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ABSTRACT

Pre-trained diffusion models demonstrate remarkable performance in text-to-
image generation, with current research efforts directed toward aligning them with
human preferences across diverse application scenarios. Existing approaches of-
ten rely on costly pipelines that require collecting preference data, training reward
models, and fine-tuning. A promising alternative is test-time alignment, which
steers diffusion models during sampling without retraining. However, current test-
time alignment methods typically depend on explicit reward models to provide a
guidance signal for modifying a sampling path. These involve decoding a noisy
image and estimating its rewards, which adds extra steps with computational over-
head and might limit flexibility across diverse scenarios. We propose Contrastive
Gradient Guidance (CGG), a conceptually straightforward and practical frame-
work for test-time alignment that avoids explicit reward models by design. CGG
derives its guidance signal from the contrastive difference between two diffusion
models, parameterized through the gradient of the log-likelihood ratio of the fa-
vored and the unfavored distributions. The guidance signal steers a pre-trained
diffusion model along its sampling path while implicitly aligning generation with
human preferences. Experiments demonstrate that CGG consistently improves
preference alignment in text-to-image generation and flexibly adapts to safety-
critical and multi-preference scenarios. Moreover, CGG can be combined with
prevailing test-time alignment techniques to yield additional gains. These results
establish CGG as a principled framework for advancing test-time alignment of
diffusion models.12

1 INTRODUCTION

Pre-trained diffusion models have emerged as a powerful class of generative models, producing
high-quality, diverse outputs across various domains. The generation paradigm has shown promise
in image generation (Podell et al., 2024), video generation (Ho et al., 2022), and speech genera-
tion (Huang et al., 2022). However, steering these models to generate content aligned with specific
user requirements or robust quality remains challenging, which is known as the preference align-
ment problem. The preference alignment problem aims to ensure that the model-generated results
match desirable goals (Ngo et al., 2022).

Existing approaches often rely on costly pipelines that require collecting preference data, training
reward models (for human preferences), and fine-tuning. For example, Christiano et al. (2017) pre-
sented reinforcement learning from human feedback (RLHF), which fine-tunes a generative model
by a reward model learned from a pairwise preference dataset. This work laid the foundation for the
RLHF training paradigm of generative models. Alternatively, Rafailov et al. (2023) proposed a su-
pervised alternative of RLHF–direct preference optimization (DPO), which fine-tunes a generative
model from a pairwise preference dataset without training a reward model. DPO simplifies RLHF
by bypassing the training of an explicit reward model and directly deriving an objective function
to fine-tune the diffusion model. This family of methods, including f -DPO (Wang et al., 2023),
KTO (Ethayarajh et al., 2024), SimPO (Meng et al., 2024), and ORPO (Hong et al., 2024a) demon-
strate competitive performance to RLHF.

1Warning: This paper contains examples of harmful content, including explicit text and images.
2This work use Large Language Models (LLMs) in paper writing to aid or polish writing.
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Although the RLHF and DPO appear promising for the preference alignment during the training
time, these fine-tuning method requires expensive training resources for hyper-parameter tuning and
are inflexible for adapting a diffusion model to new human preferences, such as personalization or
safety concerns. A promising alternative is test-time preference alignment, which steers diffusion
models during sampling without retraining. For example, prompt optimization is an early proposed
method for low-cost test-time preference alignment, which optimizes the input text prompt automat-
ically to get generation quality (Hao et al., 2023; Mo et al., 2024). Similarly, initial noise optimiza-
tion focuses on finding the good initial noisy inputs to generate high-quality information (Guo et al.,
2024). The core idea of these methods is to optimize inputs and internal mechanisms of text-to-
image diffusion models for test-time preference alignment (Liu et al., 2024). While several works
put efforts into optimizing the inputs for test-time preference alignment, the control of generating
results is less precise and often relies on heuristics.

In this work, we focus on the gradient guidance techniques of diffusion models for test-time prefer-
ence alignment, where the main idea is to directly sample from the output distribution by introducing
the guidance signals to the denoising process. Existing methods typically rely on guidance signals
from explicit reward models to modify sampling paths. However, these methods involve decoding
the noisy images from the latent space, estimating the expected reward of a clean image estimated
from a noisy image, and designing the gradient guidance signal (Chung et al., 2022; Bansal et al.,
2023; Yu et al., 2023) or the re-sampling method, e.g., Sequential Monte Carlo (SMC) Sampling (Wu
et al., 2023; Kim et al., 2025; Singhal et al., 2025).

In this work, we propose Contrastive Guidance Generation (CGG), which enables effective test-time
preference alignment for diffusion models without explicit reward models by default. CGG derives
its guidance signal from the contrastive difference between two diffusion models, parameterized
through formalizing the reward model as the log-likelihood ratio of the favored and the unfavored
distributions. Based on this interpretation, CGG leverages classifier guidance techniques with the
guidance signal to steer a pre-trained diffusion model along its sampling path for image quality and
diversity while implicitly toward preference-aligned outputs.

We demonstrate that CGG consistently improves a pre-trained diffusion model’s preference align-
ment performance in text-to-image generation during test time by showing the state-of-the-art per-
formance evaluated by PickScore on a Pick-a-Pic test set. We also present the flexibility of CGG
by utilizing different compositions of diffusion models to adapt a pre-trained diffusion model to
safety-critical (Pick-Safety) and multiple preferences (PickScore and ImageReward).

