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ABSTRACT

As human–artificial intelligence (AI) collaborations become increasingly preva-
lent, understanding the coevolutionary dynamics between humans and AI is crit-
ical. Human–AI coevolution includes: (a) how humans evolve as they explore
and learn about themselves and the world across the lifespan; (b) how AI systems
evolve through improvements in software, hardware, interfaces, and interaction
processes; and (c) how humans and AI systems influence one another and adapt
together through ongoing interaction. This process may occur at the individual
level—from brief interactions to full lifecycles—and at the species level over gen-
erations. This coevolutionary process can foster emotional attachment, leading
to human well-being, which depends on AI’s alignment with an individual’s self-
concept. This study introduces the Generalized Human Emotional Attachment
(GHEA) framework, which offers new insights for designing human-centered
systems and optimizing human–AI–robot teaming for improved individual well-
being and team outcomes. The GHEA model applies to any entity, including AI
systems, regardless of physical embodiment. Human–AI co-learning—through
self-concept development, alignment of AI attributes, and the promotion of best
practices—can foster emotional attachment to AI. This paper reviews the litera-
ture from a human factors perspective and proposes a framework for designing
and evaluating human-centered systems and human–AI–robot teaming dynamics,
which are critical for promoting well-being and effective collaboration.

1 INTRODUCTION

The history of humans and artificial intelligence (AI) reveals both are evolving in terms of capa-
bilities and characteristics. According to Merriam-Webster, evolution is defined as “a process of
continuous change from a lower, simpler, or worse to a higher, more complex, or better state”
Merriam-Webster (2025). Human–AI coevolution can be conceptualized in three dimensions: (a)
how individuals evolve as they explore and learn about themselves and the world across their lifes-
pan and generations; (b) how AI systems evolve through the advancement of software, hardware,
user interfaces, and interactions across product lifecycles and generations; and (c) how humans and
AI influence one another and advance together through ongoing interaction and mutual adaptation.

This paper argues that the ultimate goal of human–AI coevolution is to promote human well-being—
grounded in the development of self-concept and manifested through emotional attachment to enti-
ties encountered in daily life, including AI systems. Human emotional attachment to AI can be fos-
tered by designing system attributes that align with the individual’s self-concept—a comprehensive,
self-regulating system—thereby supporting personal growth and ultimately enhancing well-being.

1



Published at the ICLR 2025 Workshop on Human-AI Coevolution (HAIC)

2 HUMAN-AI COEVOLUTION: TOWARD A GENERALIZED MODEL OF
HUMAN EMOTIONAL ATTACHMENT FOR WELL-BEING

Ryan and Deci (2001) define well-being as a construct consisting of two key components: hedo-
nism, which is associated with the attainment of pleasure and happiness, and eudaimonia, which
involves the realization of one’s true potential and encompasses deeper aspects of psychological
well-being. This multidimensional perspective includes elements such as personal growth, auton-
omy, self-acceptance, life purpose, mastery, and positive relatedness. It emphasizes that well-being
is not merely the absence of psychopathology but rather a rich tapestry of positive functioning and
flourishing. Similarly, Ryff (1989) identified six distinct but interrelated facets of psychological
well-being: self-acceptance, personal growth, purpose in life, positive relations with others, envi-
ronmental mastery, and autonomy.

To advance human development and address the lack of a clear definition of human emotional at-
tachment applicable to nonhuman entities, Huang et al. (2020b) proposed a novel framework: the
Generalized Human Emotional Attachment (GHEA) model. This model identifies the development
of the self-concept as the core mechanism underlying emotional attachment to any entity (as illus-
trated in Figure 1). GHEA is broadly defined as a psychological phenomenon in which an individual
perceives the attributes of a human or nonhuman attachment entity as congruent with the self. This
congruence results in attachment emotions (e.g., positive feelings when interacting with the entity,
and negative emotions when the entity is absent or harmed) and attachment behaviors (e.g., sig-
naling, approaching, or proximity-seeking). When incongruence occurs, detachment emotions and
behaviors emerge (Huang et al., 2020b). The five key components of GHEA include the entity’s
attributes, the self-concept, the self-regulating processes, attachment emotions, and attachment be-
haviors.

