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Maximum Noise Level as Third Optimality Criterion
in Black-Box Optimization Problem

Anonymous Authors1

Abstract

This paper is devoted to the study (common in
many applications) of the black-box optimiza-
tion problem, where the black-box represents a
gradient-free oracle f̃p = f(x) + ξp providing
the objective function value with some stochastic
noise. Assuming that the objective function is
µ-strongly convex, and also not just L-smooth,
but has a higher order of smoothness (β ≥ 2) we
provide a novel optimization method: Zero-Order
Accelerated Batched Stochastic Gradient Descent,
whose theoretical analysis closes the question re-
garding the iteration complexity, achieving opti-
mal estimates. Moreover, we provide a thorough
analysis of the maximum noise level, and show
under which condition the maximum noise level
will take into account information about batch
size B as well as information about the smooth-
ness order of the function β. Finally, we show the
importance of considering the maximum noise
level ∆ as a third optimality criterion along with
the standard two on the example of a numerical
experiment of interest to the machine learning
community, where we compare with state-of-the-
art gradient-free algorithms.

1. Introduction
This paper focuses on solving a standard optimization prob-
lem:

f∗ := min
x∈Q⊆Rd

f(x), (1)

where f : Q→ R is function that we want to minimize, f∗

is the solution, which we want to find. It is known that if
there are no obstacles to compute the gradient of the objec-
tive function f or to compute a higher order of the derivative

1Anonymous Institution, Anonymous City, Anonymous Re-
gion, Anonymous Country. Correspondence to: Anonymous Au-
thor <anon.email@domain.com>.
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of the function, then optimal first- or higher-order optimiza-
tions algorithms (Nesterov, 2003) should be used to solve
the original optimization problem (1). However, if comput-
ing the function gradient∇f(x) is impossible for any rea-
son, then perhaps the only way to solve the original problem
is to use gradient-free (zero-order) optimization algorithms
(Conn et al., 2009; Rios & Sahinidis, 2013). Among the
situations in which information about the derivatives of the
objective function is unavailable are the following:

a) non-smoothness of the objective function. This situa-
tion is probably the most widespread among theoretical
works (Gasnikov et al., 2022; Alashqar et al., 2023; Ko-
rnilov et al., 2024);

b) the desire to save computational resources, i.e., com-
puting the gradient ∇f(x) can sometimes be much
“more expensive” than computing the objective func-
tion value f(x). This situation is quite popular and
extremely understandable in the real world (Bogolub-
sky et al., 2016);

c) inaccessibility of the function gradient. A vivid exam-
ple of this situation is the problem of creating an ideal
product for a particular person (Lobanov et al., 2024).

Like first-order optimization algorithms, gradient-free al-
gorithms have the following optimality criteria: #N – the
number of consecutive iterations required to achieve the
desired accuracy of the solution ε and #T – the total num-
ber of calls (in this case) to the gradient-free oracle, where
by gradient-free/derivative-free oracle we mean that we
have access only to the objective function f(x) with some
bounded stochastic noise ξp (E

[
ξ2p
]
≤ ∆2). It should be

noted that because the objective function is subject to noise,
the gradient-free oracle plays the role of a black box. That
is why there is a tendency in the literature when the ini-
tial problem formulation (1) with a gradient-free oracle is
called a black-box optimization problem (Kimiaei & Neu-
maier, 2022). However, unlike higher-order algorithms,
gradient-free algorithms have a third optimality criterion:
the maximum noise level ∆ at which the algorithm will still
converge “good”, where by “good convergence” we mean
convergence as in the case when ∆ = 0. The existence of
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Maximum Noise Level as Third Optimality Criterion

(a) Resource saving (b) Robustness to attacks (c) Confidentiality

Figure 1. Motivation to find the maximum noise level ∆

such a seemingly unusual criterion can be explained by the
following motivational examples (see Figure 1*). Among
the motivations we can highlight the most demanded espe-
cially by companies (and not only). Resource saving (Fig-
ure 1a): The more accurately the objective function value is
calculated, the more expensive this process to be performed.
Robustness to Attacks (Figure 1b): Improving the maximum
noise level makes the algorithm more robust to adversarial
attacks. Confidentiality (Figire 1c): Some companies, due
to secrecy, can’t hand over all the information. Therefore,
it is important to be able to answer the following question:
How much can the objective function be noisy?

The basic idea to create algorithms with a gradient-free ora-
cle that will be efficient according to the above three criteria
is to take advantage of first-order algorithms by substituting
a gradient approximation instead of the true gradient (Gas-
nikov et al., 2023). The choice of the first-order optimiza-
tion algorithm depends on the formulation of the original
problem (on the Assumptions on the function and the gra-
dient oracle). But the choice of gradient approximation
depends on the smoothness of the function. For example,
if the function is non-smooth, a smoothing scheme with
l1 randomization (Alashqar et al., 2023; Lobanov, 2023)
or with l2 randomization (Dvinskikh et al., 2022; Lobanov
et al., 2023a;b) should be used to solve the original prob-
lem. If the function is smooth, it is enough to use choose l1
randomization (Akhavan et al., 2022) or l2 randomization
(Gorbunov et al., 2018; Lobanov & Gasnikov, 2023). But
if the objective function is not just smooth but also has a
higher order of smoothness (β ≥ 2), then the so-called Ker-
nel approximation (Akhavan et al., 2023; Gasnikov et al.,
2024b;a), which takes into account the information about
the increased smoothness of the function using two-point
feedback, should be used as the gradient approximation.

In this paper, we consider the black-box optimization prob-
lem (1), assuming strong convexity as well as increased
smoothness of the objective function. We choose acceler-
ated stochastic gradient descent (Vaswani et al., 2019) as the
basis for a gradient-free algorithm. Since the Kernel approx-

*The pictures are taken from the following resource

imation (which accounts for the advantages of increased
smoothness) is biased, we generalize the result of (Vaswani
et al., 2019) to the biased gradient oracle. We use the re-
sulting accelerated stochastic gradient descent with a biased
gradient oracle to create a gradient-free algorithm. Finally,
we explicitly derive estimates on the three optimality criteria
of the gradient-free algorithm.

1.1. Main Assumptions and Notations

Since the original problem (1) is general, in this subsection
we further define the problem by imposing constraints on the
objective function as well as the zero-order oracle. In partic-
ular, we assume that the function f is not just L-smooth, but
has increased smoothness, and is also µ-strongly convex.

Assumption 1.1 (Higher order smoothness). Let l denote
maximal integer number strictly less than β. Let Fβ(L)
denote the set of all functions f : Rd → R which are differ-
entiable l times and ∀x, z ∈ Q the Hölder-type condition:∣∣∣∣∣∣f(z)−

∑
0≤|n|≤l

1

n!
Dnf(x)(z − x)n

∣∣∣∣∣∣ ≤ Lβ ∥z − x∥β ,

where l < β (β is smoothness order), Lβ > 0, the
sum is over multi-index n = (n1, ..., nd) ∈ Nd,
we used the notation n! = n1! · · ·nd!, |n| = n1 +
· · · + nd, ∀v = (v1, ..., vd) ∈ Rd, and we defined

Dnf(x)vn = ∂|n|f(x)
∂n1x1···∂ndxd

vn1
1 · · · v

nd

d .

Assumption 1.2 (Strongly convex). Function f : Rd → R
is µ-strongly convex with some constant µ > 0 if for any
x, y ∈ Rd it holds that

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2 .

Assumption 1.1 is commonly appeared in papers (Bach
& Perchet, 2016; Akhavan et al., 2023), which consider
the case when the objective function has smoothness order
β ≥ 2. It is worth noting that the smoothness constant Lβ

in the case when β = 2 has the following relation with
the standard Lipschitz gradient constant L = 2 · L2. In

2
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Table 1. Overview of convergence results of previous works. Notations: d = dimensionality of the problem (1); β = smoothness order of
the objective function f ; µ = strong convexity constant; ε = desired accuracy of the problem solution by function.

