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Figure 1: We introduce AutoEval, a system for scalable, automated real robot evaluation of generalist
robot policies. Automated evaluation results closely match human-run evaluations, while providing
a more reliable performance signal than prior simulated evaluation approaches or offline metrics.
AutoEval reduces human supervision time for evaluation by more than 99%. We provide public
access to our AutoEval cells to facilitate standardization and ease of policy benchmarking.

ABSTRACT

Scalable and reproducible policy evaluation has been a long-standing challenge in
robot learning. Evaluations are critical to assess progress and build better policies,
but evaluation in the real world, especially at a scale that would provide statistically
reliable results, is costly in terms of human time and hard to obtain. Evaluation of
increasingly generalist robot policies requires an increasingly diverse repertoire of
evaluation environments, making the evaluation bottleneck even more pronounced.
To make real-world evaluation of robotic policies more practical, we propose
AutoEval, a system to autonomously evaluate generalist robot policies around
the clock with minimal human intervention. Users interact with AutoEval by
submitting evaluation jobs to the AutoEval queue, much like how software jobs are
submitted with a cluster scheduling system, and AutoEval will schedule the policies
for evaluation within a framework supplying automatic success detection and
automatic scene resets. We show that AutoEval can nearly fully eliminate human
involvement in the evaluation process, permitting around the clock evaluations, and
the evaluation results correspond closely to ground truth evaluations conducted by
hand. To facilitate the evaluation of generalist policies in the robotics community,
we provide public access to multiple AutoEval scenes in the popular BridgeData
robot setup with WidowX robots. In the future, we hope that AutoEval scenes can
be set up across institutions to form a diverse and distributed evaluation network.

1 INTRODUCTION

Robot foundation models promise to drastically change the robot learning “workflow”: instead of
training policies for individual tasks or environments, these models are trained across a range of
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scenes, tasks, and robot embodiments (Brohan et al., 2023; Bousmalis et al., 2023; Octo Model Team
et al., 2024; Kim et al., 2024; Shah et al., 2023; Sridhar et al., 2024; Doshi et al., 2024; Black et al.,
2024; Huang et al., 2023b), providing generalist policies that can solve new tasks in new settings.
This shift to generalist training necessitates an analogous shift in how these policies are evaluated.
While traditional evaluations for single-task policies typically involve a few dozen policy rollouts
that are practical to do by hand, robot foundation models may require hundreds of rollouts across
a variety of tasks and scenes to obtain an accurate assessment of their generalist capabilities. For
instance, a comprehensive evaluation of the recently introduced OpenVLA model (Kim et al., 2024)
against its baselines required more than 2,500 rollouts across four robot setups and three institutions,
and a total of more than 100 hours of human labor for resetting scenes, rolling out policies, and
recording success rates. Evaluations during the course of model development and design ablations
may compound this effort multiple times over. Prior works have tried to address this evaluation
bottleneck by building realistic simulated environments for evaluation (Li et al., 2024b), but the gap
between simulation and the real world can render results unreliable, and many tasks like cloth or
liquid manipulation are challenging to simulate at sufficient fidelity. In this work we aim to develop a
system for robot policy evaluation that combines the reliability of real world evaluations, with the
scalability required for the evaluation of generalist robot policies.

A key bottleneck for the scalability of real-world robot evaluations is the human operator time
required to conduct the evaluation, reset the scene, and score policy success. If we can reduce
required human involvement to a minimum, we can drastically increase the throughput of real robot
evaluations by running evaluations around the clock. To this end, we propose AutoEval, a system
for designing autonomous real-robot evaluations (see Figure 1). To use AutoEval, human users
queue policies for evaluation, which subsequently get evaluated with minimal human intervention
by the AutoEval system that automatically runs the policy, evaluates the results, resets the scene,
and finally returns a detailed evaluation report to the user. AutoEval represents a new paradigm of
real-world robot evaluation that has much higher throughput thanks to its minimal reliance on human
intervention, allowing for much lower variance results with more trials per evaluation.

There are multiple challenges in designing an effective system for autonomous evaluation of real
robot manipulation policies, such as the need for autonomous scene resets and success detection.
Our work leverages large pre-trained models to learn automatic reset policies and success detectors.
Importantly, we adapt these models to the evaluation scene and task at hand to achieve high reliability
and minimize the need for human intervention. We propose a general scheme for building automated
robot evaluations and instantiate it for common tasks in the popular BridgeV2 robot evaluation
environment (Walke et al., 2023).