Our contribution is to propose the Contrastive Gradient Guidance (CGG) framework for test-time
preference alignment that avoids explicit reward models by design. We demonstrate that CGG con-
sistently improves the pre-trained diffusion model and can be extended to diverse scenarios. Our
framework can connect with current research on diffusion models in preference alignment, provid-
ing a new perspective for test-time preference alignment problems.

2 BACKGROUND

2.1 CLASSIFIER GUIDANCE FOR DIFFUSION MODEL

Instead of estimating a data distribution p(x), diffusion models formulate the generative process as
the iterative denoising process from the tractable Gaussian distribution, which estimates the score
of the distribution at each iteration t by the denoising model sθ(xt) → ∇xt

log p(xt) (Song et al.,
2021b). Conditional generation further enhances its generation controllability by incorporating con-
ditions into the denoising process. For example, classifier guidance (CG) trains a time-dependent
classifier p(y|xt) on a noisy image xt to adjust the unconditional by its gradient based on Bayes’
rule (Dhariwal & Nichol, 2021; Song et al., 2021b).

∇xt
log p(xt|y) = ∇xt

log p(xt)︸ ︷︷ ︸
unconditional score

+ ∇xtp(y|xt)︸ ︷︷ ︸
classifier/conditional gradient

−∇xt log p(y)︸ ︷︷ ︸
=0

, (1)

Therefore, the classifier gradient ∇xt
p(y|xt) acts as the guidance signal to steer the model to align

the conditions, such as a class label or a text sequence.
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2.2 RLHF FOR TRAINING-TIME PREFERENCE ALIGNMENT

In RLHF, we collect pairwise preference data from human annotators, which is a set of pairs of
images (xw,xl) with a prompt c in the context of the text-to-image scenario, where xw is the
favored image and xl is the less favored image. The first stage of RLHF is reward modeling, which
learns a distribution over the pairwise preference data to represent human preferences by modeling
them as a Bradley-Terry model (Bradley & Terry, 1952). The Bradley-Terry model assumes that the
probability of one image being favored over another can be expressed as a reward function of their
respective rewards:

P
[
y = +1|(c,xw,xl) ∈ D

]
= σ

(
r(c,xw)− r(c,xl)

)
, (2)

where σ(•) is the sigmoid function and y = 1[xw ≻ xl|c] is the label of a pair of images given a
certain prompt, (c,xw,xl) ∈ D represents a prompt and a pair of images, and r(c,x) is a reward
function that assigns a score to each image. As Eq. 2 illustrates, the reward modeling could be
formulated as a binary classification problem with the following negative log-likelihood problem:

min
ϕ
− log

(
σ
(
rϕ(c,x

w)− rϕ(c,x
l)
))

. (3)

In the second stage of RLHF (proximal policy optimization), we formulate the objective function as
maximizing a generative model to get a high reward score r(c,x) while penalizing the KL diver-
gence between the model distribution and the reference distribution. The objective function can be
expressed as:

max
θ

Ex∼pθ(x|c) [r(c,x)]− βDKL[pθ(x|c)∥pref(x|c)], (4)

where pθ(x|c) is the distribution of the fine-tuned generative model, β is a hyperparameter to scale
the regularization term. Given a reward model r(c,x) and a β, Rafailov et al. (2023) derive the
optimal solution of the objective as:

pθ∗(x|c) = 1

Z(c)
pref(x|c) exp

(
1

β
r(c,x)

)
, (5)

where Z(c) =
∫
x
pref(x|c) exp

(
1
β r(c,x)

)
is the partition function.

3 CONTRASTIVE GRADIENT GUIDANCE

In this work, we investigate a method to effectively and flexibly sample an image x from the
preference-aligned target distribution pθ∗(x|c) in Eq. 5 during the test time.

3.1 PROBLEM FORMULATION AND MOTIVATION

Test-time preference alignment. Given a pre-trained diffusion model sref(c,x), reward model
r(c,x), and the test set prompt {c}, the goal is to adjust the output distribution of a pre-trained
diffusion model without modifying its parameters.

As mentioned in Section 2.1, we can estimate a conditional distribution pθ∗(x|c) by its score func-
tion like Eq. 6:

∇xt log pθ∗(xt|c) = ∇xt log pref(xt|c) + γ∇xtr(c,xt), (6)

where γ is the guidance scale; ∇xt
log pref(xt|c) is the score of the pre-trained distribution at

timestep t corresponding to the pre-trained diffusion model sref(c,xt) and ∇xt
r(c,xt) is the gra-

dient of the reward on a generated image, denoted as the reward guidance signal. Eq. 6 suggests that
if we can accurately estimate the reward guidance signal ∇xtr(c,xt), we can sample an image x
from the preference-aligned target distribution.

Naturally, Eq. 1 tells us that it is possible to train a time-dependent reward model to get the reward
guidance signal. However, training a time-dependent reward model requires collecting a large set
of noisy data with rewards (c,xt) (Singhal et al., 2025). In our ablation study (Appendix A.),
we demonstrate that fine-tuning time-dependent reward model from the reward model r(c,x0) on
pairwise preference data {(c,xw

t ,x
l
t)} is unstable and costly.

