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ABSTRACT

Auditory attention is a selective type of hearing in which people focus their atten-
tion intentionally on a specific source of a sound or spoken words, whilst ignoring
or inhibiting other auditory stimuli. In some sense, the auditory attention score of
an individual shows the focus the person can have in auditory tasks. The recent ad-
vancements in deep learning and in the non-invasive technologies recording neural
activity beg the question, can deep learning along with technologies such as elec-
troencephalography (EEG) be used to predict the auditory attention score of an
individual? In this paper, we focus on this very problem of estimating a person’s
auditory attention level based on their brain’s electrical activity captured using
14-channeled EEG signals. More specifically, we deal with attention estimation
as a regression problem. The work has been performed on the publicly available
Phyaat dataset. The concept of Gramian Angular Difference Field (GADF) has
been used to convert time-series EEG data into an image having 14 channels, en-
abling us to train various deep learning models such as 2D CNN, 3D CNN and
convolutional autoencoders. Their performances have been compared amongst
themselves as well as with the work done previously. Amongst the different mod-
els we tried, 2D CNN gave the best performance. It outperformed the existing
methods by a decent margin of 0.22 mean absolute error (MAE).

1 INTRODUCTION

Attention plays a major role in our daily lives. Almost every conscious move we make requires
attention. Clearly, understanding attention and improving it can be the key to ameliorate the effec-
tiveness of many tasks. Auditory attention is a form of attention, a cognitive process wherein the
attention of the person is gauged by listening/hearing tasks. More specifically, it refers to the process
by which a person focuses selectively on a stimulus of interest whilst ignoring other stimuli. It is
important to note that such selective hearing is not some kind of a physiological disorder like autism,
dementia but rather, it is the ability of humans to intentionally block out certain sounds and noise
and to focus on selective ones.

The next obvious question that arises is that why is auditory attention relevant in the real world?
Sounds in everyday life seldom appear in isolation. Both humans and machines are constantly
flooded with a cacophony of sounds that need to be filtered and scoured for relevant information,
famously referred to as the ‘cocktail party problem’.

This paper makes a conscious effort towards predicting the auditory attention level of an individual
by analyzing the EEG signals produced by the person’s brain. Since the world is moving towards
automation in almost every domain these days, taking a step in that direction by automating the
prediction of attention score of a person, just by using EEG signals from the brain was a big source
of motivation for our work.

We, in this paper, have tried to show that level of attention (attention score) can be predicted based
on the EEG signals recorded from the brain. EEG is a non-invasive technique used to measure the
electrical activity of the brain regions (Kumar & Bhuvaneswari, 2012; Vaid et al., 2015). A lot
of research on attention, has been done in the past using EEG signals. Studies have shown that
EEG data from different frequency bands can be used to draw inferences on visual and auditory
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attention. In 2006, researchers showed that shift of visual-spatial attention is selectively associated
with human EEG alpha activity (Sauseng et al., 2006). In 2013, it was showed that EEG beta-
band activity is related to attention and attentional deficits in the visual performance of elderly
subjects (Gola et al., 2013). Decreased activity of beta-band reflected the difficulty in activation
of attentional processes (alertness deficits in short delay condition) and deficits in sustaining those
processes (longest delay). Quite recently, Wang & Shen (2018) used deep learning techniques like
convolutional neural networks to work on visual attention. This method was based on an end-to-end
deep learning architecture, which resulted in good performance while predicting human eye fixation
with view-free scenes.

However, unlike visual attention, auditory attention analysis based on EEG signals is a relatively
lesser-explored and newer field, although some efforts have been made to analyze auditory attention
in the past using EEG signals. Treder et al. (2014) showed that by observing the EEG signals, we
could infer the attention paid to a particular instrument in polyphonic music. With a mean accuracy
of 91%, they classified the attended instrument. Another study (Fiedler et al., 2017) showed that
using the EEG response recorded from short-distance configurations consisting only of a single in-
ear-EEG electrode and an adjacent scalp-EEG electrode, an individual’s attention focus could be
detected. This information can be used in hearing aids to identify the listener’s focus of attention
in concurrent-listening (‘cocktail party’) scenarios. Similarly, by analyzing the electrode potential,
we may be able to estimate the auditory attention level. How noise affects the attention levels of an
individual was shown by Das et al. (2018). They showed that it is possible to identify the speaker
to which the listener is actively listening in an environment with multiple speakers. They observed
that attention in moderate background noise is greater than in a no-background noise environment.
A further increase in the noise was found to bring about a remarkable drop in attention level. In
our work, the EEG data source (Bajaj et al., 2020) features recordings at 6 different signal-to-noise
ratios (SNR). This noise data is crucial in accurately estimating auditory attention levels.

