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Abstract

This paper is devoted to the study (common in
many applications) of the black-box optimiza-
tion problem, where the black-box represents a
gradient-free oracle f, = f(x) + &, providing
the objective function value with some stochastic
noise. Assuming that the objective function is
p-strongly convex, and also not just L-smooth,
but has a higher order of smoothness (5 > 2) we
provide a novel optimization method: Zero-Order
Accelerated Batched Stochastic Gradient Descent,
whose theoretical analysis closes the question re-
garding the iteration complexity, achieving opti-
mal estimates. Moreover, we provide a thorough
analysis of the maximum noise level, and show
under which condition the maximum noise level
will take into account information about batch
size B as well as information about the smooth-
ness order of the function 3. Finally, we show the
importance of considering the maximum noise
level A as a third optimality criterion along with
the standard two on the example of a numerical
experiment of interest to the machine learning
community, where we compare with state-of-the-
art gradient-free algorithms.

1. Introduction

This paper focuses on solving a standard optimization prob-
lem:

f = min f(x), (M

z€QCRY
where f : @) — R is function that we want to minimize, f*
is the solution, which we want to find. It is known that if
there are no obstacles to compute the gradient of the objec-
tive function f or to compute a higher order of the derivative
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of the function, then optimal first- or higher-order optimiza-
tions algorithms (Nesterov, 2003) should be used to solve
the original optimization problem (1). However, if comput-
ing the function gradient V f(x) is impossible for any rea-
son, then perhaps the only way to solve the original problem
is to use gradient-free (zero-order) optimization algorithms
(Conn et al., 2009; Rios & Sahinidis, 2013). Among the
situations in which information about the derivatives of the
objective function is unavailable are the following:

a) non-smoothness of the objective function. This situa-
tion is probably the most widespread among theoretical
works (Gasnikov et al., 2022; Alashqar et al., 2023; Ko-
rnilov et al., 2024);

b) the desire to save computational resources, i.e., com-
puting the gradient V f(x) can sometimes be much
“more expensive” than computing the objective func-
tion value f(x). This situation is quite popular and
extremely understandable in the real world (Bogolub-
sky et al., 2016);

¢) inaccessibility of the function gradient. A vivid exam-
ple of this situation is the problem of creating an ideal
product for a particular person (Lobanov et al., 2024).

Like first-order optimization algorithms, gradient-free al-
gorithms have the following optimality criteria: #N — the
number of consecutive iterations required to achieve the
desired accuracy of the solution € and #7" — the total num-
ber of calls (in this case) to the gradient-free oracle, where
by gradient-free/derivative-free oracle we mean that we
have access only to the objective function f(x) with some
bounded stochastic noise &, (E [¢2] < A?). It should be
noted that because the objective function is subject to noise,
the gradient-free oracle plays the role of a black box. That
is why there is a tendency in the literature when the ini-
tial problem formulation (1) with a gradient-free oracle is
called a black-box optimization problem (Kimiaei & Neu-
maier, 2022). However, unlike higher-order algorithms,
gradient-free algorithms have a third optimality criterion:
the maximum noise level A at which the algorithm will still
converge “good”, where by “good convergence” we mean
convergence as in the case when A = 0. The existence of
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(a) Resource saving

(b) Robustness to attacks

(c) Confidentiality

Figure 1. Motivation to find the maximum noise level A

such a seemingly unusual criterion can be explained by the
following motivational examples (see Figure 1¥). Among
the motivations we can highlight the most demanded espe-
cially by companies (and not only). Resource saving (Fig-
ure l1a): The more accurately the objective function value is
calculated, the more expensive this process to be performed.
Robustness to Attacks (Figure 1b): Improving the maximum
noise level makes the algorithm more robust to adversarial
attacks. Confidentiality (Figire 1c): Some companies, due
to secrecy, can’t hand over all the information. Therefore,
it is important to be able to answer the following question:

How much can the objective function be noisy?

The basic idea to create algorithms with a gradient-free ora-
cle that will be efficient according to the above three criteria
is to take advantage of first-order algorithms by substituting
a gradient approximation instead of the true gradient (Gas-
nikov et al., 2023). The choice of the first-order optimiza-
tion algorithm depends on the formulation of the original
problem (on the Assumptions on the function and the gra-
dient oracle). But the choice of gradient approximation
depends on the smoothness of the function. For example,
if the function is non-smooth, a smoothing scheme with
l1 randomization (Alashqgar et al., 2023; Lobanov, 2023)
or with [, randomization (Dvinskikh et al., 2022; Lobanov
et al., 2023a;b) should be used to solve the original prob-
lem. If the function is smooth, it is enough to use choose I;
randomization (Akhavan et al., 2022) or 5 randomization
(Gorbunov et al., 2018; Lobanov & Gasnikov, 2023). But
if the objective function is not just smooth but also has a
higher order of smoothness (5 > 2), then the so-called Ker-
nel approximation (Akhavan et al., 2023; Gasnikov et al.,
2024b;a), which takes into account the information about
the increased smoothness of the function using two-point
feedback, should be used as the gradient approximation.

In this paper, we consider the black-box optimization prob-
lem (1), assuming strong convexity as well as increased
smoothness of the objective function. We choose acceler-
ated stochastic gradient descent (Vaswani et al., 2019) as the
basis for a gradient-free algorithm. Since the Kernel approx-

*The pictures are taken from the following resource

imation (which accounts for the advantages of increased
smoothness) is biased, we generalize the result of (Vaswani
et al., 2019) to the biased gradient oracle. We use the re-
sulting accelerated stochastic gradient descent with a biased
gradient oracle to create a gradient-free algorithm. Finally,
we explicitly derive estimates on the three optimality criteria
of the gradient-free algorithm.

1.1. Main Assumptions and Notations

Since the original problem (1) is general, in this subsection
we further define the problem by imposing constraints on the
objective function as well as the zero-order oracle. In partic-
ular, we assume that the function f is not just L-smooth, but
has increased smoothness, and is also p-strongly convex.

Assumption 1.1 (Higher order smoothness). Let [ denote
maximal integer number strictly less than 3. Let Fg(L)
denote the set of all functions f : R? — R which are differ-
entiable [ times and Vz, z € () the Holder-type condition:

f&) = Y DM@ -0 < Lylle - al,

0<|n|<t

where [ < (B (B is smoothness order), Lg > 0, the

sum is over multi-index n = (ni,..,nq) € N,

we used the notation n! = mnq!---ngl, |n] = ng +

o+ ng, Yo = (v1,...,vq) € R? and we defined
n n_ _o"f@ om ng

D" f(z)v™ = et i ot R L

Assumption 1.2 (Strongly convex). Function f : R — R
is p-strongly convex with some constant ;4 > 0 if for any
x,y € R4 it holds that

F@) = f@) + (V@) —a) + Slly —al*.