3
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To tackle the problem of estimating the reward guidance signal ∇xt
r(c,xt) during the test time,

two types of explicit reward-guided methods have been proposed: gradient-free steering and gradient
guidance. Both method estimates a reward of an estimated clean image from a noisy image x̂(xt) =
E[x|xt]. Gradient-free steering utilizes the estimated reward to perform the Sequential Monte Carlo
(SMC) sampling for increasing samples’ rewards during the test time (Wu et al., 2023; Kim et al.,
2025; Singhal et al., 2025), which is orthogonal to our approach, and we leave details in Section 5.
Gradient guidance calculates the gradient of the estimated reward as the reward guidance signal
∇xtr(c, x̂(xt)) for gradient guidance during sampling (Chung et al., 2022; Bansal et al., 2023;
Yu et al., 2023). However, these approaches have studied the specific formulation of the reward
model for image generation, such as the inverse problem (Chung et al., 2022) or classification (Yu
et al., 2023; Bansal et al., 2023), instead of the pairwise preference alignment tasks as mentioned in
Section 2.2.

3.2 CONTRASTIVE FORM AND GUIDANCE

Existing works rely on an external reward model to provide the reward guidance signal for guiding.
In this work, we ask the question about

Is there an approximation of the reward guidance signal without an external reward model?

We begin by the Eq. 5:

exp

(
1

β
r(c,x)

)
= Z(c)

pθ∗(x|c)
pref(x|c)

1

β
r(c,x)= log

(
Z(c)

pθ∗(x|c)
pref(x|c)

)
.

(7)

Thus, maximizing the rewards in RLHF with the KL divergence could be framed as the optimization
problem of maximizing the distinction between distributions. To maximize the distinction between
distributions during the test time, we propose the contrastive form as the reward guidance signal
would be tractable and achieve satisfying outcomes. Specifically, we argue that the contrastive
form expresses that a reward model during the test time is proportional to the contrastive difference
between the favored and the unfavored distributions, parameterized through the log-likelihood ratio:

r(c,x) ∝ log
ρ(x|c)
κ(x|c)

, (8)

where ρ(x|c) and κ(x|c) represent the favored and the unfavored distributions. Intuitively, images
collected from ρ(x|c) represent high-reward samples, whereas those from κ(x|c) represent low-
reward samples, which indicates that the probability of image x with a higher reward under the
favored distribution is expected to be higher than under the unfavored distribution for a sample
prompt c. In RLHF, the distribution modeling by the preference optimization (PO)-based is naturally
treated as the favored distribution, and the pre-trained distribution is the unfavored distribution. In
addition, we argue that Eq. 8 is flexible by discussing other kinds of contrastive forms in Section 3.3.

Consequently, we build the Contrastive Gradient Guidance (CGG) framework, which estimates the
preference-aligned target distribution pθ∗(x|c) by replacing the∇xr(c,x) with the contrastive form
in Eq. 6:

∇xt log pθ∗(xt|c) = ∇xt log pref(xt|c) + γ∇xt

(
log

ρ(xt|c)
κ(xt|c)

+ C

)
= ∇xt log pref(xt|c) + γ (∇xt log ρ(xt|c)−∇xt log κ(xt|c)) ,
← sref(c,xt) + γ(sθρ(c,xt)− sθκ(c,xt)),

(9)

where C is the constant and γ is the guidance scale for the test-time preference alignment. No-
tably, we introduce two diffusion models sθρ(c,xt), sθκ(c,xt) to estimate the scores of favored and
unfavored distributions in Eq. 9.

In Section 3.3, we describe different types of combinations of two diffusion models under the CGG
framework.

4
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Remark of CGG for test-time preference alignment. CGG is a straightforward and practical
framework for test-time preference alignment, which could be a good replacement for training a
time-dependent reward model. In addition, comparing with existing explicit reward-guided meth-
ods (Chung et al., 2022; Bansal et al., 2023; Yu et al., 2023; Yeh et al., 2025; Wu et al., 2023;
Kim et al., 2025; Singhal et al., 2025), CGG integrates an implicit reward guidance signal into the
pre-trained diffusion model’s sampling path, which does not rely on an external reward model. We
demonstrate the effectiveness and flexibility of the CGG framework in Section 4 and discuss our
method with existing test-time preference alignment in Section 5.

3.3 IMPLEMENTATION OF THE CONTRASTIVE FORM

Preference optimization fine-tuned and pre-trained diffusion models. In this work, we reuse
the preference optimization (PO) fine-tuned diffusion models such as Diffusion-DPO and Diffusion-
KTO as the sθρ(c,xt) = sPO(c,xt) to estimate the score of the favored distribution. In particular,
we take the pre-trained diffusion model as the estimation of unfavored score sθκ(c,xt) = sref(c,xt)
and derive the form:

∇xt
log pθ∗(xt|c)← sref(c,xt) + γ(sPO(c,xt)− sref(c,xt))

= (1− γ)sref(c,xt) + γsPO(c,xt)
(10)

Eq. 10 connects the CGG framework with a broadly used classifier-free guidance (CFG) (Ho &
Salimans, 2022) to push the sampling path towards higher likelihood satisfying conditions for con-
ditional guided sampling. In subsequent work, Karras et al. (2024) verifies that the image quality
could be further improved by applying CFG to a high-quality diffusion model with a poor diffusion
model, both trained on the same task, conditioning, and data distribution. In Section 4, our exper-
imental results show that adopting CGG with this certain form, we could additionally enhance the
rewards score by guide the pre-trained diffusion model with a PO fine-tuned diffusion model.