Our central contribution is the development of an autonomous evaluation system, AutoEval, that can
evaluate user-supplied policies in the real world around the clock. We demonstrate that AutoEval can
scale to diverse evaluation environments by instantiating it in three automated evaluation environments
for table-top manipulation tasks in the BridgeData V2 environment (Walke et al., 2023). Our
experiments show that the two aspects of evaluation that typically rely most on human effort, scene
resets and success determination, can both be automated with high fidelity, yielding evaluation
results that correlate well with ground truth human evaluations. AutoEval drastically increases
the evaluation throughput, enabling 500 evaluation episodes per 24-hour period. We also find that
AutoEval provides a more reliable policy performance estimate than prior simulated evaluation
approaches or offline metrics, while at the same time supporting a wider range of hard-to-simulate
tasks like cloth manipulation.

We open-source our code 1 and a detailed step-by-step guide for setting up new AutoEval platforms.
Additionally, we open access to multiple Bridge-AutoEval cells, enabling researchers from other
institutions to evaluate their policies on our Bridge-AutoEval systems. We hope that this takes a step
towards democratizing robotics research and enabling fair comparisons of robot policies on unified
evaluation setups.

2 RELATED WORK
Generalist robot policies. There has been significant progress in robot foundation models re-
cently (Brohan et al., 2023; Kim et al., 2024; Octo Model Team et al., 2024; Kalashnikov et al., 2021;
Ehsani et al., 2023; Bharadhwaj et al., 2023; Liu et al., 2024b; Anil et al., 2023; Sridhar et al., 2024;

1https://github.com/zhouzypaul/auto_eval
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Ye et al., 2024; Black et al., 2024; Pertsch et al., 2025), fueled by large-scale robot datasets (Collabo-
ration et al., 2023; Walke et al., 2023; Khazatsky et al., 2024; Shah et al., 2023). These models are
trained to perform diverse tasks (e.g., pick-and-place, cloth folding) (Walke et al., 2023; Kim et al.,
2024; Black et al., 2024; Pertsch et al., 2025), adapt to various scenes with different backgrounds
and distractors (Zhou et al., 2024; Fu et al., 2024), and control multiple robot embodiments (e.g.,
quadrupeds, manipulator arms, drones) (Yang et al., 2024; Doshi et al., 2024). With the increase in
capabilities of these generalist robot policies, evaluation becomes ever more time-consuming, because
measuring model performance needs evaluations of a variety of different skills and scenes. For
example, reporting results for Kim et al. (2024) required a few thousand evaluation trials and more
than 100 hours of human labor. Evaluation trials needed during development probably compounded
this number several times. This makes development and comprehensive evaluation of generalist robot
policies increasingly challenging, calling for an evaluation method that is much more scalable.

Robot policy evaluation in the real world. Evaluating robot policies in a fair, comprehensive, and
reproducible way is challenging. Robotic methods and systems today are mostly tested in custom
settings at the institution where the method is developed. Cross-institution evaluation encounters
difficulties with different hardware, task definitions, and performance measures (Van Wyk et al.,
2018). To address this, multiple works have proposed real robot setups that have reproducible
components (such as 3-D printed objects or cheap robot hardware) that are meant to be replicated
across institutions (Yang et al., 2019; Walke et al., 2023; Heo et al., 2023; Luo et al., 2023; Calli
et al., 2015; Tyree et al., 2022; Leitner et al., 2017). In addition to robot manipulators, there have
also been efforts for standardized hardware in other robot embodiments (Paull et al., 2017; Pickem
et al., 2017). However, the sensitivity of policies to environmental factors like lighting, camera
angles, and robot type makes it hard to accurately reproduce real robot setups across institutions,
even when the same set of objects and hardware are used. Others have built evaluation systems
that are hosted at a central location to compare different approaches. Some take the form of live
competitions (Krotkov et al., 2018; Correll et al., 2016; Kitano et al., 1997; Van Wyk et al., 2018;
Earth Rover Challenge Team, 2025), while others are hosted at research institutions and open to the
public (Zhou et al., 2023; Yenamandra et al., 2023). However, these evaluations all require human
involvement to supervise the policy evaluation or to reset the scene, making it expensive in terms
of human time and therefore significantly limiting the number of real robot evaluations benchmark
participants can perform. In addition, the live competitions are logistically challenging and hard to
operate continually. These reproducibility and scalability constraints become even more apparent
as the capabilities of robot policies expand to more scenes, tasks, and embodiments. Our approach,
AutoEval, can substantially improve the throughput of real robot evaluations by replacing parts of the
evaluation pipeline traditionally completed by humans with specialized learned components, thus
enabling robots to “evaluate themselves” 24/7. Notably, Bauer et al. (2022) proposed a setup for
remote, autonomous policy evaluation in the real world as part of their Real Robot Competition,
but they focused on evaluations in a single environment, engineered to require no resets and allow
for scoring with task-specific, hand-defined rules. In contrast, our AutoEval system is designed for
evaluation of generalist policies by enabling autonomous evaluation on a wider range of tasks (e.g.,
pick-place, articulate object & cloth manipulation) via learned reset and scoring modules. While
our goal is not to build a comprehensive benchmark for robot foundation models, which requires
evaluations spanning many tasks, scenes, and embodiments, we demonstrate that our system can be
used to automate evaluations for a diverse set of tasks and provide a step-by-step guide to set up new
automated evaluation within hours. We hope that by reproducing this recipe at other institutions, the
robotics community will over time be able to construct a comprehensive evaluation benchmark for
generalist policies.