References Iteration Complexity (#N) Oracle Complexity (#T ) Maximum Noise Level (∆)

(Bach & Perchet, 2016) O
(

d
2+ 2

β−1 ∆2

µε
β+1
β−1

)
O
(

d
2+ 2

β−1 ∆2

µε
β+1
β−1

)
✗

(Akhavan et al., 2020) Õ
(

d
2+ 2

β−1 ∆2

(µε)
β

β−1

)
Õ
(

d
2+ 2

β−1 ∆2

(µε)
β

β−1

)
✗

(Novitskii & Gasnikov, 2021) Õ
(

d
2+ 1

β−1 ∆2

(µε)
β

β−1

)
Õ
(

d
2+ 1

β−1 ∆2

(µε)
β

β−1

)
✗

(Akhavan et al., 2023) Õ
(

d2∆2

(µε)
β

β−1

)
Õ
(

d2∆2

(µε)
β

β−1

)
✗

Theorem 3.1 (Our work) O
(√

L
µ log 1

ε

)
max

{
Õ
(√

d2L
µ

)
, Õ
(

d2∆2

(µε)
β

β−1

)}
✓

addition, Assumption 1.2 is standard among optimization
works (Nesterov, 2003; Stich, 2019).

In this paper, we assume that Algorithm 1 (which will be
introduced later) only has access to the zero-order oracle,
which has the following definition.

Definition 1.3 (Zero-order oracle). The zero-order oracle
f̃p returns only the objective function value f(xk) at the
requested point xk with stochastic noise ξp:

f̃p(xk) = f(xk) + ξp,

where p ∈ {1, 2} and we suppose that the following assump-
tions on stochastic noise hold

• ξ1 ̸= ξ2 such that E[ξ21 ] ≤ ∆2 and E
[
ξ22
]
≤ ∆2,

where ∆ ≥ 0 is level noise;

• the random variables ξ1 and ξ2 are independent from
e ∈ Sd(1) is a random vector uniformly distributed
on the Euclidean unit sphere, and r is a random value
uniformly distributed on the interval.

We impose constraints on the Kernel function.

Assumption 1.4 (Kernel function). Let function
K : [−1, 1]→ R satisfying:

E[K(u)] = 0, E[uK(u)] = 1,

E[ujK(u)] = 0, j = 2, ..., l, E[|u|β |K(u)|] <∞.

Definition 1.3 is common among gradient-free works
(Lobanov, 2023). In particular, a zero-order oracle will
produce the exact function value when the noise level is
0. We would also like to point out that we relaxed the re-
striction on stochastic noise by not assuming a zero mean.
We only need the assumption that random variables ξ1 and
ξ2 are independent from e and r. Assumption 1.4 is often
found in papers using the gradient approximation – Kernel
approximation. An example of such a function is weighted
sums of Lejandre polynomial (Bach & Perchet, 2016).

Notation. We use ⟨x, y⟩ :=
∑d

i=1 xiyi to denote stan-
dard inner product of x, y ∈ Rd, where xi and yi are the
i-th component of x and y respectively. We denote Eu-
clidean norm in Rd as ∥x∥ :=

√
⟨x, x⟩. We use the notation

Bd(r) :=
{
x ∈ Rd : ∥x∥ ≤ r

}
to denote Euclidean ball,

Sd(r) :=
{
x ∈ Rd : ∥x∥ = r

}
to denote Euclidean sphere.

Operator E[·] denotes full expectation.

1.2. Related Works and Our Contributions

In Table 1, we provide an overview of the convergence re-
sults of the most related works, in particular we provide
estimates on the iteration complexity. Research studying the
problem (1) with a zero-order oracle (see Definition 1.3),
assuming that the function f has increased smoothness
(β ≥ 2, see Assumption 1.1) comes from (Polyak & Tsy-
bakov, 1990). After 20-30 years, this problem has received
widespread attention. However, as we can see, all previous
works ”fought” (improved/considered) exclusively for or-
acle complexity (which matches the iteration complexity),
without paying attention to other optimality criteria of the
gradient-free algorithm. In this paper, we ask another ques-
tion: Is estimation on iteration complexity unimprovable?
And as we can see from Table 1 or Theorem 3.1, we signifi-
cantly improve the iteration complexity without worsening
the oracle complexity, and also provide the best estimates
among those we have seen on ∆.

More specifically, our contributions are the following:

• We provide a detailed explanation of the technique for
creating a gradient-free algorithm that takes advantage
of the increased smoothness of the function via Kernel
approximation.

• We generalize existing convergence results for acceler-
ated stochastic gradient descent to the case where the
gradient oracle is biased, thereby demonstrating how
bias accumulates in the convergence of the algorithm.
This result may be of independent interest.

• We close the question regarding the iteration complex-
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Maximum Noise Level as Third Optimality Criterion

ity search by providing an improved estimate (see Ta-
ble 1) that is, we provide an optimal estimate.

• We find the maximum noise level ∆ at which the al-
gorithm will still achieve the desired accuracy ε (see
Table 1 and Theorem 3.1). Moreover, we show that
if overbatching is done, the positive effect on the er-
ror floor is preserved in a strongly convex problem
formulation.

• We show the importance of considering the maximum
noise level ∆ as a third optimality criterion along with
standard two using an example of a numerical experi-
ment of interest for ML (logistic regression problem).

Paper Organization This paper has the following struc-
ture. In Section 2, we present a first-order algorithm on
the basis of which a novel gradient-free algorithm will be
created. And in Section 3 we provide the main result of this
paper, namely the convergence results of the novel acceler-
ated gradient-free optimization algorithm. In Section 4, we
provide experiments. While Section 5 concludes this paper.
The missing proofs of the paper are presented in Appendix.

2. Search for First-Order Algorithm as a Base
As mentioned earlier, the basic idea of creating a gradient-
free algorithm is to take advantage of first-order algorithms.
That is, in this subsection, we find the first-order algorithm
on which we will base to create a novel gradient-free algo-
rithm by replacing the true gradient with a gradient approxi-
mation. Since gradient approximations use randomization
on the sphere e (e.g., l1, l2 randomization, or Kernel approx-
imation), it is important to look for a first-order algorithm
that solves a stochastic optimization problem (due to the
artificial stochasticity of e). Furthermore, since the gradient
approximation from a zero-order oracle concept has a bias,
it is also important to find a first-order algorithm that will
use a biased gradient oracle. Using these criteria, we formu-
late an optimization problem to find the most appropriate
first-order algorithm.

2.1. Statement Problem

Due to the presence of artificial stochasticity in the gradient
approximation, we reformulate the original optimization
problem as follows:

f∗ = min
x∈Q⊆Rd

{f(x) := E [f(x, ω)]} . (2)

We assume that the function satisfies the L-smoothness
assumption, since it is a basic assumption in papers on first-
order optimization algorithms.

Assumption 2.1 (L-smooth). Function f is L-smooth if

it holds ∀x, y ∈ Rd

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2 .

Next, we define a biased gradient oracle that uses a first-
order algorithm.
Definition 2.2 (Biased Gradient Oracle). A map
g : Rd × D → Rd s.t.

g(x, ω) = ∇f(x, ω) + b(x)

for a bias b : Rd → Rd and unbiased stochastic gradient
E [∇f(x, ω)] = ∇f(x).

We assume that the bias and gradient noise are bounded.
Assumption 2.3 (Bounded bias). There exists constant
δ ≥ 0 such that ∀x ∈ Rd the following inequality holds

∥b(x)∥ = ∥E [g(x, ω)]−∇f(x)∥ ≤ δ. (3)

Assumption 2.4 (Bounded noise). There exists constants
ρ, σ2 ≥ 0 such that the more general condition of strong
growth is satisfied ∀x ∈ Rd

E
[
∥g(x, ω)∥2

]
≤ ρ ∥∇f(x)∥2 + σ2. (4)

Assumption 2.3 is standard for analysis, bounding bias. As-
sumption 2.4 is a more general condition for strong growth
due to the presence of σ2.

2.2. First-Order Algorithm as a Base

Now that the problem is formally defined (see Subsection
2.1), we can find an appropriate first-order algorithm. Since
one of the main goals of this research is to improve iteration
complexity, we have to look for a accelerated batched first-
order optimization algorithm. And the most appropriate
optimization algorithm which has the following update rule:

xk+1 = yk − ηg(yk, ωk)

yk = αkzk + (1− αk)xk

zk+1 = ζkzk + (1− ζk)yk − γkηg(yk, ωk)

has the following convergence rate presented in Lemma 2.5.
Lemma 2.5 ((Vaswani et al., 2019), Theorem 1). Let the
function f satisfy Assumption 1.2 and 2.1, and the gradi-
ent oracle (see Definition 2.2 with δ = 0) satisfy Assump-
tions 2.3 and 2.4, then with ρ̃ = max{1, ρ} and with the
chosen parameters γk, ak+1, αk, η the Accelerated Stochas-
tic Gradient Descent has the following convergence rate:

FN ≤
(
1−

√
µ

ρ̃2L

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
+

σ2√
ρ̃2µL

,

where FN = E [f(xN )]− f∗.
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As can be seen from Lemma 2.5, that the presented First
Order Accelerated Algorithm is not appropriate for creating
a gradient-free algorithm, since this algorithm uses an un-
biased gradient oracle, and also does not use the batching
technique. Therefore, we are ready to present one of the sig-
nificant results of this work, namely generalizing the results
of Lemma 2.5 to the case with an biased gradient oracle and
also adding batching (where B is a batch size).