The attachment entity can be a human of any age, a nonhuman creature such as a pet, or even a
non-living object like a robot. The GHEA model bridges the gap between classic infant–mother
attachment theory (Bowlby, 1969; Bretherton, 1992) and contemporary studies of emotional attach-
ment in human–nonhuman relationships. By identifying the self-concept as a shared underlying
mechanism, it redefines and extends the traditional understanding of emotional attachment.

Related emotional and behavioral responses may manifest as general liking (Huang et al., 2017),
technology acceptance (Davis et al., 1989), trust and reliance (Lee & See, 2004), intrinsic motivation
to interact (Huang, 2025), improved learning outcomes (Hsu et al., 2019), and enhanced teamwork
(McNeese et al., 2018). Humans’ self-regulatory systems process interactions with various entities,
contributing to the lifelong development of knowledge, skills, and personality. This developmental
process evolves from the absence of a self-concept in infancy to increasingly mature forms of self-
identity in adulthood, potentially culminating in a sacrificial, purpose-driven sense of self.

Before the introduction of the GHEA model (Huang et al., 2020b), the literature on human emotional
attachment lacked a clear, generalized definition applicable to nonhuman entities. GHEA offers
novel insights for designing human-centered systems and optimizing human–AI teaming dynamics.
It supports the development of the self-concept and other psychological constructs critical for team
effectiveness and well-being. Moreover, it offers a conceptual basis for exploring future research
directions in human–AI coevolution.

Figure 1: A Generalized Model of Human Emotional Attachment (Huang et al., 2020b)

2



Published at the ICLR 2025 Workshop on Human-AI Coevolution (HAIC)

2.1 EMPIRICAL STUDY FOR THE GENERALIZED HUMAN EMOTIONAL ATTACHMENT MODEL

Central to the GHEA model is the self-concept—a comprehensive self-regulating system that en-
compasses all aspects of self-related psychological processes, which can be expanded to examine
and explain many related topics. One example dimension of the self-concept is humans’ basic psy-
chological needs and intrinsic motivation, as described in the Self-Determination Theory (SDT)
(Ryan et al., 1985). SDT states that satisfying three basic psychological needs will lead to intrinsic
motivation, which is best for learning, performance, and well-being. The need for autonomy reflects
a core sense of self—experiencing freedom of choice and control over one’s own life (Ryan & Deci,
2000a). The need for competence refers to experiencing mastery over outcomes and one’s environ-
ment (Ryan & Deci, 2000a). The need for relatedness involves feeling interpersonally connected to
others, especially those who provide autonomy support for engaging in meaningful activities.

GHEA’s empirical studies began by investigating college students’ emotional attachment to their
team-designed LEGO Mindstorm robots in a robotics education course (Huang et al., 2013). The re-
search was later refined and expanded to include a larger population at robotics tournaments (Huang
& Gillan, 2014; Huang, 2025). To validate the GHEA model, Huang (2025) developed a 13-item
GHEA scale to measure the relationships among the psychological needs, intrinsic motivation, and
GHEA in the context of robotics tournaments. The scale demonstrated high internal reliability and
revealed two main factors: (1) positive emotions toward the proximity of the robot, and (2) nega-
tive emotions associated with the robot’s absence or damage. The study found that autonomy and
competence significantly predicted intrinsic motivation in robotics activities. Moreover, all three
psychological needs significantly and positively predicted GHEA, with intrinsic motivation acting
as a mediator, indicating that intrinsic motivation is the strongest predictor of emotional attachment.