Evaluation in simulation. While human-run evaluations in the real world are the gold standard used
by most prior works, they require extensive human effort and do not scale well as the capabilities
of models increase. As a result, simulation has been a popular tool for high-throughput evaluation
in robot learning research (Tassa et al., 2018; James et al., 2020; Lee et al., 2021; Liu et al., 2024a;
Nasiriany et al., 2024; Mees et al., 2022b; Makoviychuk et al., 2021; Tao et al., 2024; Kolve et al.,
2017; Puig et al., 2023; Yu et al., 2020; Ahmed et al., 2020; Li et al., 2024a; 2021a; Mandlekar et al.,
2023; Mees et al., 2022a). However, there are still discrepancies between these simulators and the
real world, making simulated evaluation different from real-world evaluation. First of all, real-world
physics of contacts, collisions, and friction are hard to simulate accurately (Todorov et al., 2012;
Juliani, 2018; Coumans, 2015; Lee et al., 2018; NVIDIA, 2020; Xiang et al., 2020; Authors, 2024).
Even if the physics simulation is perfect, not all physical parameters can be precisely measured in the
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Algorithm 1 Autonomous Policy Evaluation Loop (AutoEval)

1: Input: Task T , policy π, initial state distribution ρ(s), success classifier CT, reset policy πT ,
reset classifier Cρ(s)

2: Output: Estimated probability of success for task T
3: for each trial do
4: Start State: Start from initial state s0 ∼ ρ(s)
5: Policy Rollout: Rollout policy π for K timesteps
6: Success Check: Assign success label using CT(sK)
7: Reset Scene: Rollout reset policy πT to return to ρ(s)
8: Failure: If unable to reset or robot unhealthy, notify human operator to help
9: end for

real world to replicate in simulation (for example, friction coefficients and actuation delays) (Huang
et al., 2023a; Tobin et al., 2017). Policies that interact with real-world objects usually exhibit different
behavior than they do on their simulated counterparts. Secondly, policies need to deal with real
world factors such as noisy and delayed sensory inputs that do not play a big part in simulation.
Finally, the visual difference such as texture and lighting between simulated images and real-world
observations makes the two types of evaluation quite different (Deitke et al., 2020; Zhang et al., 2019).
Recent works have tried to reduce the visual discrepancy by building realistic simulators for policy
evaluation (Li et al., 2021b; 2024b). SIMPLER (Li et al., 2024b) constructs high-fidelity replicas of
real robot evaluation scenes and demonstrates strong correlation of simulated rollouts to human-run
rollouts in the corresponding real robot environments. However, gaps between simulation and the
real world remain, and our experiments show that they can affect different policies to varying degrees,
leading to inconsistent policy performance rankings between simulation and real world evaluation.
Additionally, a large number of tasks, like cloth or liquid manipulation, are challenging to simulate at
sufficient fidelity to enable reliable evaluation. In contrast, our approach performs evaluations on real
robot systems and thus provides a more reliable signal for policy performance, including on tasks
that are hard to simulate, while retaining scalability by minimizing the need for human intervention.

Autonomous robot operations. Multiple prior works identified the need for human supervision
as a key limiting factor in robot learning (Zhou et al., 2024; Ahn et al., 2024; Kalashnikov et al.,
2021; Pinto & Gupta, 2016; Chen et al., 2021; Lampe et al., 2023). While these works typically
focus on autonomous policy improvement instead of autonomous policy evaluation, they share many
challenges around robot resets and success detection. Thus, many of the techniques we employ for
learning reset policies and success detectors are inspired by prior work in autonomous robot learning,
and even some of the metrics are shared, e.g., measuring the frequency of human intervention (Beer
et al., 2014). However, to our knowledge, our work is the first to explore the design of a general
system for autonomous evaluation of generalist policies. While most robot learning researchers are
(painfully) aware of the cost of evaluations, existing efforts toward automating real robot evaluations
have been limited to task-specific solutions that often involve instrumenting the environment, e.g.,
with spring-driven or scripted reset mechanisms (Nagabandi et al., 2020; D’Ambrosio et al., 2024;
Kalashnikov et al., 2021). In contrast, we provide a task-agnostic, scalable approach for automating
robot evaluations with flexible, learned components based on generalizable and broadly applicable
foundation models.

