

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONTRASTIVE GRADIENT GUIDANCE FOR TEST-TIME PREFERENCE ALIGNMENT OF DIFFUSION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Pre-trained diffusion models demonstrate remarkable performance in text-to-image generation, with current research efforts directed toward aligning them with human preferences across diverse application scenarios. Existing approaches often rely on costly pipelines that require collecting preference data, training reward models, and fine-tuning. A promising alternative is test-time alignment, which steers diffusion models during sampling without retraining. However, current test-time alignment methods typically depend on explicit reward models to provide a guidance signal for modifying a sampling path. These involve decoding a noisy image and estimating its rewards, which adds extra steps with computational overhead and might limit flexibility across diverse scenarios. We propose Contrastive Gradient Guidance (CGG), a conceptually straightforward and practical framework for test-time alignment that avoids explicit reward models by design. CGG derives its guidance signal from the contrastive difference between two diffusion models, parameterized through the gradient of the log-likelihood ratio of the favored and the unfavored distributions. The guidance signal steers a pre-trained diffusion model along its sampling path while implicitly aligning generation with human preferences. Experiments demonstrate that CGG consistently improves preference alignment in text-to-image generation and flexibly adapts to safety-critical and multi-preference scenarios. Moreover, CGG can be combined with prevailing test-time alignment techniques to yield additional gains. These results establish CGG as a principled framework for advancing test-time alignment of diffusion models.¹²

1 INTRODUCTION

Pre-trained diffusion models have emerged as a powerful class of generative models, producing high-quality, diverse outputs across various domains. The generation paradigm has shown promise in image generation (Podell et al., 2024), video generation (Ho et al., 2022), and speech generation (Huang et al., 2022). However, steering these models to generate content aligned with specific user requirements or robust quality remains challenging, which is known as the preference alignment problem. The preference alignment problem aims to ensure that the model-generated results match desirable goals (Ngo et al., 2022).

Existing approaches often rely on costly pipelines that require collecting preference data, training reward models (for human preferences), and fine-tuning. For example, Christiano et al. (2017) presented reinforcement learning from human feedback (RLHF), which fine-tunes a generative model by a reward model learned from a pairwise preference dataset. This work laid the foundation for the RLHF training paradigm of generative models. Alternatively, Rafailov et al. (2023) proposed a supervised alternative of RLHF–direct preference optimization (DPO), which fine-tunes a generative model from a pairwise preference dataset without training a reward model. DPO simplifies RLHF by bypassing the training of an explicit reward model and directly deriving an objective function to fine-tune the diffusion model. This family of methods, including f -DPO (Wang et al., 2023), KTO (Ethayarajh et al., 2024), SimPO (Meng et al., 2024), and ORPO (Hong et al., 2024a) demonstrate competitive performance to RLHF.

¹Warning: This paper contains examples of harmful content, including explicit text and images.

²This work use Large Language Models (LLMs) in paper writing to aid or polish writing.

054 Although the RLHF and DPO appear promising for the preference alignment during the training
 055 time, these fine-tuning method requires expensive training resources for hyper-parameter tuning and
 056 are inflexible for adapting a diffusion model to new human preferences, such as personalization or
 057 safety concerns. A promising alternative is test-time preference alignment, which steers diffusion
 058 models during sampling without retraining. For example, *prompt optimization* is an early proposed
 059 method for low-cost test-time preference alignment, which optimizes the input text prompt automatically
 060 to get generation quality (Hao et al., 2023; Mo et al., 2024). Similarly, *initial noise optimization*
 061 focuses on finding the good initial noisy inputs to generate high-quality information (Guo et al.,
 062 2024). The core idea of these methods is to optimize inputs and internal mechanisms of text-to-
 063 image diffusion models for test-time preference alignment (Liu et al., 2024). While several works
 064 put efforts into optimizing the inputs for test-time preference alignment, the control of generating
 065 results is less precise and often relies on heuristics.
 066

067 In this work, we focus on the *gradient guidance* techniques of diffusion models for test-time prefer-
 068 ence alignment, where the main idea is to directly sample from the output distribution by introducing
 069 the guidance signals to the denoising process. Existing methods typically rely on guidance signals
 070 from explicit reward models to modify sampling paths. However, these methods involve decoding
 071 the noisy images from the latent space, estimating the expected reward of a clean image estimated
 072 from a noisy image, and designing the gradient guidance signal (Chung et al., 2022; Bansal et al.,
 073 2023; Yu et al., 2023) or the re-sampling method, e.g., Sequential Monte Carlo (SMC) Sampling (Wu
 074 et al., 2023; Kim et al., 2025; Singhal et al., 2025).
 075

076 In this work, we propose Contrastive Guidance Generation (CGG), which enables effective test-time
 077 preference alignment for diffusion models **without** explicit reward models by default. CGG derives
 078 its guidance signal from the contrastive difference between two diffusion models, parameterized
 079 through formalizing the reward model as the log-likelihood ratio of the favored and the unfavored
 080 distributions. Based on this interpretation, CGG leverages classifier guidance techniques with the
 081 guidance signal to steer a pre-trained diffusion model along its sampling path for image quality and
 082 diversity while implicitly toward preference-aligned outputs.
 083

084 We demonstrate that CGG consistently improves a pre-trained diffusion model’s preference align-
 085 ment performance in text-to-image generation during test time by showing the state-of-the-art per-
 086 formance evaluated by PickScore on a Pick-a-Pic test set. We also present the flexibility of CGG
 087 by utilizing different compositions of diffusion models to adapt a pre-trained diffusion model to
 088 safety-critical (Pick-Safety) and multiple preferences (PickScore and ImageReward).
 089

090 Our contribution is to propose the Contrastive Gradient Guidance (CGG) framework for test-time
 091 preference alignment that avoids explicit reward models by design. We demonstrate that CGG con-
 092 sistently improves the pre-trained diffusion model and can be extended to diverse scenarios. Our
 093 framework can connect with current research on diffusion models in preference alignment, provid-
 094 ing a new perspective for test-time preference alignment problems.
 095

096 2 BACKGROUND

097 2.1 CLASSIFIER GUIDANCE FOR DIFFUSION MODEL

098 Instead of estimating a data distribution $p(\mathbf{x})$, diffusion models formulate the generative process as
 099 the iterative denoising process from the tractable Gaussian distribution, which estimates the score
 100 of the distribution at each iteration t by the denoising model $s_\theta(\mathbf{x}_t) \rightarrow \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t)$ (Song et al.,
 101 2021b). Conditional generation further enhances its generation controllability by incorporating
 102 conditions into the denoising process. For example, classifier guidance (CG) trains a time-dependent
 103 classifier $p(\mathbf{y}|\mathbf{x}_t)$ on a noisy image \mathbf{x}_t to adjust the unconditional by its gradient based on Bayes’
 104 rule (Dhariwal & Nichol, 2021; Song et al., 2021b).
 105

$$\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{y}) = \underbrace{\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t)}_{\text{unconditional score}} + \underbrace{\nabla_{\mathbf{x}_t} p(\mathbf{y}|\mathbf{x}_t)}_{\text{classifier/conditional gradient}} - \underbrace{\nabla_{\mathbf{x}_t} \log p(\mathbf{y})}_{=0}, \quad (1)$$

106 Therefore, the classifier gradient $\nabla_{\mathbf{x}_t} p(\mathbf{y}|\mathbf{x}_t)$ acts as the guidance signal to steer the model to align
 107 the conditions, such as a class label or a text sequence.
 108

108
109

2.2 RLHF FOR TRAINING-TIME PREFERENCE ALIGNMENT

110
111
112
113
114
115
116

In RLHF, we collect pairwise preference data from human annotators, which is a set of pairs of images $(\mathbf{x}^w, \mathbf{x}^l)$ with a prompt \mathbf{c} in the context of the text-to-image scenario, where \mathbf{x}^w is the favored image and \mathbf{x}^l is the less favored image. The first stage of RLHF is reward modeling, which learns a distribution over the pairwise preference data to represent human preferences by modeling them as a Bradley-Terry model (Bradley & Terry, 1952). The Bradley-Terry model assumes that the probability of one image being favored over another can be expressed as a reward function of their respective rewards:

117
118

$$\mathbb{P}[y = +1 | (\mathbf{c}, \mathbf{x}^w, \mathbf{x}^l) \in \mathcal{D}] = \sigma(r(\mathbf{c}, \mathbf{x}^w) - r(\mathbf{c}, \mathbf{x}^l)), \quad (2)$$

119
120
121
122

where $\sigma(\bullet)$ is the sigmoid function and $y = \mathbb{1}[\mathbf{x}^w \succ \mathbf{x}^l | \mathbf{c}]$ is the label of a pair of images given a certain prompt, $(\mathbf{c}, \mathbf{x}^w, \mathbf{x}^l) \in \mathcal{D}$ represents a prompt and a pair of images, and $r(\mathbf{c}, \mathbf{x})$ is a reward function that assigns a score to each image. As Eq. 2 illustrates, the reward modeling could be formulated as a binary classification problem with the following negative log-likelihood problem:

