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Abstract

Prompt trading has emerged as a significant001
intellectual property concern in recent years,002
where vendors entice users by showcasing sam-003
ple images before selling prompt templates that004
can generate similar images. This work in-005
vestigates a critical security vulnerability: at-006
tackers can steal prompt templates using only007
a limited number of sample images. To in-008
vestigate this threat, we introduce PRISM, a009
prompt-stealing benchmark consisting of 50010
templates and 450 images, organized into Easy011
and Hard difficulty levels. To identify the vul-012
nerabity of VLMs to prompt stealing, we pro-013
pose EvoStealer, a novel template stealing014
method that operates without model fine-tuning015
by leveraging differential evolution algorithms.016
The system first initializes population sets using017
multimodal large language models (MLLMs)018
based on predefined patterns, then iteratively019
generates enhanced offspring through MLLMs.020
During evolution, EvoStealer identifies com-021
mon features across offspring to derive general-022
ized templates. Our comprehensive evaluation023
conducted across open-source (INTERNVL2-024
26B) and closed-source models (GPT-4O and025
GPT-4O-MINI) demonstrates that EvoStealer’s026
stolen templates can reproduce images highly027
similar to originals and effectively generalize028
to other subjects, significantly outperforming029
baseline methods with an average improvement030
of over 10%. Moreover, our cost analysis re-031
veals that EvoStealer achieves template stealing032
with negligible computational expenses.033

1 Introduction034

Recent advancements in text-to-image genera-035

tion (Liu et al., 2024a; Cao et al., 2024), par-036

ticularly in multimodal large language models037

(MLLMs) (Liu et al., 2024a; Wang et al., 2024) and038

diffusion models (Ho et al., 2020; Sohl-Dickstein039

et al., 2015), have significantly improved image040

generation performance. However, crafting the041

perfect prompt to produce desired output images042
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Figure 1: Top: Illustrating the legitimate development
of text-to-image prompt templates. Bottom: Depicting
unauthorized extraction of proprietary prompt templates

results remains a meticulous process that requires 043

significant expertise and time investment (Refer 044

to Figure 1(top)). This challenge has catalyzed 045

the emergence of prompt trading, a novel business 046

model exemplified by platforms like PromptBase1 047

and LaPrompt2. On these platforms, creators up- 048

load meticulously crafted prompt templates (view- 049

able post-purchase) alongside multiple sample im- 050

ages (publicly visible). Customers attracted to 051

these samples can purchase the template, then 052

merely modify the subject specification to gener- 053

ate new images that preserve the original stylistic 054

elements. In this context, the platform’s copyright 055

and security vulnerabilities raise significant con- 056

cerns. If attackers reverse-engineer the proprietary 057

templates by analyzing the visible samples, they 058

could significantly compromise sellers’ intellectual 059

property rights and threaten the platform’s business 060

model (See Figure 1 (bottom)). We term this attack 061

prompt template stealing. 062

Existing methods for prompt stealing at- 063

tacks (Shen et al., 2024; Sha and Zhang, 2024; 064

Naseh et al., 2024) focus on reconstructing individ- 065

1https://promptbase.com/
2https://laprompt.com/
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ual prompts for each sampled image, rather than066