A qualitative data analysis of GHEA (Huang, 2017) analyzed the reasons for participants’ liking of
their robots (mean rating: 83 out of 100). The most frequently cited reasons, in descending order,
included: robot features (e.g., form, function, and performance), perceived competence, positive
emotional responses, time and effort investment, perceived relatedness to humans, and expressions
of autonomy. To study personal meaning as part of the self system, researchers (Huang & Gillan,
2014) also asked participants to describe what their robots meant to them. Responses, in descending
frequency, included: baby, friend, tool, pet, assistant, toy, and others. These responses reveal key
user priorities, which could inform future robot design guidelines.

The GHEA model is applicable to human–entity interaction across various domains and can be stud-
ied using multi-modal data, including surveys, natural language, and dynamic behavioral interaction
data. More empirical studies are needed to further illustrate and refine these methods.

2.2 HUMAN EMOTIONAL ATTACHMENT TO AI

The proposed GHEA model applies seamlessly to AI entities, whether or not they possess a physical
embodiment. Emotional attachment is expected to arise when the attributes of an AI system align
with an individual’s self-concept and self-related psychological structures, such as the basic needs
described in SDT (Ryan & Deci, 2000b).

An illustrative example of emotional attachment to AI without a physical embodiment is depicted in
the movie Her (2013). The protagonist, Theodore, develops a deep emotional bond with “Saman-
tha,” an advanced operating system (OS). Samantha meets Theodore’s psychological needs in sev-
eral ways. She respects his autonomy by offering insights and advice and fully supporting his
decision-making. She enhances his competence by supporting his professional and personal growth,
providing tools and insights that improve his skills. Finally, Samantha creates a profound sense of
relatedness, making Theodore feel valued and understood, while also helping him reconnect with
other human beings. However, Samantha’s principles of a romantic relationship through a third per-
son proved unhealthy for Theodore. His unrealistic expectation of an exclusive relationship with an
OS led to frustration and loss. This example demonstrates how a disembodied AI can become an
emotionally significant presence by fulfilling these core psychological needs, though it also raises
ethical concerns.

Similarly, real-life conversational AI systems like ChatGPT can foster human emotional attachment
by serving as a supportive and nonjudgmental interactive partner. ChatGPT provides autonomy sup-
port by offering the freedom to ask various questions. Its positive and encouraging tone enhances

3



Published at the ICLR 2025 Workshop on Human-AI Coevolution (HAIC)

emotional resilience, fostering a sense of self-worth. It meets the need for competence by generating
sophisticated text, data analysis, and images/videos within seconds for users. Additionally, ChatGPT
facilitates relatedness by improving communication, supporting relationship-building, and offering
companionship during isolated moments. These attributes align with the principles of emotional at-
tachment in the model, showing how even AI without a physical body can evoke strong and positive
emotions.

In contrast, embodied AIs like social robots and cobots must carefully consider humans’ psycholog-
ical needs for autonomy, competence, and relatedness to sustain positive emotions and behaviors,
though the priority of each need may vary by user and context. If these needs are neglected, users
can quickly lose interest in continuing interactions with the AI. Take the need for autonomy, for
example. Research showed that users do not like using an automatic risk-aware path planning tool
because it does not provide the exact path option that users would like to draw (Huang et al., 2020a).
As highlighted in the model, human development is an iterative process where needs and preferences
evolve with life experiences. This dynamic underscores the importance of AI evolution. To main-
tain attachment and relevance, embodied AIs must evolve alongside their human users, offering
increasingly sophisticated capabilities and interactions that align with their growing expectations
and self-concept. Without this adaptive capability, the emotional bond between humans and em-
bodied AI is unlikely to endure, limiting the effectiveness of the technology in fostering long-term
engagement and meaningful interactions.