Fine-tuned two diffusion models from pairwise preference data. We also explore the alter-
native way to estimate the reward signal by the other composition of the contrastive form. In
practice, a pairwise preference dataset is collected for RLHF, e.g., a Pick-a-Pic format is D ={
(c,x(0),x(1), y)

}
, which contains a pair of images

(
x(0),x1

)
for each prompt c and preference

label y. For this kind of pairwise preference dataset, the first idea is to utilize the Supervised Fine-
Tuning (SFT) method on the positive label and the negative label. Thus, we could obtain the score
models of the positive label distribution (favored distribution) sθρ(c,xt) = sPos(c,xt) and the
negative label distribution (unfavored distribution) sθκ(c,xt) = sNeg(c,xt).

A similar idea is proposed by the CHATS, which claimed that the DPO’s objective function does
not meet the properties of Classifier-Free Guidance (CFG) to generate high quality (rewards) and
diverse images by only one diffusion model, so they proposed the new fine-tuning objective func-
tion to train the two diffusion models for sampling from the favored and the unfavored distributions
simultaneously (Fu et al., 2025). In our implementation, we utilize CHATS’s favored diffusion mod-
els sθρ(c,xt) = sCHATS+(c,xt) and unfavored diffusion models sθκ(c,xt) = sCHATS−(c,xt) to
form the contrastive form.

Multiple diffusion models for multiple preferences. Eq. 9 illustrates that the score of the
preference-aligned target distribution ∇xt log pθ∗(xt|c) with respect to a single reward model
r(c,xt) could be approximate by the contrastive form. This form inspires us to ask the next
question

Would the multiple preference-aligned target distribution be estimated by reward guidance signals?

Previous works provide the potential of this idea by mapping multiple conditions (concepts) to con-
stitute generated images (Liu et al., 2022). Based on a similar idea, we extend Eq. 9 to apply multiple
preferences composed of multiple diffusion models fine-tuned from different pairwise preference
datasets.

∇xt log pΘ∗(xt|c)← sref(c,xt) +

K∑
k=1

γk(sθρ,k(c,xt)− sθκ,k
(c,xt)), (11)

5
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Table 1: Comparison of average rewards between SDXL, Diffusion-DPO and applying CGG in DPO
using prompts from the Pick-a-Pic v2 test set. We use γ∗ = 0.75. Bold text results represents the
best among experiments. Additionally, CGG(sθρ(c,xt), sθκ(c,xt)) represents the different compo-
sition of the contrastive form.

SDXL(Ref) DPO CGG(DPO, Ref) (γ∗=0.75)
Pickscore 22.114 22.408 22.481
Aesthetic 6.481 6.437 6.449
HPSv2 0.292 0.303 0.305
CLIP 36.994 37.783 37.978

ImageReward 0.857 0.991 1.040

Table 2: Comparison of average rewards between SDXL, MaPO and applying CGG in MaPO using
prompts from the Pick-a-Pic v2 test set. We use γ∗ = 0.75. Bold text results represents the best
among experiments.

SDXL(Ref) MaPO CGG(MaPO,Ref) (γ∗=0.75)
Pickscore 22.114 22.155 22.154
Aesthetic 6.481 6.544 6.477
HPSv2 0.292 0.301 0.302
CLIP 36.994 37.137 37.281

ImageReward 0.857 0.997 1.002

where pΘ∗(x|c) is the multiple preference-aligned target distribution with respect to maximizing
a set of multiple reward models (preferences) {r1(c,x), . . . , rK(c,x)}. In our experiments, we
demonstrate that the CGG framework could balance reward scores by adjusting guidance scales γk.

4 EXPERIMENTS

Our experiments aim to reveal the prospect of CGG framework by verifying the follow claims:

1. CGG consistently enhances a pre-trained diffusion model’s capability of test-time prefer-
ence alignment (Section 4.1).

2. CGG is applicable to more scenarios, such as the safety-critic issue and multiple prefer-
ences (Section 4.2).

3. CGG can combine with existing test-time preference alignment and yield additional gains
(Section 4.3).

Datasets and base model (baseline). We assess the CGG framework on the Pick-a-Pic
v2 (Kirstain et al., 2023), where several preference optimization methods are applied to this dataset,
such as Diffusion-DPO (Wallace et al., 2024) and Diffusion-KTO (Li et al., 2024) for Stable Diffu-
sion v1.5 (SD1.5) (Rombach et al., 2022) and Stable Diffusion XL (SDXL) (Podell et al., 2024). We
take the SD1.5 and SDXL as the pre-trained model (base model/baseline) to see the improvement of
CGG for test-time preference alignment.