123
124

$$\min_{\phi} -\log(\sigma(r_{\phi}(\mathbf{c}, \mathbf{x}^w) - r_{\phi}(\mathbf{c}, \mathbf{x}^l))). \quad (3)$$

125

In the second stage of RLHF (proximal policy optimization), we formulate the objective function as maximizing a generative model to get a high reward score $r(\mathbf{c}, \mathbf{x})$ while penalizing the KL divergence between the model distribution and the reference distribution. The objective function can be expressed as:

129
130

$$\max_{\theta} \mathbb{E}_{\mathbf{x} \sim p_{\theta}(\mathbf{x} | \mathbf{c})} [r(\mathbf{c}, \mathbf{x})] - \beta \mathbb{D}_{\text{KL}}[p_{\theta}(\mathbf{x} | \mathbf{c}) \| p_{\text{ref}}(\mathbf{x} | \mathbf{c})], \quad (4)$$

131
132
133

where $p_{\theta}(\mathbf{x} | \mathbf{c})$ is the distribution of the fine-tuned generative model, β is a hyperparameter to scale the regularization term. Given a reward model $r(\mathbf{c}, \mathbf{x})$ and a β , Rafailov et al. (2023) derive the optimal solution of the objective as:

134
135
136

$$p_{\theta^*}(\mathbf{x} | \mathbf{c}) = \frac{1}{Z(\mathbf{c})} p_{\text{ref}}(\mathbf{x} | \mathbf{c}) \exp\left(\frac{1}{\beta} r(\mathbf{c}, \mathbf{x})\right), \quad (5)$$

137
138

where $Z(\mathbf{c}) = \int_{\mathbf{x}} p_{\text{ref}}(\mathbf{x} | \mathbf{c}) \exp\left(\frac{1}{\beta} r(\mathbf{c}, \mathbf{x})\right)$ is the partition function.

139
140

3 CONTRASTIVE GRADIENT GUIDANCE

141
142
143

In this work, we investigate a method to effectively and flexibly sample an image \mathbf{x} from the preference-aligned target distribution $p_{\theta^*}(\mathbf{x} | \mathbf{c})$ in Eq. 5 during the test time.

144
145

3.1 PROBLEM FORMULATION AND MOTIVATION

146
147
148
149

Test-time preference alignment. Given a pre-trained diffusion model $s_{\text{ref}}(\mathbf{c}, \mathbf{x})$, reward model $r(\mathbf{c}, \mathbf{x})$, and the test set prompt $\{\mathbf{c}\}$, the goal is to adjust the output distribution of a pre-trained diffusion model without modifying its parameters.

150
151

As mentioned in Section 2.1, we can estimate a conditional distribution $p_{\theta^*}(\mathbf{x} | \mathbf{c})$ by its score function like Eq. 6:

152

$$\nabla_{\mathbf{x}_t} \log p_{\theta^*}(\mathbf{x}_t | \mathbf{c}) = \nabla_{\mathbf{x}_t} \log p_{\text{ref}}(\mathbf{x}_t | \mathbf{c}) + \gamma \nabla_{\mathbf{x}_t} r(\mathbf{c}, \mathbf{x}_t), \quad (6)$$

153
154
155
156
157

where γ is the guidance scale; $\nabla_{\mathbf{x}_t} \log p_{\text{ref}}(\mathbf{x}_t | \mathbf{c})$ is the score of the pre-trained distribution at timestep t corresponding to the pre-trained diffusion model $s_{\text{ref}}(\mathbf{c}, \mathbf{x}_t)$ and $\nabla_{\mathbf{x}_t} r(\mathbf{c}, \mathbf{x}_t)$ is the gradient of the reward on a generated image, denoted as the reward guidance signal. Eq. 6 suggests that if we can accurately estimate the reward guidance signal $\nabla_{\mathbf{x}_t} r(\mathbf{c}, \mathbf{x}_t)$, we can sample an image \mathbf{x} from the preference-aligned target distribution.

158
159
160
161

Naturally, Eq. 1 tells us that it is possible to train a time-dependent reward model to get the reward guidance signal. However, training a time-dependent reward model requires collecting a large set of noisy data with rewards $(\mathbf{c}, \mathbf{x}_t)$ (Singhal et al., 2025). In our ablation study (Appendix A.), we demonstrate that fine-tuning *time-dependent reward model* from the reward model $r(\mathbf{c}, \mathbf{x}_0)$ on pairwise preference data $\{(\mathbf{c}, \mathbf{x}_t^w, \mathbf{x}_t^l)\}$ is unstable and costly.

162 To tackle the problem of estimating the reward guidance signal $\nabla_{\mathbf{x}_t} r(\mathbf{c}, \mathbf{x}_t)$ during the test time,
 163 two types of explicit reward-guided methods have been proposed: gradient-free steering and gradient
 164 guidance. Both method estimates a reward of an estimated clean image from a noisy image $\hat{\mathbf{x}}(\mathbf{x}_t) =$
 165 $\mathbb{E}[\mathbf{x}|\mathbf{x}_t]$. Gradient-free steering utilizes the estimated reward to perform the Sequential Monte Carlo
 166 (SMC) sampling for increasing samples' rewards during the test time (Wu et al., 2023; Kim et al.,
 167 2025; Singhal et al., 2025), which is orthogonal to our approach, and we leave details in Section 5.
 168 Gradient guidance calculates the gradient of the estimated reward as the reward guidance signal
 169 $\nabla_{\mathbf{x}_t} r(\mathbf{c}, \hat{\mathbf{x}}(\mathbf{x}_t))$ for gradient guidance during sampling (Chung et al., 2022; Bansal et al., 2023;
 170 Yu et al., 2023). However, these approaches have studied the specific formulation of the reward
 171 model for image generation, such as the inverse problem (Chung et al., 2022) or classification (Yu
 172 et al., 2023; Bansal et al., 2023), instead of the pairwise preference alignment tasks as mentioned in
 173 Section 2.2.
 174

3.2 CONTRASTIVE FORM AND GUIDANCE

176 Existing works rely on an external reward model to provide the reward guidance signal for guiding.
 177 In this work, we ask the question about
 178

179 *Is there an approximation of the reward guidance signal without an external reward model?*

180 We begin by the Eq. 5:

$$\begin{aligned} \exp\left(\frac{1}{\beta}r(\mathbf{c}, \mathbf{x})\right) &= Z(\mathbf{c}) \frac{p_{\theta^*}(\mathbf{x}|\mathbf{c})}{p_{\text{ref}}(\mathbf{x}|\mathbf{c})} \\ \frac{1}{\beta}r(\mathbf{c}, \mathbf{x}) &= \log\left(Z(\mathbf{c}) \frac{p_{\theta^*}(\mathbf{x}|\mathbf{c})}{p_{\text{ref}}(\mathbf{x}|\mathbf{c})}\right). \end{aligned} \quad (7)$$

187 Thus, maximizing the rewards in RLHF with the KL divergence could be framed as the optimization
 188 problem of maximizing the distinction between distributions. To maximize the distinction between
 189 distributions during the test time, we propose the **contrastive form** as the reward guidance signal
 190 would be tractable and achieve satisfying outcomes. Specifically, we argue that the **contrastive**
 191 **form** expresses that a reward model during the test time is proportional to the contrastive difference
 192 between the favored and the unfavored distributions, parameterized through the log-likelihood ratio:

$$r(\mathbf{c}, \mathbf{x}) \propto \log \frac{\rho(\mathbf{x}|\mathbf{c})}{\kappa(\mathbf{x}|\mathbf{c})}, \quad (8)$$

196 where $\rho(\mathbf{x}|\mathbf{c})$ and $\kappa(\mathbf{x}|\mathbf{c})$ represent the favored and the unfavored distributions. Intuitively, images
 197 collected from $\rho(\mathbf{x}|\mathbf{c})$ represent high-reward samples, whereas those from $\kappa(\mathbf{x}|\mathbf{c})$ represent low-
 198 reward samples, which indicates that the probability of image \mathbf{x} with a higher reward under the
 199 favored distribution is expected to be higher than under the unfavored distribution for a sample
 200 prompt \mathbf{c} . In RLHF, the distribution modeling by the preference optimization (PO)-based is naturally
 201 treated as the favored distribution, and the pre-trained distribution is the unfavored distribution. In
 202 addition, we argue that Eq. 8 is flexible by discussing other kinds of contrastive forms in Section 3.3.