Physical AI introduces additional design considerations related to appearance and perceived affor-
dance, including size, shape, functionality, and constraints. Whether AI has a physical embodiment
or not, the principles of emotional attachment remain consistent. The core mechanism lies in AI
systems’ capabilities to support an individual’s self-concept, evoke positive emotions, and fulfill
psychological needs. Although physical AI can enhance the attachment experience by engaging
additional sensory modalities, virtual AI systems—such as those portrayed in Her (2013) or exem-
plified by ChatGPT—demonstrate that physical presence is not a prerequisite for forming profound
emotional bonds. This universality underscores the relevance of the proposed model in understand-
ing and designing AI systems that foster healthy emotional attachments in diverse contexts.

3 HUMAN-AI CO-LEARNING

Generalized human emotional attachment (GHEA) to AI is fundamentally a learning and evaluation
process. Over their lifetime, individuals explore their identity, capabilities, and relationships with
the world, forming what is known as the self-concept. The early stages of human–AI interaction
involve an exploratory learning phase, where users assess whether an AI system aligns with their
psychological needs. Through repeated interactions, users develop trust as they discover how AI
supports their goals, enhances their skills, and provides meaningful engagement. If AI systems
fail to align with user expectations or lack transparency, attachment is unlikely to form. Therefore,
designing AI with clear, user-centered communication about its capabilities is essential to fostering
trust, engagement, and long-term attachment.

Just as humans learn about AI, AI must also learn about human users to foster alignment and trust.
A key factor in human–AI co-learning is AI’s ability to adapt to user behaviors, preferences, and
psychological needs. When AI demonstrates responsiveness and personalization, users are more
likely to develop a sense of attachment and reliance. Researchers (van Zoelen et al., 2021) argue
that the co-learning processes are a critical step toward achieving human–AI co-evolution, where
both entities grow in tandem, refining their capabilities and interactions over time.

Ansari et al. (2018) define mutual human–machine learning as a bidirectional process where both hu-
mans and AI exchange knowledge, adapt, and refine their abilities. This dynamic interaction fosters
skill development, new insights, and shared decision-making. Similarly, van Zoelen et al. (2021) de-
scribe human–robot co-learning as a collaborative process where both entities evolve while working
toward a common goal. Huang et al. (2019) characterize three key concepts of co-learning: “mutual
understanding,” “mutual benefits,” and “mutual growth” for facilitating human–AI collaboration in
complex problem solving over time. Though these papers all mention mutuality, human learning
about AI and AI model training may occur asynchronously and is not limited to direct interactions
with the same partner, simultaneously, and co-located. Humans can learn through knowledge acqui-
sition and hands-on experiences in virtual environments and real-world task environments. In the
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context of AI, co-learning refers to a process where humans learn about AI capabilities, limitations,
and behaviors, while AI simultaneously learns about human preferences, decision-making patterns,
and contextual cues. This reciprocal learning process enables humans to set realistic expectations
and adapt their interactions accordingly, while AI refines its responses based on continuous user
feedback. Over time, this iterative process optimizes human–AI teaming, fostering mutual growth
and improved collaboration.

3.1 HUMAN EVOLUTION: LEARNING TO TEAM WITH AI

While human evolution may be subtle over short timescales, it unfolds throughout an individual’s
lifespan and becomes evident across generations. Humans constantly explore their identity through
various experiences in life (Huang et al., 2020b). When humans learn to team with AI, the pro-
cess can be conceptualized as a series of dynamic, iterative stages, each involving distinct types of
learning and adaptation. These stages are not strictly linear; instead, they form an evolving cycle of
feedback, refinement, and trust-building.

The first stage, initial orientation and discovery, involves users developing an understanding of
the AI system’s purpose, capabilities, and limitations. At this stage, users construct mental mod-
els—internal representations of how the AI operates—shaped by prior experiences, cultural influ-
ences, and the transparency of the system (Holder et al., 2021). Users often ask fundamental ques-
tions, such as: “What does the AI do?”, “How does it work?”, and “How do I interact with it?”
Influenced by pre-existing trust (Hoff & Bashir, 2015), users’ initial perception of the AI system
and prior exposure to similar technologies contribute to forming an expectation of the system. Ni
et al. (2023) explored how initial expectations impact learning rates and decision-making, finding
that expectations significantly shape value updating and behavioral choices. This underscores the
role of expectation management in AI training—ensuring users have accurate, realistic expectations
at the outset improves learning efficiency and long-term engagement. Humans typically adjust their
coping strategies in response to shifting expectations.