In this paper, we aim to estimate auditory attention using deep learning architectures like 2D CNN,
3D CNN, and convolutional autoencoders with random forest and XGBoost regressor. This is not the
first work in the field involving convolutional neural networks (CNN) (Lecun et al., 1998). Deckers
et al. (2018) showed in their work various CNN-based approaches were used to decode attention and
detect the attended speaker in a multi-speaker scenario. The majority of time-series classification
work till date, has been done on signals using 1D CNN. Kashiparekh et al. (2019), Ismail Fawaz
et al. (2019) and Wang et al. (2017) succeeded in demonstrating the significant results of 1D CNN.
However, a major limitation in using 1D CNN, is the extensive hyperparameter tuning accompany-
ing it (Tang et al., 2020). Therefore, we restrained ourselves from using 1D CNN. Recently, 2D
CNNs have been applied to the time-series data by transforming them into 3D images. Hatami
et al. (2018) were among the very first researchers to propose encoding of the time-series data into
images using Gramian Angular Fields (GAF) and then applied the CNN-based framework. GAF
used alongside CNN (Bragin & Spitsyn, 2019), has also been previously used for the classification
of motion imagery from EEG signals with high accuracy. Krishnan et al. (2020) transformed EEG
time-series data transformed to RGB images using Gramian Angular Summation Field (GASF), and
trained various deep neural networks, in an attempt to diagnose epilepsy. Using a similar method, we
plan to transform the time-series data into multi-channel images using Gramian Angular Difference
Field (GADF).

The remaining part of the paper is organized as follows. Section 2 and 3 talk about the dataset on
which the work has been done and data preprocessing using GADF, respectively. Section 4 contains
the methodology which is further divided into three subsections. Section 5 talks about the evaluation
metric used. Section 6 presents the results and inferences we obtained from the various experiments
we performed, and finally, section 7 wraps up the paper with the conclusion and future work.

2 DATASET

In this paper, we have used the PhyAAt dataset Bajaj et al. (2020), which contains the physiological
responses of 25 subjects, collected from an experiment on auditory attention. The chosen subjects
were university students aged between 16 to 34. All participants were non-native English speakers,
out of which 21 of them were male and 4 were female.
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The following procedure was performed to obtain the dataset. Each participant was subjected to 3
tasks - listening, writing, and resting, across multiple trials. More formally, the experiment consisted
of 144 trials for each subject, where each trial was divided into the 3 aforementioned tasks. During
each listening phase, an audio clip was played that contains English language sentence of varying
lengths (ranging from 3 to 13 words) with 6 different levels of background noise. A good chunk of
the sentences were semantic in nature, while others were non-semantic.

During each writing phase, the subject was asked to write the words in the correct order. The
attention score was calculated using the number of words present in the same positions, in the
listening and writing phase for a given sentence. The formula for the same has been given in Eq. 1

Attention score =
number of correct words

total number of words
(1)

A 14-channel EEG system was used to record the brain signals of the subjects during the experiment,
at a sampling rate of 128Hz. A total of 144 stimuli were collected for each participant. In our work,
we have used signals only from the listening phase for the prediction.

Albeit small in size, the diversity of subjects, as well as the rigour with which the experiments were
performed (for instance, to better estimate the auditory attention, the experiment also included some
non-semantic English sentences) makes Phyaat dataset one the best publicly available datasets.

3 DATA PRE-PROCESSING USING GAF

The deep learning boom is largely fueled by the success that deep learning based models have had
in computer vision Voulodimos et al. (2018) and speech recognition Nassif et al. (2019); Hannun
et al. (2014). The well established success of CNNs in feature extraction from images was one of
our main motivations for choosing computer vision based models, over RNNs and LSTMs that are
typically used while dealing with time series data. To do that, we had to first convert the time-series
data into images, for which we have used the technique of Gramian Angular Field (GAF).