Assumption 1.1 is commonly appeared in papers (Bach
& Perchet, 2016; Akhavan et al., 2023), which consider
the case when the objective function has smoothness order
B > 2. It is worth noting that the smoothness constant Lg
in the case when 8 = 2 has the following relation with
the standard Lipschitz gradient constant L = 2 - L. In
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Table 1. Overview of convergence results of previous works. Notations: d = dimensionality of the problem (1); 5 = smoothness order of
the objective function f; ;1 = strong convexity constant; e = desired accuracy of the problem solution by function.
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addition, Assumption 1.2 is standard among optimization
works (Nesterov, 2003; Stich, 2019).

In this paper, we assume that Algorithm 1 (which will be
introduced later) only has access to the zero-order oracle,
which has the following definition.

Definition 1.3 (Zero-order oracle). The zero-order oracle
fp returns only the objective function value f(zy) at the
requested point x, with stochastic noise &p:

fo(zr) = flor) + &,

where p € {1, 2} and we suppose that the following assump-
tions on stochastic noise hold

e & # & such that E[¢7] < A% and E [¢3] < A?,
where A > 0 is level noise;

e the random variables £; and &, are independent from
e € S%(1) is a random vector uniformly distributed
on the Euclidean unit sphere, and r is a random value
uniformly distributed on the interval.

We impose constraints on the Kernel function.

Assumption 1.4 (Kernel function). Let function

K : [-1,1] — R satisfying:

E[K (u)] =
E[U7K( )] 0,j=

]E[uK(u)] =1,
Efjul? | K ()] < oo.

Definition 1.3 is common among gradient-free works
(Lobanov, 2023). In particular, a zero-order oracle will
produce the exact function value when the noise level is
0. We would also like to point out that we relaxed the re-
striction on stochastic noise by not assuming a zero mean.
We only need the assumption that random variables &; and
&, are independent from e and r. Assumption 1.4 is often
found in papers using the gradient approximation — Kernel
approximation. An example of such a function is weighted
sums of Lejandre polynomial (Bach & Perchet, 2016).

Notation. We use (z,y) = Z?:l x;y; to denote stan-
dard inner product of x,y € R?, where x; and y; are the
i-th component of = and y respectively. We denote Eu-
clidean norm in R? as ||z|| := /(z, x). We use the notation
Bd( = {z € R?: ||lz|| < r} to denote Euclidean ball,
Sd(r) = {a: € R?: ||z|| = r} to denote Euclidean sphere.
Operator E[] denotes full expectation.

1.2. Related Works and Our Contributions

In Table 1, we provide an overview of the convergence re-
sults of the most related works, in particular we provide
estimates on the iteration complexity. Research studying the
problem (1) with a zero-order oracle (see Definition 1.3),
assuming that the function f has increased smoothness
(B > 2, see Assumption 1.1) comes from (Polyak & Tsy-
bakov, 1990). After 20-30 years, this problem has received
widespread attention. However, as we can see, all previous
works “fought” (improved/considered) exclusively for or-
acle complexity (which matches the iteration complexity),
without paying attention to other optimality criteria of the
gradient-free algorithm. In this paper, we ask another ques-
tion: Is estimation on iteration complexity unimprovable?
And as we can see from Table 1 or Theorem 3.1, we signifi-
cantly improve the iteration complexity without worsening
the oracle complexity, and also provide the best estimates
among those we have seen on A.

More specifically, our contributions are the following:

e We provide a detailed explanation of the technique for
creating a gradient-free algorithm that takes advantage
of the increased smoothness of the function via Kernel
approximation.

e We generalize existing convergence results for acceler-
ated stochastic gradient descent to the case where the
gradient oracle is biased, thereby demonstrating how
bias accumulates in the convergence of the algorithm.
This result may be of independent interest.

e We close the question regarding the iteration complex-
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ity search by providing an improved estimate (see Ta-
ble 1) that is, we provide an optimal estimate.

e We find the maximum noise level A at which the al-
gorithm will still achieve the desired accuracy € (see
Table 1 and Theorem 3.1). Moreover, we show that
if overbatching is done, the positive effect on the er-
ror floor is preserved in a strongly convex problem
formulation.

e We show the importance of considering the maximum
noise level A as a third optimality criterion along with
standard two using an example of a numerical experi-
ment of interest for ML (logistic regression problem).

Paper Organization This paper has the following struc-
ture. In Section 2, we present a first-order algorithm on
the basis of which a novel gradient-free algorithm will be
created. And in Section 3 we provide the main result of this
paper, namely the convergence results of the novel acceler-
ated gradient-free optimization algorithm. In Section 4, we
provide experiments. While Section 5 concludes this paper.
The missing proofs of the paper are presented in Appendix.

2. Search for First-Order Algorithm as a Base

As mentioned earlier, the basic idea of creating a gradient-
free algorithm is to take advantage of first-order algorithms.
That is, in this subsection, we find the first-order algorithm
on which we will base to create a novel gradient-free algo-
rithm by replacing the true gradient with a gradient approxi-
mation. Since gradient approximations use randomization
on the sphere e (e.g., [1, lo randomization, or Kernel approx-
imation), it is important to look for a first-order algorithm
that solves a stochastic optimization problem (due to the
artificial stochasticity of e). Furthermore, since the gradient
approximation from a zero-order oracle concept has a bias,
it is also important to find a first-order algorithm that will
use a biased gradient oracle. Using these criteria, we formu-
late an optimization problem to find the most appropriate
first-order algorithm.

2.1. Statement Problem

Due to the presence of artificial stochasticity in the gradient
approximation, we reformulate the original optimization
problem as follows:

min
r€QCRY

fr= {f(z) :==E[f(z,w)]}. 2

We assume that the function satisfies the L-smoothness
assumption, since it is a basic assumption in papers on first-
order optimization algorithms.

Assumption 2.1 (L-smooth). Function f is L-smooth if

it holds Vz,y € R
F(w) < 1)+ (VF @)y~ 2) + & ly >

Next, we define a biased gradient oracle that uses a first-
order algorithm.

Definition 2.2 (Biased Gradient Oracle).
g: R x D= RIst.

g(z,w) = Vf(z,w) + b(z)

for a bias b : R? — R and unbiased stochastic gradient
E[Vf(z,w)] = Vf(z).

We assume that the bias and gradient noise are bounded.

A map

Assumption 2.3 (Bounded bias). There exists constant
§ > 0 such that Yz € R? the following inequality holds

()]l = |[E [g(z,w)] = Vf(z)[| < 0. (©)

Assumption 2.4 (Bounded noise). There exists constants
p, 02 > 0 such that the more general condition of strong
growth is satisfied Vo € R¢

E gz w)I’] <pIV@IP +0% @

Assumption 2.3 is standard for analysis, bounding bias. As-
sumption 2.4 is a more general condition for strong growth
due to the presence of 2.