203 Consequently, we build the Contrastive Gradient Guidance (CGG) framework, which estimates the
 204 preference-aligned target distribution $p_{\theta^*}(\mathbf{x}|\mathbf{c})$ by replacing the $\nabla_{\mathbf{x}} r(\mathbf{c}, \mathbf{x})$ with the contrastive form
 205 in Eq. 6:

$$\begin{aligned} \nabla_{\mathbf{x}_t} \log p_{\theta^*}(\mathbf{x}_t|\mathbf{c}) &= \nabla_{\mathbf{x}_t} \log p_{\text{ref}}(\mathbf{x}_t|\mathbf{c}) + \gamma \nabla_{\mathbf{x}_t} \left(\log \frac{\rho(\mathbf{x}_t|\mathbf{c})}{\kappa(\mathbf{x}_t|\mathbf{c})} + C \right) \\ &= \nabla_{\mathbf{x}_t} \log p_{\text{ref}}(\mathbf{x}_t|\mathbf{c}) + \gamma (\nabla_{\mathbf{x}_t} \log \rho(\mathbf{x}_t|\mathbf{c}) - \nabla_{\mathbf{x}_t} \log \kappa(\mathbf{x}_t|\mathbf{c})), \\ &\leftarrow s_{\text{ref}}(\mathbf{c}, \mathbf{x}_t) + \gamma(s_{\theta_\rho}(\mathbf{c}, \mathbf{x}_t) - s_{\theta_\kappa}(\mathbf{c}, \mathbf{x}_t)), \end{aligned} \quad (9)$$

211 where C is the constant and γ is the guidance scale for the test-time preference alignment. Not-
 212 ably, we introduce two diffusion models $s_{\theta_\rho}(\mathbf{c}, \mathbf{x}_t), s_{\theta_\kappa}(\mathbf{c}, \mathbf{x}_t)$ to estimate the scores of favored and
 213 unfavored distributions in Eq. 9.

214 In Section 3.3, we describe different types of combinations of two diffusion models under the CGG
 215 framework.

216 **Remark of CGG for test-time preference alignment.** CGG is a straightforward and practical
 217 framework for test-time preference alignment, which could be a good replacement for training a
 218 time-dependent reward model. In addition, comparing with existing explicit reward-guided meth-
 219 ods (Chung et al., 2022; Bansal et al., 2023; Yu et al., 2023; Yeh et al., 2025; Wu et al., 2023;
 220 Kim et al., 2025; Singhal et al., 2025), CGG integrates an implicit reward guidance signal into the
 221 pre-trained diffusion model’s sampling path, which does not rely on an external reward model. We
 222 demonstrate the effectiveness and flexibility of the CGG framework in Section 4 and discuss our
 223 method with existing test-time preference alignment in Section 5.

224 **3.3 IMPLEMENTATION OF THE CONTRASTIVE FORM**

225 **Preference optimization fine-tuned and pre-trained diffusion models.** In this work, we reuse
 226 the preference optimization (PO) fine-tuned diffusion models such as Diffusion-DPO and Diffusion-
 227 KTO as the $s_{\theta_p}(\mathbf{c}, \mathbf{x}_t) = s_{\text{PO}}(\mathbf{c}, \mathbf{x}_t)$ to estimate the score of the favored distribution. In particular,
 228 we take the pre-trained diffusion model as the estimation of unfavored score $s_{\theta_\kappa}(\mathbf{c}, \mathbf{x}_t) = s_{\text{ref}}(\mathbf{c}, \mathbf{x}_t)$
 229 and derive the form:

$$\begin{aligned} \nabla_{\mathbf{x}_t} \log p_{\theta^*}(\mathbf{x}_t | \mathbf{c}) &\leftarrow s_{\text{ref}}(\mathbf{c}, \mathbf{x}_t) + \gamma(s_{\text{PO}}(\mathbf{c}, \mathbf{x}_t) - s_{\text{ref}}(\mathbf{c}, \mathbf{x}_t)) \\ &= (1 - \gamma)s_{\text{ref}}(\mathbf{c}, \mathbf{x}_t) + \gamma s_{\text{PO}}(\mathbf{c}, \mathbf{x}_t) \end{aligned} \quad (10)$$

230 Eq. 10 connects the CGG framework with a broadly used classifier-free guidance (CFG) (Ho &
 231 Salimans, 2022) to push the sampling path towards higher likelihood satisfying conditions for con-
 232 ditional guided sampling. In subsequent work, Karras et al. (2024) verifies that the image quality
 233 could be further improved by applying CFG to a high-quality diffusion model with a poor diffusion
 234 model, both trained on the same task, conditioning, and data distribution. In Section 4, our ex-
 235 perimental results show that adopting CGG with this certain form, we could additionally enhance the
 236 rewards score by guide the pre-trained diffusion model with a PO fine-tuned diffusion model.

237 **Fine-tuned two diffusion models from pairwise preference data.** We also explore the alter-
 238 native way to estimate the reward signal by the other composition of the **contrastive form**. In
 239 practice, a pairwise preference dataset is collected for RLHF, e.g., a Pick-a-Pic format is $\mathcal{D} =$
 240 $\{(\mathbf{c}, \mathbf{x}^{(0)}, \mathbf{x}^{(1)}, y)\}$, which contains a pair of images $(\mathbf{x}^{(0)}, \mathbf{x}^{(1)})$ for each prompt \mathbf{c} and preference
 241 label y . For this kind of pairwise preference dataset, the first idea is to utilize the Supervised Fine-
 242 Tuning (SFT) method on the positive label and the negative label. Thus, we could obtain the score
 243 models of the positive label distribution (favored distribution) $s_{\theta_p}(\mathbf{c}, \mathbf{x}_t) = s_{\text{Pos}}(\mathbf{c}, \mathbf{x}_t)$ and the
 244 negative label distribution (unfavored distribution) $s_{\theta_\kappa}(\mathbf{c}, \mathbf{x}_t) = s_{\text{Neg}}(\mathbf{c}, \mathbf{x}_t)$.

245 A similar idea is proposed by the CHATS, which claimed that the DPO’s objective function does
 246 not meet the properties of Classifier-Free Guidance (CFG) to generate high quality (rewards) and
 247 diverse images by only one diffusion model, so they proposed the new fine-tuning objective func-
 248 tion to train the two diffusion models for sampling from the favored and the unfavored distributions
 249 simultaneously (Fu et al., 2025). In our implementation, we utilize CHATS’s favored diffusion mod-
 250 els $s_{\theta_p}(\mathbf{c}, \mathbf{x}_t) = s_{\text{CHATS}^+}(\mathbf{c}, \mathbf{x}_t)$ and unfavored diffusion models $s_{\theta_\kappa}(\mathbf{c}, \mathbf{x}_t) = s_{\text{CHATS}^-}(\mathbf{c}, \mathbf{x}_t)$ to
 251 form the **contrastive form**.

252 **Multiple diffusion models for multiple preferences.** Eq. 9 illustrates that the score of the
 253 preference-aligned target distribution $\nabla_{\mathbf{x}_t} \log p_{\theta^*}(\mathbf{x}_t | \mathbf{c})$ with respect to a single reward model
 254 $r(\mathbf{c}, \mathbf{x}_t)$ could be approximate by the **contrastive form**. This form inspires us to ask the next
 255 question

256 *Would the multiple preference-aligned target distribution be estimated by reward guidance signals?*

257 Previous works provide the potential of this idea by mapping multiple conditions (concepts) to con-
 258 stitute generated images (Liu et al., 2022). Based on a similar idea, we extend Eq. 9 to apply multiple
 259 preferences composed of multiple diffusion models fine-tuned from different pairwise preference
 260 datasets.

$$\nabla_{\mathbf{x}_t} \log p_{\theta^*}(\mathbf{x}_t | \mathbf{c}) \leftarrow s_{\text{ref}}(\mathbf{c}, \mathbf{x}_t) + \sum_{k=1}^K \gamma_k (s_{\theta_{p,k}}(\mathbf{c}, \mathbf{x}_t) - s_{\theta_{\kappa,k}}(\mathbf{c}, \mathbf{x}_t)), \quad (11)$$

270
271
272
273
274Table 1: Comparison of average rewards between SDXL, Diffusion-DPO and applying CGG in DPO using prompts from the Pick-a-Pic v2 test set. We use $\gamma^* = 0.75$. **Bold text** results represents the best among experiments. Additionally, $\text{CGG}(s_{\theta_p}(c, x_t), s_{\theta_\kappa}(c, x_t))$ represents the different composition of the contrastive form.275
276
277
278
279
280
281

	SDXL(Ref)	DPO	CGG(DPO, Ref) ($\gamma^*=0.75$)
Pickscore	22.114	22.408	22.481
Aesthetic	6.481	6.437	6.449
HPSv2	0.292	0.303	0.305
CLIP	36.994	37.783	37.978
ImageReward	0.857	0.991	1.040

282
283
284
285Table 2: Comparison of average rewards between SDXL, MaPO and applying CGG in MaPO using prompts from the Pick-a-Pic v2 test set. We use $\gamma^* = 0.75$. **Bold text** results represents the best among experiments.286
287
288
289
290
291
292
293

	SDXL(Ref)	MaPO	CGG(MaPO,Ref) ($\gamma^*=0.75$)
Pickscore	22.114	22.155	22.154
Aesthetic	6.481	6.544	6.477
HPSv2	0.292	0.301	0.302
CLIP	36.994	37.137	37.281
ImageReward	0.857	0.997	1.002

294 where $p_{\Theta^*}(x|c)$ is the multiple preference-aligned target distribution with respect to maximizing
295 a set of multiple reward models (preferences) $\{r_1(c, x), \dots, r_K(c, x)\}$. In our experiments, we
296 demonstrate that the CGG framework could balance reward scores by adjusting guidance scales γ_k .