Figure 1: Time-series to GADF conversion.

The dataset contained the time-series data of EEG signals, which was converted into a GAF
image Wang & Oates (2015). GAF is simply a polar coordinate representation of the time-series
data, which preserves the temporal dependency. Gramian Difference Angular Field (GADF) is a
type of GAF in which trigonometric difference between each point is calculated to create a matrix
with the temporal correlation amongst different time intervals.
Given below is the step-by-step procedure, we followed to create a GADF image from the EEG
signals obtained from a particular electrode. Fig. 1. visually depicts that procedure.
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• Step 1: Let X (Eq. 2) be a time-series datum containing k real values. Apply a rescaling
function f (Eq. 3) with domain R and range [-1,1]. This is essential so as to apply arccos
function, while converting them into polar coordinates as shown in step 2.

X = {x1, x2, ..., xk} (2)

f(xi) =
(xi −max(X)) + (xi −min(X))

max(X)−min(X)
(3)

• Step 2: Convert the rescaled data into polar coordinates by encoding the value as the
angular cosine φ and the time stamp as the radius r as can be seen below.{

φi = arccos(f(xi)), 1 ≤ i ≤ k
r = i

k

(4)

• Step 3: Calculate the GADF matrix

GADF =

sin(φ1 − φ1) .. sin(φ1 − φk)
sin(φ2 − φ1) .. sin(φ2 − φk)

: : :
sin(φk − φ1) .. sin(φk − φk)

 (5)

The above mentioned procedure was followed for the EEG signals from all the 14 electrodes planted
in a subject’s head, resulting in 14 images which were eventually stacked one behind the other,
resulting in a single 14-channel GADF image. However, these images weren’t of fixed dimensions.
A way to deal with this was to pad all those images so that they become of the same size. However,
we refrained from doing so as the padding might result in the loss of information from some images,
possibly due to the variable image sizes. Instead, the models were designed in a way that they can
incorporate images of different input sizes.

4 METHODOLOGY

For a total of 25 subjects, we had about 3600 datapoints (144x25, 144 trials each for 25 subjects)
available for our work, out of which 300 datapoints were chosen to be kept for testing (validation)
and the remaining 90% of the data would be used for training purposes. It is worthwhile to note
that this training and testing data was not fixed during the entire duration of our experiment. The
dataset (consisting of 3600 datapoints as mentioned previously) was randomly divided into 12 sets
or ’folds’, and experiments were conducted by choosing one fold at a time as the validation set,
while the rest of the 11 folds served as the training set.

This technique was employed to ensure more reliable and reproducible results, since not much work
has been done in this field (on Phyaat dataset), to compare our work with. The value of 12 (for num-
ber of folds) was chosen after careful deliberation and taking into account the variance and standard
deviation of the results. A higher number of folds imply a larger computation time and a greater
variance, as each validation fold has lesser datapoints. On the other hand, an extremely smaller
number of folds is detrimental in the way that a larger chunk of data would not be available for
training, thus leading to underfitting, with the model not being able to properly discern the patterns
present in the dataset. The sweet spot for the number of folds was found by experimenting with
different values. For each of the following architectures, we employed the 12-fold cross validation
and calculated the mean and standard deviation of the MAE.

We trained and tested the following computer vision based models -

4.1 2D CNN

A 2D CNN is capable of only extracting spatial features in images whilst neglecting the temporal
correlation, since the kernel moves only in the spatial directions. The architecture we used comprises
of 4 blocks of convolution layers followed by max pooling to reduce the dimensions as the depth of
the network increases. The number of filters increase with the depth, but the dimensions of filters in
both Conv2d layers as well as the MaxPool2d layers remain the same ((3,3) and (2,2) respectively).
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The activation function ReLU was used between the layers, as studies have proven empirically that
deep networks when training with ReLU tend to converge quickly and more reliably as against any
other activation function.

Generally, a CNN works on the image of a fixed dimension because the fully connected layer re-
quires a specific number of neurons, but in our case, as explained previously, the dimensions of input
images were not fixed, so in the last of the 4 blocks described above, we introduced an adaptive max-
pooling layer before flattening the representation. ’AdaptiveMaxPool2d’ converts the input of any
dimension into the output of a fixed dimension. Following it, our architecture has 3 dense layers
with 128, 16 and 1 neurons. Dropout was used in the first of the 3 FC layers, to combat overfitting.
We chose against using dropout in the convolutional layers as those are the layers responsible for
learning the features, and hence we didn’t want any loss of useful information during the feature
learning process. Fig. 2 contains the detailed architecture.