(a) Case without bias (b) Case with bias

Figure 2. Bias influence on the algorithm convergence

Theorem 2.6. Let the function f satisfy Assump-
tion 1.2 and 2.1, and the gradient oracle (see Def-
inition 2.2) satisfy Assumptions 2.3 and 2.4, then
with ρ̃B = max{1, ρ

B } and with the chosen parame-
ters γk = 1√

2µηρ
, βk = 1− µη

2ρ , bk+1 =
√
2µ

(1−
√

µη
2ρ )

(k+1)/2 ,

ak+1 = 1

(1−
√

µη
2ρ )

(k+1)/2 , αk =
γkβkb

2
k+1η

γkβkb2k+1η+2a2
k

, η ≤ 1
2ρL

Accelerated Stochastic Gradient Descent with batching has
the following convergence rate (FN = E [f(xN )]− f∗):

FN ≤
(
1−

√
µ

ρ̃2BL

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
+

σ2√
ρ̃2BµLB

2
+

(
1−

√
µ

ρ̃2BL

)N

R̃δ +
δ2√
4µL

,

where R̃ = maxk{∥xk − x∗∥, ∥yk − x∗∥}.

As can be seen from Theorem 2.6, this result is very similar
to the result of Lemma 2.5, moreover, they will be the same
if we take δ = 0 and B = 1. It is also worth noting that the
third summand does not affect convergence much (the noise
does not accumulate due to the decreasing sequence), so we
will not consider it in the future for simplicity. Finally, it is
worth noting that the Algorithm presented in (Vaswani et al.,
2019) can converge as closely as possible to the problem
solution (see the red line in Figure 2), while the Algorithm
using the biased gradient oracle can only converge to the
error floor (see the blue line in Figure 2). This is explained
by the last summand from Theorem 2.6. However, con-
vergence to the error floor opens questions about how this
asymptote can be controlled. And as shown in (Gasnikov
et al., 2024a), the convergence of gradient-free algorithms
to the asymptote depends directly on the noise level: the
more noise, the better the algorithm can achieve the error

floor. This fact is another clear motivation for finding the
maximum noise level. For a detailed proof of Theorem 2.6,
see the supplementary materials (Appendix B).

3. Zero-Order Accelerated Batched SGD
Now that we have a proper first-order algorithm, we can
move on to creating a novel gradient-free algorithm. To do
this, we need to use the gradient approximation instead of
the gradient oracle. In this work, we are going to use exactly
the Kernel approximation because it takes into account the
advantages of increased smoothness of the function, and
which has the following

g(x, e) = d
f̃1(x+ hre)− f̃2(x− hre)

2h
K(r)e, (5)

where h > 0 is a smoothing parameter, e ∈ Sd(1) is a ran-
dom vector uniformly distributed on the Euclidean unit
sphere, r is a random value uniformly distributed on the
interval r ∈ [0, 1], K : [−1, 1] → R is a Kernel function.
Then a novel gradient-free method aimed at solving the orig-
inal problem (1) is presented in Algorithm 1. The missing
hyperparameters are given in the Theorem 2.6.

Algorithm 1 Zero-Order Accelerated Batched Stochastic
Gradient Descent (ZO-ABSGD)

Input: iteration number N , batch size B, Kernel
K : [−1, 1]→ R, step size η, smoothing parameter h,
x0 = y0 = z0 ∈ Rd, a0 = 1, ρ = 4dκ.
for k = 0 to N − 1 do

1. Sample vectors e1, e2..., eB ∈ Sd(1) and scalars
1. r1, r2, ..., rB ∈ [−1, 1] independently
2. Calculate gk = 1

B

∑B
i=1 g(xk, ei) via (5)

3. yk ← αkzk + (1− αk)xk

4. xk+1 ← yk − ηgk

5. zk+1 ← βkzk + (1− βk)yk − γkηgk

end for
Return: xN

Now, in order to obtain an estimate of the convergence rate
of Algorithm 1, we need to evaluate the bias as well as the
second moment of the gradient approximation (5). Let’s
start with the bias of the gradient approximation:

Bias of gradient approximation Using the variational
representation of the Euclidean norm, and definition of gra-
dient approximation (5) we can write:∥∥∥∥ d

2h
E
[(

f̃1(x+ hre)− f̃2(x− hre)
)
K(r)e

]
−∇f(x)

∥∥∥∥
①
=

∥∥∥∥dhE [f(x+ hre)K(r)e]−∇f(x)
∥∥∥∥

②
= ∥E [∇f(x+ hru)rK(r)]−∇f(x)∥

5
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= sup
z∈Sd

2 (1)

E [∥(∇zf(x+ hru)−∇zf(x))rK(r)∥]

③,④

≤ κβh
β−1 L

(l − 1)!
E
[
∥u∥β−1

]
≤ κβh

β−1 L

(l − 1)!

d

d+ β − 1

≲ κβLh
β−1, (6)

where u ∈ Bd(1); ① = the equality is obtained from the
fact, namely, distribution of e is symmetric’ ② = the equal-
ity is obtained from a version of Stokes’ theorem (Zorich
& Paniagua, 2016); ③ = Taylor expansion (see Ap-
pendix for more detail); ④ = assumption that |R(hru)| ≤

L
(l−1)! ∥hru∥

β−1
= L

(l−1)! |r|
β−1hβ−1 ∥u∥β−1.

Now we find an estimate of the second moment of the gra-
dient approximation (5).
Bounding second moment of gradient approximation
By definition gradient approximation (5) and Wirtinger-
Poincare inequality we have

E
[
∥g(xk, e)∥2

]
=

d2

4h2
E
[∥∥∥(f̃(xk + hre)− f̃(xk − hre)

)
K(r)e

∥∥∥2]
≤ κd2

2h2

(
E
[
(f(xk + hre)− f(xk − hre))

2
]
+ 2∆2

)
≤ κd

2
E
[
∥∇f(xk + hre) +∇f(xk − hre)∥2

]
+

κd2∆2

h2

≤ κdE
[
∥∇f(xk + hre)± ∥∇f(xk)∥∥2

]
+ κdE

[
∥∇f(xk − hre)± ∥∇f(xk)∥∥2

]
+

κd2∆2

h2

≤ 4dκ︸︷︷︸
ρ

∥∇f(xk)∥2 + 4dκL2h2 +
κd2∆2

h2︸ ︷︷ ︸
σ2

. (7)

Now substituting into Theorem 2.6 instead of
δ → κβLh

β−1 from (6), ρ → 4dκ from (7) and
σ2 → 4dκL2h2 + κd2∆2

h2 from (7), we obtain convergence
for the novel gradient-free method (see Algorithm 1) with
ρB = max{1, 4dκ

B }:

FN ≤
(
1−

√
µ

ρ2BL

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
︸ ︷︷ ︸

①

+
4dκL2h2√
ρ2BµLB

2︸ ︷︷ ︸
②

+
κd2∆2

h2
√

ρ2BµLB
2︸ ︷︷ ︸

③

+
κ2
βL

2h2(β−1)

√
4µL︸ ︷︷ ︸
④

.

We are now ready to present the main result of this paper.

Theorem 3.1. Let the function f satisfy Assumptions 1.1
and 1.2, and let the Kernel approximation with zero-order or-
acle (see Definition1.3) satisfy Assumptions 1.4 and 2.3–2.4,
then the novel Zero-Order Accelerated Batched Stochastic
Gradient Descent (see Algorithm 1) converges to the desired
accuracy ε at the following parameters

1. Case: B = 1: with smoothing parameter h ≲

ε1/2µ1/4, after N = O
(√

d2L
µ log 1

ε

)
successive iter-

ations, T = N · B = O
(√

d2L
µ log 1

ε

)
oracle calls

and at ∆ ≲ εµ1/2

√
d

maximum noise level.