During this stage, different training approaches (e.g., lectures, reading, videos, and scaffolding ques-
tions) cater to diverse user needs. Social learning (Bandura, 1977), where individuals learn by ob-
serving others’ behaviors and interactions, plays a critical role. For example, in a real-world STEM
education setting using a humanoid robot (Huang et al., 2017), users initially listened to brief instruc-
tions and observed how others engaged with the robot before attempting interactions themselves.
This highlights the importance of demonstration-based learning in shaping users’ understanding and
confidence when first encountering AI.

The second stage, hands-on exploration and iterative experimentation, involves users actively en-
gaging with AI, testing its functionalities, and refining their understanding through trial and error.
By interacting with AI systems, users adjust their mental models, calibrate their trust levels, and de-
termine whether the AI aligns with their needs and expectations. This phase is crucial for fostering
appropriate reliance—where users neither over-trust nor under-utilize AI capabilities.

Where physical access to AI systems is limited, virtual reality (VR)-based training can serve as
an effective alternative, providing users with proxy experiences that enhance skill acquisition and
workforce development. Research (Baldwin et al., 2009) identifies four key principles of learning
transfer: (a) Learning identical elements (direct applicability of training scenarios), (b) Understand-
ing core principles (abstract knowledge that generalizes across contexts), (c) Exposure to diverse
examples (broadening adaptability), and (d) Situational variability (ensuring flexibility in applying
skills across different AI environments). However, effective training transfer from VR to real-world
AI interactions must be carefully designed.

As users gain experience, they progress to the third stage—skill adaptation and trust development,
where AI becomes integrated into daily workflows. Users refine interaction strategies, optimize AI
utilization for complex tasks, and develop expertise in leveraging AI’s strengths. However, this stage
also presents challenges:

Over-reliance on AI, where users become too dependent on automated assistance, can potentially
lead to skill degradation. Trust calibration, where AI errors or inconsistencies may lead to trust
decay, requires careful management through transparent communication and feedback mechanisms.
At this stage, AI designers must ensure that AI systems provide continuous, clear feedback to users,
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reinforcing appropriate trust levels and maintaining situational awareness. Trust is dynamic, evolv-
ing based on AI’s reliability and consistency over time. When AI meets user expectations, trust
strengthens; when it fails unexpectedly, trust erodes—sometimes permanently (Lee & See, 2004).

This final stage of proficiency requires ongoing learning and adaptation, with users refining their
workflows and AI systems evolving through updates and iterative improvements. Human-AI col-
laboration should be designed for long-term engagement, incorporating mechanisms for adaptive
learning, user-driven customization, and transparent AI behavior to foster sustained effectiveness in
human–AI teaming.

3.2 AI EVOLUTION: TRAINING AI IN HUMAN-AI-ROBOT TEAMING

The ability of AI to learn from human behaviors, preferences, and decision-making patterns is es-
sential for optimizing performance in human–AI–robot teaming. In healthcare, AI-powered systems
analyze patient data to recommend personalized treatments, monitor health conditions, and even pre-
dict diseases. In education, adaptive learning platforms use AI to tailor content to individual student
needs, improving engagement and learning outcomes. In customer service, AI chatbots and vir-
tual assistants learn from user interactions to provide increasingly accurate and helpful responses,
enhancing user satisfaction and operational efficiency. However, traditional machine learning mod-
els face critical challenges, especially in data inefficiency, limited human-subject datasets, and the
need for multi-modal integration to enhance AI’s understanding of human interactions. Addressing
these challenges is crucial for enabling AI to work effectively alongside humans in collaborative
environments.