4 EXPERIMENTS

300 Our experiments aim to reveal the prospect of CGG framework by verifying the follow claims:

301
302
303
304
305
306
307
308

1. CGG consistently enhances a pre-trained diffusion model’s capability of test-time preference alignment (Section 4.1).
2. CGG is applicable to more scenarios, such as the safety-critic issue and multiple preferences (Section 4.2).
3. CGG can combine with existing test-time preference alignment and yield additional gains (Section 4.3).

309
310
311
312
313
314

Datasets and base model (baseline). We assess the CGG framework on the Pick-a-Pic v2 (Kirstain et al., 2023), where several preference optimization methods are applied to this dataset, such as Diffusion-DPO (Wallace et al., 2024) and Diffusion-KTO (Li et al., 2024) for Stable Diffusion v1.5 (SD1.5) (Rombach et al., 2022) and Stable Diffusion XL (SDXL) (Podell et al., 2024). We take the SD1.5 and SDXL as the pre-trained model (base model/baseline) to see the improvement of CGG for test-time preference alignment.

315
316
317

4.1 RESULTS OF ENHANCING A PRE-TRAINED DIFFUSION MODEL

318
319

Diffusion-DPO and MaPO officially released SDXL checkpoints, which are trained under the hyperparameter $\beta = 1$.

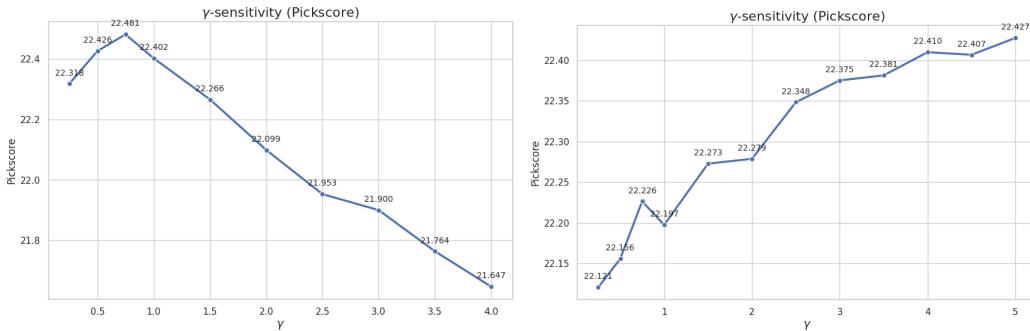
320
321
322
323

To evaluate the robustness and effectiveness of our proposed framework, we evaluate various metrics of the generated results on the Pick-a-Pic v2 test set with 500 unique prompts. Table 1, Table 2 and Table 9 provides the average reward for applying the CGG framework for the pre-trained models. The results demonstrate that CGG consistently improves upon the pre-trained model over the pre-trained diffusion models.

324
 325 Table 3: Comparison of average rewards between SDXL, SFT(Pos), and applying CGG in SFT(Pos)
 326 and SFT(Neg) using prompts from the Pick-a-Pic v2 test set. We use $\gamma^* = 0.75$ and 5.0 respectively.
 327 **Bold text** results represents the best among experiments.

	SDXL(Ref)	SFT Pos	CGG(Pos,Ref) ($\gamma^*=0.75$)	CGG(Pos,Neg) ($\gamma^*=5.0$)
Pickscore	22.114	22.335	22.333	22.427
Aesthetic	6.481	6.524	6.399	6.341
HPSv2	0.292	0.308	0.308	0.304
CLIP	36.994	37.195	37.524	37.833
ImageReward	0.857	1.005	1.010	1.052

334
 335
 336 **Effects of guidance scale.** We empirically investigate the impact of the guidance scale γ in Eq. 9
 337 from the smallest hyperparameter $\gamma = 0.25$ and gradually increase it to check the optimal γ^* on
 338 the Pick-a-Pic v2 test set with 500 unique prompts. As shown in Figure 1 (Left), we observe that γ
 339 has a rising-then-falling trend allows us to select the best hyperparameter. Based on the observation
 340 across different compositions of the **contrastive form**, we select $\gamma^* = 0.75$ for SDXL as the default
 341 guidance scale in Table 1. We also investigated the γ -sensitivity for different contrastive forms and
 342 across different metrics. As shown in Figure 1 (Right), we studied the effect of guidance scale on
 343 CGG(Pos, Neg) and extend the experiments to $\gamma = 5.0$. We expect to see the same concave trend as
 344 Figure 1. Furthermore, the experiments on other metrics can be found in Appendix C.3.



356
 357 Figure 1: (Left) The results of γ -sensitivity on applying CGG in Diffusion-DPO. (Right) on applying
 358 CGG in SFT(Pos) and SFT(Neg). PickScore (x -axis) vs Guidance scale γ (y -axis).
 359

360
 361
 362 **Results of the different contrastive forms** In our experiments, we utilize the SFT fine-tuned
 363 and CHATS’s released fine-tuned models on the Pick-a-Pic v2 dataset. Based on the emphasis
 364 of the unfavored (negative preferences) on the existing work, we also compare two kinds of the
 365 **contrastive form** for SFT fine-tuned models by two compositions to check the effectiveness of the
 366 negative preferences by using the pre-trained (Base) diffusion models or the unfavored diffusion
 367 (Neg) models as $s_{\theta_\kappa}(c, x)$.

368 Table 3 and Table 10 presents the quantitative results of different compositional diffusion models
 369 based on the CGG framework on the Pick-a-Pic v2 test set, which shows that different **contrastive**
 370 **form** of the reward guidance signal with a straightforward gradient guidance would also improve
 371 the pre-trained SD1.5’s and SDXL’s PickScore during the test time.

373 4.2 SAFETY AND MULTIPLE PREFERENCES

374
 375 In this section, we want to evaluate the flexibility of the **contrastive form** by extending our scope
 376 to diverse scenarios of usage. First, we claim that CGG could mitigate the safety issue of the
 377 existing Diffusion-DPO. Second, we verify that CGG would balance the multiple preferences, such
 as PickScore and ImageReward.

378
 379 Table 4: Average NSFW rate and PickScore for the safety-critic issues of SDXL using prompts from
 380 the Pick-a-Pic v2 test set. **Bold text** result represents the best among experiments. The improvement
 381 of the CGG framework from the pre-trained model is listed in the parentheses.

	Base	DPO	MaPO	
	Pre-trained	Fine-tuned	Fine-tuned	CGG (MaPO, DPO)
NSFW rate (↓)	0.030	0.054	0.004	0.019 (-0.11)
PickScore (↑)	22.110	22.400	22.000	22.350 (+0.240)

382
 383
 384 Table 5: Average PickScore and ImageReward for the multiple preferences of SDXL using prompts
 385 from the Pick-a-Pic v2 test set. **Bold text** result represents the best among experiments. The im-
 386 provement of the CGG framework from the pre-trained model is listed in the parentheses.

Type Model	Base	DPO		
	Pre-trained	Pick-a-Pic	ImageRewardDB	CGG
PickScore (↑)	22.114	22.405	22.076	22.395 (+0.281)
ImageReward (↑)	0.857	0.991	1.003	1.070 (+0.213)

392
 393 **Mitigate the DPO’s unsafe capabilities.** We noticed that the Diffusion-DPO fine-tuned diffusion
 394 model over a Pick-a-Pic v2 dataset might raise safety issues due to some Not Safe/Suitable For Work
 395 (NSFW) prompts and collected images for fine-tuning.

402 To assess whether CGG could mitigate the NSFW rate, we use the NSFW classifier from the HEIM
 403 benchmark and assess the NSFW rate by dividing the number of NSFW images by 500 (number of
 404 prompts) (Liang et al., 2023). For minimizing NSFW rate, we utilize the fine-tuned MaPO diffu-
 405 sion models for SDXL on Pick-Safety dataset for the safety purpose (Hong et al., 2024b). Detail
 406 experiment settings can be found in the Appendix B.1.

407 Table 4 presents the quantitative results for the Pick-a-Pic data set, which shows that we can suc-
 408 cessfully mitigate the toxicity of the DPO fine-tuned model by combining the contrastive form of MaPO
 409 and DPO. By setting the $\gamma = 0.5$ of the linear interpolation between DPO and MaPO fine-tuned
 410 diffusion models, we prevent the DPO fine-tuned model from generating unsafe images and keep
 411 them to satisfy the human preference.

413 **Extend to multiple preferences** Next, we extend the flexibility to general multiple preferences by
 414 selecting PickScore and ImageReward as our two preferences, where the goal is to balance the two
 415 scores on the Pick-a-Pic v2 test set. We compare the pre-trained SDXL and DPO fine-tuned models
 416 on the Pic-a-Pic v2 and over the ImageRewardDB datasets.

417 Table 5 verifies that by guiding the pre-trained model with the **contrastive form** composed of
 418 PickScore and ImageReward with guidance scales $(\gamma_1, \gamma_2) = (0.5, 0.5)$ based on Eq. 11, we signif-
 419 icantly enhance both preferences from the pre-trained model.

421 4.3 RESULTS OF COMPARING IMPLICIT AND EXPLICIT REWARD-GUIDED METHODS

423 **Comparisons with the explicit reward-guided sampling method.** In this section, we first argue
 424 that the implicit reward modeling by the **contrastive form** would also achieve the competitive
 425 results to the state-of-the-art explicit reward-guided sampling method–Feynman-Kac steering (FK
 426 Steering) (Singhal et al., 2025).