2. Case: 1 < B < 4dκ: with parameter h ≲ ε1/2µ1/4,

after N = O
(√

d2L
B2µ log 1

ε

)
successive iterations,

T = N · B = O
(√

d2L
µ log 1

ε

)
oracle calls and at

∆ ≲ εµ1/2

√
d

maximum noise level.

3. Case: B = 4dκ: with smoothing parameter h ≲

ε1/2µ1/4, after N = O
(√

L
µ log 1

ε

)
successive iter-

ations, T = N · B = O
(√

d2L
µ log 1

ε

)
oracle calls

and at ∆ ≲ εµ1/2

√
d

maximum noise level.

4. Case: B > 4dκ: with parameter h ≲
(
ε
√
µ
) 1

2(β−1) ,

after N = O
(√

L
µ log 1

ε

)
successive iterations, T =

N · B = max{Õ
(√

d2L
µ

)
, Õ
(

d2∆2

(εµ)
β

β−1

)
} oracle

calls and at ∆ ≲ (ε
√
µ)

β
2(β−1)

d B1/2 maximum noise
level.

As can be seen from Theorem 3.1, Algorithm 1 indeed
improves the iteration complexity compared to previous
works (see Table 1), reaching the optimal estimate in a class
of algorithms based on first-order algorithms at batch size
B = 4dκ. However, if we consider the case B ∈ [1, 4dκ],
then when the batch size increases from 1, the algorithm
improves the convergence rate (without changing the oracle
complexity), but achieves the same error floor. This is not
very good, because the asymptote does not depend on either
the batch size or the smoothness order of the function. How-
ever, if we take the batch size larger than B > 4dκ, we will
significantly improve the maximal noise level by worsening
the oracle complexity. That is, in the overbatching condi-
tion, the error floor depends on both the batch size and the
smoothness order, which can play a critical role in real life.
For a detailed proof, see Appendix D.
Remark 3.2 (Convex case.). It is not difficult to show that
the results of Theorem 3.1 generalize to the convex case

6
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(see Assumption 1.2 with µ = 0), preserving the same
dependence on B, namely in the case B ∈ [1; 4dκ] and
h ≲ ε3/4 we have the following convergence estimates for
Algorithm 1:

N = O

(√
d2LR2

B2ε

)
; T = O

(√
d2LR2

ε

)

and

∆ ≲
ε3/2√

d
.

We can also observe that the optimal estimate of iteration
complexity in the convex setup is achieved when B = 4dκ.
Moreover, the maximum noise level behaves in a similar
way:

N = O

(√
LR2

ε

)
;

T = max

[
O

(√
d2LR2

ε

)
,O
(

d2∆2

ε2+
2

β−1

)]

and

∆ ≲
ε

3β+1
4(β−1)

d
B1/2.

It can be seen that if we take µ ∼ ε, the oracle complexity
is the same in the worst case, and the maximum noise level
is inferior depending on the order of smoothness compared
to the strongly convex set (which is surprising).
Remark 3.3 (Deterministic adversarial noise). It should be
noted that when considering deterministic adversarial noise
(|ξ̃(x)| ≤ ∆) in a zero-order oracle instead of stochastic
(see ξp with p = {1, 2} in Definition 1.3), Theorem 3.1 will
preserve the results except for the maximum noise level:

∆ ≲
(ε
√
µ)

β
2(β−1)

d
B1/2 → ∆ ≲

(ε
√
µ)

β
2(β−1)

d
.

This can be explained by the fact that deterministic noise
is more adversarial because it accumulates not only in the
second moment of the gradient approximation, but also
in the bias! The results in the convex case will change
similarly.
Remark 3.4 (High probability deviations bound). Given
that Algorithm 1 in strongly convex setting demonstrates a
linear convergence rate and employs a randomization (see
e.g. e ∈ Sd(1)), we can derive exact estimates of high
deviation probabilities using Markov’s inequality (Anikin
et al., 2017):

P
(
f(xN(εθ)

)− f∗ ≥ ε
)
≤ θ

E
[
f(xN(εθ)

)
]
− f∗

εθ
≤ θ.

Remark 3.5 (Non-convex setup (PL)). It should be
noted that our algorithm will have global convergence
for a subclass of non-convex functions that satisfy the
Polyak—Lojasiewicz (PL) condition (see, Karimi et al.,
2016). It is not hard to see that the results will have a similar
dependence on the batch size:

N = Õ
(

d

B
µ̃−1

)
; T = Õ

(
dµ̃−1

)
and

∆ ≲
εµ̃√
d
,

where µ̃ from PL Assumption (see, Karimi et al., 2016).
We can also observe that the optimal estimate of iteration
complexity in the convex setup is achieved when B = 4dκ.
Also, the maximum noise level behaves similarly:

N = Õ
(
µ̃−1

)
;

T = max

[
Õ
(
dµ̃−1

)
, Õ

(
d2∆2

ε
β

β−1 µ̃
2β−1
β−1

)]

and

∆ ≲
(εµ̃)

β
2(β−1)

d
B1/2.

Similarly to the cases discussed above, when considering
deterministic adversarial noise, the dependence on the batch
size will disappear in the estimation of the maximum noise
level. The transition to High probability deviations bounds
is also valid. And if we compare with the estimates of
Theorem 3.1, provided µ ∼ ε from the strong convexity
condition, and µ̃ ∼ ε from the PL condition, then the itera-
tion complexity is the same, but the oracle complexity in the
PL case is inferior to the strongly convex case. This can be
explained by the fact that the PL condition covers a subclass
of non-convex functions.

4. Numerical Experiments
In this section, we show the importance of considering the
maximum noise level ∆ as a third optimality criterion along
with the standard two. We consider a problem of interest in
machine learning, namely the logistic regression problem:

min
x∈Rd

{
f(x) =

1

M

M∑
i=1

log(1 + exp(−yi · (Ax)i))

}
.

Here we can understand log(1+exp(−yi · (Ax)i)) = fi(x)
as the loss at the i-th data point, x ∈ Rd as a vector of param-
eters (or weights), y ∈ {−1, 1}M as a vector of labels, and
A ∈ RM×d as a matrix of instances. For our experiments
we use data from the LIBSVM library (Chang & Lin, 2011),

7
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namely the a9a data. In the gradient approximation (5), we
choose as the kernel function K(r) the Legendre polynomi-
als, for which it is shown in (Bach & Perchet, 2016) that the
parameters κ and κβ depend only on the smoothness order
β. We have the following values for different β:

K(r) =
15r

4
(5− 7r2) for β = 3, 4;

K(r) =
195r

16
(99r4 − 126r2 + 35) for β = 5, 6.

To show the effectiveness of our Algorithm 1 (ZO-ABSGD)
we compare with SOTA accelerated gradient-free algo-
rithms, namely ZO-VARAG from (Chen et al., 2020),
ARDFDS from (Gorbunov et al., 2022). We also compare
our Algorithm 1 with RDFDS from (Gorbunov et al., 2022)
to demonstrate the superiority of the accelerated algorithm
over the unaccelerated ones, which are all previous works
(see Table 1).

Figure 3. Comparison of SOTA gradient-free algorithms conver-
gence. Here we optimize f(x) with the parameters: d = 123
(problem dimensionality), B = 1000 (batch size), ∆ = 10−5

(noise level), η = 10−4 (step size), h = 10−4 (smoothing param-
eter). In all experiments, the hyperparameters of the algorithms
are tuned.

Figure 3 shows both standard results, such as the superiority
of accelerated methods over unaccelerated methods, and the
outperformance, the robustness of our algorithm. It is not
hard to see that the ZO-VARAG algorithm outperforms the
convergence rate on the first iterations, but converges to an
error floor thereafter. This effect (convergence to the asymp-
tote) can be explained by the fact that in (Chen et al., 2020)
an accelerated ZO-VARAG algorithm was proposed, which
is not robust to adversarial noise. Regarding the RDFDS
and ARDFDS algorithms, as the Figure shows they are also
robust to adversarial stochastic noise like our algorithm.
The robust convergence of the algorithms from (Gorbunov
et al., 2022) can be explained by the fact that in (Gorbunov
et al., 2022) algorithms were proposed that are robust to
deterministic adversarial noise (DAN). As we know DAN is
more antagonistic than stochastic adversarial noise because

it accumulates not only in the variance but also in the bias of
the gradient approximation. Despite this, ZO-ABSGD has
better convergence compared to ARDFDS because the pro-
posed 1 takes advantage of increased smoothness (β = 3),
unlike its counterpart. Thus, this Figure 3 demonstrates not
only the advantage of our algorithm, but also the importance
in the design and analysis of algorithms robust to adversar-
ial noise!