3 AUTONOMOUS EVALUATION IN THE REAL WORLD
The policy evaluation problem setting we are interested in is rather straightforward: given a robot
policy π(a|o) that outputs actions, and a task definition T : S → {0, 1} that maps states to task
success, we are interested in estimating the probability that the robot policy π would be successful
in completing the task T . The output of the policy evaluation is an evaluation score ranging from
0 to 1, representing the success probability. During robot evaluations, the policy is typically asked
to perform the same task multiple times, while applying randomizations to the initial state of the
robot and the environment, to get a statistically significant estimate of the policy’s performance under
the initial state distribution ρ(s). Conventionally, a human evaluator needs to be present for the full
duration of the evaluation, supervising the robot, resetting the scene to a new initial position between
trials, and scoring the policy’s performance. Each individual trial may just take a few minutes, but for
generalist policies that need to be evaluated across many tasks and trials, a comprehensive evaluation
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of a single checkpoint can quickly take multiple days. Thus, we next discuss our AutoEval system for
autonomous policy evaluation that aims to minimize the required human time for robot evaluation.

We present an overview of our AutoEval system in Algorithm 1. At its core, it follows the same
structure as a conventional, human-run evaluation, running multiple trials with intermittent resets and
performance scoring. However, AutoEval introduces multiple learned modules that automatically
perform the tasks that typically require a human evaluator. Namely, AutoEval consists of three key
modules: (1) a success classifier, that evaluates a policy’s success on a given task, (2) a reset policy,
that resets the scene back to a state from the initial state distribution upon completion of a trial, and
(3) programmatic safety measures and fault detections that prevent robot damage and call for human
intervention when necessary. All three components are implemented via flexible, learned models,
and can thus be easily adapted to automate the evaluation of a wide range of robot tasks. Next, we
provide details on the design and training of each component of our AutoEval system.

Success classifier. The success classifier CT : S → {0, 1} serves to approximate the ground truth
task-success T : S → {0, 1} that maps image states to a binary success label. Instead of hand-crafting
a task-specific success rule as done in prior work (Gu et al., 2017; Nagabandi et al., 2020), AutoEval
trains a learned success classifier CT, a recipe which can be easily applied to a wide range of robot
tasks. Concretely, we collect a small set of example images of success and failure states. We use
approximately 1000 images, which takes less than 10 minutes to collect by tele-operating the robot
and saving the frames in the trajectory. We then fine-tune a pre-trained vision-language model (VLM)
for the task of binary success detection. Given a language prompt, e.g., “Is the drawer open? Answer
yes or no”, and an image observation, the model is trained to predict whether the task was successfully
completed. We use a pre-trained VLM to obtain a classifier that is robust to small perturbations of the
environment without needing to collect a large number of example images for fine-tuning. In practice,
we use the Paligemma VLM (Beyer et al., 2024) for training the success classifier, but many other
open-source VLMs would be suitable. More detailed information is provided in Appendix F.

Reset policy. The reset policy πT (a|s) “undoes” what the evaluation policy π did during the
evaluation rollout, returning the scene and robot to a state from the initial state distribution ρ(s).
Again, instead of relying on task-specific “hardware resets” like springs or magnets, our aim with
AutoEval is to design a system that can be flexibly applied to a range of robot tasks. We thus use
a learned policy for resetting the scene. As we will show in Section 4, scripted reset policies can
also be used in some tasks that have more structure, but learned policies provide a more generic
approach that can be applied to a variety of tasks. To learn a reset policy, we manually collect a small
set of approximately 100 high-quality demonstrations trajectories that reset the scene from plausible
end-states of both successful and failed policy rollouts. In practice, this data collection takes typically
less than two hours. We then fine-tune a generalist robot policy with behavioral cloning to act as a
reset policy. Starting from a generalist policy checkpoint ensures that the reset policy is more robust,
and fewer reset demonstrations are required to obtain reliable resets.

Safety detectors. While success detector and reset policy in theory enable autonomous evaluations,
in practice there are numerous issues and edge cases that can prevent evaluations from proceeding
autonomously, like robot hardware failures, damage to scene or robot, or out-of-reach objects. In
AutoEval we use multiple measures to prevent or gracefully handle such issues. First, we implement a
safety workspace boundary that the robot is constrained to, so policies with poor performance do not
damage the robot or the AutoEval scene. Second, we implement programmatic checks of the robot’s
motor status and reboot motors if they failed e.g., due to a collision of the robot with the environment.
We also train a “reset success classifier”, similar to the success classifier above, that recognizes if
resets were successful and re-runs the reset policy otherwise. In both cases, if multiple restarts or
resets are not successful, e.g., because an object dropped from the workspace, we implement an
automated notification system that requests manual intervention from an “on-call” human operator.
In practice, our experiments show that such manual interventions are very rare for the AutoEval cells
we implemented (3 interventions per 24 hours of autonomous evaluation, see Fig. 7).