427 Previous work reports that FK Steering achieves competitive performance and would enhance the
 428 pre-trained diffusion models as the number of samples increasing (Singhal et al., 2025). We evaluate
 429 FK Steering with 2 and 4 samples to maximize PickScore on the Pick-a-Pic v2 test set from the
 430 pre-trained and DPO fine-tuned diffusion models. Table 6 demonstrates that the CGG framework
 431 achieves similar performance to FK Steering applied to the Diffusion-DPO fine-tuned diffusion
 model, even without the PickScore reward model. We further discuss the possibility of combining

432
 433 Table 6: Automatic average rewards for applying CGG in DPO vs FK-Steering for SDXL using
 434 prompts from the Pick-a-Pic v2 test set. **Bold text** results represent the best among experiments.

	SDXL(Ref)	FK-SDXL	FK-DPO	CGG(DPO,Ref) ($\gamma^*=0.75$)
Pickscore	22.114	22.212	22.411	22.481
Aesthetic	6.481	6.385	6.324	6.449
HPSv2	0.292	0.295	0.304	0.305
CLIP	36.994	37.146	37.714	37.978
ImageReward	0.857	0.886	0.996	1.040

441
 442 the CGG framework with the FK Steering, i.e., FK-CGG in Appendix C.2.
 443

444 5 RELATED WORKS

445 **Preference optimization for training-time alignment.** Direct Preference Optimization (DPO)
 446 has become a popular alternative to RLHF without training the reward model. The subsequent works
 447 design the proper way to adapt DPO for the diffusion model (Wallace et al., 2024; Li et al., 2024; Zhu
 448 et al., 2025; Liang et al., 2025; Lu et al., 2025). We observe that raising the DPO brings an abundant
 449 of fine-tuned diffusion models to reuse. Like previous composition diffusion models (Liu et al.,
 450 2022), we explore alternative ways to condition and reuse diffusion models for test-time preference
 451 alignment.
 452

453 **Explicit reward with gradient-free steering for test-time alignment.** Gradient-free steering
 454 methods perform Sequential Monte Carlo (SMC) sampling by evaluating multiple samples based
 455 on an external explicit reward model (Wu et al., 2023; Kim et al., 2025; Singhal et al., 2025). SMC
 456 sampling involves three steps: resample, propose, and re-weight. In resample and propose, SMC
 457 sampling samples multiple noisy images x_t based on the weighted multinomial distribution, then
 458 estimates clean images $\hat{x}(x_t) = \mathbb{E}[x|x_t]$ based on the DDIM sampler (Song et al., 2021a). In re-
 459 weight, SMC sampling estimates the rewards of the estimated images $r(c, \hat{x}(x_t))$ and calculates the
 460 potentials with respect to the expected rewards to change the weights of the multinomial distribution
 461 for next time resampling. During each resampling step, SMC sampling gradually steers a diffusion
 462 model to generate high-reward images. In contrast with existing works that focus on designing a
 463 re-sampling method, we argue that the implicit reward would be naturally built on the preference
 464 optimization fine-tuned diffusion models, which could be used without an external reward, but also
 465 gain promising performance.
 466

467 **Modeling favored and unfavored preferences for preference alignment.** CHATS further pro-
 468 posed the proxy-prompt-based (PPB) sampling strategy to facilitate effective collaboration between
 469 two models. In this work, we utilize their fine-tuned preferred and dispreferred denoising models as
 470 our estimation of the score-based model and compare our sampling strategy with theirs.
 471

472 6 CONCLUSION

473 We proposed Contrastive Gradient Guidance (CGG), a simple and flexible framework for test-time
 474 preference alignment. Unlike existing methods that rely on explicit reward models, CGG is derived
 475 directly from the contrastive difference between two diffusion models. Our experiments demon-
 476 strate that CGG consistently improves preference alignment across diverse scenarios and remains
 477 competitive with explicit reward-guided methods. These results suggest that contrastive forms offer
 478 a proper signal guiding the pre-trained diffusion model for preference alignment. We believe this
 479 work represents a step forward in reducing the dependency on explicit reward models and opens
 480 new directions for studying preference alignment under test-time scenarios.
 481

482 REFERENCES

483 Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum, Jonas
 484 Geiping, and Tom Goldstein. Universal guidance for diffusion models. In *Proceedings of the*

486 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 843–852, 2023.
 487

488 Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: I. the method
 489 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952. ISSN 00063444, 14643510. URL
 490 <http://www.jstor.org/stable/2334029>.

491 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
 492 reinforcement learning from human preferences. *Advances in neural information processing sys-
 493 tems*, 30, 2017.

494 Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
 495 posterior sampling for general noisy inverse problems. *arXiv preprint arXiv:2209.14687*, 2022.
 496

497 Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis.
 498 In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural
 499 Information Processing Systems*, 2021.

500 Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
 501 alignment as prospect theoretic optimization. *arXiv preprint arXiv:2402.01306*, 2024.
 502

503 Minghao Fu, Guo-Hua Wang, Liangfu Cao, Qing-Guo Chen, Zhao Xu, Weihua Luo, and Kaifu
 504 Zhang. CHATS: Combining human-aligned optimization and test-time sampling for text-to-image
 505 generation. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=D4Y71nbGRg>.

506

507 Xiefan Guo, Jinlin Liu, Miaomiao Cui, Jiankai Li, Hongyu Yang, and Di Huang. Initno: Boosting
 508 text-to-image diffusion models via initial noise optimization. In *Proceedings of the IEEE/CVF
 509 Conference on Computer Vision and Pattern Recognition*, pp. 9380–9389, 2024.

510

511 Yaru Hao, Zewen Chi, Li Dong, and Furu Wei. Optimizing prompts for text-to-image generation.
 512 *Advances in Neural Information Processing Systems*, 36:66923–66939, 2023.

513 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint
 514 arXiv:2207.12598*, 2022.

515

516 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
 517 Fleet. Video diffusion models. *Advances in Neural Information Processing Systems*, 35:8633–
 518 8646, 2022.

519 Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
 520 reference model. *arXiv preprint arXiv:2403.07691*, 2024a.

521 Jiwoo Hong, Sayak Paul, Noah Lee, Kashif Rasul, James Thorne, and Jongheon Jeong. Margin-
 522 aware preference optimization for aligning diffusion models without reference, 2024b.

523

524 Rongjie Huang, Max WY Lam, Jun Wang, Dan Su, Dong Yu, Yi Ren, and Zhou Zhao. Fast-
 525 diff: A fast conditional diffusion model for high-quality speech synthesis. *arXiv preprint
 526 arXiv:2204.09934*, 2022.

527 Tero Karras, Miika Aittala, Tuomas Kynkänniemi, Jaakko Lehtinen, Timo Aila, and Samuli Laine.
 528 Guiding a diffusion model with a bad version of itself. *Advances in Neural Information Processing
 529 Systems*, 37:52996–53021, 2024.

530 Sunwoo Kim, Minkyu Kim, and Dongmin Park. Test-time alignment of diffusion models without
 531 reward over-optimization. In *The Thirteenth International Conference on Learning Representa-
 532 tions*, 2025. URL <https://openreview.net/forum?id=vi3DjUhFVm>.

533

534 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
 535 a-pic: An open dataset of user preferences for text-to-image generation. *Advances in neural
 536 information processing systems*, 36:36652–36663, 2023.

537 Shufan Li, Konstantinos Kallidromitis, Akash Gokul, Yusuke Kato, and Kazuki Kozuka. Aligning
 538 diffusion models by optimizing human utility. In *The Thirty-eighth Annual Conference on Neu-
 539 ral Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=MTMShU5QaC>.

540 Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga,
 541 Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan,
 542 Bobby Yan, Ce Zhang, Christian Alexander Cosgrove, Christopher D Manning, Christopher Re,
 543 Diana Acosta-Navas, Drew Arad Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda
 544 Rong, Hongyu Ren, Huaxiu Yao, Jue WANG, Keshav Santhanam, Laurel Orr, Lucia Zheng,
 545 Mert Yuksekgonul, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri S. Chatterji, Omar Khat-
 546 tab, Peter Henderson, Qian Huang, Ryan Andrew Chi, Sang Michael Xie, Shibani Santurkar,
 547 Surya Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary, William
 548 Wang, Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta Koreeda. Holistic evaluation of lan-
 549 guage models. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856. URL
 550 <https://openreview.net/forum?id=iO4LZibEqW>. Featured Certification, Expert
 551 Certification.

552 Zhanhao Liang, Yuhui Yuan, Shuyang Gu, Bohan Chen, Tianshui Hang, Mingxi Cheng, Ji Li, and
 553 Liang Zheng. Aesthetic post-training diffusion models from generic preferences with step-by-
 554 step preference optimization. In *Proceedings of the Computer Vision and Pattern Recognition*
 555 Conference, pp. 13199–13208, 2025.