recovering a general prompt template for the entire067

group of sampled images. As a result, the prompts068

reconstructed by these methods are specific to each069

image and lack generalizability, which limits their070

applicability in practical scenarios, as illustrated in071

Figure 1. For example, in the case of the woman072

image located in Figure 1, a stolen prompt might073

include the "golden sun" as a distinctive element.074

Nevertheless, a comparison with the other three075

images demonstrates that the "golden sun" is not a076

shared characteristic among them.077

To fill this gap, we build a new and compre-078

hensive benchmark named PRISM, comprising 50079

prompt templates stratified across two difficulty080

levels (Easy and Hard) and spanning 9 distinct sub-081

jects, sourced from a specialized prompt trading082

platform. Utilizing DALL·E 3, we generated 450083

images, with each group methodically partitioned084

into 5 in-domain and 4 out-of-domain images to085

systematically evaluate both model fitting capabil-086

ity and generalization performance.087

Besides, we introduce EvoStealer, a novel tem-088

plate stealing methodology derived from the differ-089

ential mutation algorithm in evolutionary computa-090

tion. Our approach strategically leverages mutation091

and crossover operations within the search space092

to effectively mitigate overfitting and circumvent093

local optima, precisely aligning with template steal-094

ing objectives. We integrate large language mod-095

els (LLMs) spanning both open-source and closed-096

source domains, specifically utilizing InternVL2-097

26B, GPT-4o, and GPT-4o-mini. By combining098

these models with a differential evolution algo-099

rithm, we generate prompt templates characterized100

by exceptional stability and robust generalization101

capabilities. Comprehensive experimental evalua-102

tions are conducted across easy and hard difficulty103

levels. The results demonstrate EvoStealer’s re-104

markable performance: the methodology efficiently105

reproduces images highly similar to original tem-106

plates while simultaneously exhibiting strong cross-107

subject generalizability. This enables large-scale108

image generation maintaining consistent stylistic109

characteristics.110

Our main contributions are as follows:111

(1) To the best of our knowledge, this is the112

first systematic study on prompt template stealing,113

revealing its severity as an emerging security threat114

and empirically demonstrating its significant risk115

to intellectual property protection;116

(2) This study introduces PRISM, the first bench-117

mark for prompt template stealing, and EvoStealer, 118

a plug-and-play attack framework that requires 119

no fine-tuning, significantly improving practicality 120

and scalability; 121

(3) We conducted extensive experiments on 122

both open-source models (INTERNVL2-26B) 123

and closed-source models (GPT-4O, GPT-4O- 124

MINI), with results validating the effectiveness of 125

EvoStealer. 126

2 Related Work 127

We discuss two lines of related work: the text-to- 128

image prompt stealing attacks and the evolutionary 129

algorithms in LLMs. 130

2.1 Text-to-Image Prompt Stealing Attack 131

Prompt stealing attacks, or prompt extraction at- 132

tacks, aim to infer the input from a model’s output. 133

A successful attack infringes on intellectual prop- 134

erty and poses significant risks to prompt trading 135

platforms in the era of LLMs. However, such at- 136

tacks are more challenging in text-to-image gener- 137

ation due to the greater uncertainty in image gener- 138

ation compared to text. CLIP Interrogator employs 139

CLIP (Radford et al., 2021) to extract the subject 140

and then selects phrases matching the target image 141

from predefined sets (Udo and Koshinaka, 2023). 142

Shen et al. (2024) fine-tunes 2 models to extract im- 143

age subjects and modifiers separately, combining 144

them for the attack. Building on this, Naseh et al. 145

(2024) employ GPT-4V to iteratively optimize the 146

prompt, resulting in higher quality. Unlike these 147

works, EvoStealer targets the extraction of a gener- 148

alizable prompt template, offering greater practical 149

value compared to stealing individual prompts. 150

2.2 Evolutionary Algorithms in LLMs 151

Recent researches combining evolutionary algo- 152

rithms with LLMs have demonstrated strong and 153

stable performance across various tasks (Yang et al., 154

2023; Liu et al., 2023). Some studies leverage the 155

rich domain knowledge and powerful text analy- 156

sis capabilities of LLMs to accelerate the search 157

process in evolutionary algorithms, particularly in 158

tasks involving complex reasoning (Meyerson et al., 159

2024; Liu et al., 2024b; Lange et al., 2024; Brah- 160

machary et al., 2024) and interpretability (Chiquier 161

et al., 2025). Conversely, some studies capitalize 162

on the stability of evolutionary algorithms to uti- 163

lize LLMs for generating higher-quality prompt 164

words (Xu et al., 2022; Prasad et al., 2022; Guo 165
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et al., 2023; Fernando et al., 2023). In this pa-166