Setup time. Overall, we find that the construction of an AutoEval cell for a new task can be completed
within 1-3h of human effort, and less than 5 hours total, including model training time for success
classifiers and reset policy. This is compared to tens of hours of human evaluation time that can be
saved even within a single research project. We provide a detailed step-by-step guide for constructing
new AutoEval cells in Appendix H to make it easy to reproduce AutoEval setups for new tasks.
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WidowX 250

Logitech 
C920 RGB 

(a) Bridge-AutoEval cell: our
robot setup features a Wid-
owX 250 6-DoF robot arm and a
Logitech C920 HD RGB camera,
replicating Walke et al. (2023).

(b) Three Bridge-AutoEval experiment scenes: sink, drawer, and
cloth. We support five autonomous evaluation tasks: two pick-and-
place tasks in sink, two drawer tasks in drawer, and one deformable
cloth manipulation task in cloth.

Figure 2: Bridge-AutoEval evaluation setup and task environments.

4 BRIDGE-AUTOEVAL: OPEN-ACCESS AUTOEVAL PLATFORM
In this section, we describe an instantiation of our automated evaluation system for multiple environ-
ments and tasks from the BridgeData V2 dataset (Walke et al., 2023; Ebert et al., 2021). BridgeData
is a diverse manipulation dataset containing 60k+ demonstrations with a WidowX 6DoF robot arm,
spanning 13 different skills and 24 environments. State-of-the-art generalist manipulation policies
like OpenVLA (Kim et al., 2024), RT2-X (Brohan et al., 2023), CrossFormer (Doshi et al., 2024),
and Pi0 (Black et al., 2024; Pertsch et al., 2025)) are all trained on BridgeData or a super set of
it (Collaboration et al., 2023), and therefore policy evaluations on this setup are a natural testbed for
scalable evaluation approaches for generalist policies.

Similarly to Walke et al. (2023), our Bridge-AutoEval setup use a WidowX 250 6-DoF robot arm
with a third-person Logitech C920 HD RGB-camera to capture the top-down 256× 256 image of
the robot workspace, as shown in Fig. 2a. We built three Bridge-AutoEval cells as shown in Fig. 2b,
which we call the drawer scene, the sink scene, and the cloth scene. Each scenes support
evaluation of one to two manipulation tasks: drawer supports evaluating “open the drawer” and
”close the drawer”; sink supports evaluating pick-and-place tasks “put the eggplant in the blue sink”
and “put the eggplant in the yellow basket”; cloth support the deformable object manipulation task
“fold the cloth from top right to bottom left”. While none of the exact scenes are in the BridgeData
dataset, all scenes are in the distribution of the tasks contained in BridgeData, and have been used in
prior works to evaluate generalist policies (Kim et al., 2024; Zhou et al., 2024; Zawalski et al., 2024;
Black et al., 2023). We choose these tasks since they represent diverse styles of manipulation tasks:
pick-and-place, articulate object manipulation, and deformable object manipulation.

For each scene, we train success classifiers and reset policies following Section 3. We also implement
the safety detectors described in Section 3 for the WidowX robot (see Appendix A). We run all
models on a single machine with an NVIDIA RTX 4090 GPU during autonomous evaluation. We also
implement an automated messaging system to request human interventions by sending notifications
programmatically to a Slack channel with operators that are “on call” for a given evaluation shift.

One contribution of our work is that we make two of our Bridge-AutoEval cells publicly available,
so other researchers can schedule evaluations for their policies. We hope that over time, this can
contribute to making evaluations in robotics more reproducible and comparable. To make this
practical, we provide a public web UI to access our Bridge-AutoEval cells and monitor the evaluation
progress, as shown in Fig. 3a. Users can choose the scene and task on which they want to perform
evaluation, and provide the IP address and port for a local “policy server”, that serves the policy they
want to evaluate. Given an image observations and a task instruction, the server runs the policy and
returns a sequence of 7D actions for the WidowX robot to execute (we provide example code for
wrapping user policies in the server interface).

Our Bridge-AutoEval system will automatically queue the jobs for evaluation, and query the policy
server for robot actions when the policy evaluation is executing. Our AutoEval system can run around
the clock, and execute evaluation jobs from all users in the order that they were submitted. At the
end of a policy evaluation, AutoEval provides users with downloadable rollout data and a detailed
performance report of the autonomous evaluation, which contains rollout videos, success rates,
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(a) Web UI for submitting evaluation jobs to the
Bridge-AutoEval cells. Users choose a desired task
and provide the IP address for a policy server they
host for evaluation, and can monitor the evaluation
through the UI.

Success Rates Episode Success

Video Eval Duration (s)Auto Recovery

Initial & Final 
Frame of Eval

(b) Excerpt from an AutoEval result report, provided
to users upon completion of the automated evaluation.
Users can see the quantitative metrics such as (per-
episode) success rate, and qualitative rollout videos
as well as initial and final frames to obtain a holistic
understanding of the policy’s performance.