2.2. First-Order Algorithm as a Base

Now that the problem is formally defined (see Subsection
2.1), we can find an appropriate first-order algorithm. Since
one of the main goals of this research is to improve iteration
complexity, we have to look for a accelerated batched first-
order optimization algorithm. And the most appropriate
optimization algorithm which has the following update rule:

Tpt1 = Yi — N8 (Yk, wk)
Yk = agz + (1 — o)y,

Zer1 = Cezk + (1 = Go)yr — 18 (Y, wi)
has the following convergence rate presented in Lemma 2.5.
Lemma 2.5 ((Vaswani et al., 2019), Theorem 1). Let the
function f satisfy Assumption 1.2 and 2.1, and the gradi-
ent oracle (see Definition 2.2 with § = 0) satisfy Assump-
tions 2.3 and 2.4, then with p = max{1, p} and with the

chosen parameters yy,, agy1, o, n the Accelerated Stochas-
tic Gradient Descent has the following convergence rate:

N

o2

p*uL
where Fy =E[f(zn)] — f*

FNS(I

+

i
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As can be seen from Lemma 2.5, that the presented First
Order Accelerated Algorithm is not appropriate for creating
a gradient-free algorithm, since this algorithm uses an un-
biased gradient oracle, and also does not use the batching
technique. Therefore, we are ready to present one of the sig-
nificant results of this work, namely generalizing the results
of Lemma 2.5 to the case with an biased gradient oracle and
also adding batching (where B is a batch size).

(a) Case without bias !

Figure 2. Bias influence on the algorithm convergence

Theorem 2.6. Let the function f satisfy Assump-
tion 1.2 and 2.1, and the gradient oracle (see Def-
inition 2.2) satisfy Assumptions 2.3 and 2.4, then
with pp = max{l, %} and with the chosen parame-
= 1= =1-4n -

ters Yk = g B =1 5 bry1 = (17\/?2)(“1)/2,
- 1 __wBebian 1

Gkt = (1—/ET) /2 O = SeBby n+zay S 51
Accelerated Stochastic Gradient Descent with batching has

the following convergence rate (Fy = E[f(zn)] — f*):

uN « , M |12
JICOR I e

Fy < <1— =
Pl

o? K M 62
4+ — 4+ (1-— — ) RS + )
ZnuLB? ( V %L VauL
where R = maxy{|lzx — 2*|, lye — 2*|1}.

As can be seen from Theorem 2.6, this result is very similar
to the result of Lemma 2.5, moreover, they will be the same
if we take 6 = 0 and B = 1. It is also worth noting that the
third summand does not affect convergence much (the noise
does not accumulate due to the decreasing sequence), so we
will not consider it in the future for simplicity. Finally, it is
worth noting that the Algorithm presented in (Vaswani et al.,
2019) can converge as closely as possible to the problem
solution (see the red line in Figure 2), while the Algorithm
using the biased gradient oracle can only converge to the
error floor (see the blue line in Figure 2). This is explained
by the last summand from Theorem 2.6. However, con-
vergence to the error floor opens questions about how this
asymptote can be controlled. And as shown in (Gasnikov
et al., 2024a), the convergence of gradient-free algorithms
to the asymptote depends directly on the noise level: the
more noise, the better the algorithm can achieve the error

floor. This fact is another clear motivation for finding the
maximum noise level. For a detailed proof of Theorem 2.6,
see the supplementary materials (Appendix B).

3. Zero-Order Accelerated Batched SGD

Now that we have a proper first-order algorithm, we can
move on to creating a novel gradient-free algorithm. To do
this, we need to use the gradient approximation instead of
the gradient oracle. In this work, we are going to use exactly
the Kernel approximation because it takes into account the
advantages of increased smoothness of the function, and
which has the following

fi(x + hre) — fo(x — hre)
2h

g(z,e) =d K(r)e, (5

where h > 0 is a smoothing parameter, e € S%(1) is a ran-
dom vector uniformly distributed on the Euclidean unit
sphere, r is a random value uniformly distributed on the
interval 7 € [0,1], K : [-1,1] — Ris a Kernel function.
Then a novel gradient-free method aimed at solving the orig-
inal problem (1) is presented in Algorithm 1. The missing
hyperparameters are given in the Theorem 2.6.

Algorithm 1 Zero-Order Accelerated Batched Stochastic
Gradient Descent (ZO-ABSGD)

Input: iteration number N, batch size B, Kernel
K :[-1,1] — R, step size 7, smoothing parameter h,
To=1yo =2 € R% ag=1,p=4dk.
fork=0to N —1do

1. Sample vectors e}, e...,ep € S%(1) and scalars
r1,72,...,7p € [—1,1] independently
Calculate gj, = & Zle gz, e;) via (5)
Yk — oz + (1 — o)y,
Tr+1 < Yk — N8k

5. Zky1 < Brae + (1 — Br)yx — YenSk
end for
Return:

v

Now, in order to obtain an estimate of the convergence rate
of Algorithm 1, we need to evaluate the bias as well as the
second moment of the gradient approximation (5). Let’s
start with the bias of the gradient approximation:

Bias of gradient approximation Using the variational
representation of the Euclidean norm, and definition of gra-
dient approximation (5) we can write:

‘ d

ST E[(Aia + hre) = fofw — hre)) K (r)e] - V(@)
@

g (e + hre)K(r)e] - Vf(2)

2 |E [V (z + hru)rK (r)] — Vf(z)|
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= 63;1}21) E[|[(V.f(z+ hru) — V. f(2)rK(r)|]

®,0 L
< B—1 B-1
= kT [
L d
< kghP1
=M oAy p—1
< kpLhP71, (6)

where u € B%(1); ® = the equality is obtained from the
fact, namely, distribution of e is symmetric’ @ = the equal-
ity is obtained from a version of Stokes’ theorem (Zorich
& Paniagua, 2016); @ = Taylor expansion (see Ap-
pendix for more detail); @ = assumption that |R(hru)| <

-1 _1,8— -1
|l3 = (l—Ll)!|r|ﬁ 18 1||u||6 )

L
o=y [[hrul
Now we find an estimate of the second moment of the gra-
dient approximation (5).

Bounding second moment of gradient approximation
By definition gradient approximation (5) and Wirtinger-
Poincare inequality we have

E[lge, o)l

- w0 ]
< ;—Zj (E [(f(xk + hre) — f(xx — hre))z} + 2A2>
< "B [I9 (e + hre) + V(i — hre)]?]