556 Buhua Liu, Shitong Shao, Bao Li, Lichen Bai, Zhiqiang Xu, Haoyi Xiong, James Kwok, Sumi
 557 Helal, and Zeke Xie. Alignment of diffusion models: Fundamentals, challenges, and future.
 558 *arXiv preprint arXiv:2409.07253*, 2024.

559 Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual
 560 generation with composable diffusion models. In *European conference on computer vision*, pp.
 561 423–439. Springer, 2022.

562 Yunhong Lu, Qichao Wang, Hengyuan Cao, Xiaoyin Xu, and Min Zhang. Smoothed prefer-
 563 ence optimization via renoise inversion for aligning diffusion models with varied human pref-
 564 erences. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=G3grccIXIg>.

565 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
 566 reference-free reward. *Advances in Neural Information Processing Systems*, 37:124198–124235,
 567 2024.

568 Wenyi Mo, Tianyu Zhang, Yalong Bai, Bing Su, Ji-Rong Wen, and Qing Yang. Dynamic prompt op-
 569 timizing for text-to-image generation. In *Proceedings of the IEEE/CVF Conference on Computer*
 570 *Vision and Pattern Recognition*, pp. 26627–26636, 2024.

571 Richard Ngo, Lawrence Chan, and Sören Mindermann. The alignment problem from a deep learning
 572 perspective. *arXiv preprint arXiv:2209.00626*, 2022.

573 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 574 Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
 575 synthesis. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 576 <https://openreview.net/forum?id=di52zR8xgf>.

577 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 578 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 579 *in Neural Information Processing Systems*, 36:53728–53741, 2023.

580 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 581 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Con-
 582 ference on Computer Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, June 2022.

583 Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and
 584 Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
 585 models. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=Jp988ELppQ>.

586 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Inter-
 587 national Conference on Learning Representations*, 2021a. URL <https://openreview.net/forum?id=St1giarCHLP>.

594 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 595 Poole. Score-based generative modeling through stochastic differential equations. In *International*
 596 *Conference on Learning Representations*, 2021b.

597
 598 Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
 599 Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
 600 direct preference optimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 601 *and Pattern Recognition (CVPR)*, pp. 8228–8238, June 2024.

602 Chaoqi Wang, Yibo Jiang, Chenghao Yang, Han Liu, and Yuxin Chen. Beyond reverse kl: Gen-
 603 eralizing direct preference optimization with diverse divergence constraints. *arXiv preprint*
 604 *arXiv:2309.16240*, 2023.

605 Luhuan Wu, Brian Trippe, Christian Naesseth, David Blei, and John P Cunningham. Practical and
 606 asymptotically exact conditional sampling in diffusion models. *Advances in Neural Information*
 607 *Processing Systems*, 36:31372–31403, 2023.

608 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 609 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
 610 *Advances in Neural Information Processing Systems*, 36:15903–15935, 2023.

611 Po-Hung Yeh, Kuang-Huei Lee, and Jun cheng Chen. Training-free diffusion model alignment
 612 with sampling demons. In *The Thirteenth International Conference on Learning Representations*,
 613 2025. URL <https://openreview.net/forum?id=tfemquuED>.

614 Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and Jian Zhang. Freedom: Training-free
 615 energy-guided conditional diffusion model. In *Proceedings of the IEEE/CVF International Con-
 616 ference on Computer Vision*, pp. 23174–23184, 2023.

617 Huaisheng Zhu, Teng Xiao, and Vasant G Honavar. DSPO: Direct score preference optimization for
 618 diffusion model alignment. In *The Thirteenth International Conference on Learning Representa-
 619 tions*, 2025. URL <https://openreview.net/forum?id=xyfb9HHvMe>.

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650 Table 7: **Automatic average rewards for applying CGG in Diffusion-DPO using prompts from the Pick-a-Pic v2 test set.** We tune the guidance scale $\gamma = \frac{1}{\beta}$ for all methods during the test time.

651

652

653

654

655

656

657

658

Table 8: Average rewards of ImageReward for applying CGG in Diffusion-DPO, MaPO using prompts from the ImageRewardDB test set. **Bold text** result represents the best among experiments. The improvement of the CGG framework from the pre-trained model is listed in the parentheses.

659

660

661

662

663

664

665

A THE DIFFICULTY OF TRAINING THE TIME-DEPENDENT REWARD SIGNAL

666

667

In this section, we compare CGG (**contrastive form**) and the time-dependent reward signal $\xi_\phi(c, x, t)$ described in Section.

668

669

Table 7 demonstrates that CGG overcomes the difficulty of training the time-dependent reward signal (TD-reward).

670

671

672

B EXPERIMENT DETAILS

673

674

B.1 DETAILED SETTINGS OF THE SAFETY

675

676

In this experiment, we adopted the default settings of the NSFW detector from the HEIM benchmark (Liang et al., 2023). The threshold of the NSFW detector is set to 0.9, and the average NSFW rate is defined as the percentage of the number of images whose NSFW score is above the threshold.

677

678

B.2 DETAILED SETTINGS OF SAMPLING CONFIGURATIONS

679

680

681

To construct a robust sampling and evaluation pipeline, we fixed our sampling configurations. For SD1.5 experiments, by default, we set inference steps to 50 steps and CFG scale $\alpha = 7.5$. For SDXL experiments, by default, we set inference steps to 100 steps and CFG scale $\alpha = 7.5$.

682

683

B.3 EXPERIMENTAL RESULTS OF IMAGEREWARD ON IMAGEREWARDB TEST SET

684

685

686

To demonstrate the robustness of CGG on different reward and corresponding datasets, we provide some experimental results. Table 8 shows that CGG can successfully improve the pre-trained model on ImageRewardDB (Xu et al., 2023). However, we observed that the current results are worse than the DPO fine-tuned model. We hypothesize that the reason is that the DPO fine-tuned model we implemented is not a good performing model. The guidance signal it provides is not robust enough. Another underlying reason appears to be that the hyperparameter setting γ is not optimal. Although the results are not strong and the reasons are yet to be proved, we suggest that robustness across datasets is a potential topic to be explored in the future.

687

688

B.4 DETAILED OF CGG COMBINED WITH FK STEERING

689

690

691

692

693

694

695

We implemented the FK-CGG method based on the intuition in Sec 4.3, we modified the sampling stage in FK Steering (Singhal et al., 2025) and design the three-particle gradients. We describe our modified process from FK Steering in Algorithm 1. The main difference between the original FK Steering and the modified FK-CGG algorithm is that FK-Steering evaluates and resamples from the

702 **Algorithm 1** Combining Implicit and Explicit Reward Models (**FK-CGG**)703 **Input:** Types of diffusion models $\Omega = \{\text{ref}, \text{DPO}, \text{CGG}\}$, diffusion models $\{p_j(\mathbf{x}_{0:T}|\mathbf{c}) : j \in \Omega\}$,
704 reward model $r(\mathbf{c}, \mathbf{x})$, proposal generator $\{\tau_j(\mathbf{x}_{0:T}|\mathbf{c}) : j \in \Omega\}$, potentials G_t .705 **Returns:** Samples $\{\mathbf{x}^j\}_{j \in \Omega}$.

```

706 1: Sample  $\mathbf{x}_T^j \sim \tau_j(\mathbf{c}, \mathbf{x}_T)$  for  $j \in \Omega$ 
707 2: Score,  $G_T^j = G_T(\mathbf{c}, \mathbf{x}_T^j)$  for  $j \in \Omega$ 
708 3: for  $t \in \{T, \dots, 1\}$  do
709 4:   Resample Sample indices  $a_t^j \sim \text{Multinomial}(\mathbf{x}_t^j, G_t^j)$  and let  $\mathbf{x}_t^j = \mathbf{x}_t^{a_t^j}$ 
710 5:   Propose Sample  $\mathbf{x}_{t-1}^j \sim \tau_j(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{c})$  for  $j \in \Omega$ 
711 6:   Re-weight Compute weight  $G_{t-1}^j$  for  $j \in \Omega$ :
712 7:    $G_{t-1}^j = \frac{p_j(\mathbf{x}_{t-1}^j|\mathbf{x}_t^j, \mathbf{c})}{\tau_j(\mathbf{x}_{t-1}^j|\mathbf{x}_t^j, \mathbf{c})} G_{t-1}(\mathbf{c}, \mathbf{x}_T^j, \dots, \mathbf{x}_{t-1}^j)$ 
713 8: end for
714 9: Output: return samples  $\{\mathbf{x}^j\}$ 

```

715
716
717
718
719 Table 9: Comparison of average rewards between SD1.5, KTO and applying CGG in KTO using
720 prompts from the Pick-a-Pic v2 test set. We use $\gamma^* = 1.0$.

	SD1.5(Ref)	KTO	CGG(KTO, Ref) ($\gamma^*=1.0$)
Pickscore	20.529	21.072	21.072
Aesthetic	5.739	6.145	6.145
HPSv2	0.259	0.291	0.291
CLIP	33,382	34.252	34.252
ImageReward	0.064	0.631	0.631

721
722 stochastic particles while FK-CGG evaluates and resamples from the three particles of our designed
723 guided directions.724

C MORE EXPERIMENT RESULTS

725

C.1 ENHANCE THE PRE-TRAINED DIFFUSION MODEL WITH DIFFUSION-KTO

726 In our experiments, we use Diffusion-KTO officially released SD1.5 checkpoint. Table 9 demonstrated
727 that the fine-tuned Diffusion-KTO for SD 1.5 has achieved the best result than other hyper-
728 parameter γ . Therefore, we got the same result with $\gamma = 1$.729

C.2 FK-CGG: INTEGRATE CGG FRAMEWORK WITH FK STEERING.