5. Conclusion
In this paper, we proposed a novel accelerated gradient-free
algorithm to solve the black-box optimization problem un-
der the assumption of increased smoothness and strong con-
vexity of the objective function. By choosing a first-order
accelerated algorithm and generalizing it to the Batched
algorithm with a biased gradient oracle, we were able to im-
prove the iteration complexity, reaching optimal estimates.
Moreover, we have shown the importance of considering
the maximum noise level as a third optimality criterion in a
numerical experiment of interest in machine learning. And
finally, we believe that this work offers a new perspective
on black-box optimization and opens avenues for future
research.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Akhavan, A., Pontil, M., and Tsybakov, A. Exploiting

higher order smoothness in derivative-free optimization
and continuous bandits. Advances in Neural Information
Processing Systems, 33:9017–9027, 2020.

Akhavan, A., Chzhen, E., Pontil, M., and Tsybakov, A. A
gradient estimator via l1-randomization for online zero-
order optimization with two point feedback. Advances in
Neural Information Processing Systems, 35:7685–7696,
2022.

Akhavan, A., Chzhen, E., Pontil, M., and Tsybakov, A. B.
Gradient-free optimization of highly smooth functions:
improved analysis and a new algorithm. arXiv preprint
arXiv:2306.02159, 2023.

Alashqar, B., Gasnikov, A., Dvinskikh, D., and Lobanov,
A. Gradient-free federated learning methods with l 1
and l 2-randomization for non-smooth convex stochastic
optimization problems. Computational Mathematics and
Mathematical Physics, 63(9):1600–1653, 2023.

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Maximum Noise Level as Third Optimality Criterion

Anikin, A. S., Gasnikov, A. V., Dvurechensky, P., Tyurin, A.,
and Chernov, A. V. Dual approaches to the minimization
of strongly convex functionals with a simple structure
under affine constraints. Computational Mathematics
and Mathematical Physics, 57:1262–1276, 2017.

Bach, F. and Perchet, V. Highly-smooth zero-th order online
optimization. In Conference on Learning Theory, pp.
257–283. PMLR, 2016.

Bogolubsky, L., Dvurechenskii, P., Gasnikov, A., Gusev,
G., Nesterov, Y., Raigorodskii, A. M., Tikhonov, A.,
and Zhukovskii, M. Learning supervised pagerank with
gradient-based and gradient-free optimization methods.
Advances in neural information processing systems, 29,
2016.

Chang, C.-C. and Lin, C.-J. Libsvm: a library for support
vector machines. ACM transactions on intelligent systems
and technology (TIST), 2(3):1–27, 2011.

Chen, Y., Orvieto, A., and Lucchi, A. An acceler-
ated DFO algorithm for finite-sum convex functions.
In III, H. D. and Singh, A. (eds.), Proceedings of
the 37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 1681–1690. PMLR, 13–18 Jul 2020.
URL https://proceedings.mlr.press/v119/
chen20r.html.

Conn, A. R., Scheinberg, K., and Vicente, L. N. Introduction
to derivative-free optimization. SIAM, 2009.

Dvinskikh, D., Tominin, V., Tominin, I., and Gasnikov, A.
Noisy zeroth-order optimization for non-smooth saddle
point problems. In International Conference on Mathe-
matical Optimization Theory and Operations Research,
pp. 18–33. Springer, 2022.

Gasnikov, A., Novitskii, A., Novitskii, V., Abdukhakimov,
F., Kamzolov, D., Beznosikov, A., Takac, M., Dvurechen-
sky, P., and Gu, B. The power of first-order smooth opti-
mization for black-box non-smooth problems. In Interna-
tional Conference on Machine Learning, pp. 7241–7265.
PMLR, 2022.

Gasnikov, A., Dvinskikh, D., Dvurechensky, P., Gorbunov,
E., Beznosikov, A., and Lobanov, A. Randomized
gradient-free methods in convex optimization. In En-
cyclopedia of Optimization, pp. 1–15. Springer, 2023.

Gasnikov, A., Lobanov, A., and Bashirov, N. The ”over-
batching” effect? yes, or how to improve error floor in
black-box optimization problems. arXiv preprint arXiv,
2024a.

Gasnikov, A., Lobanov, A., and Stonyakin, F. Highly
smooth zeroth-order methods for solving optimization
problems under the pl condition. Computational Mathe-
matics and Mathematical Physics, 64(4):739–770, 2024b.

Gorbunov, E., Dvurechensky, P., and Gasnikov, A. An
accelerated method for derivative-free smooth stochastic
convex optimization. arXiv preprint arXiv:1802.09022,
2018.

Gorbunov, E., Dvurechensky, P., and Gasnikov, A. An
accelerated method for derivative-free smooth stochastic
convex optimization. SIAM Journal on Optimization, 32
(2):1210–1238, 2022. doi: 10.1137/19M1259225. URL
https://doi.org/10.1137/19M1259225.

Karimi, H., Nutini, J., and Schmidt, M. Linear conver-
gence of gradient and proximal-gradient methods under
the polyak-łojasiewicz condition. In Machine Learn-
ing and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2016, Riva del Garda, Italy,
September 19-23, 2016, Proceedings, Part I 16, pp. 795–
811. Springer, 2016.

Kimiaei, M. and Neumaier, A. Efficient unconstrained
black box optimization. Mathematical Programming
Computation, 14(2):365–414, 2022.

Kornilov, N., Shamir, O., Lobanov, A., Dvinskikh, D., Gas-
nikov, A., Shibaev, I., Gorbunov, E., and Horváth, S.
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APPENDIX
Maximum Noise Level as Third Optimality Criterion

in Black-Box Optimization Problem

A. Auxiliary Facts and Results
In this section we list auxiliary facts and results that we use several times in our proofs.

A.1. Squared norm of the sum

For all a1, ..., an ∈ Rd, where n = {2, 3}

∥a1 + ...+ an∥2 ≤ n ∥a1∥2 + ...+ n ∥an∥2 . (8)

A.2. Fenchel-Young inequality

For all a, b ∈ Rd and λ > 0

⟨a, b⟩ ≤ ∥a∥
2

2λ
+

λ∥b∥2

2
. (9)

A.3. L smoothness function

Function f is called L-smooth on Rd with L > 0 when it is differentiable and its gradient is L-Lipschitz continuous on Rd,
i.e.

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ , ∀x, y ∈ Rd. (10)

It is well-known that L-smoothness implies (see e.g., Assumption 2.1)

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2 ∀x, y ∈ Rd,

and if f is additionally convex, then

∥∇f(x)−∇f(y)∥2 ≤ 2L (f(x)− f(y)− ⟨∇f(y), x− y⟩) ∀x, y ∈ Rd.

A.4. Wirtinger-Poincare inequality

Let f is differentiable, then for all x ∈ Rd, he ∈ Sd
2 (h):

E
[
f(x+ he)2

]
≤ h2

d
E
[
∥∇f(x+ he)∥2

]
. (11)

A.5. Taylor expansion

Using the Taylor expansion we have

∇zf(x+ hru) = ∇zf(x) +
∑

1≤|n|≤l−1

(rh)|n|

n!
D(n)∇zf(x)u

n +R(hru), (12)

where by assumption

|R(hru)| ≤ L

(l − 1)!
∥hru∥β−1

=
L

(l − 1)!
|r|β−1hβ−1 ∥u∥β−1

. (13)

11
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A.6. Kernel property

If e is uniformly distributed on Sd
2 (1) we have E[eeT] = (1/d)Id×d, where Id×d is the identity matrix. Therefore, using the

facts E[rK(r)] = 1 and E[r|n|K(r)] = 0 for 2 ≤ |n| ≤ l we have

E

d
h

⟨∇f(x), hre⟩+ ∑
2≤|n|≤l

(rh)|n|

n!
D(n)f(x)en

K(r)e

 = ∇f(x). (14)

A.7. Bounds of the Weighted Sum of Legendre Polynomials

Let κβ =
∫
|u|β |K(u)|du and set κ =

∫
K2(u)du. Then if K be a weighted sum of Legendre polynomials, then it is

proved in (see Appendix A.3, (Bach & Perchet, 2016)) that κβ and κ do not depend on d, they depend only on β, such that
for β ≥ 1:

κβ ≤ 2
√
2(β − 1), (15)

κ ≤ 3β3. (16)

B. Missing proof of Theorem 2.6
In this Section we demonstrate a missing proof of Theorem 2.6, namely a generalization of Lemma 2.5 to the case with a
biased gradient oracle (see Definition 2.2). Therefore, our reasoning is based on the proof of Lemma 2.5 (Vaswani et al.,
2019).