2

IN

KB [[[V f(wx -+ hre) & |V £ ()]

+ wdE [V £z, — hre) £ |1V f (@)]1]

kd?A?
12
kd?A?
< 4dk ||V f(zp)|]? + 4dsL?*h* + 5 (7
P
0.2
Now substituting into Theorem 2.6 instead of

§ = kgLhP~! from (6), p — 4dk from (7) and

2 A2 .
02 — AdkL?*h? + % from (7), we obtain convergence

for the novel gradient-free method (see Algorithm 1) with

pp = max{l, 4%“ :

N
12 * M %112
Pv< (1= ) [ -1+ =)
@
AdkL2h2 Kd2 A2 K%LQhQ(ﬁ_l)

+ + +
VPpuLB? - h2\/pLulB? vZms
—_———
@ ® ®

We are now ready to present the main result of this paper.

Theorem 3.1. Let the function f satisfy Assumptions 1.1
and 1.2, and let the Kernel approximation with zero-order or-
acle (see Definitionl.3) satisfy Assumptions 1.4 and 2.3-2.4,
then the novel Zero-Order Accelerated Batched Stochastic
Gradient Descent (see Algorithm 1) converges to the desired
accuracy € at the following parameters

1. Case: B = 1: with smoothing parameter h <

1/2,,1/4 — d’L 150 L ive iter-
et cut’®, after N = (’)( m log 5) successive iter

ations, T = N-B =0 ( dzTL log %) oracle calls

1/‘2 . .
and at A < E’\‘/g maximum noise level.

2. Case: 1 < B < 4dk: with parameter h < £'/21/4,

_ d2L 1 Lo .
after N = (9( 5 log E) successive iterations,

T=N-B=0O ( d%log %) oracle calls and at

1/2 . .
A< 8‘\‘/3 maximum noise level.

3. Case: B = 4dk: with smoothing parameter h <
1/2,1/4 _ L 1 S
e 24 after N = (9( " log g) successive iter-

ations, T = N-B =0 ( dzTL log é) oracle calls

1/2 . .
and at A < E‘\‘/E maximum noise level.

1
4. Case: B > 4dk: with parameter h < (5\/;7) 26-1)
_ L 1 S ; _
after N = O (\/; log g) successive iterations, T =

~ ~ 2 A2
N - B = max{O (,/dzTL) ,O ((:j)iﬁl>} oracle
8

A 5 (5\//7);(37_1) B1/2

calls and at maximum noise

level.

As can be seen from Theorem 3.1, Algorithm 1 indeed
improves the iteration complexity compared to previous
works (see Table 1), reaching the optimal estimate in a class
of algorithms based on first-order algorithms at batch size
B = 4dk. However, if we consider the case B € [1, 4dk],
then when the batch size increases from 1, the algorithm
improves the convergence rate (without changing the oracle
complexity), but achieves the same error floor. This is not
very good, because the asymptote does not depend on either
the batch size or the smoothness order of the function. How-
ever, if we take the batch size larger than B > 4dx, we will
significantly improve the maximal noise level by worsening
the oracle complexity. That is, in the overbatching condi-
tion, the error floor depends on both the batch size and the
smoothness order, which can play a critical role in real life.
For a detailed proof, see Appendix D.

Remark 3.2 (Convex case.). It is not difficult to show that
the results of Theorem 3.1 generalize to the convex case
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(see Assumption 1.2 with ;o = 0), preserving the same
dependence on B, namely in the case B € [1;4dx] and
h < €3/* we have the following convergence estimates for

Algorithm 1:
d?>LR?
T:o< 5 )

d?LR?
N0 (\/326 )
£3/2

and
A< —.
~Vd

We can also observe that the optimal estimate of iteration

complexity in the convex setup is achieved when B = 4dk.

Moreover, the maximum noise level behaves in a similar

way:
2
N=0O (\/ LI ) ;
€
27 P2 2 A2
5 e2ts=e
and

-
A<———BY2
~ o d

It can be seen that if we take 1 ~ €, the oracle complexity
is the same in the worst case, and the maximum noise level
is inferior depending on the order of smoothness compared
to the strongly convex set (which is surprising).

Remark 3.3 (Deterministic adversarial noise). It should be
noted that when considering deterministic adversarial noise
(|€(z)] < A) in a zero-order oracle instead of stochastic
(see &, with p = {1, 2} in Definition 1.3), Theorem 3.1 will
preserve the results except for the maximum noise level:

_B _B
pg BT o CVTT

This can be explained by the fact that deterministic noise
is more adversarial because it accumulates not only in the
second moment of the gradient approximation, but also
in the bias! The results in the convex case will change
similarly.

Remark 3.4 (High probability deviations bound). Given
that Algorithm 1 in strongly convex setting demonstrates a
linear convergence rate and employs a randomization (see
e.g. e € S%(1)), we can derive exact estimates of high
deviation probabilities using Markov’s inequality (Anikin
etal., 2017):

E [f(xN(ae))} _f* <0
= -

’P(f(xN(em)_f* 25) <#

Remark 3.5 (Non-convex setup (PL)). It should be
noted that our algorithm will have global convergence
for a subclass of non-convex functions that satisfy the
Polyak—ILojasiewicz (PL) condition (see, Karimi et al.,
2016). It is not hard to see that the results will have a similar
dependence on the batch size:

— O d~—1 .

and

where i from PL Assumption (see, Karimi et al., 2016).
We can also observe that the optimal estimate of iteration
complexity in the convex setup is achieved when B = 4dk.
Also, the maximum noise level behaves similarly:

N=0(a");

ool 25

5571/1 B—1

T = max

and

(1) 70
A< T131/2.

Similarly to the cases discussed above, when considering
deterministic adversarial noise, the dependence on the batch
size will disappear in the estimation of the maximum noise
level. The transition to High probability deviations bounds
is also valid. And if we compare with the estimates of
Theorem 3.1, provided ;o ~ ¢ from the strong convexity
condition, and i ~ ¢ from the PL condition, then the itera-
tion complexity is the same, but the oracle complexity in the
PL case is inferior to the strongly convex case. This can be
explained by the fact that the PL condition covers a subclass
of non-convex functions.

4. Numerical Experiments

In this section, we show the importance of considering the
maximum noise level A as a third optimality criterion along
with the standard two. We consider a problem of interest in
machine learning, namely the logistic regression problem:

LM
min {f(w) = > log(1 + exp(—y; - (Ax)i))} :

zERd
v€ i=1

Here we can understand log(1 +exp(—y; - (Az);)) = fi(z)
as the loss at the i-th data point, z € R? as a vector of param-
eters (or weights), y € {—1, 1}M as a vector of labels, and
A € RM*d a5 a matrix of instances. For our experiments
we use data from the LIBSVM library (Chang & Lin, 2011),
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namely the a9a data. In the gradient approximation (5), we
choose as the kernel function K (r) the Legendre polynomi-
als, for which it is shown in (Bach & Perchet, 2016) that the
parameters ~ and kg depend only on the smoothness order
. We have the following values for different (:

15

K(r)= %(5—77‘2) for 5 = 3,4;
195

K(r) = =25(99r" — 1261* +35)  for 3 =5,6.