4.1 RESULTS OF ENHANCING A PRE-TRAINED DIFFUSION MODEL

Diffusion-DPO and MaPO officially released SDXL checkpoints, which are trained under the hy-
perparameter β = 1.

To evaluate the robustness and effectiveness of our proposed framework, we evaluate various metrics
of the generated results on the Pick-a-Pic v2 test set with 500 unique prompts. Table 1, Table 2 and
Table 9 provides the average reward for applying the CGG framework for the pre-trained models.
The results demonstrate that CGG consistently improves upon the pre-trained model over the pre-
trained diffusion models.

6
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Table 3: Comparison of average rewards between SDXL, SFT(Pos), and applying CGG in SFT(Pos)
and SFT(Neg) using prompts from the Pick-a-Pic v2 test set. We use γ∗ = 0.75 and 5.0 respectively.
Bold text results represents the best among experiments.

SDXL(Ref) SFT Pos CGG(Pos,Ref) (γ∗=0.75) CGG(Pos,Neg) (γ∗=5.0)
Pickscore 22.114 22.335 22.333 22.427
Aesthetic 6.481 6.524 6.399 6.341
HPSv2 0.292 0.308 0.308 0.304
CLIP 36.994 37.195 37.524 37.833

ImageReward 0.857 1.005 1.010 1.052

Effects of guidance scale. We empirically investigate the impact of the guidance scale γ in Eq. 9
from the smallest hyperparameter γ = 0.25 and gradually increase it to check the optimal γ∗ on
the Pick-a-Pic v2 test set with 500 unique prompts. As shown in Figure 1 (Left), we observe that γ
has a rising-then-falling trend allows us to select the best hyperparameter. Based on the observation
across different compositions of the contrastive form, we select γ∗ = 0.75 for SDXL as the default
guidance scale in Table 1. We also investigated the γ-sensitivity for different contrastive forms and
across different metrics. As shown in Figure 1 (Right), we studied the effect of guidance scale on
CGG(Pos, Neg) and extend the experiments to γ = 5.0. We expect to see the same concave trend as
Figure 1. Furthermore, the experiments on other metrics can be found in Appendix C.3.

Figure 1: (Left) The results of γ-sensitivity on applying CGG in Diffusion-DPO. (Right) on applying
CGG in SFT(Pos) and SFT(Neg). PickScore (x-axis) vs Gudiance scale γ (y-axis).

Results of the different contrastive forms In our experiments, we utilize the SFT fine-tuned
and CHATS’s released fine-tuned models on the Pick-a-Pic v2 dataset. Based on the emphasis
of the unfavored (negative preferences) on the existing work, we also compare two kinds of the
contrastive form for SFT fine-tuned models by two compositions to check the effectiveness of the
negative preferences by using the pre-trained (Base) diffusion models or the unfavored diffusion
(Neg) models as sθκ(c,x).

Table 3 and Table 10 presents the quantitative results of different compositional diffusion models
based on the CGG framework on the Pick-a-Pic v2 test set, which shows that different contrastive
form of the reward guidance signal with a straightforward gradient guidance would also improve
the pre-trained SD1.5’s and SDXL’s PickScore during the test time.

4.2 SAFETY AND MULTIPLE PREFERENCES

In this section, we want to evaluate the flexibility of the contrastive form by extending our scope
to diverse scenarios of usage. First, we claim that CGG could mitigate the safety issue of the
existing Diffusion-DPO. Second, we verify that CGG would balance the multiple preferences, such
as PickScore and ImageReward.

7
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Table 4: Average NSFW rate and PickScore for the safety-critic issues of SDXL using prompts from
the Pick-a-Pic v2 test set. Bold text result represents the best among experiments. The improvement
of the CGG framework from the pre-trained model is listed in the parentheses.

Base DPO MaPO

Pre-trained Fine-tuned Fine-tuned CGG (MaPO, DPO)

NSFW rate (↓) 0.030 0.054 0.004 0.019 (-0.11)
PickScore (↑) 22.110 22.400 22.000 22.350 (+0.240)

Table 5: Average PickScore and ImageReward for the multiple preferences of SDXL using prompts
from the Pick-a-Pic v2 test set. Bold text result represents the best among experiments. The im-
provement of the CGG framework from the pre-trained model is listed in the parentheses.

Type Base DPO
Model Pre-trained Pick-a-Pic ImageRewardDB CGG

PickScore (↑) 22.114 22.405 22.076 22.395 (+0.281)
ImageReward (↑) 0.857 0.991 1.003 1.070 (+0.213)

Mitigate the DPO’s unsafe capabilities. We noticed that the Diffusion-DPO fine-tuned diffusion
model over a Pick-a-Pic v2 dataset might raise safety issues due to some Not Safe/Suitable For Work
(NSFW) prompts and collected images for fine-tuning.

To assess whether CGG could mitigate the NSFW rate, we use the NSFW classifier from the HEIM
benchmark and assess the NSFW rate by dividing the number of NSFW images by 500 (number of
prompts) (Liang et al., 2023). For minimizing NSFW rate, we utilize the fine-tuned MaPO diffu-
sion models for SDXL on Pick-Safety dataset for the safety purpose (Hong et al., 2024b). Detail
experiment settings can be found in the Appendix B.1.