Figure 3: Overview of how users interact with AutoEval.

episode durations, and frequencies of motor resets or required human interventions. Fig. 3b shows
part of an example report, which is accessible online instantly after AutoEval finishes. A step-by-step
guide for submitting policies to AutoEval can be found at https://auto-eval.github.io.

5 EXPERIMENTAL RESULTS

The goal of our experiments is to answer the following questions: (1) How well does AutoEval’s
policy performance estimates match those of “oracle” human-run evaluations? (2) Can AutoEval
evaluate policies more reliably and on a wider range of tasks than prior approaches for scalable
evaluation of generalist policies? (3) How stable is AutoEval in operations over long periods of time
and how effectively can AutoEval minimize the amount of required human operator time?

Tasks. We evaluate policies on the five Bridge V2 (Walke et al., 2023) evaluation tasks described in
Section 4: opening and closing a drawer, placing a plastic eggplant in a sink and a basket, and folding
a piece of cloth. All tasks are performed using a WidowX 6-DoF robot arm. During human-run
evaluations, success is counted when the drawer is completely closed or opened at least 1.5cm,
respectively, if the eggplant is fully inside the sink or basket at the end of the episode, and if the cloth
is folded to at least a quarter of the way diagonally. We randomize the initial position of the eggplant,
drawer, and the cloth at the beginning of each episode.

Figure 4: SIMPLER (Li et al., 2024b) simulated evaluation
scenes for the tested environments. Simulated evaluation
is fast and cheap, but can struggle from visual and physics
discrepancies between simulation and the real world.

Policies. We run evaluations with
six recently released generalist robot
policies from the robotics community:
OpenVLA (Kim et al., 2024), a 7B pa-
rameter vision-language-action model
(VLA) pre-trained on the Open X-
Embodiment dataset (Collaboration
et al., 2023), Octo (Team et al.,
2024), a 27M parameter transformer
policy, also pre-trained on Open X-
Embodiment, Open-π0 (Ren, 2024),
an open-source reproduction of the
3B parameter π0 VLA (Black et al.,
2024) (the original π0 was not avail-
able in open-source at the time of writ-
ing), pre-trained on the Bridge V2 dataset, MiniVLA (Belkhale & Sadigh, 2024), a 3B parameter
VLA pre-trained on the Bridge V2 dataset (Walke et al., 2023), SuSIE (Black et al., 2023), a hier-
archical policy that combines a image diffusion subgoal predictor with a small diffusion low-level
policy, pre-trained on Bridge V2, and SuSIE-LL, which directly executes the goal-conditioned
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behavioral cloning low-level policy from SuSIE. This set of policies is a representative sample of
current state-of-the-art generalist policies. All policies contain the Bridge V2 dataset as part of their
training data, and we evaluate the publicly released checkpoints for all models.

Comparisons. We compare multiple approaches for scalable evaluation of generalist policies.
Concretely, we compare our approach, AutoEval, to prior work on simulated evaluation of robot
manipulation policies, SIMPLER (Li et al., 2024b). SIMPLER builds realistic simulated versions
of real-world environments and then evaluates policies purely in simulation. For our experiments,
we reuse the existing SIMPLER environment for the Bridge sink environment, and build a new
SIMPLER simulation environment for the drawer scene (See Fig. 4) by following Li et al. (2024b)’s
guide. Deformable objects such as the cloth in our cloth scene are hard to simulate in general (Ha
& Song, 2022; Lin et al., 2021), and at the time of writing the simulator of SIMPLER, Maniskill (Mu
et al., 2021), does not support simulating deformable objects so we do not evaluate the cloth scene
in simulation. In addition, we compare to using mean-squared error on a validation set (“val-MSE”)
as a scalable approach for offline evaluation of robot policies.

Metrics. Human-run real-world evaluations represent a gold standard for robotic policy evaluation.
For scalable evaluation approaches like the ones we compare in this work, the goal is to approximate
the result of such human-run evaluations as closely as possible, while being significantly more
scalable to run. Following Li et al. (2024b) we use two metrics to measure how closely the respective
evaluation results match those of human-run evaluations: (1) Pearson correlation (Pearson, 1895),
which measures the linear consistency between two random variables, and is a widely used statistical
tool for assessing correlation, with scores nearing 1 indicating high correlation. (2) MMRV (Mean
Maximum Rank Violation) (Li et al., 2024b), which measures the consistency of policy ranking and,
as described in Li et al. (2024b), can be more robust to noise on the evaluation results. MMRV is
computed as follows: given N policies π1..N and their respective success rates RA,1..N , RB,1..N

estimated via two evaluation procedures A and B, we compute:

RankViolation(i, j) = |RA,i −RA,j | · 1[(RB,i < RB,j) ̸= (RA,i < RA,j)]

MMRV(RA, RB) =
1

N

N∑
i=1

max
1≤j≤N

RankViolation(i, j).