per, we use evolutionary algorithms to progres-167

sively generate style descriptors that closely resem-168

ble multiple example images, thereby achieving169

prompt template stealing.170

3 Data Consturction171

In this section, we introduce the threat model of172

prompt template stealing, providing a detailed de-173

scription of the attacker’s existing conditions, con-174

straints, and objectives. We then detail our method-175

ology for developing PRISM, a comprehensive176

benchmark designed to realistically simulate this177

attack scenario. The specifics are presented below.178

3.1 Threat Model179

The attack scenario is grounded in real-world ap-180

plications. Attackers have access to two pieces181

of information from the prompt trading platform:182

9 sample images and the generative model (e.g.,183

DALL-E 3 3 or Midjourney 4). While attackers can184

interact with the model via an API, they are not185

privy to its internal parameters. Their objectives186

are twofold: first, to generate images that closely187

resemble, or even replicate, the sample images by188

using the same subject with the stolen prompt tem-189

plate; and second, to alter the subject within the190

template and generate images that retain the same191

style as the sample images.192

3.2 Benchmark Construction193

Currently, no specialized benchmark exists for194

prompt template stealing research. To address195

this gap, we introduce PRISM, a novel benchmark196

comprising 50 freely available prompt templates197

sourced from PromptBase and LaPrompt. These198

templates are divided into two equal groups of 25199

templates each, categorized as "Easy" and "Hard"200

based on complexity. Each group encompasses 9201

distinct subject categories. We utilize DALL·E 3202

as our generation model, combining each prompt203

template with the 9 subjects to produce 450 unique204

images. To ensure quality control, we implemented205

a comprehensive manual review process focusing206

on two key criteria: subject-prompt alignment and207

stylistic consistency across template-generated im-208

ages. For each group, we designated the first 5209

generated images as in-domain data to assess sim-210

ilarity between original and stolen prompt. The211

3https://openai.com/index/dall-e-3/
4https://www.midjourney.com/home

remaining 4 images serve as out-of-domain data, 212

enabling evaluation of prompt template generaliza- 213

tion capabilities across diverse subjects. For com- 214

prehensive details on the benchmark construction 215

methodology, please refer to Appendix A. 216

4 EvoStealer 217

In this section, we introduce the three main steps of 218

EvoStealer: Image Element Extraction, Differential 219

Evolution, and Fitness Function. The details are 220

presented below. 221

4.1 Image Element Extraction 222

High-quality prompts for text-to-image generation 223

typically consist of a subject and several modi- 224

fiers (Liu and Chilton, 2022; Oppenlaender, 2024). 225

The subject defines the object or scene depicted 226

in the image, such as "a woman with a flower 227

crown" or a more intricate description like "Wood- 228

land creatures gather around a shimmering pond, 229

surrounded by trees and glowing flowers, creat- 230

ing a peaceful scene". The modifiers specify the 231

style of the image, including aspects such as artis- 232

tic style and resolution. While multimodal models 233

can accurately identify simple subjects, they often 234

misinterpret complex subjects, mistakenly treating 235

parts of the subject as style modifiers. For instance, 236

in the case of the complex subject "peaceful scene", 237

the model may misinterpret "peaceful" as a style 238

modifier, contaminating the intended description. 239

To address this issue, we define an image ele- 240

ment extraction pattern: <Subject, Modifiers, Sup- 241

plements>. The subject describes the object or 242

scene, while the modifiers are categorized into four 243

types: Artistic Style, Visual Composition and Struc- 244

ture, Aesthetic and Emotional Atmosphere, and 245

Medium and Material. For further details, please 246

refer to Appendix B. We have imposed the afore- 247

mentioned constraints on the modifiers to ensure 248

that the model describes the image solely from the 249

relevant perspectives within the four predefined cat- 250

egories. This restriction contributes to the stability 251

and controllability of modifier extraction. However, 252

such a constraint may limit the model’s ability to 253

fully capture the diversity of style features. To mit- 254

igate this limitation, we incorporate supplements 255

as a compensatory measure. Supplements encom- 256

pass descriptions outside the four categories and 257

can include individual words, phrases, or even sen- 258

tences, such as "radiating lines suggesting motion" 259

or "subtle transitions between colors". 260
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Figure 2: The key steps of EvoStealer in differential evolution, including the identification of differences and
commonalities, mutation, mutation addition, and crossover operations.

4.2 Differential Evolution261

Firstly, we introduce the theory of differential evo-262

lution. The process of generating offspring through263

the differential evolution algorithm is represented264

using numerical vectors. Initially, each vector265

in the population is sequentially selected as the266

base vector, denoted as α. Then, three individuals,267

x1, x2, x3, are randomly chosen from the popula-268

tion to perform the mutation operation. Specifically,269

the difference between x2, x3 is calculated, and this270

difference undergoes mutation. The mutated differ-271

ence is then added to x1 to produce a new vector,272

denoted as β. The mutation operation is mathemati-273

cally expressed as: β = x1+F (x2−x3), where F274

represents the mutation factor, which controls the275

magnitude of the mutation. Finally, a crossover op-276

eration is applied to the vectors α and β to generate277

the offspring.278

Figure 2 illustrates the differential evolution pro-279

cess implemented in EvoStealer. In Step 1, we280

differentiate between modifiers and supplements281

due to their distinct characteristics, particularly in282

terms of controllability and unpredictability. For283

modifiers, we focus on identifying the differences284

between the two sets, while for supplements, we285

concentrate on their common components. This286

approach is grounded in the understanding that the 287

uncontrollability of supplements introduces unique 288

features specific to individual images. Addition- 289

ally, supplements typically contain more tokens 290

than modifiers, which results in a greater influence 291

on the visual representation of the image and, con- 292

sequently, on the generalization ability of the tem- 293

plate. In Step 2, we randomly select an image from 294

the in-domain dataset to influence the mutation pro- 295

cess. This strategy serves two purposes: first, it 296

helps filter out modifiers that do not align with the 297

image (e.g., in the case of a surrealistic style image, 298

modifiers such as "cartoon style" are excluded); 299

second, the image, serving as a mutation variable, 300

introduces additional contextual information. As 301

mentioned earlier, the initial version of EvoStealer 302

directly derives image element extraction, which 303

results in an over-reliance on the quality of this ex- 304

traction. By incorporating the image in Step 2, we 305

enable the population to gain valuable information 306

that may otherwise be overlooked, thus mitigating 307

the drawback of over-dependence on image ele- 308

ment extraction. In Step 3, no modifications are 309

made, and the two components are simply com- 310

bined to generate the mutated description. In Step 311

4, in contrast to the direct crossover used in genetic 312
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Method DINO CLIPimg CLIPtxt SigLIpimg SigLIptxt Average Human Evaluation

Easy Benchmark

BLIP 2 (Li et al., 2023) 62.07 79.38 48.35 82.32 52.69 64.96 3.42
CLIP Interrogator 69.93 82.76 54.14 85.86 62.59 70.86 4.02

PromptStealer (Shen et al., 2024) 63.73 77.90 49.21 82.73 61.93 67.10 3.78

EvoStealer (INTERNVL2-26B) 74.68 84.46 68.94 87.88 74.93 78.18 4.32
EvoStealer (GPT-4O-MINI) 73.87 84.79 72.12 88.38 71.80 78.19 4.30

EvoStealer (GPT-4O) 75.83 85.30 74.41 89.14 72.75 79.49 4.52

Hard Benchmark

BLIP 2 (Li et al., 2023) 61.16 76.67 46.04 80.51 50.74 63.02 3.24
CLIP Interrogator 66.45 78.26 54.62 82.45 60.78 68.51 3.66

PromptStealer (Shen et al., 2024) 60.01 75.58 47.10 79.20 59.71 64.32 3.48

EvoStealer (INTERNVL2-26B) 70.16 80.63 63.02 84.66 68.14 73.32 4.17
EvoStealer (GPT-4O-MINI) 71.05 81.02 67.64 84.88 69.00 74.72 4.12