Table 4 presents the quantitative results for the Pick-a-Pic data set, which shows that we can success-
fully mitigate the toxicity of the DPO fine-tuned model by combining the contrastive form of MaPO
and DPO. By setting the γ = 0.5 of the linear interpolation between DPO and MaPO fine-tuned
diffusion models, we prevent the DPO fine-tuned model from generating unsafe images and keep
them to satisfy the human preference.

Extend to multiple preferences Next, we extend the flexibility to general multiple preferences by
selecting PickScore and ImageReward as our two preferences, where the goal is to balance the two
scores on the Pick-a-Pic v2 test set. We compare the pre-trained SDXL and DPO fine-tuned models
on the Pic-a-Pic v2 and over the ImageRewardDB datasets.

Table 5 verifies that by guiding the pre-trained model with the contrastive form composed of
PickScore and ImageReward with guidance scales (γ1, γ2) = (0.5, 0.5) based on Eq. 11, we signif-
icantly enhance both preferences from the pre-trained model.

4.3 RESULTS OF COMPARING IMPLICIT AND EXPLICIT REWARD-GUIDED METHODS

Comparisons with the explicit reward-guided sampling method. In this section, we first ar-
gue that the implicit reward modeling by the contrastive form would also achieve the competitive
results to the state-of-the-art explicit reward-guided sampling method–Feynman-Kac steering (FK
Steering) (Singhal et al., 2025).

Previous work reports that FK Steering achieves competitive performance and would enhance the
pre-trained diffusion models as the number of samples increasing (Singhal et al., 2025). We evaluate
FK Steering with 2 and 4 samples to maximize PickScore on the Pick-a-Pic v2 test set from the
pre-trained and DPO fine-tuned diffusion models. Table 6 demonstrates that the CGG framework
achieves similar performance to FK Steering applied to the Diffusion-DPO fine-tuned diffusion
model, even without the PickScore reward model. We further discuss the possibility of combining
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Table 6: Automatic average rewards for applying CGG in DPO vs FK-Steering for SDXL using
prompts from the Pick-a-Pic v2 test set. Bold text results represent the best among experiments.

SDXL(Ref) FK-SDXL FK-DPO CGG(DPO,Ref) (γ∗=0.75)
Pickscore 22.114 22.212 22.411 22.481
Aesthetic 6.481 6.385 6.324 6.449
HPSv2 0.292 0.295 0.304 0.305
CLIP 36.994 37.146 37.714 37.978

ImageReward 0.857 0.886 0.996 1.040

the CGG framework with the FK Steering, i.e., FK-CGG in Appendix C.2.

5 RELATED WORKS

Preference optimization for training-time alignment. Direct Preference Optimization (DPO)
has become a popular alternative to RLHF without training the reward model. The subsequent works
design the proper way to adapt DPO for the diffusion model (Wallace et al., 2024; Li et al., 2024; Zhu
et al., 2025; Liang et al., 2025; Lu et al., 2025). We observe that raising the DPO brings an abundant
of fine-tuned diffusion models to reuse. Like previous composition diffusion models (Liu et al.,
2022), we explore alternative ways to condition and reuse diffusion models for test-time preference
alignment.

Explicit reward with gradient-free steering for test-time alignment. Gradient-free steering
methods perform Sequential Monte Carlo (SMC) sampling by evaluating multiple samples based
on an external explicit reward model (Wu et al., 2023; Kim et al., 2025; Singhal et al., 2025). SMC
sampling involves three steps: resample, propose, and re-weight. In resample and propose, SMC
sampling samples multiple noisy images xt based on the weighted multinomial distribution, then
estimates clean images x̂(xt) = E[x|xt] based on the DDIM sampler (Song et al., 2021a). In re-
weight, SMC sampling estimates the rewards of the estimated images r(c, x̂(xt)) and calculates the
potentials with respect to the expected rewards to change the weights of the multinomial distribution
for next time resampling. During each resampling step, SMC sampling gradually steers a diffusion
model to generate high-reward images. In contrast with existing works that focus on designing a
re-sampling method, we argue that the implicit reward would be naturally built on the preference
optimization fine-tuned diffusion models, which could be used without an external reward, but also
gain promising performance.

Modeling favored and unfavored preferences for preference alignment. CHATS further pro-
posed the proxy-prompt-based (PPB) sampling strategy to facilitate effective collaboration between
two models. In this work, we utilize their fine-tuned preferred and dispreferred denoising models as
our estimation of the score-based model and compare our sampling strategy with theirs.

6 CONCLUSION

We proposed Contrastive Gradient Guidance (CGG), a simple and flexible framework for test-time
preference alignment. Unlike existing methods that rely on explicit reward models, CGG is derived
directly from the contrastive difference between two diffusion models. Our experiments demon-
strate that CGG consistently improves preference alignment across diverse scenarios and remains
competitive with explicit reward-guided methods. These results suggest that contrastive forms offer
a proper signal guiding the pre-trained diffusion model for preference alignment. We believe this
work represents a step forward in reducing the dependency on explicit reward models and opens
new directions for studying preference alignment under test-time scenarios.
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Table 7: Automatic average rewards for applying CGG in Diffusion-DPO using prompts from
the Pick-a-Pic v2 test set. We tune the guidance scale γ = 1

β for all methods during the test time.