Figure 2: The architecture of 2D CNN that gave the best result.

4.2 3D CNN

Generally, 3D CNNs are used to learn the representations for volumetric data like videos where
temporal relations among different frames are captured along with spatial relations of each frame.
The third axis intrinsically links the frames together, and so cannot be ignored. Conventionally, a
3D CNN operates on 4 dimensions of an image - width, height, depth, channels as against 3 in case
of 2D CNN. In contrast to 2D CNNs, where the filters are used only in spatial directions, the 3D
CNN uses the filters in temporal direction also.

Since we were dealing with 14-channel images, we felt this architecture would be ideal for our
work. We believed that there might be some relationship amongst the different channels of the EEG
signals, that can be captured using a 3D CNN (and probably not by 2D CNN). Here, we chose to go
with a shallower network, as compared to the 2D CNN one, for the simple reason that 3D CNN is
very computationally demanding, and we had limited memory resources at hand. This time we had 3
blocks of convolution layers, followed by max pooling. As in case of 2D CNN, the number of filters
increase with the depth (64,128,128), but the dimensions of filters in both Conv3d layers as well as
the MaxPool3d layers remain the same ((3,5,5) and (1,3,3) respectively). The activation function
ReLU was used between the layers. The 3D version of adaptive max-pooling, AdaptiveMaxPool3d
was used before flattening the extracted features. Following it, we used 3 dense layers having 512,
16 and 1.
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4.3 CONVOLUTIONAL AUTOENCODER

Autoencoder Hinton & Salakhutdinov (2006) is a kind of artificial neural network used to encode
and compress data. They work by compressing the input first and later reconstructing the output
from the compressed representation of the data. In this paper, we have used a nine-layered convo-
lutional autoencoder to learn the encoding of the data. Convolutional autoencoder is a variant of
CNNs that are used as the tools for unsupervised learning of convolution filters. They are used to
preserve the spatial information of an image, and work differently from general autoencoders that
completely ignore the 2D image structure. Since our inputs consisted of images (after applying
GADF), it made sense to use CNN (convnets) as encoders and decoders. To build any autoencoder,
three things are required: an encoding function, a decoding function, and a distance function be-
tween the amount of information loss between the compressed representation of your data and the
decompressed representation (i.e. a ”loss” function).

Our encoder comprised of 3 blocks of convolution layers and max pooling. As in the case of 2D
CNN and 3D CNN, the number of filters increase with the depth of the network (64,128,128) and
the kernel size remains same throughout, for both Conv2d layers and MaxPool2d layers ((3,3) and
(2,2) respectively). The last of the 3 blocks had the MaxPool2d replaced with AdaptiveMaxPool2d
to deal with the variable size of input images. The encoder finally terminates with a FC layer
with 512 neurons. The decoder was designed in the reverse order as the encoder. It begins with
a FC layer, followed by 3 blocks of maxunpooling and transpose convolution. In this case, with
the increasing depth of the network, the number of filters keep on decreasing (128,128,64). The
kernel size remains same throughout for both MaxUnpool2d and ConvTranspose2d ((2,2) and (3,3)
respectively). The decoder finally creates an image with the same shape as the input image to the
encoder. The distance function used was MAE, which actually calculates the pixel-wise difference
between the original input image and the new image generated by the decoder.

The encoded data was passed to two of the most promising machine learning regression models:
First, the random forest regressor Breiman (2001), which is an ensembling technique that uses the
output of multiple decision trees and takes the mean of all of them for the final output. Second, the
XGBoost regressor Chen & Guestrin (2016), a state-of-the-art machine learning algorithm, which
uses the boosting ensemble technique. In boosting, multiple weak learners are trained sequentially
such that each tree tries to reduce the error of the previous one Freund & Schapire (1999). The hy-
perparameters of both the machine learning models were found by fine-tuning using GridSearchCV.