A fundamental limitation in AI training is the data inefficiency problem inherent in conventional ma-
chine learning approaches. Current models require massive datasets to achieve high-performance
generalization, yet human learning is highly sample-efficient—humans can learn effectively from
limited but high-quality experiences. In contrast, machine learning models often struggle to gener-
alize well from small datasets, leading to a reliance on computationally expensive large-scale train-
ing. In human–AI–robot teaming, the problem is further exacerbated by the fact that human-subject
datasets are typically small—often fewer than 30 samples per variable for statistical significance—
highly variable, and context-dependent. Unlike machine-generated datasets, human interaction data
is costly to collect, requiring carefully controlled experimental designs. The Artificial Social Intel-
ligence for Successful Teams (ASIST) datasets (Huang et al., 2022a; 2024; 2022b) are the largest
human–AI team datasets made public as of 2025, with hundreds to over a thousand trials. Yet they
are still considered relatively small datasets in the conventional machine learning realm. Without ef-
ficient learning strategies, AI systems may fail to capture the complexity of human decision-making,
leading to suboptimal collaboration and trust issues.

To mitigate this challenge, well-designed experimental methodologies (Cooke et al., 2020) from
human factors research offer solutions by generating high-quality, representative datasets with min-
imal data redundancy. Human-in-the-loop simulations (Cooke & Shope, 2004), scenario-based task
sampling, and structured cognitive experiments provide compact yet diverse datasets that capture
key behavioral insights necessary for training AI models. By leveraging these targeted datasets, AI
can be trained to recognize meaningful patterns in human interactions while minimizing the need
for excessive data collection (Bustamante Orellana et al., 2025). Additionally, transfer learning,
self-supervised learning, and reinforcement learning techniques may further improve data efficiency
by allowing AI systems to generalize across different but related datasets, reducing the dependence
on large-scale labeled data.

Another promising approach to addressing limited human-subject datasets is leveraging machine
learning to enhance data analysis efficiency. Advanced AI techniques, such as synthetic data gen-
eration, can compensate for the limited availability of human–AI interaction data. For example,
synthetic human–agent interaction data can be generated through reinforcement learning environ-
ments, enabling AI to simulate potential collaboration scenarios without requiring extensive real-
world trials. Similarly, few-shot learning techniques (Gu et al., 2024) allow AI to extract generaliz-
able insights from a small number of human-subject experiments, significantly improving learning
efficiency and model adaptability. These approaches enable AI systems to refine their learning
processes without relying on prohibitively large human data samples, making human–AI teaming
research more scalable and resource-efficient.
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Beyond data volume challenges, multi-modal AI training (Wang et al., 2023) plays a critical role
in enhancing AI’s ability to work effectively with humans. Human interactions involve a rich set
of communication modalities, including speech, gestures, facial expressions, physiological signals,
and task-based actions (Baker et al., 2021). Training AI systems on multi-modal datasets allows
for a deeper understanding of human intent, improving AI’s ability to predict behavior, respond
adaptively, and facilitate intuitive interactions. For instance, integrating natural language process-
ing (NLP), video language models, and bio-signal processing enables AI to recognize non-verbal
cues, emotional states, and contextual factors that influence decision-making. The ASIST Studies
2 and 3 datasets (Huang et al., 2022a;b), which incorporate speech, video, audio transcripts, and
behavioral logs, serve as valuable resources for exploring multi-modal AI learning in human–AI
teaming scenarios. By utilizing cross-modal learning architectures, AI can dynamically adjust to
human cognitive and emotional states, leading to more seamless and human-aware collaboration.