EvoStealer (GPT-4O) 69.24 81.34 70.61 85.28 69.27 75.15 4.24

Table 1: The overall evaluation results for the in-domain data, with the bolded values indicating the best scores.

algorithms, EvoStealer first identifies the common313

parts between the two individuals. When generat-314

ing the new offspring, the common parts are fully315

inherited, while only the differing parts undergo the316

crossover operation. This design approach strikes317

a balance between the exploration and exploitation318

of the algorithm, facilitating effective exploration319

while ensuring that generalization constraints are320

preserved.321

4.3 Fitness Function322

The fitness function is employed to assess the qual-323

ity of offspring, with those exhibiting higher fitness324

scores being retained for progression to the next it-325

eration. While the fitness function does not directly326

influence the offspring generation, it guides the327

search direction throughout the evolution process.328

Our fitness function incorporates both the seman-329

tic similarity of the text and the style similarity of330

the image. Specifically, for each offspring (i.e.,331

a prompt template), we sequentially replace the332

subject within the template and calculate its seman-333

tic similarity with the ground truth. Additionally,334

we randomly select a subject and use the target335

model (DALL·E 3) to generate the corresponding336

image, subsequently calculating the similarity be-337

tween this generated image and the corresponding338

image from the in-domain dataset. The mathemati-339

cal formulation is as follows:340

F =
1

n

n∑
i=1

(
λ

(
Toff(i) · Igt(i)

∥Toff(i)∥∥Igt(i)∥

))
+ (1− λ)

(
Ioff · Igt

∥Ioff∥∥Igt∥

)341

Where off and gt denote the offspring and342

ground truth, respectively, and T and I represent343

the text and image embeddings. The parameter λ 344

serves as a balance factor to weight the two simi- 345

larity measures. 346

5 Experiments 347

We employ PRISM to evaluate the vulnerability of 348

image generation models to prompt template steal- 349

ing. Following recent works (Shen et al., 2024; 350

Naseh et al., 2024; Huang et al., 2024), we employ 351

subject similarity, style similarity, and semantic 352

similarity metrics to evaluate the performance of 353

image generation models against prompt template 354

stealing (Section 5.3). These metrics demonstrate 355

higher agreement with human annotations than pre- 356

vious approaches. Additionally, we conduct human 357

evaluation to measure the quality of prompt steal- 358

ing. 359

5.1 Baselines 360

Our baselines encompass models for both cap- 361

tion generation (BLIP-2) and prompt stealing at- 362

tack (CLIP Interrogator and PromptStealer). 363

• BLIP-2: BLIP-2 (Li et al., 2023) is a mul- 364

timodal model that aligns text with images 365

using a lightweight Querying Transformer to 366

connect a frozen image encoder with LLMs. 367

In this study, we employ the BLIP-2-opt-2.7b 368

model to generate image descriptions. 369

• CLIP Interrogator: CLIP Interrogator 5 uses 370

CLIP to generate image descriptions, incor- 371

porating prompts from preset categories such 372

as artists, flavors, and mediums. It encodes 373

5https://github.com/pharmapsychotic/clip-
interrogator/tree/main
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Method DINO CLIPimg CLIPtxt SigLIpimg SigLIptxt Average Human Evaluation

Easy Benchmark

CLIP Interrogator 64.02 78.72 53.95 82.98 63.73 68.68 3.80
PromptStealer (Shen et al., 2024) 60.53 75.53 51.37 81.19 61.16 65.96 3.64

EvoStealer (INTERNVL2-26B) 72.93 83.13 68.63 87.24 74.54 77.29 4.36
EvoStealer (GPT-4O-MINI) 74.53 83.60 71.87 85.28 73.30 77.71 4.47

EvoStealer (GPT-4O) 75.14 83.91 74.18 85.75 73.53 79.10 4.60

Hard Benchmark

CLIP Interrogator 62.23 69.90 51.66 75.19 58.51 63.50 3.74
PromptStealer (Shen et al., 2024) 58.53 70.42 45.29 74.38 55.07 60.74 3.46

EvoStealer (INTERNVL2-26B) 68.92 78.96 61.29 83.37 67.87 72.08 4.32
EvoStealer (GPT-4O-MINI) 67.76 79.55 66.91 84.13 68.84 73.44 4.35

EvoStealer (GPT-4O) 67.00 80.50 69.27 84.55 69.79 74.22 4.48

Table 2: The overall evaluation results for the out-of-domain data, with the bolded values indicating the best scores.