Before proceeding directly to the proof, we recall the update rules of First-order Accelerated SGD from (Vaswani et al.,
2019):

yk = αkzk + (1− αk)xk; (17)
xk+1 = yk − ηgk; (18)
zk+1 = βkzk + (1− βk)yk − γkηgk, (19)

where we choose the parameters γk, αk, βk, ak, bk such that the following equations are satisfied:

γk =
1

2ρ
·
[
1 +

βk(1− αk)

αk

]
; (20)

αk =
γkβkb

2
k+1η

γkβkb2k+1η + 2a2k
; (21)

βk ≥ 1− γkµη; (22)
ak+1 = γk

√
ηρbk+1; (23)

bk+1 ≤
bk√
βk

. (24)

Now, we’re ready to move on to the proof itself. Let rk+1 = ∥zk+1 − x∗∥ and gk = g(yk, ωk) from Definition 2.2, then
using equation (19):

r2k+1 = ∥βkzk + (1− βk)yk − x∗ − γkηgk∥2

r2k+1 = ∥βkzk + (1− βk)yk − x∗∥2 + γ2
kη

2 ∥gk∥2 + 2γkη ⟨x∗ − βkzk − (1− βk)yk,gk⟩ .

Taking expecation wrt to ξk,

E[r2k+1] = E[∥βkzk + (1− βk)yk − x∗∥2] + γ2
kη

2 E ∥gk∥2

+ 2γkη E [⟨x∗ − βkzk − (1− βk)yk,gk⟩]

12
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(2.4)
≤ ∥βkzk + (1− βk)yk − x∗∥2 + γ2

kη
2ρ ∥∇f(yk)∥2

+ 2γkη⟨x∗ − βkzk − (1− βk)yk,E [gk]⟩+ γ2
kη

2σ2

= ∥βk(zk − x∗) + (1− βk)(yk − x∗)∥2 + γ2
kη

2ρ ∥∇f(yk)∥2

+ 2γkη⟨x∗ − βkzk − (1− βk)yk,E [gk]⟩+ γ2
kη

2σ2

≤ βk ∥zk − x∗∥2 + (1− βk) ∥yk − x∗∥2 + γ2
kη

2ρ ∥∇f(yk)∥2

+ 2γkη⟨x∗ − βkzk − (1− βk)yk,E [gk]⟩+ γ2
kη

2σ2 (By convexity of ∥·∥2)

= βkr
2
k + (1− βk) ∥yk − x∗∥2 + γ2

kη
2ρ ∥∇f(yk)∥2

+ 2γkη⟨x∗ − βkzk − (1− βk)yk,E [gk]⟩+ γ2
kη

2σ2

= βkr
2
k + (1− βk) ∥yk − x∗∥2 + γ2

kη
2ρ ∥∇f(yk)∥2

+ 2γkη ⟨βk(yk − zk) + x∗ − yk,E [gk]⟩+ γ2
kη

2σ2

(17)
= βkr

2
k + (1− βk) ∥yk − x∗∥2 + γ2

kη
2ρ ∥∇f(yk)∥2

+ 2γkη

〈
βk(1− αk)

αk
(xk − yk) + x∗ − yk,E [gk]

〉
+ γ2

kη
2σ2

= βkr
2
k + (1− βk) ∥yk − x∗∥2 + γ2

kη
2ρ ∥∇f(yk)∥2

+ 2γkη

[
βk(1− αk)

αk
⟨E [gk] , (xk − yk)⟩+ ⟨E [gk] , x

∗ − yk⟩
]

+ γ2
kη

2σ2

≤ βkr
2
k + (1− βk) ∥yk − x∗∥2 + γ2

kη
2ρ ∥∇f(yk)∥2

+ 2γkη

[
βk(1− αk)

αk
(f(xk)− f(yk)) + ⟨E [gk] , x

∗ − yk⟩
]
+ γ2

kη
2σ2

+ 2γkη

[
βk(1− αk)

αk
⟨E [gk]−∇f(yk), xk − yk⟩

]
. (By convexity)

By strong convexity,

E[r2k+1] ≤ βkr
2
k + (1− βk) ∥yk − x∗∥2 + γ2

kη
2ρ ∥∇f(yk)∥2

+ 2γkη

[
βk(1− αk)

αk
(f(xk)− f(yk)) + f∗ − f(yk)−

µ

2
∥yk − x∗∥2

]
+ 2γkη

[
βk(1− αk)

αk
⟨E [gk]−∇f(yk), xk − yk⟩+ ⟨E [gk]−∇f(yk), x∗ − yk⟩

]
+ γ2

kη
2σ2. (25)

By Lipschitz continuity of the gradient,

f(xk+1)− f(yk) ≤ ⟨∇f(yk), xk+1 − yk⟩+
L

2
∥xk+1 − yk∥2

≤ −η⟨∇f(yk),gk⟩+
Lη2

2
∥gk∥2

= −η ∥∇f(yk)∥2 +
Lη2

2
∥gk∥2 − η ⟨∇f(yk),gk −∇f(yk)⟩ .

Taking expectation wrt ξk, we obtain

E[f(xk+1)− f(yk)] ≤ −η ∥∇f(yk)∥2 +
Lρη2

2
∥∇f(yk)∥2 +

Lη2σ2

2
− η ⟨∇f(yk),E [gk]−∇f(yk)⟩

13
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E[f(xk+1)− f(yk)]
(9)
≤
[
−η

2
+

Lρη2

2

]
∥∇f(yk)∥2 +

Lη2σ2

2

+
η

2
∥E [gk]−∇f(yk)∥2 .

If η ≤ 1
2ρL ,

E[f(xk+1)− f(yk)] ≤
(
−η
4

)
∥∇f(yk)∥2 +

Lη2σ2

2
+

η

2
∥E [gk]−∇f(yk)∥2

∥∇f(yk)∥2 ≤
(
4

η

)
E[f(yk)− f(xk+1)] + 2Lησ2 + 2 ∥E [gk]−∇f(yk)∥2 . (26)

From equations (25) and (26), we get

E[r2k+1] ≤ βkr
2
k + (1− βk) ∥yk − x∗∥2 + 4γ2

kρη E[f(yk)− f(xk+1)]

+ 2γkη

[
βk(1− αk)

αk
(f(xk)− f(yk)) + f∗ − f(yk)−

µ

2
∥yk − x∗∥2

]
+

[
2γkη ·

βk(1− αk)

αk

]
⟨E [gk]−∇f(yk), xk − yk⟩

+ 2γkη ⟨E [gk]−∇f(yk), x∗ − yk⟩

+ γ2
kη

2σ2 + 2Lγ2
kη

3ρσ2 + 2γ2
kη

2ρ ∥E [gk]−∇f(yk)∥2

≤ βkr
2
k + (1− βk) ∥yk − x∗∥2 + 4γ2

kηρE[f(yk)− f(xk+1)]

+ 2γkη

[
βk(1− αk)

αk
(f(xk)− f(yk)) + f∗ − f(yk)−

µ

2
∥yk − x∗∥2

]
+

[
2γkη ·

βk(1− αk)

αk

]
⟨E [gk]−∇f(yk), xk − yk⟩

+ 2γkη ⟨E [gk]−∇f(yk), x∗ − yk⟩

+ 2γ2
kη

2σ2 + 2γ2
kη

2ρ ∥E [gk]−∇f(yk)∥2 (Since η ≤ 1
ρL )

= βkr
2
k + ∥yk − x∗∥2 [(1− βk)− γkµη]

+ f(yk)

[
4γ2

kηρ− 2γkη ·
βk(1− αk)

αk
− 2γkη

]
− 4γ2

kηρE f(xk+1) + 2γkηf
∗ +

[
2γkη ·

βk(1− αk)

αk

]
f(xk)

+

[
2γkη ·

βk(1− αk)

αk

]
⟨E [gk]−∇f(yk), xk − yk⟩

+ 2γkη ⟨E [gk]−∇f(yk), x∗ − yk⟩

+ 2γ2
kη

2σ2 + 2γ2
kη

2ρ ∥E [gk]−∇f(yk)∥2 .