16

To show the effectiveness of our Algorithm 1 (ZO-ABSGD)
we compare with SOTA accelerated gradient-free algo-
rithms, namely ZO-VARAG from (Chen et al., 2020),
ARDFDS from (Gorbunov et al., 2022). We also compare
our Algorithm 1 with RDFDS from (Gorbunov et al., 2022)
to demonstrate the superiority of the accelerated algorithm
over the unaccelerated ones, which are all previous works
(see Table 1).

a9a

10°

fixe) — fix™)
fixo) — fix™)

RDFDS

ZO-VARAG

10-1 —&~ ARDFDS
-l ZO-ABSGD

00 05 1.0 15 2.0 25 3.0 35 4.0
Number of oracle calls le7

Figure 3. Comparison of SOTA gradient-free algorithms conver-
gence. Here we optimize f(x) with the parameters: d = 123
(problem dimensionality), B = 1000 (batch size), A = 107°
(noise level), n = 1074 (step size), h = 1074 (smoothing param-
eter). In all experiments, the hyperparameters of the algorithms
are tuned.

Figure 3 shows both standard results, such as the superiority
of accelerated methods over unaccelerated methods, and the
outperformance, the robustness of our algorithm. It is not
hard to see that the ZO-VARAG algorithm outperforms the
convergence rate on the first iterations, but converges to an
error floor thereafter. This effect (convergence to the asymp-
tote) can be explained by the fact that in (Chen et al., 2020)
an accelerated ZO-VARAG algorithm was proposed, which
is not robust to adversarial noise. Regarding the RDFDS
and ARDFDS algorithms, as the Figure shows they are also
robust to adversarial stochastic noise like our algorithm.
The robust convergence of the algorithms from (Gorbunov
et al., 2022) can be explained by the fact that in (Gorbunov
et al., 2022) algorithms were proposed that are robust to
deterministic adversarial noise (DAN). As we know DAN is
more antagonistic than stochastic adversarial noise because

it accumulates not only in the variance but also in the bias of
the gradient approximation. Despite this, ZO-ABSGD has
better convergence compared to ARDFDS because the pro-
posed 1 takes advantage of increased smoothness (8 = 3),
unlike its counterpart. Thus, this Figure 3 demonstrates not
only the advantage of our algorithm, but also the importance
in the design and analysis of algorithms robust to adversar-
ial noise!

5. Conclusion

In this paper, we proposed a novel accelerated gradient-free
algorithm to solve the black-box optimization problem un-
der the assumption of increased smoothness and strong con-
vexity of the objective function. By choosing a first-order
accelerated algorithm and generalizing it to the Batched
algorithm with a biased gradient oracle, we were able to im-
prove the iteration complexity, reaching optimal estimates.
Moreover, we have shown the importance of considering
the maximum noise level as a third optimality criterion in a
numerical experiment of interest in machine learning. And
finally, we believe that this work offers a new perspective
on black-box optimization and opens avenues for future
research.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Akhavan, A., Pontil, M., and Tsybakov, A. Exploiting
higher order smoothness in derivative-free optimization
and continuous bandits. Advances in Neural Information
Processing Systems, 33:9017-9027, 2020.

Akhavan, A., Chzhen, E., Pontil, M., and Tsybakov, A. A
gradient estimator via 11-randomization for online zero-
order optimization with two point feedback. Advances in
Neural Information Processing Systems, 35:7685-7696,
2022.

Akhavan, A., Chzhen, E., Pontil, M., and Tsybakov, A. B.
Gradient-free optimization of highly smooth functions:
improved analysis and a new algorithm. arXiv preprint
arXiv:2306.02159, 2023.

Alashqar, B., Gasnikov, A., Dvinskikh, D., and Lobanov,
A. Gradient-free federated learning methods with 1 1
and 1 2-randomization for non-smooth convex stochastic

optimization problems. Computational Mathematics and
Mathematical Physics, 63(9):1600-1653, 2023.



Maximum Noise Level as Third Optimality Criterion

Anikin, A. S., Gasnikov, A. V., Dvurechensky, P., Tyurin, A.,
and Chernov, A. V. Dual approaches to the minimization
of strongly convex functionals with a simple structure
under affine constraints. Computational Mathematics
and Mathematical Physics, 57:1262-1276, 2017.

Bach, F. and Perchet, V. Highly-smooth zero-th order online
optimization. In Conference on Learning Theory, pp.
257-283. PMLR, 2016.

Bogolubsky, L., Dvurechenskii, P., Gasnikov, A., Gusev,
G., Nesterov, Y., Raigorodskii, A. M., Tikhonov, A.,
and Zhukovskii, M. Learning supervised pagerank with
gradient-based and gradient-free optimization methods.

Advances in neural information processing systems, 29,
2016.

Chang, C.-C. and Lin, C.-J. Libsvm: a library for support
vector machines. ACM transactions on intelligent systems
and technology (TIST), 2(3):1-27, 2011.

Chen, Y., Orvieto, A., and Lucchi, A. An acceler-
ated DFO algorithm for finite-sum convex functions.
In III, H. D. and Singh, A. (eds.), Proceedings of
the 37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 1681-1690. PMLR, 13-18 Jul 2020.
URL https://proceedings.mlr.press/v119/
chen20r.html.

Conn, A. R., Scheinberg, K., and Vicente, L. N. Introduction
to derivative-free optimization. SIAM, 2009.

Dvinskikh, D., Tominin, V., Tominin, I., and Gasnikov, A.
Noisy zeroth-order optimization for non-smooth saddle
point problems. In International Conference on Mathe-

matical Optimization Theory and Operations Research,
pp- 18-33. Springer, 2022.

Gasnikov, A., Novitskii, A., Novitskii, V., Abdukhakimov,
F., Kamzolov, D., Beznosikov, A., Takac, M., Dvurechen-
sky, P, and Gu, B. The power of first-order smooth opti-
mization for black-box non-smooth problems. In Interna-
tional Conference on Machine Learning, pp. 7241-7265.
PMLR, 2022.

Gasnikov, A., Dvinskikh, D., Dvurechensky, P., Gorbunov,
E., Beznosikov, A., and Lobanov, A. Randomized
gradient-free methods in convex optimization. In En-
cyclopedia of Optimization, pp. 1-15. Springer, 2023.