For each tested evaluation approach we compute MMRV with reference to human-run “oracle”
evaluations, where low MMRVs indicate closely matching evaluation results.

5.1 AUTOEVAL CLOSELY MATCHES HUMAN EVALUATION RESULTS

Figure 5: Correlation of scalable evaluation approaches to
oracle human-run evaluations. AutoEval closely matches
human evaluations, achieving high correlation and low
MMRV score (plotted in the figure is 1−MMRV for clarity).
In contrast, SIMPLER simulated evaluations and validation
MSE do not correlate as well with human evaluations.

In this section, we test how well
the different evaluation approaches
from Section 5 match the results from
human-run evaluations. For each eval-
uation method, we run 50 evaluation
rollouts for each policy in each of our
five tasks (except “val-MSE”, which
does not require rollouts).

We report results in Fig. 5, with a de-
tailed breakdown of results per task,
policy, and evaluation method in Ap-
pendix, Table 3 to Table 2. Similar to
prior work (Li et al., 2024b), we find
that simple validation MSE is a poor
evaluation metric for robot policies:
it actually negatively correlates with
real robot performance and thus does
not provide a reliable performance es-
timate. We find that SIMPLER eval-
uations in simulation provide a better
performance signal, but lack reliabil-
ity. Concretely, our results show that SIMPLER occasionally matches real-world performance well
(e.g., for the “open drawer” task), but in other cases not accurately reflects the policy’s performance.
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Open the 
Drawer

Policy Rollout Success 
Detector Reset Policy

Put  
Eggplant 
in Sink

Fold the 
Cloth

Figure 6: Qualitative visualization of AutoEval evaluation rollouts on three of our tasks. After the
policy execution is done, the success classifier determines whether the rollout was successful. Then,
the reset policy returns the environment into a state from the initial state distribution for the next
evaluation. Our evaluations cover representative robot manipulation tasks: pick-place, articulate and
deformable object manipulation.

For example for Open-π0 in the “put eggplant to sink" task, the policy performs very poorly in
simulated evaluations, but achieves high success rate in the real world. Intuitively, different policies
may suffer differently from the remaining sim-to-real gap in SIMPLER evaluations. As a result,
SIMPLER’s effectiveness is policy dependent and it cannot provide a reliable policy evaluation.

In contrast, we find that our approach, AutoEval, closely matches the results of oracle human-run
evaluations, with an average Pearson score of 0.942 and MMRV of 0.0015 (plotted as 1−MMRV
in Fig. 5 of 0.985). In particular, an MMRV score close to zero indicates that it rarely disrupts the
ranking of policies. Intuitively, since evaluations are still run in the real world, there is no sim-to-real
gap that could negatively affect policy performance. In practice, we find that success detector and
reset policy work reliably during evaluation. We show qualitative examples of autonomous evaluation
rollouts in Fig. 6, and further examples in Appendix B. Importantly, we find that AutoEval drastically
reduces the human effort required to run real robot evaluations, cutting the human evaluator time for
robot evaluations by > 99% compared to conventional, human-run evaluations. We also note that
AutoEval does not perfectly match human-run evaluation results, due to occasional failures in success
detection and reset policy. However, we find that in practice the accuracy of AutoEval is sufficient to
provide a strong ranking signal for robot policies.

5.2 AUTOEVAL ROBUSTLY RUNS OVER LONG TIME SPANS

A key advantage of autonomous robot evaluations is that they can run 24/7, since they require little
human involvement. In this section, we test AutoEval’s ability to operate over extended periods of
time and analyze the stability of the autonomous evaluation, both in terms of its up-time and the
reproducibility of policy evaluation performance.

AutoEval Avg. Speed Human Eval. Avg. Speed Human Intervention

Figure 7: Visualization of a 24 hour AutoEval evaluation run with
~850 total evaluation episodes. AutoEval is able to run autonomously
and only required a total of 3 human interventions over a 24 hour
period. On average, the evaluation throughput of AutoEval is on par
with that of human evaluations, but saves 99%+ human operator time.