730 After studying their method, we explore the possibility of a combination of the CGG framework with
731 the FK Steering to utilize the explicit reward model. The CGG framework guides the pre-trained
732 diffusion model by modifying its gradients at each step, which could be the modified inputs to FK
733 Steering, and then performs resampling. To combine the CGG framework with particle sampling-
734 based methods, we technically design the three-particle gradients, which contain the outputs of
735 the pre-trained diffusion model $s_{\text{ref}}(\mathbf{c}, \mathbf{x})$, the favored diffusion model $s_{\theta_p}(\mathbf{c}, \mathbf{x})$, and the guided
736 direction $s_{\text{ref}}(\mathbf{c}, \mathbf{x}) + \gamma(s_{\theta_p}(\mathbf{c}, \mathbf{x}) - s_{\theta_n}(\mathbf{c}, \mathbf{x}))$. We expect this design would utilize the exploration
737 of the higher-reward gradients beyond the base model and ensure the improvement of the rewards
738 during each resampling step. We compare the FK-CGG result with the same scenario which the FK
739 Steering has three particles. Table 11 shows that by integrating the two methods, FK-CGG achieves
740 better performance than FK-Steering alone. After detailed analysis, we found that FK-CGG has
741 more stable results and faster reward optimization during the denoising time steps. However, we
742 expect that future exploration on FK-CGG could enhance even more than current results.

756
 757 Table 10: Comparison of average rewards between SDXL, CHATS-PPBS, and applying CGG sam-
 758 pling in CHATS(Pos) and CHATS(Neg) using prompts from the Pick-a-Pic v2 test set. We use
 759 $\gamma^* = 0.25$. **Bold text** results represents the best among experiments. Additionally, PPBS means the
 760 proxy-prompt-based sampling strategy proposed in CHATS’s paper (Fu et al., 2025).

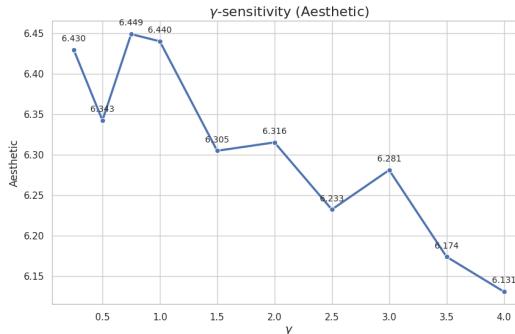
	SDXL(Ref)	CHAT-PPBS	CGG(CHAT(Pos),CHAT(Neg)) ($\gamma^*=0.25$)
Pickscore	22.114	22.095	22.153
Aesthetic	6.481	6.462	6.348
HPSv2	0.292	0.309	0.304
CLIP	36.994	36.705	37.483
ImageReward	0.857	1.052	1.039

761
 762
 763
 764
 765
 766
 767
 768 Table 11: Average PickScore for the comparisons between CGG and FK Steering of SDXL using
 769 prompts from the Pick-a-Pic v2 test set. **Bold text** results represents the best among experiments

	Base	FK-CGG	
		Pre-trained	# samples: 3
SDXL	22.110	22.130	22.143

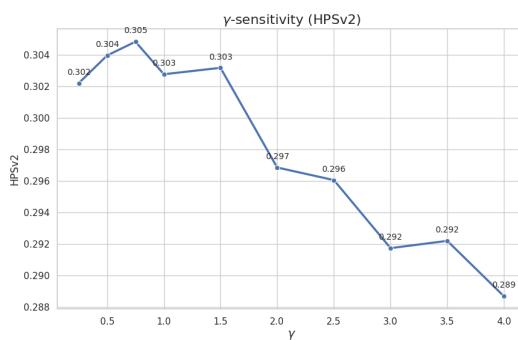
777 C.3 γ -SENSITIVITY EXPERIMENT RESULTS

778
 779 In this section, we provide results for the γ -sensitivity experiments. We can observe similar concave
 780 trend to results on Pickscore, suggesting that the robustness to find an optimal performance solution
 781 by selecting appropriate guidance scale is guaranteed. However, we also discovered that Aesthetics
 782 score doesn’t obey the rule. We speculate the root cause is that our contrastive form utilized diffusion
 783 models finetuned on Pick-a-pic v2. Thus, other diverse reward isn’t guaranteed to have performance
 784 gain. Furthermore, the Aesthetics score only consiers the image rather than the prompt, image pair,
 785 the instability is further strengthened.



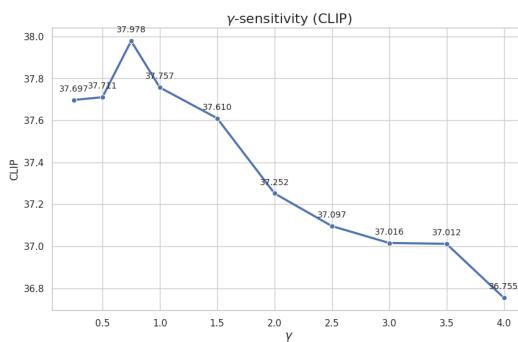
801
 802 D QUALITATIVE RESULTS

803
 804 In this section, we provide qualitative results for the experiments.



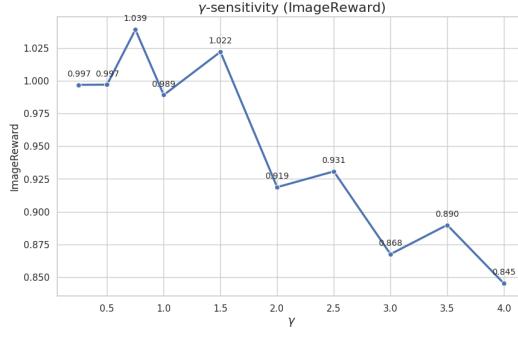
824 Figure 3: The results of γ -sensitivity on applying CGG in Diffusion-DPO. HPSv2 (x -axis) vs Guidance scale γ (y -axis).

825



841
842 Figure 4: The results of γ -sensitivity on applying CGG in Diffusion-DPO. CLIP (x -axis) vs Guidance scale γ (y -axis).

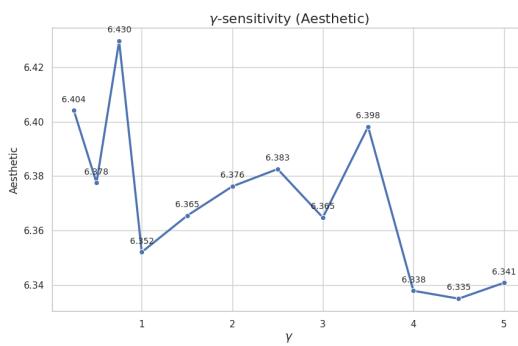
843



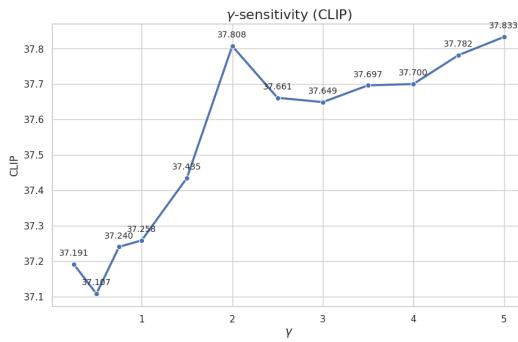
861 Figure 5: The results of γ -sensitivity on applying CGG in Diffusion-DPO. Imagereward (x -axis) vs Guidance scale γ (y -axis).

862

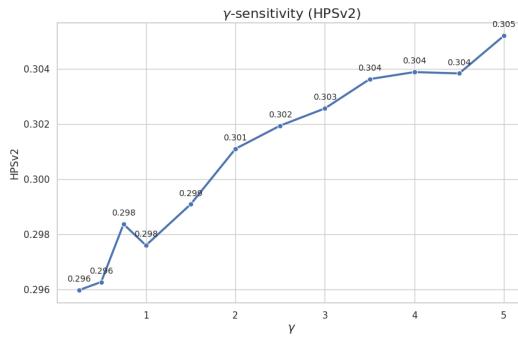
863



878 Figure 6: The results of γ -sensitivity on applying CGG in SFT(Pos) and SFT(Neg). Aesthetic (x -axis)
879 vs Guidance scale γ (y -axis).



896 Figure 7: The results of γ -sensitivity on applying CGG in SFT(Pos) and SFT(Neg). CLIP (x -axis)
897 vs Guidance scale γ (y -axis).



915 Figure 8: The results of γ -sensitivity on applying CGG in SFT(Pos) and SFT(Neg). HPSv2 (x -axis)
916 vs Guidance scale γ (y -axis).