Gasnikov, A., Lobanov, A., and Bashirov, N. The “over-
batching” effect? yes, or how to improve error floor in

black-box optimization problems. arXiv preprint arXiv,
2024a.

Gasnikov, A., Lobanov, A., and Stonyakin, F. Highly
smooth zeroth-order methods for solving optimization
problems under the pl condition. Computational Mathe-
matics and Mathematical Physics, 64(4):739-770, 2024b.

Gorbunov, E., Dvurechensky, P., and Gasnikov, A. An
accelerated method for derivative-free smooth stochastic
convex optimization. arXiv preprint arXiv:1802.09022,
2018.

Gorbunov, E., Dvurechensky, P., and Gasnikov, A. An
accelerated method for derivative-free smooth stochastic
convex optimization. SIAM Journal on Optimization, 32
(2):1210-1238, 2022. doi: 10.1137/19M1259225. URL
https://doi.org/10.1137/19M1259225.

Karimi, H., Nutini, J., and Schmidt, M. Linear conver-
gence of gradient and proximal-gradient methods under
the polyak-tojasiewicz condition. In Machine Learn-
ing and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2016, Riva del Garda, Italy,
September 19-23, 2016, Proceedings, Part I 16, pp. 795—
811. Springer, 2016.

Kimiaei, M. and Neumaier, A. Efficient unconstrained
black box optimization. Mathematical Programming
Computation, 14(2):365-414, 2022.

Kornilov, N., Shamir, O., Lobanov, A., Dvinskikh, D., Gas-
nikov, A., Shibaev, 1., Gorbunov, E., and Horvath, S.
Accelerated zeroth-order method for non-smooth stochas-
tic convex optimization problem with infinite variance.

Advances in Neural Information Processing Systems, 36,
2024.

Lobanov, A. Stochastic adversarial noise in the “black
box” optimization problem. In International Conference
on Optimization and Applications, pp. 60-71. Springer,
2023.

Lobanov, A. and Gasnikov, A. Accelerated zero-order sgd
method for solving the black box optimization problem
under “overparametrization” condition. In International
Conference on Optimization and Applications, pp. 72-83.
Springer, 2023.

Lobanov, A., Anikin, A., Gasnikov, A., Gornov, A., and
Chukanov, S. Zero-order stochastic conditional gradient
sliding method for non-smooth convex optimization. In
International Conference on Mathematical Optimization
Theory and Operations Research, pp. 92—106. Springer,
2023a.

Lobanov, A., Veprikov, A., Konin, G., Beznosikov, A., Gas-
nikov, A., and Kovalev, D. Non-smooth setting of stochas-
tic decentralized convex optimization problem over time-
varying graphs. Computational Management Science, 20
(1):48, 2023b.


https://proceedings.mlr.press/v119/chen20r.html
https://proceedings.mlr.press/v119/chen20r.html
https://doi.org/10.1137/19M1259225

Maximum Noise Level as Third Optimality Criterion

Lobanov, A., Gasnikov, A., and Krasnov, A. Acceler-
ation exists! optimization problems when oracle can
only compare objective function values. arXiv preprint
arXiv:2402.09014, 2024.

Nesterov, Y. Introductory lectures on convex optimization:
A basic course, volume 87. Springer Science & Business
Media, 2003.

Novitskii, V. and Gasnikov, A. Improved exploiting higher
order smoothness in derivative-free optimization and con-
tinuous bandit. arXiv preprint arXiv:2101.03821, 2021.

Polyak, B. T. and Tsybakov, A. B. Optimal order of accuracy
of search algorithms in stochastic optimization. Problemy
Peredachi Informatsii, 26(2):45-53, 1990.

Rios, L. M. and Sahinidis, N. V. Derivative-free optimiza-
tion: a review of algorithms and comparison of software
implementations. Journal of Global Optimization, 56(3):
1247-1293, 2013.

Stich, S. U. Unified optimal analysis of the (stochastic)
gradient method. arXiv preprint arXiv:1907.04232, 2019.

Vaswani, S., Bach, F., and Schmidt, M. Fast and faster
convergence of sgd for over-parameterized models and
an accelerated perceptron. In The 22nd international

conference on artificial intelligence and statistics, pp.
1195-1204. PMLR, 2019.

Zorich, V. A. and Paniagua, O. Mathematical analysis II,
volume 220. Springer, 2016.

10



APPENDIX

Maximum Noise Level as Third Optimality Criterion
in Black-Box Optimization Problem

A. Auxiliary Facts and Results

In this section we list auxiliary facts and results that we use several times in our proofs.

A.1. Squared norm of the sum

For all ay, ..., a, € R?, where n = {2,3}

la + .+ anl® < mllar|* + ..+ nlan . ®)
A.2. Fenchel-Young inequality
Forall a,b € R?and \ > 0
all>  A|[b|?
(a.b) < u + —”2” : ©

A.3. L smoothness function

Function f is called L-smooth on R? with L > 0 when it is differentiable and its gradient is L-Lipschitz continuous on R,
ie.
IVF(@) = Vil < Lz —yl, Va,yeR? (10)

It is well-known that L-smoothness implies (see e.g., Assumption 2.1)
L 2 d
fly) < f@) +{(Vf(@)y—a) + S lly —al” v,y €R,
and if f is additionally convex, then

IVf(x) = Vi@)* <2L(f(2) - f(y) = (VI(y)x—y)) Vo,yeR™

A.4. Wirtinger-Poincare inequality

Let f is differentiable, then for all z € R?, he € S¢(h):

h2
E[f(z+he)?] < —E [|\Vf(z+he)||2 . (1)
A.5. Taylor expansion
Using the Taylor expansion we have
V.f(z+hru)=V.f(z)+ > — DY f(z)u" + R(hru), (12)
1<|n|<l-1 v
where by assumption
L p-1_ L B—1p8-1 -1
R(r)| < =gy I = P (13)

11
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A.6. Kernel property
If e is uniformly distributed on S§(1) we have E[ee”] = (1/d)I;x 4, where I is the identity matrix. Therefore, using the
facts E[rK ()] = 1 and E[rI"l K (r)] = 0 for 2 < |n| < | we have

E |- | (V/(2),hre) + 2<|Z<l =D f()e" | K(re| = V(). (14)

A.7. Bounds of the Weighted Sum of Legendre Polynomials

Let kg = [ |u|?|K(u)|du and set & = [ K?(u)du. Then if K be a weighted sum of Legendre polynomials, then it is
proved in (see Appendix A.3, (Bach & Perchet, 2016)) that k3 and s do not depend on d, they depend only on (3, such that
for g > 1:

Kp < 2V2(8 - 1), (15)

K < 3B3. (16)

B. Missing proof of Theorem 2.6

In this Section we demonstrate a missing proof of Theorem 2.6, namely a generalization of Lemma 2.5 to the case with a
biased gradient oracle (see Definition 2.2). Therefore, our reasoning is based on the proof of Lemma 2.5 (Vaswani et al.,
2019).