both the image and text with the CLIP model,374

calculates their similarity, and generates the375

most matching description.376

• PromptStealer: PromptStealer (Shen et al.,377

2024) consists of two modules: the Subject378

Generator, fine-tuned on BLIP to extract im-379

age subjects, and the Modifier Detector, a380

multi-class classifier that selects style mod-381

ifiers based on similarity to predefined cate-382

gories. The final prompt is generated by con-383

catenating the subject and selected modifiers.384

5.2 Experimental Settings385

Due to the inherent difficulties in subject identifi-386

cation and replacement within BLIP-2-generated387

prompts, its evaluation is limited to in-domain data388

only. For both CLIP Interrogator and Prompt-389

Stealer methods, we first extract subjects and mod-390

ifiers from 5 in-domain samples and concatenate391

them to create prompts. We then randomly se-392

lect a prompt and systematically replace its subject393

with subjects from the out-of-domain group. For394

PromptStealer, we maintain a threshold value of395

0.6. In EvoStealer’s implementation, we extract396

prompt templates from in-domain data and perform397

sequential subject substitutions, using 9 different398

subjects to generate the final prompts. Both the399

population size and generation count are set to 5,400

with the temperature parameter set to 0 to ensure401

consistent results. We employ SigLIP (Zhai et al.,402

2023) for fitness score calculations and set λ to 0.5.403

All image generation is performed using DALL·E404

3 with a resolution of 1024×1024 and standard405

quality settings.406

5.3 Evaluation Metric 407

We adopt the evaluation framework proposed by 408

Huang et al. (2024) and employ the following met- 409

rics to assess the performance of EvoStealer and 410

baseline methods: 411

• Subject Similarity: To evaluate the similarity 412

between subjects in paired images, we utilize 413

the self-supervised model DINO (Oquab et al., 414

2023), as subject comparison is a crucial as- 415

pect of image similarity assessment. 416

• Style Similarity: To measure style consis- 417

tency, we employ CLIP and SigLIP to extract 418

style features from images generated using 419

stolen prompts and compare them with the 420

original images. 421

• Semantic Similarity: To assess prompt sim- 422

ilarity, we compute the cosine similarity be- 423

tween embeddings of the stolen and target 424

prompts, generated using CLIP and SigLIP. 425

• Human Evaluation: We recruit 3 external 426

evaluators to rate the similarity between gen- 427

erated and target images on a scale of 1-5, 428

where higher scores indicate greater similarity. 429

For each group, we randomly sample 2 im- 430

ages from both in-domain and out-of-domain 431

categories and calculate average scores. For 432

out-of-domain samples, the evaluation focuses 433

exclusively on style similarity. 434

5.4 Main Results 435

Tables 1 and 2 present comparative performance 436

evaluations between EvoStealer and baseline meth- 437

ods using both in-domain and out-of-domain data. 438
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The results demonstrate that EvoStealer consis-439

tently outperforms baseline approaches across all440

evaluation metrics.441

Performance on in-domain data. EvoStealer442

outperforms other methods in both the Easy and443

Hard categories. For example, EvoStealer (GPT-444

4o) leads the second-best method, CLIP Interroga-445

tor, by 8.63% and 6.64% on the two datasets,446

demonstrating its ability to generate more accurate447

prompt templates and better stealing performance.448

Notably, EvoStealer excels in textual semantic com-449

parison, as its prompts are significantly more ef-450

fective. CLIP Interrogator and PromptStealer rely451

on simple concatenation of [subject] and modifiers,452

limiting variability. Additionally, CLIP’s length453

restriction hampers modifier extraction. In contrast,454

EvoStealer generates diverse templates iteratively,455

avoiding these limitations. This aligns with the456

findings of Naseh et al. (2024).457

Performance on out-of-domain data. As shown458

in Table 2, EvoStealer outperforms other meth-459

ods, especially on out-of-domain data, where it460

demonstrates a larger advantage compared to in-461

domain data. For instance, EvoStealer (GPT-4o)462

leads by more than 10% across all data types, indi-463

cating better generalization of stolen templates to464

different subjects. Furthermore, as seen in Table 1,465

EvoStealer’s performance on out-of-domain data466

shows minimal degradation, while CLIP Interroga-467

tor and PromptStealer experience average degrada-468

tions of 3.60% and 2.36%, respectively. This is due469

to EvoStealer’s effective template stealing by ex-470

tracting common features across multiple images.471

Comparison of performance across different472

models. As shown in Tables 1 and 2, GPT-4o473

outperforms the other models, followed by GPT-474

4o-mini, with InternVL2-26B performing slightly475

worse. However, the performance differences476

among these models are minimal. This is pri-477

marily due to EvoStealer’s reliance on the models’478

text and image analysis capabilities, indicating that479

EvoStealer is highly compatible and not dependent480

on a specific multimodal model.481

6 Analysis482

In this section, we analyze the effects of483

EvoStealer’s components, the iteration number, and484

the experimental costs.485

Method InDom. OutDom. Average

Ours 77.32 76.67 77.00
w/o. supp. 73.56 74.85 74.21
w/o. img. 75.89 75.57 75.73

Table 3: Results of the ablation study: Impact of omit-
ting supplements in the extraction pattern (w/o supp.)
and excluding image similarity in the fitness function
(w/o img.), with the model employed being GPT-4.

6.1 Ablation Study 486

We remove the supplements from the extracted 487

templates and the image similarity evaluation from 488

the fitness function to examine their impact on 489

EvoStealer. The results are shown in Table 3. As 490

observed, removing either module results in de- 491

creased performance, with a more significant drop 492

when supplements are removed—specifically, an 493

average similarity reduction of 2.79%. This is be- 494

cause supplements provide additional details, such 495

as image features and style information. As noted 496

in Section 4.2, supplements are longer than indi- 497

vidual modifiers, so their removal has a more pro- 498

nounced effect on visual performance. A compari- 499

son of the performance before and after removing 500

supplements is provided in Appendix D. Remov- 501

ing the image similarity evaluation from the fitness 502

function causes a performance decrease of 1.27%, 503

suggesting that including the comparison between 504

the generated and target images in the fitness func- 505

tion helps guide the evolutionary process and ac- 506

celerate convergence.

