1 ´ 1
C

˘

b

C
K1 . The desired value of K 1 is K

2M
according to E .

We study the cases when we use πpm, ℓ‹,a‹q to solve Mpm, ℓ‹
m, a‹

mq with a target interaction
episode Km “ K

2M
. The regret is RpMpm, ℓ‹

m, a‹
mq,πpm, ℓ‹,a‹q, K

2M
q (this is the regret of MDPs).

• The K
2M

th interaction with the mth MDP comes before the Kth simulation episode. This
case happens under E . The regret of this part is denoted as R`.

• Otherwise. This case happens under Ē . The regret of this part is denoted as R´. Since the
regret of a single episode is at most 1, we have that R´ ă δK

2M
.

Now we study the cases when we use πpm, ℓ‹,a‹q to solve Mpm, ℓ‹
m, a‹

mq with a simulation
episode budget K. The alternative regret for MDP is rRpMpm, ℓ‹

m, a‹
mq,πpm, ℓ‹,a‹q,Kq.

• The K
2M

th interaction with the mth MDP comes before the Kth simulation episode. This
case happens under E . The regret of this part is denoted as rR`. Since the regret of a single
episode is at least 0, and in this case Km ě K

2M
, we have rR` ě R`.

• Otherwise. This case happens under Ē . The regret of this part is denoted as rR´ ě 0.

Using the connection between R` and rR`, we have:

1

CM

ÿ

ℓ‹,a‹

RpMpℓ‹,a‹q,π,Kq

“
1

CM

ÿ

ℓ‹,a‹

M
ÿ

m“1

rRpMpm, ℓ‹
m, a‹

mq,πpm, ℓ‹,a‹q,Kq

(i)
“

M
ÿ

m“1

1

CM´1

ÿ

ℓ‹
´m,a‹

´m

1

C

ÿ

ℓ‹
m,a‹

m

rRpMpm, ℓ‹
m, a‹

mq,πpm, ℓ‹,a‹q,Kq

ě

M
ÿ

m“1

1

CM´1

ÿ

ℓ‹
´m,a‹

´m

1

C

ÿ

ℓ‹
m,a‹

m

rR`pMpm, ℓ‹
m, a‹

mq,πpm, ℓ‹,a‹q,Kq

ě

M
ÿ

m“1

1

CM´1

ÿ

ℓ‹
´m,a‹

´m

1

C

ÿ

ℓ‹
m,a‹

m

R`

ˆ

Mpm, ℓ‹
m, a‹

mq,πpm, ℓ‹,a‹q,
K

2M

˙

“

M
ÿ

m“1

1

CM´1

ÿ

ℓ‹
´m,a‹

´m

1

C

ÿ

ℓ‹
m,a‹

m

pR ´ R´q

ˆ

Mpm, ℓ‹
m, a‹

mq,πpm, ℓ‹,a‹q,
K

2M

˙

ą

M
ÿ

m“1

1

CM´1

ÿ

ℓ‹
´m,a‹

´m

1

C

ÿ

ℓ‹
m,a‹

m

ˆ

R

ˆ

Mpm, ℓ‹
m, a‹

mq,πpm, ℓ‹,a‹q,
K

2M

˙

´
δK

2M

˙

(ii)
ě

M
ÿ

m“1

1

CM´1

ÿ

ℓ‹
´m,a‹

´m

˜ ?
CK

16
?
2M

´
δK

2M

¸

“

?
MCK

16
?
2

´
δK

2
,
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where in (i) we use x´m to denote the positions other than m in x; (ii) is by setting K 1 “ K
2M

in
Equation (9). Set δ :“

?
MC

16
?
2K

, then we have that

max
ℓ‹,a‹

RpMpℓ‹,a‹q,π,Kq ě
1

CM

ÿ

ℓ‹,a‹

RpMpℓ‹,a‹q,π,Kq ą

?
MCK

32
?
2

“ Ω
´?

MSAK
¯

.

This holds when K ą p6 ` 4
?
2qM2 ln

`

2MC
δ

˘

and K 1 ě SA. It then reduces to

K ě ΩpM2polyplogpM,S,Aqq ` MSAq.

This completes the proof.
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