Before proceeding directly to the proof, we recall the update rules of First-order Accelerated SGD from (Vaswani et al.,
2019):

Yk = oz + (1 — ag) s an
Tkl = Yk — N8k; (18)
Zhg1 = Brzr + (1= Br)yr — VeN8ks (19)

where we choose the parameters v, o, Bk, ak, bi such that the following equations are satisfied:

1 1-—
Vk:.lil_;’_ﬁk(ak)]; (20)
2p ag
ViBrbiin
ap = ; 21
T B+ 242 D
Br > 1 —ypun; (22)
a1 = Ve/NPOk41; (23)
b,
L (24)
k+1 \/67

Now, we're ready to move on to the proof itself. Let ;41 = ||zx+1 — 2*|| and g = g(yk, wi) from Definition 2.2, then
using equation (19):

Trer = 1Brar + (1= Br)ye — 2™ — engr )’
i1 = 1Bezk + (1 — Be)yr — 2|12+ 7in? llgkll” + 2vm (2% — Brze — (1 — Bi)yi: &) -

Taking expecation wrt to &,

Elr? 1] = E[||Brzr + (1 — By — 2*[|*] + 120> E ||gwl|”
+ 2y E (2" — Brzi — (1 — Br)yk, 8k)]

12
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24 %12 2. 2 2

< Bezk + (1 = Be)ye — 217 + v p IV f (wn) |
+ 29en(x* — Brzr — (1 — Bi)y, E[g]) +vino?

= 1Bz — 2*) + (1 = Bi)(ye — 2)1* + v2n*p IV f (ye) I
+ 2yen(z* = Bz — (1= Br)yw, E[g]) + vino”

< Brllzk — 12+ (1= Be) llyw — 2> + ¥ IV £ (w) I

~

+ 2yin{z* = Brzr — (1 — Bi)yw, E [gk]) + vin’o” (By convexity of ||||*)

= Brrg 4+ (1= Bi) llyk — =*11> + v2n2p IV £ () |IP
+ 2ven{z* — Brzr — (1 — Bi)yi, E [gr]) + vino?
= Br + (1= B) llye — 2" 1> +2n*p |V £ (w)II”

+ 29k (Be(yr — 1) + = — yi, E [g1]) + vien’o?

an *
= Brr + (1= Be) e — %> + v |V £ (ye) |

<ﬂk(1o; )

+ 29,1 (T —yx) + 2~ _ykaE[gk]> +yin’o?

= Berd + (1= Bi) lyr — 2*||* + 2o |V f (w12
Bi(

2 |2 ], 01— ) + (B el o7 )
+%en’o?

< Burd 4+ (1= B) llye — 2*I1” + 72?0 |V £ (i)
e [P0 () = o)) + @) o = )| + oo

{ﬁk(lo; o)

+ 27yk7 (Elgr] — VI(yx) zr — y;&] :

By strong convexity,
(2 2
Elrie) < Bk + (L= 80) lye — 2* 7 + 70?1V £ (yw)

e |00 ) = )+ 1 = f0) = =1

+ 2vxm [ﬁk(la_k o

(E gkl = VF(yr) 2k — yx) + (E[gr] — VF(yr), 2" — ykﬁ
+ o’
By Lipschitz continuity of the gradient,
L
F@rrs) = flye) < (VFk), Trr = i) + 5 2041 = yil?
L 2
< —n(V (). &) + =5 el
2 L772 2
= -V f(ye)|” + -5 lgell” —n{Vfyx),gr — VI(yr)) -

Taking expectation wrt &, we obtain

L7720'2
2

Bl (@) — F00)] € <1970l + 225 19 £ +
= n{Vf(ye), Elgr] — Vf(yr))

13
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Ln*c?
2

Elf(auen) — 0] € [+ O8] 19 ) +

+ 7 B[] = V£

Ifn <

1
2pL>

Blf (o) ~ £] < () 1950017 + 257 + 2 [Eles] - Vsl

IVl < (;‘;) ELf (i) — Flzne)] +2Ln0” + 2 |E [gx] — V()] 26)

From equations (25) and (26), we get

Elri ) < Berfi + (1= Br) llye — @™ II° + 4@ E[f () — f(wa11)]
BLL= ) (o) = ) + 1 = Fl) = e =
ﬁk(lakak)} (E[gk] = Vi (yk), ke — yr)

+ 2ven (E [gr] — VI (4r), 2" — k)

+ i’ + 2Ly’ po® + 2vin’p ||E [gr] — V£ (yr)

< Burg + (1= Br) llye — @*|” + 4v2np ELf (y) — f(@rs1)]

L) ) — ) + 77 = ) — 2 o — 2

Ak

ﬂk(la; Otk)}

+ 2vkn {

+ {2%77 :

2
|

+ 2vkm {

+ {zm . (Elgx] — V1 (vr), 76 — wi)

+ 2vkm (E [gr] — V f(yr), 2" — yi)
+ 2007 0” + 290 p | E [gi] — Vi (i) I® (Since 17 < 77)
= Birk + llyx — 2717 [(1 = Br) — Yepan)]

Br(1 — ax)
ok

+ flyw) {‘Winp — 2y - - 2%77}

1—
— 4P B f (zhs1) + 2y f* + {2%77 : ’W} f (k)
+ {2%77' Bk(l@;ak)} (Elge] — VI (yx), o6 — yx)
+ 2y (E [gr) — VI (yw), 2™ — y)
+ 2900 + 2980 |1E [gk] — Vo (ye)II” -
Since B > 1 — yrun and v, = ﬁ : (1 + ﬁ’“(za’“)),
2 2 2 * /Bk(l - ak)
Elrer1] < Beri — 47inp B f(2rg1) + 20 f™ + |29 - T e f(xy)
+ [2%7] : W} (Elgk] — VI(yx), o6 — yr)

+ 27 (E[gr] — Vf(yr), 2™ — yr)
+ 292020 + 2930°p |E [gx] — Vi ()|l -

14
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Multiplying by b7, ;.

bi+1 E[”?ﬁ-ﬂ < b%:—&-lﬂkri - 4bi+17}377PEf(xk+l) + 2bi+1’Yk77f*

+ [Qbiﬂwm - ﬁk(la_ak)} f(xx)
k
Br(l — ax)

— ) @] - V)00 - )

+ 267 1 ven (E [gr] = Vi (yr), 2 — yi)
+ 202 vino? + 207 v e 1B [gx] — Vi ()|l -

+ [2bi+1w; :