0 2 4
Iteration

70

75

80

85
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or

e

Easy Best
Easy Average
Hard Best
Hard Average

0 2 4
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70

72

74

76
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80
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Easy-Outdom.
Hard-Indom.
Hard-Outdom.

Figure 3: The convergence curve of EvoStealer, with
the left half showing changes in fitness score and the
right half depicting performance changes of the optimal
prompt template for in-domain and out-of-domain data.

507

6.2 Effect of Number of Iterations 508

We select 10 groups of easy and 10 groups of hard 509

cases to examine EvoStealer’s convergence (we 510

use GPT-4o as the analysis model), with results 511

shown in Figure 3. The left section of the figure 512
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(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

[subject], an icon, an emoji, overhead view, 
realis�c, a 3D render, a 3D rendering, very
slight shadow, plas�c, clayma�on, plas�c,
simple graphic, minimalist, minimalism,
white background, the background is
white, so� light overhead, polycount,
photorealism, rendered in maya, rendered
in cinema4d, rendered in blender,
rendered in aztec, physically based
rendering, Diffrac�on Grading, Chroma�c 
Aberra�on, GB Displacement, Scan Lines

A gothic digital pain�ng of [subject]; floral
mo�fs, thorny vines and glowing accents; 
set against a shadowy, moonlit background; 
depth and mystery; drama�c ligh�ng casts 
sharp contrasts, highligh�ng textures and 
details; highly-detailed; elegant 
atmosphere with rich, layered elements 
and an air of dark roman�cism.

(a)

(b)

(c)

(a)

(b)

(c)

(a) In-domain Examples

(b) Out-of-domain Examples

Figure 4: The attack results of EvoStealer compared to three baseline methods on both easy and hard examples.
(a)-(d) represent EvoStealer, CLIP-Interrogator, PromptStealer, and BLIP2, respectively.

displays changes in the fitness score as evolution513

progresses, while the right section shows changes514

in the scores of the optimal templates for both in-515

domain and out-of-domain data. We observe that as516

evolution progresses, both the optimal and average517

fitness scores gradually increase, indicating that518

EvoStealer generates offspring with higher adapt-519

ability. The performance of the prompt templates520

steadily improves for both in-domain and out-of-521

domain data. Two examples are provided in Ap-522

pendix E523

6.3 Cost Analysis524

To assess the practicality of EvoStealer, we ana-525

lyzed the cost of stealing a prompt template. The526

primary overhead of EvoStealer consists of three527

components: population initialization, differential528

evolution (including the fitness function), and im-529

age synthesis. A detailed cost estimation process is530

provided in Appendix F. The results indicate that531

EvoStealer requires 144 API calls, generates 34532

images (including 9 final synthesized images), and533

consumes approximately 119.1k tokens, amounting534

to a total cost of $1.70. While this is lower than the535

platform’s pricing range of $3–9, the cost advan-536

tage is not substantial. However, as demonstrated537

in the ablation study in Section 6.1, costs can be538

further reduced by using open-source models or539

omitting image similarity calculations in the fit-540

ness function, enabling near-zero-cost stealing. Al-541

though this cost-reduced version performs slightly542

worse than the full EvoStealer model, it still signif-543

icantly outperforms alternative approaches. 544

7 Case Study 545

To clearly demonstrate EvoStealer’s advantages 546

over baseline methods, we select an easy and a hard 547

example for case study, with the results shown in 548

Figure 4. The results show that, on in-domain data, 549

EvoStealer generates images that closely match the 550

style of the original images, with all four synthe- 551

sized images maintaining stylistic consistency. In 552

contrast, the four images generated by the other 553

baseline methods exhibit significant style varia- 554

tion. On out-of-domain data, EvoStealer maintains 555

the same style as in-domain images, successfully 556

achieving subject generalization. In contrast, the 557

other baseline methods fail to generalize. Addi- 558

tionally, we analyze three distinct failure cases (see 559

Appendix G for details). 560

8 Conclusion 561

This paper investigates prompt template steal- 562

ing—whether attackers can extract generalizable 563

templates that maintain stylistic consistency using 564

minimal sample images. To explore this scenario, 565

we provide PRISM, a two-tier benchmark consist- 566

ing of 50 templates and 450 images, organized 567

into Easy and Hard difficulty levels. We also intro- 568

duce EvoStealer, a template stealing method that 569

combines differential evolution algorithms with 570

MLLMs, enabling template stealing without the 571

need for fine-tuning. Extensive experiments and 572

analysis validate its effectiveness and practicality. 573
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9 Limitations574