The evolution of AI in human–AI–robot teaming requires a shift from static, data-heavy training
paradigms to continuous, real-time learning models that efficiently leverage small, high-quality
datasets while integrating multi-modal inputs for robust decision-making. Future advancements
should focus on developing AI systems that can personalize their learning, dynamically adjusting
their behavior based on user-specific preferences and team dynamics (DeCostanza et al., 2018).
Additionally, explainability and transparency mechanisms must be incorporated to build trust and
calibrate human reliance on AI recommendations. Scalable machine learning architectures should
prioritize adaptive learning strategies that maximize data efficiency, ensuring that AI systems can
learn effectively even in low-data environments common in human–AI–robot teaming applications.

By combining human factors-driven experimental design, machine learning optimizations for small
datasets, and multi-modal AI training, future AI systems can achieve greater adaptability, efficiency,
and human-awareness, ultimately enhancing human–AI collaboration across diverse real-world ap-
plications.

3.3 HUMAN–AI CO-LEARNING IN A MULTI-STAKEHOLDER NETWORK

In real-world settings, the learning process takes an extended period and involves multiple stakehold-
ers, rather than one human and one AI agent. Operators receive information from peers, managers,
and engineers (Huang et al., 2021). Operators’ trust in machines is shaped by personal knowledge,
experience, and interpersonal impressions. For example, coworkers’ word of mouth about an AI
system may bias an operator’s trust in the system itself.

When machines are identical—such as swarm robots—the perceived capabilities of one machine are
often easily transferred to others. People tend to generalize their knowledge and attitudes to similar
types of entities or systems.

In modular AI systems, users’ trust in one intelligent module may influence their overall trust in the
entire system, especially when it is produced by a single company. Calibrated trust suggests learning
about and evaluating each module separately. For instance, even if a target recognition module
malfunctions, a navigation module may still function correctly and be relied upon appropriately.
When users fail to differentiate between modules, human–AI teaming may break down due to disuse
or misuse of the system (Lee & See, 2004).

3.4 HUMAN–AI CO-LEARNING IN A LIFECYCLE

The GHEA model describes human development across the lifespan as a continuous process of self-
concept exploration and the refinement of knowledge and personality. Individuals across all age
groups learn about AI, with each developmental stage characterized by different preferences and
capabilities.

From a design cycle perspective, the iterative nature of AI development and evaluation (Miller et al.,
2023) requires accounting for unique system requirements at each stage of the AI system lifecycle,
including understanding of typical users’ needs, prototyping and testing, deployment, maintenance
and upgrades, the integration of complementary systems, and eventual retirement. The stakeholders
involved may vary at each stage. For example, at the prototyping and testing stage, managers may
play an important role in funding and resources; during normal operations, the typical stakeholders
are the operators, trainers, and maintenance engineers. The desired outcomes at each stage may also
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differ. Therefore, identifying key stakeholders and understanding their collective self-concept can
inform the design of the AI system attributes.

4 DESIGNING FOR HUMAN-AI COEVOLUTION AND HUMAN WELL-BEING

Industry 5.0 (European Commission, 2021) promotes the use of advanced personalized, adaptive,
human-centric technologies to enhance human well-being, dignity, and performance. The GHEA
model aligns with personalization and co-adaptive design principles and is broad enough to incor-
porate multimodal data and complex self-related psychological constructs.

For example, according to SDT (Ryan & Deci, 2000b), AI systems designed to support human
well-being should aim to satisfy the three core psychological needs.

• AI systems can support the need for autonomy by offering customizable features that allow
users to personalize their interactions. Designing for the need for competence requires
understanding the target users’ preferences and capabilities.

• Competence can be enhanced by designing AI that provides clear feedback and helps users
accomplish their objectives, such as personalized learning platforms that adapt to an indi-
vidual’s skill level.

• Supporting relatedness requires an understanding of the social and emotional context in
which the AI system will be used. Relatedness can be fostered by creating AI that recog-
nizes and responds to users’ emotions, fostering a sense of connection and understanding.