In all the 3 architectures, the models were trained using Adam optimizer for about 20 epochs, with
early stopping to mitigate overfitting. Initial learning rate was fixed at about 0.002-0.003 in each
case, and learning rate decay was performed that would help in better convergence and better gen-
eralization of the model. Mean Squared Error (MSE) was the loss function used during the training
process.

5 EVALUATION METRIC

The closeness of the actual value to the predicted value of the attention score was used to evaluate
the performance of our models. The metric we have used for the attention score estimation is the
mean absolute error or MAE that captures the average magnitude of error in a set of predictions.
MAE calculates the mean of the absolute error between actual score and predicted score as defined
by the Eq. 6.

MAE =
1

n

n∑
j=1

|yj − ŷj | (6)

Here n is the number of testing samples, yj denotes the actual attention score, and ŷj is the predicted
score of the j-th sample.

6 RESULTS AND INFERENCES

Table 1 compares the performance of different models, by displaying the mean and standard de-
viation of the validation MAE each model obtained, after taking into account the 12-fold cross
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Table 1: Comparision of Different Models

MODELS VALIDATION MAE (MEAN ± STD)

2D CNN 29.43± 1.81
3D CNN 29.72± 1.76
Autoencoder with Random Forest 30.16± 1.65
Autoencoder with XGBoost 29.99± 1.91
SVM (Bajaj et al., 2020) 29.65± 4.75 (approx.)

validation, we had performed during training. While the mean provides a good measure of how ac-
curately the model predicted the attention score on average, the standard deviation shows the amount
of variance in the predicted values over the 12 folds of validation data. A higher variance would typ-
ically mean that the trained model is prone to be affected by outliers and have a lesser generalization
ability.

2D CNN was found to provide the best results, when it comes to the mean MAE predicted over the
validation set. We expected 3D CNN to perform better than 2D CNN, since it has the potential to
capture the relations between the 14 channels of the image. The most plausible explanation for it
not performing upto our expectation is the shallowness of the network that we had trained our model
on. We had limited memory resources at our disposal, and coupled with the 14-channel input image,
it was not possible to train a deeper network, that could extract features in a better way. This is
something we hope to address in our future work.

However, despite the shallowness of the network, it can be seen that 3D CNNs have performed the
second best among the networks, and in fact, almost as good as the owners of the Phyaat dataset
were able to achieve. Even though it was not able to perform upto its full potential because of
the resource constraints, it managed to outperform a couple of other architectures. Among the
convolutional autoencoders, the better results of the XGBoost model can be ascribed to the fact that
we found it to generalize better thereby overfitting lesser as compared to the model with random
forest.

Figure 3: Model-wise plots of validation MAE for one of the 12 folds.

Another crucial observation we made during training was that for all architectures, the training loss
vs. epochs graphs were highly volatile, which most probably is a consequence of the batch size
we chose. This is corroborated by Fig. 3, which displays the epoch-wise performance our models
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achieved on one of the 12 folds used for validation. The fact that Pytorch does not allow images of
different dimensions in a single batch, forced us to use a batch size of 1. Essentially, this annulled
the concept of batch training in our work. Due to this, we could not add batch normalization, which
resulted in slower convergence of our models. It was also observed that despite adding multiple
layers of dropouts, our models were somewhat prone to overfitting, possibly because we omitted
batch normalization layers in our architecture and because of the small size of the dataset, containing
only about 3600 datapoints.

7 CONCLUSION

In this paper, we proposed a way to predict the auditory attention score from EEG signals of a person
using computer vision architectures. In order to apply deep learning algorithms, we converted the
time-series data into images using a technique known as GADF. We used adaptive max-pooling in
our architectures to combat the varying sizes of images. It was found that 2D-CNN gave the best
results among all the models, in fact even bettering existing performances on the chosen dataset Bajaj
et al. (2020).

We plan to extend our work by training the models on a larger dataset, which will give us more scope
to experiment and improve the generalizability of our models. We plan to train much deeper 3D
CNN models (with better memory resources at hand) and advanced architectures such as 2D-CNNs
+ LSTMs that would help us better capture interchannel information. We also plan to use better
data (signal) pre-processing techniques before converting the data into images which would allow
models to extract features better and consequently learn faster. We hope this work of ours serves as
a platform to improvise and innovate further and thereby contributing to the research community.
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