: 2 2 12 2.0 o2 wnBr(l-—ax) _ 26}
Since bj; 1 fk < bjs b1 VNP = Ghgy T g = b7,

bk+1 E[Tk—',-l] < bpri — 4aﬁ+1 E f(zr4+1) + 2bi+1’7k77f* + 4a f (k)
+ 4ai (E[gr] — Vf(yr), T — yk)
+2bk+mn< lgr] — Vf(yr), 2" — yx)

2a2
+ 204170 +2a7 11 |E [gr] — Vf (wi)|®

= biry — Aajyy [E f(xg) — 5]+ 4ag [f (2x) = f7]
+2 [biﬂwm - 2ai+1 + 2@%] I
+4a; (E[gk] — VI (yk), 2k — yr)
+2bk+mn< [gr] = Vf(yk) 2™ — yr)

2a2, ,0%n
+ 1 2071 |[E [gk] — V(i)

Since [biﬂwn — aiﬂ + ai} =0,

bi+1 ]E[TI%+1] < birﬁ - 4ai+1 [E f(zrs1) — ]+ 4ai [f(zx) — 7]
+ 4aj, (E [ge] — Vf (yr), 2 — 2*)
+daj i1 (Elge] — V), 2" — yr)

2a7., ,0%n
+ 2 2a? B (gr] — ViR

Denoting E f(zr11) — f* as @41, we obtain

4ak+1q)k+1 — 4aj @y < biri — by k+1 E[TkJrl]
+4a26R — 4ak+16R

202 .02
+ 1 + 2aj418°,
p
where R = max{||zx — z*||, |yx — =*|}.
By summing over k£ we obtain:
N-1 N-1
4 [aiﬂ@kﬂ - ai@k} < [bkrkr by k+1 E[rk+1n
k=0 k=0
N-1
+4 [aizsR - aiﬂw}
k=0

15
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N-1rog2 o2 N-1
k

E { - ] +2 E ak+1775

k=0 k=0

p

) : 2 2 20
Let’s substitute aj  ; = bi 7np:

AR 1mp®N < 4ai®o + brg — R E [1y]
+4a05R 4aN5R

k=0 k=0
Divide the left and right parts by 4pn:
2 2 ag boro a2 77 2 & 2 = 2 2
bNIN-1PN < — P + aon T on T Z biVe] + 55 Z (0% 17k] -
PN PN P =0

Next, we show that according to (20)-(24) the following relation is correct:

1
vﬁw%—wﬁ4=ﬁl

2p
Namely,
1 1—
@ L {14— B ak)}
2p g
2 M wBe(l —ag)
Y — 2%  92an
14 2pou,
e 1 aj
1P i
e B o}
np by,
@2 1=y aj,
np b}
@) 1 —yepn
= P (yemavip)”
npe
= (1= k) Vo
1
= ﬁ%hpﬁmﬁ4%4~ 27)
If v, = C, then
1
Tk =
2pmp
M
= 1 — e
Bk %
byt = bo
k+1 — (k+1)/2
(1-/5)
2p
1 bo bo 1
A1 = /P - = . )
\V2unp (1 B L)(k+1)/2 u (1 B M)(k+1)/2
2p \/ 2p
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If by = /21,

The above equation implies that ag = 1.

Now the above relations allow us to obtain the following inequality:

2 1 1 2ur? R
N < B+ Tl
(1_ @) pnp on on o
P

(2
tE
k=0 (1, J=2)

(k+1)
Qp)

N-1 1

+i52z

2p = (1_ M)(k+1) ’
2p
By < By+ Er2 L Ro
N N > 0 + 2r0 +
(V%
2p
N o?n e 1
P = (1 M)(1€+1)
2p
7 = 1
2
+207 ) ok
5 10-v8)
2p
1 K 2
7N<I>N < ®y+ ETO + R§
(1= V)
o2y/2n 1
B
2p
+ V4 77/’52 . 1
V2 (1 B M)(’H-l)’
2p
N

N 2
+ (1— ”) R TV VP g2,
2p VPR 21

N
Bl - 1< (1= /g5 ) [0 - 574 5 oo = o1]
+(1,/“>NR6+ A
4p2L w/pQ/.LL \/4#[/ ’

By adding batching, given that jp = max{1, &} and 0% = "75 we have the convergence rate for accelerated batched SGD
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with biased gradient oracle and parameter < 2pB 7

N
Bl =17 < (1= \[Th7) [fle =1+ 5 oo =)

N
W ~ % 1
+({1- = ) Ré + 0°.
( 4p3 L NG \/4,uL

C. Properties of the Kernel Approximation

In this Section, we extend the explanations for obtaining the bias and second moment estimates of the gradient approximation.

Using the variational representation of the Euclidean norm, and definition of gradient approximation (5) we can write:
[b(zk)ll = [[E (xk, e)] = Vf(zx)ll
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where u € B%(1), ® = the equality is obtained from the fact, namely, distribution of e is symmetric, @ = the equality is
obtained from a version of Stokes’ theorem (Zorich & Paniagua, 2016).

By definition gradient approximation (5) and Wirtinger-Poincare inequality (11) we have
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D. Missing proof of Theorem 3.1

Let us consider case B = 1, then we have the following convergence rate:
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Maximum Noise Level as Third Optimality Criterion
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From term @, we find iteration number N required to achieve e-accuracy:

From terms @, @ we find the smoothing parameter h:
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From term ®, we find the maximum noise level A at which Algorithm 1 can still achieve the desired accuracy:
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The oracle complexity in this case is obtained as follows:
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Consider now the case 1 < B < 4dk, then we have the convergence rate:
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From term @, we find iteration number N required for Algorithm 1 to achieve e-accuracy:
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From terms @, @ we find the smoothing parameter h:
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Maximum Noise Level as Third Optimality Criterion

From term ®, we find the maximum noise level A at which Algorithm 1 can still achieve the desired accuracy:
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The oracle complexity in this case is obtained as follows:
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Now let us move to the case where B = 4dk, then we have convergence rate:
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From term @, we find iteration number N required for Algorithm 1 to achieve e-accuracy:
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From terms @, @ we find the smoothing parameter h:
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From term @, we find the maximum noise level A at which Algorithm 1 can still achieve the desired accuracy:
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The oracle complexity in this case is obtained as follows:
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Finally, consider the case when B > 4dk, then we have convergence rate:
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Maximum Noise Level as Third Optimality Criterion

From term @, we find iteration number NNV required for Algorithm 1 to achieve e-accuracy:
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From terms @, @ we find the smoothing parameter h:
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From term @, we find the maximum noise level A (via batch size B) at which Algorithm 1 can still achieve € accuracy:
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or let’s represent the batch size B via the noise level A:
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Then the oracle complexity 7' = N - B in this case has the following form:
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