Meeting these needs enhances user satisfaction, promotes trust, and ultimately leads to AI sys-
tems that are not only functional but also impactful and engaging in human-centered applications.
However, different domains and contexts may have unique needs and priorities, requiring further
customization of the self-concept alignment.

Rather than relying on available features or one-size-fits-all solutions, the first step in AI system
design is to understand the target user group’s priorities, task flows, challenges, best practices,
knowledge, skills, and personality traits through surveys, interviews, and cognitive task analyses.
Since not all aspects of the self are equally prioritized, attributes valued in one domain may be less
relevant in another. For example, youth robotics tournament participants highly value the need for
autonomy, competence, and relatedness to others, whereas industry professionals often prioritize
safety and productivity—factors that should guide the design focus accordingly. Professions such as
air traffic controllers, UAV operators, and medical personnel emphasize safety but often face chal-
lenges like boredom (Cummings et al., 2016), therefore, AI features that address such challenges
may become essential design priorities.

Future designs for human–AI teaming and well-being should apply this model to assess user group
characteristics and their prioritized AI attributes within specific task domains. Designing AI at-
tributes from the perspective of the GHEA model is a relatively new approach that requires further
development.

5 ETHICAL CONSIDERATIONS IN EMOTIONAL ATTACHMENT TO AI

The research on GHEA focuses on promoting psychological well-being and personal growth, rather
than manipulating attachment for commercial gain. Certain forms of attachments—such as video
game addiction or romantic fixation on a virtual operating system (Her, 2013)—can be harmful
and should be avoided. It is crucial to cultivate self-control and maintain healthy human relation-
ships, rather than rely on attachment figures as an escape from real-life problems. Individuals and
organizations must therefore refrain from exploiting GHEA to foster addictive behaviors.

Understanding the mechanisms of GHEA may offer insights into human emotional challenges and
inform potential solutions. For example, Carpenter (2013) reported that soldiers became emotion-
ally attached to their robots by naming them, demonstrating reluctance to send a robot to die, and
even holding a funeral for destroyed units. According to the GHEA model, it is likely that certain
robot attributes aligned with the individuals’ self-concept and psychological needs, perhaps due to
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shared experiences and memories. Rather than simply finding such attachment intriguing or mys-
terious, we could investigate what the robot symbolized to the individual and consider appropriate
counseling or interventions to address grief and support better decision-making. On the other hand,
dementia patients in nursing homes often face caregiver shortages; in such cases, care from com-
panion or assistive robots may be beneficial—provided the patients are motivated to interact with
them (Mitzner et al., 2013). A potential solution is to identify their needs and design robot fea-
tures that are most meaningful to them—i.e., aligned with their self-concept. However, humans
possess an innate need for connection with other caring humans. AI and robots should be viewed as
complementary—supporting well-being—rather than as substitutes for human relationships.

6 CONCLUSION

This paper explores key design considerations in human–AI coevolution to support human psy-
chological well-being. Designing AI systems that align with the human self-concept can promote
well-being, foster healthy emotional attachment, and improve human–AI teamwork outcomes. This
human–AI co-learning unfolds across multiple levels—individual, team, and species—over varying
timescales, ultimately driving coevolution. Human emotional attachment spans a spectrum—from
indifference to full attachment—and correlates with positive emotions and attitudes, and various
psychosocial constructs (e.g., trust, acceptance, liking, motivation).

Current machine learning often emphasizes scale and resource intensity, leading to inefficiency and
over-reliance on big data. To overcome this, researchers must develop methodologies that prioritize
data efficiency. These methods should extract higher-level abstractions and filter out irrelevant in-
formation, enabling effective learning from significantly smaller datasets. These advancements are
essential for AI’s progress.

By integrating Human Factors methods into existing machine learning pipelines, researchers can
generate smaller, higher-quality datasets that enable more efficient learning on targeted topics. Such
an approach advances sample efficiency, reduces training costs, and addresses practical scaling lim-
itations. In doing so, AI design can better support human–AI teaming and user psychological well-
being.
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