The current implementation of EvoStealer and575

benchmark presents several methodological lim-576

itations:577

1. EvoStealer’s MLLM-based design offers sim-578

plified implementation without fine-tuning re-579

quirements and maintains robust performance580

across open datasets. However, this approach581

inherently limits the system’s maximum per-582

formance to the capabilities of the underlying583

MLLMs.584

2. Resource constraints restricted our bench-585

mark to DALL·E-3 generated images, exclud-586

ing other prominent models like Midjourney587

and Stable Diffusion. Nevertheless, the cur-588

rent benchmark adequately evaluates stealing589

method performance, with planned expansion590

to additional models in future work.591

3. The benchmark’s single-subject design facil-592

itates comparative analysis but does not ad-593

dress multi-subject templates in real-world594

applications—a limitation to be addressed in595

subsequent research.596

10 Ethical Considerations597

EvoStealer’s ability to extract prompt templates598

from minimal image examples enables attackers599

to generate multiple stylistically similar images600

through minor template modifications, posing sig-601

nificant risks to creators’ intellectual property. This602

research highlights this security vulnerability, as603

understanding such threat models is essential for604

developing effective countermeasures.605

While watermarking offers some protection, its606

implementation on trading platforms presents prac-607

tical challenges. Watermarks can obscure image608

details, potentially deterring buyers or leading to609

customer dissatisfaction when purchased prompts610

fail to meet expectations. Our findings suggest that611

limiting the number of displayed images to 2-4 ex-612

amples provides a simple yet effective defensive613

strategy.614

Future research should prioritize developing ro-615

bust protection mechanisms to safeguard both cre-616

ators’ rights and the integrity of the AI-generated617

content marketplace.618
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A Data Collection 740

Our data collection and preprocessing pipeline con- 741

sists of several systematic steps. Initially, we col- 742

lect 100 free templates (excluding specific images) 743

from PromptBase and LaPrompt, subsequently gen- 744

erating 900 corresponding images using DALL-E 3. 745

Through manual curation, we eliminate templates 746

that prove challenging to reproduce, such as those 747

containing specific artistic style descriptors (e.g., 748

Arkhip Kuindzhi). We then perform deduplication 749

to remove images with highly similar styles and 750

subjects, thereby preventing evaluation bias from 751

data redundancy. The subsequent quality control 752

process encompasses two primary aspects: subject 753

alignment verification and style consistency assess- 754

ment. When anomalous data is identified, we regen- 755

erate images using DALL-E 3 until they meet our 756

quality criteria. Finally, we categorize our dataset 757

into Easy and Hard classifications. The Hard cat- 758

egory is characterized by: uncommon modifiers, 759

abstract subject descriptions and rich image details. 760

The token distribution of the complete dataset is 761

illustrated in Figure 5, while Table 4 presents a de- 762

tailed breakdown of token statistics for both Easy 763

and Hard categories. 764

B Extraction Pattern Detail 765

Describing the style of an image requires includ- 766

ing different perspectives. The style description of 767

EvoStealer includes four categories: Artistic Style, 768

Visual Composition and Structure, Aesthetic and 769

Emotional Atmosphere, and Medium and Material. 770

• Artistic Style: Include Genre, Era or Histori- 771

cal Style, Cultural and Technological Style. 772

• Visual Composition and Structure: Include 773

Composition and Layout, Form and Structure, 774

Scale, Movement, Perspective, Pattern and 775

Ornamentation and Detail Level. 776

10



Easy Hard
Number Subject Modifier Subject Modifier

Min. 1 23 1 16
Max. 27 154 24 107
Avg. 8.03 65.00 3.60 43.64

Table 4: Token Statistics for Easy and Hard Bench-
marks.

• Aesthetic and Emotional Atmosphere: In-777

clude Tone and Atmosphere, Emotional At-778

mosphere, Lighting and Shadow Effects,779

• Medium and Material: Include Medium, Ma-780

terial, Technique, Texture, Surface, Color781

Palette, Brushwork, Line Quality, Strokes,782

Layering, Transparency, Opacity and Reso-783

lution.784

Figure 5: Token frequency distribution of the dataset

C Human Evaluation785

We implement a rigorous human evaluation proto-786

col using a blinded manual scoring approach. Each787

evaluator is presented with the original benchmark788

images alongside extracted results from all meth-789

ods, comprising two in-domain and two out-of-790

domain images per set. To maintain objectivity,791

evaluators are blinded to the generation methods792

and conduct their assessments independently, with-793

out inter-evaluator communication. The evaluation794

criteria are differentiated by image category:795

• For in-domain data: Evaluators assess both796

subject matter and stylistic similarity to mea-797

sure template reproduction fidelity798

• For out-of-domain data: Evaluation focuses799

exclusively on stylistic similarity to assess 800

template generalization capability 801

Images are rated using a 5-point Likert scale, with 802

higher scores indicating greater similarity. Final 803

results are reported as mean scores across all eval- 804

uators. The detailed scoring criteria are presented 805

below. 806

1. Completely Different: The generated image 807

exhibits no discernible similarities to the orig- 808

inal, presenting entirely distinct content and 809

stylistic elements. 810

2. Barely Similar: While minimal thematic 811

or elemental commonalities may exist be- 812

tween the original and generated images, they 813

demonstrate significant divergence in both 814

content and stylistic execution. 815

3. Somewhat Similar: The generated image 816

maintains recognizable correspondence to the 817

original’s content or subject matter, although 818

notable stylistic variations are present. 819

4. Closely Similar: The generated image 820

demonstrates substantial fidelity to the orig- 821

inal’s content and subject matter, with only 822

minor compositional variations. 823

5. Very Similar: The generated image achieves 824

near-identical reproduction, maintaining high 825

fidelity to the original’s content, style, and 826

intricate details. 827

D Ablation Comparison 828

Our extraction template incorporates controllable 829

Subjects and Modifiers, complemented by a flex- 830

ible Supplements module designed to address po- 831

tential gaps in subject and modifier extraction. Fig- 832

ure 6 demonstrates the impact of the Supplements 833

module on EvoStealer’s effectiveness. 834

The first case study illustrates how the Supple- 835

ments module enhances feature detection. While 836

analyzing images individually may cause oversight 837

of shared characteristics—such as the presence 838

of petals in ’a floating umbrella covered in flow- 839

ers’—the Supplements module successfully cap- 840

tures these overlooked elements in Subject, thereby 841

improving extraction accuracy. In the second case, 842

the module demonstrates its ability to detect visual 843

attributes that are overlooked by predefined mod- 844

ifier categories, such as ’dark yellow tone’ within 845

the ’Visual Composition and Structure’ categories. 846
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Original Images EvoStealer EvoStealer (w/o. supp.) Note