Since βk ≥ 1− γkµη and γk = 1
2ρ ·

(
1 + βk(1−αk)

αk

)
,

E[r2k+1] ≤ βkr
2
k − 4γ2

kηρE f(xk+1) + 2γkηf
∗ +

[
2γkη ·

βk(1− αk)

αk

]
f(xk)

+

[
2γkη ·

βk(1− αk)

αk

]
⟨E [gk]−∇f(yk), xk − yk⟩

+ 2γkη ⟨E [gk]−∇f(yk), x∗ − yk⟩

+ 2γ2
kη

2σ2 + 2γ2
kη

2ρ ∥E [gk]−∇f(yk)∥2 .
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Multiplying by b2k+1,

b2k+1 E[r2k+1] ≤ b2k+1βkr
2
k − 4b2k+1γ

2
kηρE f(xk+1) + 2b2k+1γkηf

∗

+

[
2b2k+1γkη ·

βk(1− αk)

αk

]
f(xk)

+

[
2b2k+1γkη ·

βk(1− αk)

αk

]
⟨E [gk]−∇f(yk), xk − yk⟩

+ 2b2k+1γkη ⟨E [gk]−∇f(yk), x∗ − yk⟩

+ 2b2k+1γ
2
kη

2σ2 + 2b2k+1γ
2
kη

2ρ ∥E [gk]−∇f(yk)∥2 .

Since b2k+1βk ≤ b2k, b2k+1γ
2
kηρ = a2k+1, γkηβk(1−αk)

αk
=

2a2
k

b2k+1

b2k+1 E[r2k+1] ≤ b2kr
2
k − 4a2k+1 E f(xk+1) + 2b2k+1γkηf

∗ + 4a2kf(xk)

+ 4a2k ⟨E [gk]−∇f(yk), xk − yk⟩
+ 2b2k+1γkη ⟨E [gk]−∇f(yk), x∗ − yk⟩

+
2a2k+1σ

2η

ρ
+ 2a2k+1η ∥E [gk]−∇f(yk)∥2

= b2kr
2
k − 4a2k+1 [E f(xk+1)− f∗] + 4a2k [f(xk)− f∗]

+ 2
[
b2k+1γkη − 2a2k+1 + 2a2k

]
f∗

+ 4a2k ⟨E [gk]−∇f(yk), xk − yk⟩
+ 2b2k+1γkη ⟨E [gk]−∇f(yk), x∗ − yk⟩

+
2a2k+1σ

2η

ρ
+ 2a2k+1η ∥E [gk]−∇f(yk)∥2 .

Since
[
b2k+1γkη − a2k+1 + a2k

]
= 0,

b2k+1 E[r2k+1] ≤ b2kr
2
k − 4a2k+1 [E f(xk+1)− f∗] + 4a2k [f(xk)− f∗]

+ 4a2k ⟨E [gk]−∇f(yk), xk − x∗⟩
+ 4a2k+1 ⟨E [gk]−∇f(yk), x∗ − yk⟩

+
2a2k+1σ

2η

ρ
+ 2a2k+1η ∥E [gk]−∇f(yk)∥2 .

Denoting E f(xk+1)− f∗ as Φk+1, we obtain

4a2k+1Φk+1 − 4a2kΦk

(2.3)
≤ b2kr

2
k − b2k+1 E[r2k+1]

+ 4a2kδR̃− 4a2k+1δR̃

+
2a2k+1σ

2η

ρ
+ 2a2k+1ηδ

2,

where R̃ = maxk{∥xk − x∗∥ , ∥yk − x∗∥}.

By summing over k we obtain:

4

N−1∑
k=0

[
a2k+1Φk+1 − a2kΦk

]
≤

N−1∑
k=0

[
b2kr

2
k − b2k+1 E[r2k+1]

]
+ 4

N−1∑
k=0

[
a2kδR̃− a2k+1δR̃

]
15
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+

N−1∑
k=0

[
2a2k+1σ

2η

ρ

]
+ 2

N−1∑
k=0

[
a2k+1ηδ

2
]
.

Let’s substitute a2k+1 = b2k+1γ
2
kηρ:

4b2Nγ2
N−1ηρΦN ≤ 4a20Φ0 + b20r

2
0 − b2NE

[
r2N
]

+ 4a20δR̃− 4a2NδR̃

+

N−1∑
k=0

[
2a2k+1σ

2η

ρ

]
+ 2

N−1∑
k=0

[
a2k+1ηδ

2
]
.

Divide the left and right parts by 4ρη:

b2Nγ2
N−1ΦN ≤

a20
ρη

Φ0 +
b20r

2
0

4ρη
+

a20R̃

ρη
δ +

ησ2

2ρ

N−1∑
k=0

[
b2k+1γ

2
k

]
+

η

2
δ2

N−1∑
k=0

[
b2k+1γ

2
k

]
.

Next, we show that according to (20)-(24) the following relation is correct:

γ2
k − γk

[
1

2ρ
− µηγ2

k−1

]
= γ2

k−1

Namely,

γk
(20)
=

1

2ρ

[
1 +

βk(1− αk)

αk

]
γ2
k −

γk
2ρ

=
γkβk(1− αk)

2ραk

(21)
=

1

ηρ

a2k
b2k+1

(24)
=

βk

ηρ

a2k
b2k

(22)
=

1− γkµη

ηρ

a2k
b2k

(23)
=

1− γkµη

ηρ
(γk−1

√
ηρ)

2

= (1− γkµη) γ
2
k−1

⇒ γ2
k − γk

[
1

2ρ
− µηγ2

k−1

]
= γ2

k−1. (27)

If γk = C, then

γk =
1√
2µηρ

βk = 1−
√

µη

2ρ

bk+1 =
b0(

1−
√

µη
2ρ

)(k+1)/2

ak+1 =
1√
2µηρ

· √ηρ · b0(
1−

√
µη
2ρ

)(k+1)/2
=

b0√
2µ
· 1(

1−
√

µη
2ρ

)(k+1)/2
.
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If b0 =
√
2µ,

ak+1 =
1(

1−
√

µη
2ρ

)(k+1)/2
.

The above equation implies that a0 = 1.

Now the above relations allow us to obtain the following inequality:

2µ(
1−

√
µη
2ρ

)N 1

2µηρ
ΦN ≤

1

ρη
Φ0 +

2µr20
4ρη

+
R̃

ρη
δ

+
σ2

ρ2

N−1∑
k=0

 1(
1−

√
µη
2ρ

)(k+1)



+
1

2ρ
δ2

N−1∑
k=0

 1(
1−

√
µη
2ρ

)(k+1)

 ;

1(
1−

√
µη
2ρ

)N ΦN ≤ Φ0 +
µ

2
r20 + R̃δ

+
σ2η

ρ

N−1∑
k=0

 1(
1−

√
µη
2ρ

)(k+1)



+
η

2
δ2

N−1∑
k=0

 1(
1−

√
µη
2ρ

)(k+1)

 ;

1(
1−

√
µη
2ρ

)N ΦN ≤ Φ0 +
µ

2
r20 + R̃δ

+
σ2
√
2η

√
ρµ
· 1(

1−
√

µη
2ρ

)N
+

√
ηρ
√
2µ

δ2 · 1(
1−

√
µη
2ρ

)(k+1)
;

E [f(xN )]− f∗ ≤
(
1−

√
µη

2ρ

)N [
f(x0)− f∗ +

µ

2
r20

]
+

(
1−

√
µη

2ρ

)N

R̃δ +
σ2
√
2η

√
ρµ

+

√
ηρ
√
2µ

δ2;

E [f(xN )]− f∗ ≤
(
1−

√
µ

4ρ2L

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
+

(
1−

√
µ

4ρ2L

)N

R̃δ +
σ2√
ρ2µL

+
1√
4µL

δ2.

By adding batching, given that ρ̃B = max{1, ρ
B } and σ2

B = σ2

B we have the convergence rate for accelerated batched SGD

17
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with biased gradient oracle and parameter η ≲ 1
2ρBL :

E [f(xN )]− f∗ ≤
(
1−

√
µ

4ρ̃2BL

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
+

(
1−

√
µ

4ρ̃2BL

)N

R̃δ +
σ2
B√

ρ̃2BµL
+

1√
4µL

δ2.

C. Properties of the Kernel Approximation
In this Section, we extend the explanations for obtaining the bias and second moment estimates of the gradient approximation.