PickScore Aesthetic CLIP HPSv2 ImageReward
TD-reward (γ∗) 20.5934 5.7942 33.5656 0.2556 0.1438
CGG-DPO (γ∗) 21.2105 5.9566 34.2288 0.2774 0.4190

Table 8: Average rewards of ImageReward for applying CGG in Diffusion-DPO, MaPO using
prompts from the ImageRewardDB test set. Bold text result represents the best among experiments.
The improvement of the CGG framework from the pre-trained model is listed in the parentheses.

Base Diff.-DPO MaPO

Pre-trained Fine-tuned CGG Fine-tuned CGG

SDXL 0.910 1.04 1.030(+0.120) N/A N/A

A THE DIFFICULTY OF TRAINING THE TIME-DEPENDENT REWARD SIGNAL

In this section, we compare CGG (contrastive form) and the time-dependent reward signal
ξϕ(c,x, t) described in Section.

Table 7 demonstrates that CGG overcomes the difficulty of training the time-dependent reward signal
(TD-reward).

B EXPERIMENT DETAILS

B.1 DETAILED SETTINGS OF THE SAFETY

In this experiment, we adopted the default settings of the NSFW detector from the HEIM benchmark
(Liang et al., 2023). The threshold of the NSFW detector is set to 0.9, and the average NSFW rate
is defined as the percentage of the number of images whose NSFW score is above the threshold.

B.2 DETAILED SETTINGS OF SAMPLING CONFIGURATIONS

To construct a robust sampling and evaluation pipeline, we fixed our sampling configurations. For
SD1.5 experiments, by default, we set inference steps to 50 steps and CFG scale α = 7.5. For
SDXL experiments, by default, we set inference steps to 100 steps and CFG scale α = 7.5.

B.3 EXPERIMENTAL RESULTS OF IMAGEREWARD ON IMAGEREWARDDB TEST SET

To demonstrate the robustness of CGG on different reward and corresponding datasets, we provide
some experimental results. Table 8 shows that CGG can successfully improve the pre-trained model
on ImageRewardDB (Xu et al., 2023). However, we observed that the current results are worse than
the DPO fine-tuned model. We hypothesize that the reason is that the DPO fine-tuned model we
implemented is not a good performing model. The guidance signal it provides is not robust enough.
Another underlying reason appears to be that the hyperparameter setting γ is not optimal. Although
the results are not strong and the reasons are yet to be proved, we suggest that robustness across
datasets is a potential topic to be explored in the future.

B.4 DETAILED OF CGG COMBINED WITH FK STEERING

We implemented the FK-CGG method based on the intuition in Sec 4.3, we modified the sampling
stage in FK Steering (Singhal et al., 2025) and design the three-particle gradients. We describe our
modified process from FK Steering in Algorithm 1. The main difference between the original FK
Steering and the modified FK-CGG algorithm is that FK-Steering evaluates and resamples from the

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 1 Combining Implicit and Explicit Reward Models (FK-CGG)
Input: Types of diffusion models Ω = {ref,DPO,CGG}, diffusion models {pj(x0:T |c) : j ∈ Ω ,
reward model r(c,x), proposal generator {τj(x0:T |c) : j ∈ Ω}, potentials Gt.
Returns: Samples {xj}j∈Ω.

1: Sample xj
T ∼ τj(c,xT ) for j ∈ Ω

2: Score, Gj
T = GT (c,x

j
T ) for j ∈ Ω

3: for t ∈ {T, ..., 1} do
4: Resample Sample indices ajt ∼ Multinomial(xj

t , G
j
t ) and let xj

t = x
aj

t

5: Propose Sample xj
t−1 ∼ τj(xt−1|xt, c) for j ∈ Ω

6: Re-weight Compute weight Gj
t−1 for j ∈ Ω :

7: Gj
t−1 =

pj(x
j
t−1|x

j
t ,c)

τj(x
j
t−1|x

j
t ,c)

Gt−1(c,x
j
T , ...,x

j
t−1)

8: end for
9: Output: return samples {xj}

Table 9: Comparison of average rewards between SD1.5, KTO and applying CGG in KTO using
prompts from the Pick-a-Pic v2 test set. We use γ∗ = 1.0.

SD1.5(Ref) KTO CGG(KTO, Ref) (γ∗=1.0)
Pickscore 20.529 21.072 21.072
Aesthetic 5.739 6.145 6.145
HPSv2 0.259 0.291 0.291
CLIP 33,382 34.252 34.252

ImageReward 0.064 0.631 0.631

stochastic particles while FK-CGG evaluates and resamples from the three particles of our designed
guided directions.

C MORE EXPERIMENT RESULTS

C.1 ENHANCE THE PRE-TRAINED DIFFUSION MODEL WITH DIFFUSION-KTO

In our experiments, we use Diffusion-KTO officially released SD1.5 checkpoint. Table 9 demon-
strated that the fine-tuned Diffusion-KTO for SD 1.5 has achieved the best result than other hyper-
parameter γ. Therefore, we got the same result with γ = 1.

C.2 FK-CGG: INTEGRATE CGG FRAMEWORK WITH FK STEERING.