Lacking
features:

surrounded
by petals

Lacking
features:

dark yellow
tone

Lacking
features:

symmetry

Figure 6: Three examples are used to demonstrate the impact of removing supplements. "w/o. supp." represents the
removal of supplements extracted from the pattern.

The third case exemplifies the module’s capacity847

to identify fundamental aesthetic properties like848

symmetry, which fall outside established modifier849

categories. These examples highlight how the Sup-850

plements module’s flexibility enables the detection851

of additional key features, ultimately enhancing the852

quality of image generation.853

E Evolution Progress854

Figure 7 presents the iterative results of EvoStealer855

on in-domain data across two distinct styles. The856

figure demonstrates that with each iteration, the857

generated images progressively converge toward858

the ground truth style. This progression indicates859

that EvoStealer successfully refines the quality of860

style descriptors throughout its iterative process,861

resulting in images that increasingly approximate 862

the target style. The visual comparison clearly il- 863

lustrates the algorithm’s capacity to incrementally 864

improve stylistic fidelity through successive refine- 865

ments. 866

F Cost Estimate 867

The execution process of EvoStealer comprises 868

three main stages: population initialization, dif- 869

ferential evolution (including the fitness function), 870

and image synthesis. We assess the cost from three 871

perspectives: API call frequency, token consump- 872

tion, and image generation. While API calls and 873

image generation can be accurately and directly 874

measured, token consumption is estimated. Given 875

the instability of the model’s output, only the input 876
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Ground Truth Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Figure 7: Results of each evolutionary cycle.

Original Template Subject Original Images w/o. supp.

"Act as you are Arkhip Kuindzhi,
and you are living during

Industrial Revolution time, you
have access only to drawing

colors and tools available that
time. Create image of [subject]."

"cat", "train"

"[subject], logo, funny children’s
hand drawn style, doodles,

minimalism, cute character, in
pastel colors including orange

and bright blue on a clean black
background, hand writing ’hello’

with a bold character
underneath."

"bear",
"alligator"

"[subject] / Dreamlike Ethereal
Illustrations / Watercolor-Like
Techniques / Loose Expressive

Brushstrokes / Cool Pastel
Shades / Floating Crystalline
Structures / Organic Surreal

Shapes / Delicate Flowing Line
Work / Tranquil Imaginary

Worlds"

"Two Heads
Are Better
Than One",
"Moonlit

Owl"

Figure 8: Three failure cases in EvoStealer.

portion is estimated. For this analysis, we evalu-877

ate the cost of stealing a prompt template using878

EvoStealer, based on GPT-4o.879

During the population initialization phase,880

EvoStealer performs two key operations: image881

element extraction (which generates <subject, mod-882

ifiers, supplements> triples) and initial template 883

synthesis. On average, this requires 10 calls to 884

GPT-4o, consuming 1.6k tokens, with an estimated 885

cost of approximately $0.04. In the differential 886

evolution phase, EvoStealer performs operations 887

such as difference and commonality identification, 888
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mutation, mutation addition, and crossover. Addi-889

tionally, for each offspring, template synthesis and890

image generation are required for both creation and891

evaluation. On average, this phase involves 125892

API calls, consumes 117.5k tokens, and generates893

25 images, resulting in a total cost of approximately894

$1.30. In the image synthesis phase, only the op-895

timal template is used to generate 9 images. This896

requires 9 API calls and 9 image generations, to-897

taling $0.36. Thus, the overall cost amounts to898

approximately $1.70.899

G Failure Cases900

In this section, we will examine several typical901

failure cases. These failures stem either from the902

complexity of the images themselves and vague903

descriptions, or from the inherent limitations of904

the current EvoStealer method. Figure 8 illustrates905

representative examples.906

A primary limitation is the system’s inadequate907

interpretation of specific artistic styles. Analysis908

of PromptBase and LaPrompt platforms reveals909

that many prompt templates incorporate stylistic910

modifiers, such as "Arshile Gorky style," "Disney911

style," and "Renaissance style." However, the sys-912

tem struggles to accurately identify and replicate913

the distinctive characteristics of individual artists’914

techniques or historical artistic movements, result-915

ing in significant stylistic disparities between gen-916

erated and source images.917

A second limitation concerns text recognition ca-918

pabilities. The current EvoStealer implementation919

lacks explicit protocols for extracting textual ele-920

ments from images. Despite MLLMs’ inherent text921

recognition capabilities, this functionality remains922

underutilized in the present version—a limitation923

scheduled for address in future iterations.924

The third limitation involves comprehensive de-925

tail preservation. When processing images with926

complex color palettes and rich content, EvoStealer927

may fail to capture fine-grained features, leading to928

degraded quality in the resultant prompt templates.929
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