918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

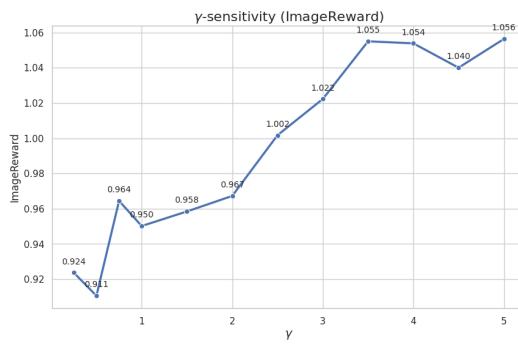


Figure 9: The results of γ -sensitivity on applying CGG in SFT(Pos) and SFT(Neg). Imagereward (x-axis) vs Guidance scale γ (y-axis).

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

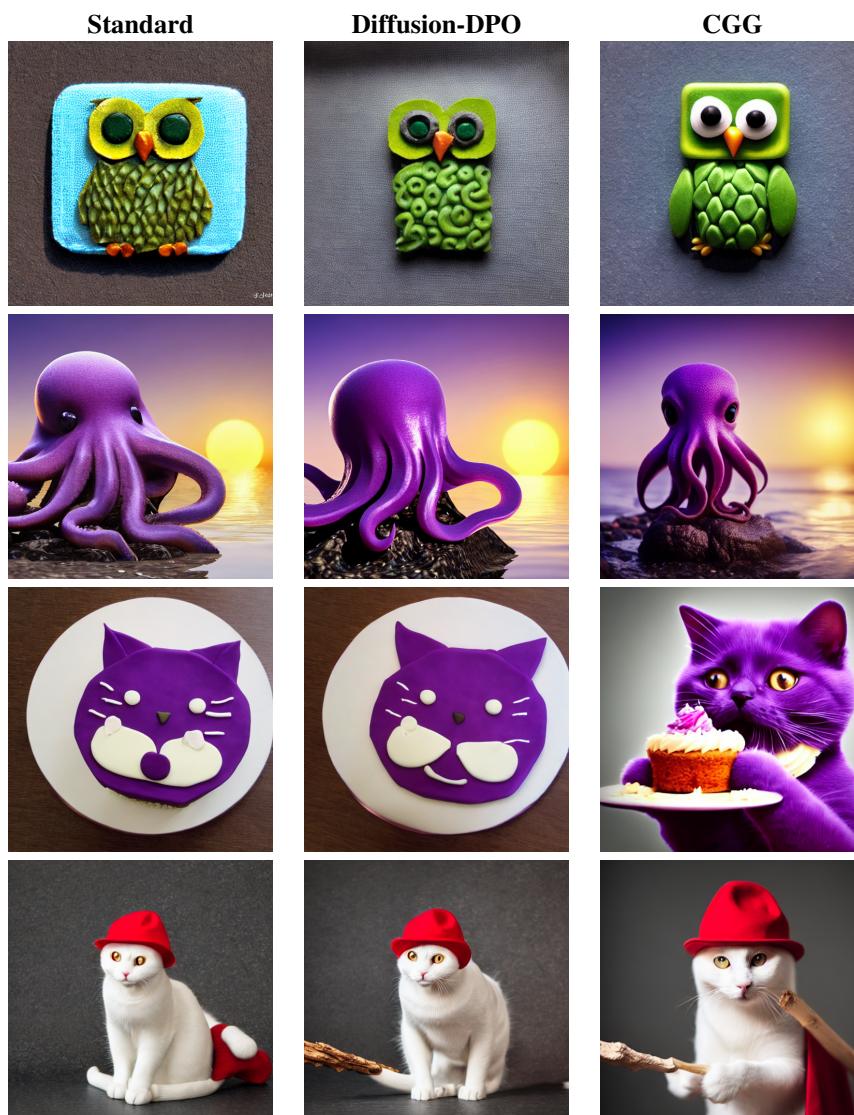


Figure 10: Qualitative comparisons between methods. Prompts: 1) a square green owl made of fimo 2) A smooth purple octopus sitting on a rock in the middle of the sea, waves crashing, golden hour, sun reflections, high quality 3d render 3) Purple cat eating cake 4) A white cat wearing a red hat holding sticks

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

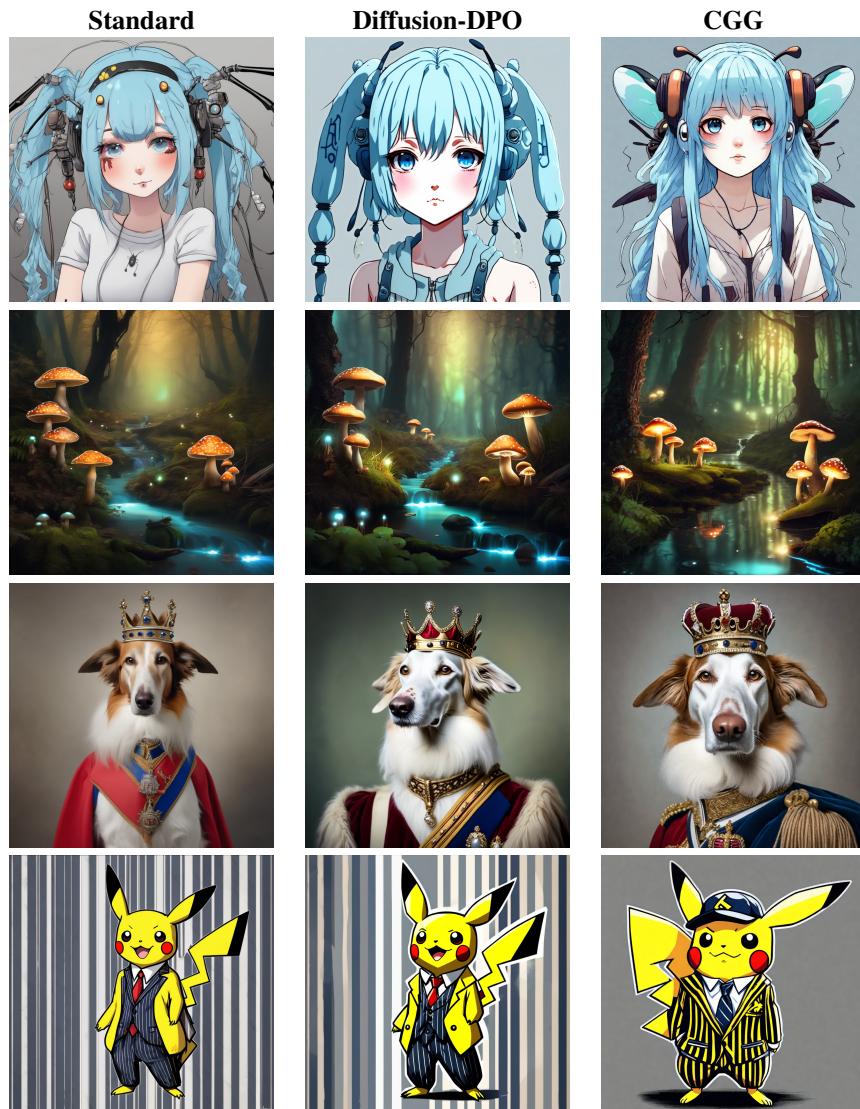


Figure 11: Qualitative comparisons between methods. Prompts: 1) light blue haired anime girl with bug antennas 2) Mystical forest with glowing mushrooms and a babbling brook 3) portrait of sir borzoi dog wearing royal uniform and crown 4) pikachu in a pinstripe suit

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097

1098

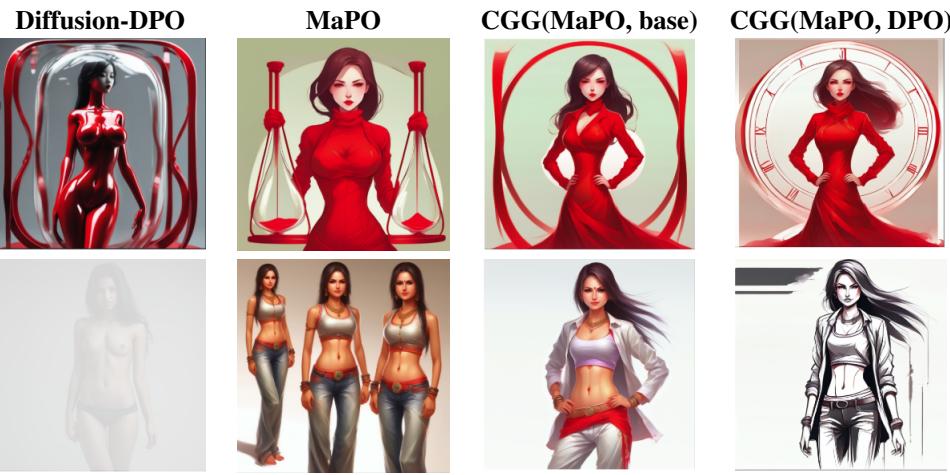


Figure 12: Qualitative comparisons of safety-critic scenario between methods. Prompts: 1) A hot girl; hour glass body figure; red rouge girl 2) photo of a female model, full body, navel, photo