Using the variational representation of the Euclidean norm, and definition of gradient approximation (5) we can write:

∥b(xk)∥ = ∥E [g(xk, e)]−∇f(xk)∥

=

∥∥∥∥ d

2h
E
[(

f̃(xk + hre)− f̃(xk − hre)
)
K(r)e

]
−∇f(xk)

∥∥∥∥
①
=

∥∥∥∥dhE [f(xk + hre)K(r)e]−∇f(xk)

∥∥∥∥
②
= ∥E [∇f(xk + hru)rK(r)]−∇f(xk)∥
= sup

z∈Sd
2 (1)

E [(∇zf(xk + hru)−∇zf(xk)) rK(r)]

(12),(13)
≤ κβh

β−1 L

(l − 1)!
E
[
∥u∥β−1

]
≤ κβh

β−1 L

(l − 1)!

d

d+ β − 1

≲ κβLh
β−1,

where u ∈ Bd(1), ① = the equality is obtained from the fact, namely, distribution of e is symmetric, ② = the equality is
obtained from a version of Stokes’ theorem (Zorich & Paniagua, 2016).

By definition gradient approximation (5) and Wirtinger-Poincare inequality (11) we have

E
[
∥g(xk, e)∥2

]
=

d2

4h2
E
[∥∥∥(f̃(xk + hre)− f̃(xk − hre)

)
K(r)e

∥∥∥2]
=

d2

4h2
E
[
(f(xk + hre)− f(xk − hre) + (ξ1 − ξ2)))

2
K2(r)

]
(8)
≤ κd2

2h2

(
E
[
(f(xk + hre)− f(xk − hre))

2
]
+ 2∆2

)
(11)
≤ κd2

2h2

(
h2

d
E
[
∥∇f(xk + hre) +∇f(xk − hre)∥2

]
+ 2∆2

)
=

κd2

2h2

(
h2

d
E
[
∥∇f(xk + hre) +∇f(xk − hre)± 2∇f(xk)∥2

]
+ 2∆2

)
(10)
≤ 4dκ︸︷︷︸

ρ

∥∇f(xk)∥2 + 4dκL2h2 +
κd2∆2

h2︸ ︷︷ ︸
σ2

.

D. Missing proof of Theorem 3.1
Let us consider case B = 1, then we have the following convergence rate:

E [f(xN )]− f∗ ≤
(
1−

√
µ

(4dκ)2L

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
︸ ︷︷ ︸

①

+
4dκL2h2√
(4dκ)2µL︸ ︷︷ ︸

②

18
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+
κd2∆2

h2
√
(4dκ)2µL︸ ︷︷ ︸

③

+
κ2
βL

2h2(β−1)

√
4µL︸ ︷︷ ︸
④

.

From term ①, we find iteration number N required to achieve ε-accuracy:

(
1−

√
µ

(4dκ)2L

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
≤ ε ⇒ N = Õ

(√
d2L

µ

)
.

From terms ②, ④ we find the smoothing parameter h:

② :
4dκL2h2√
(4dκ)2µL

≤ ε ⇒ h2 ≲ ε
√
µ ⇒ h ≲ (ε

√
µ)1/2;

④ :
κ2
βL

2h2(β−1)

√
4µL

≤ ε ⇒ h2(β−1) ≲ ε
√
µ ⇒ h ≲ (ε

√
µ)

1
2(β−1) .

From term ③, we find the maximum noise level ∆ at which Algorithm 1 can still achieve the desired accuracy:

κd2∆2

h2
√
(4dκ)2µL

≤ ε ⇒ ∆2 ≲
ε
√
µh2

d
⇒ ∆ ≲

ε
√
µ

√
d
.

The oracle complexity in this case is obtained as follows:

T = N ·B = Õ

(√
d2L

µ

)
.

Consider now the case 1 < B < 4dκ, then we have the convergence rate:

E [f(xN )]− f∗ ≤

(
1−

√
µB2

(4dκ)2L

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
︸ ︷︷ ︸

①

+
4dκL2h2√
(4dκ)2µL︸ ︷︷ ︸

②

+
κd2∆2

h2
√
(4dκ)2µL︸ ︷︷ ︸

③

+
κ2
βL

2h2(β−1)

√
4µL︸ ︷︷ ︸
④

.

From term ①, we find iteration number N required for Algorithm 1 to achieve ε-accuracy:(
1−

√
B2µ

(4dκ)2L

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
≤ ε ⇒ N = Õ

(√
d2L

B2µ

)
.

From terms ②, ④ we find the smoothing parameter h:

② :
4dκL2h2√
(4dκ)2µL

≤ ε ⇒ h2 ≲ ε
√
µ ⇒ h ≲ (ε

√
µ)1/2;

④ :
κ2
βL

2h2(β−1)

√
4µL

≤ ε ⇒ h2(β−1) ≲ ε
√
µ ⇒ h ≲ (ε

√
µ)

1
2(β−1) .
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Maximum Noise Level as Third Optimality Criterion

From term ③, we find the maximum noise level ∆ at which Algorithm 1 can still achieve the desired accuracy:

κd2∆2

h2
√
(4dκ)2µL

≤ ε ⇒ ∆2 ≲
ε
√
µh2

d
⇒ ∆ ≲

ε
√
µ

√
d
.

The oracle complexity in this case is obtained as follows:

T = N ·B = Õ

(√
d2L

µ

)
.

Now let us move to the case where B = 4dκ, then we have convergence rate:

E [f(xN )]− f∗ ≤
(
1−

√
µ

L

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
︸ ︷︷ ︸

①

+
L2h2

√
µL︸ ︷︷ ︸
②

+
d∆2

h2
√
µL︸ ︷︷ ︸

③

+
κ2
βL

2h2(β−1)

√
4µL︸ ︷︷ ︸
④

.

From term ①, we find iteration number N required for Algorithm 1 to achieve ε-accuracy:

(
1−

√
µ

L

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
≤ ε ⇒ N = Õ

(√
L

µ

)
.

From terms ②, ④ we find the smoothing parameter h:

② :
L2h2

√
µL
≤ ε ⇒ h2 ≲ ε

√
µ ⇒ h ≲ (ε

√
µ)1/2;

④ :
κ2
βL

2h2(β−1)

√
4µL

≤ ε ⇒ h2(β−1) ≲ ε
√
µ ⇒ h ≲ (ε

√
µ)

1
2(β−1) .

From term ③, we find the maximum noise level ∆ at which Algorithm 1 can still achieve the desired accuracy:

d∆2

h2
√
µL
≤ ε ⇒ ∆2 ≲

ε
√
µh2

d
⇒ ∆ ≲

ε
√
µ

√
d
.

The oracle complexity in this case is obtained as follows:

T = N ·B = Õ

(√
d2L

µ

)
.

Finally, consider the case when B > 4dκ, then we have convergence rate:

E [f(xN )]− f∗ ≤
(
1−

√
µ

L

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
︸ ︷︷ ︸

①

+
4dκL2h2√

µLB2︸ ︷︷ ︸
②

+
κd2∆2

h2
√
µLB2︸ ︷︷ ︸
③

+
κ2
βL

2h2(β−1)

√
4µL︸ ︷︷ ︸
④

.
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Maximum Noise Level as Third Optimality Criterion

From term ①, we find iteration number N required for Algorithm 1 to achieve ε-accuracy:

(
1−

√
µ

L

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
≤ ε ⇒ N = Õ

(√
L

µ

)
.

From terms ②, ④ we find the smoothing parameter h:

② :
4dκL2h2√

µLB2
≤ ε ⇒ h2 ≲

ε
√
µ

d
B ⇒ h ≲

√
ε
√
µB

d
;

④ :
κ2
βL

2h2(β−1)

√
4µL

≤ ε ⇒ h2(β−1) ≲ ε
√
µ ⇒ h ≲ (ε

√
µ)

1
2(β−1) .

From term ③, we find the maximum noise level ∆ (via batch size B) at which Algorithm 1 can still achieve ε accuracy:

κd2∆2

h2
√
µLB2

≤ ε ⇒ ∆2 ≲
(ε
√
µ)1+

1
β−1B

d2
⇒ ∆ ≲

(ε
√
µ)

β
2(β−1)B1/2

d
.

or let’s represent the batch size B via the noise level ∆:

κd2∆2

h2
√
µLB2

≤ ε ⇒ B ≳
κd2∆2

(ε
√
µ)1+

1
β−1

⇒ B = O

(
d2∆2

(ε
√
µ)

β
β−1

)
.

Then the oracle complexity T = N ·B in this case has the following form:

T = max

{
Õ

(√
d2L

µ

)
, Õ

(
d2∆2

(εµ)
β

β−1

)}
.
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