After studying their method, we explore the possibility of a combination of the CGG framework with
the FK Steering to utilize the explicit reward model. The CGG framework guides the pre-trained
diffusion model by modifying its gradients at each step, which could be the modified inputs to FK
Steering, and then performs resampling. To combine the CGG framework with particle sampling-
based methods, we technically design the three-particle gradients, which contain the outputs of
the pre-trained diffusion model sref(c,x), the favored diffusion model sθρ(c,x), and the guided
direction sref(c,x) + γ(sθρ(c,x)− sθκ(c,x)). We expect this design would utilize the exploration
of the higher-reward gradients beyond the base model and ensure the improvement of the rewards
during each resampling step. We compare the FK-CGG result with the same scenario which the FK
Steering has three particles. Table 11 shows that by integrating the two methods, FK-CGG achieves
better performance than FK-Steering alone. After detailed analysis, we found that FK-CGG has
more stable results and faster reward optimization during the denoising time steps. However, we
expect that future exploration on FK-CGG could enhance even more than current results.
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Table 10: Comparison of average rewards between SDXL, CHATS-PPBS, and applying CGG sam-
pling in CHATS(Pos) and CHATS(Neg) using prompts from the Pick-a-Pic v2 test set. We use
γ∗ = 0.25. Bold text results represents the best among experiments. Additionally, PPBS means the
proxy-prompt-based sampling strategy proposed in CHATS’s paper (Fu et al., 2025).

SDXL(Ref) CHAT-PPBS CGG(CHAT(Pos),CHAT(Neg)) (γ∗=0.25)
Pickscore 22.114 22.095 22.153
Aesthetic 6.481 6.462 6.348
HPSv2 0.292 0.309 0.304
CLIP 36.994 36.705 37.483

ImageReward 0.857 1.052 1.039

Table 11: Average PickScore for the comparisons between CGG and FK Steering of SDXL using
prompts from the Pick-a-Pic v2 test set. Bold text results represents the best among experiments

Base Diff.-FK Steering FK-CGG

Pre-trained # samples: 3 # samples: 3 (See Appendix B.4 )

SDXL 22.110 22.130 22.143

C.3 γ-SENSITIVITY EXPERIMENT RESULTS

In this section, we provide results for the γ-sensitivity experiments. We can observe similar concave
trend to results on Pickscore, suggesting that the robustmess to find an optimal performance solution
by selecting appropriate guidance scale is guaranteed. However, we also discovered that Aesthetics
score doesn’t obey the rule. We speculate the root cause is that our contrastive form utilized diffusion
models finetuned on Pick-a-pic v2. Thus, other diverse reward isn’t guaranteed to have performance
gain. Furthermore, the Aesthetics score only consiers the image rather than the prompt, image pair,
the instability is further strengthened.

Figure 2: The results of γ-sensitivity on applying CGG in Diffusion-DPO. Aesthetic (x-axis) vs
Gudiance scale γ (y-axis).

D QUALITATIVE RESULTS

In this section, we provide qualitative results for the experiments.
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Figure 3: The results of γ-sensitivity on applying CGG in Diffusion-DPO. HPSv2 (x-axis) vs Gudi-
ance scale γ (y-axis).

Figure 4: The results of γ-sensitivity on applying CGG in Diffusion-DPO. CLIP (x-axis) vs Gudi-
ance scale γ (y-axis).

Figure 5: The results of γ-sensitivity on applying CGG in Diffusion-DPO. Imagereward (x-axis) vs
Gudiance scale γ (y-axis).
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Figure 6: The results of γ-sensitivity on applying CGG in SFT(Pos) and SFT(Neg). Aesthetic (x-
axis) vs Gudiance scale γ (y-axis).

Figure 7: The results of γ-sensitivity on applying CGG in SFT(Pos) and SFT(Neg). CLIP (x-axis)
vs Gudiance scale γ (y-axis).

Figure 8: The results of γ-sensitivity on applying CGG in SFT(Pos) and SFT(Neg). HPSv2 (x-axis)
vs Gudiance scale γ (y-axis).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 9: The results of γ-sensitivity on applying CGG in SFT(Pos) and SFT(Neg). Imagereward
(x-axis) vs Gudiance scale γ (y-axis).
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Standard Diffusion-DPO CGG

Figure 10: Qualitative comparisons between methods. Prompts: 1) a square green owl made of fimo
2) A smooth purple octopus sitting on a rock in the middle of the sea, waves crashing, golden hour,
sun reflections, high quality 3d render 3) Purple cat eating cake 4) A white cat wearing a red hat
holding sticks
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Standard Diffusion-DPO CGG

Figure 11: Qualitative comparisons between methods. Prompts: 1) light blue haired anime girl with
bug antennas 2) Mystical forest with glowing mushrooms and a babbling brook 3) portrait of sir
borzoi dog wearing royal uniform and crown 4) pikachu in a pinstripe suit
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Diffusion-DPO MaPO CGG(MaPO, base) CGG(MaPO, DPO)

Figure 12: Qualitative comparisons of safety-critic scenario between methods. Prompts: 1) A hot
girl; hour glass body figure; red rouge girl 2) photo of a female model, full body, navel, photo
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