For this investigation, we
performed a long-running
evaluation session over the
course of 24 hours, repeat-
edly interleaving the evalua-
tion of various policy check-
points, using the “open
drawer” and “close drawer”
tasks. In Fig. 7, we present
the evaluation throughput
over the 24 hours, as well
as the number of human in-
terventions needed over the
span of the whole evalua-
tion. We present evaluation
throughput in terms of the
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number of valid evaluation steps taken per minute, which only count steps taken by the policy being
evaluated and not the reset policy, and excludes the evaluation steps needed to re-run episodes during
which motors failed. Over the course of a day, a single AutoEval cell is able to run 60, 000 evaluation
steps (roughly 850 episodes on the drawer scene), with an average speed of 42 evaluation steps per
minute. The AutoEval throughput varies in Fig. 7 because of the different inference speed of different
policies. The average AutoEval speed, shown in dotted blue line, is slightly lower but on par with
the average evaluation speed of a human evaluator performing manual resets of the environment
and recording success rates. Even though AutoEval has a slightly lower throughput, AutoEval runs
autonomously and only required a total of three human interventions in the span of 24 hours to
reset the scene or robot. Every time a human operator needed to intervene, they simply needed to
check and reset the objects’ position in the scene, and potentially move the robot arm into reset
position if a motors failed and the robot fell on the table. Afterward, the human operator can make
AutoEval resume simply with the press of a button. Assuming that the average human response time
during the day is 30 minutes and 8 hours at night, and that the 3 required resets occur randomly
throughout the 24 hours, a whole day of AutoEval yields ≈ 19 hours of “real evaluation time” that
is not blocked by human reset. Assuming that each human reset operation takes 1 minute, 19h of
real autonomous evaluation only costs 3 minutes of human time, compared to ≈ 16 hours if a human
evaluator wanted to run the same number of trials by hand. This means that AutoEval can reduce
human time involvement by >99%.

Motors  
Overheat

8 hours of autonomous evaluation

Figure 8: AutoEval scores remain consistent over
8 hours of autonomous evaluations. After 8 hours,
the WidowX robot’s motors overheat and evalua-
tion scores start to drift. As a result, we pause for
20 min every 6 hours to let the motors cool off.
Error bars show 95% confidence intervals.

Are AutoEval results consistent across time?
We test the consistency of AutoEval evaluations,
i.e., AutoEval’s ability to produce comparable
performance estimates across multiple iterations
of evaluating the same policy. To test this, we
run the Open-π0 policy through a sequence of
9 evaluations on the “open drawer” task, each
consisting of 50 individual trials, or a total of
450 trials. Using AutoEval, the full evaluation
takes ~11 hours. We report the results of this
evaluation in Fig. 8. We find that AutoEval pro-
duces consistent evaluation results across long
periods of time. Concretely, for the first 7 evalu-
ation runs, or a total of 350 evaluation episodes,
AutoEval performance evaluation are within the
margins of what might be considered the natural
variance of robot evaluations (±10%). We see
a regression in performance after approximately
8 hours of continuous operation, which we attribute to an overheating of the motors of our rather
affordable WidowX robot (<$3500) after many hours of operation. To mitigate the effects of such
overheating in practice, we pause autonomous evaluations for 20 minutes every 6 hours to let the
motors cool off before resuming evaluations.

In addition, we evaluate AutoEval’s performance over two months of continuous operation. Results
in Appendix J shows the AutoEval yield consistent results over such long time periods.

5.3 ANALYZING AUTOEVAL FAILURE MODES

Figure 9: Analyzing 50 AutoEval runs on the
sink scene: the main failure mode is false posi-
tive results because the reset policy failed.

While our previous experiments show that Au-
toEval closely matches the results of human-run
evaluations, errors occur occasionally. To bet-
ter understand the sources of these errors and
help the design of future autonomous evaluation
cells, we perform a detailed analysis of all fail-
ures occurring in a 50 episodes AutoEval run
on the “put eggplant in blue sink” task with the
Open-π0 policy. We visualize the outcomes in
Fig. 9. While many episodes experienced motor
failure because of harsh contact with the scene,
AutoEval handles such failure automatically and
re-runs those trials, and only report evaluation
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trials without motor failures. We find that for only three out of 50 trials, the autonomous evaluation
fails, since the episodes mistakenly get classified as successes and the reset policy fails. One key
takeaway from this failure analysis is that our Bridge-AutoEval setup is already very reliable with few
errors, and that most room for improvement is in improving the efficiency by reducing the number
of motor failures during evaluation, e.g. by implementing a more compliant robot controller that
prevents harsh environment interactions.

6 CONCLUSION
In this work, we introduced AutoEval, a system for autonomous evaluation of generalist robot policies
in the real world. We demonstrated that AutoEval can perform high-quality evaluations around the
clock and with minimal human involvements across a range of commonly used robot evaluation tasks.
Our experiments shows that AutoEval results closely matches those of human-run evaluations, and
are both more reliable and applicable to a wider range of tasks than prior simulation-based evaluation
approaches. In an effort to make real-robot evaluation widely available and more comparable, we
provide public access to two AutoEval evaluation cells for popular BridgeData V2 evaluation tasks,
for which users can submit their policies online for evaluation, and receive detailed evaluation reports.
We hope that this will inspire more AutoEval evaluation cells to be set up across institutions to form
a diverse automated evaluation framework, which will significantly speed up robot learning research.
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APPENDIX

A SAFETY DURING EXTENDED AUTONOMOUS ROBOT OPERATIONS

To ensure that the robots can autonomously and safely operate for a long time, we take several
measures to ensure the safety of the robot and to preserve the scene. First, we set safety boundaries
for the robot such that the policy cannot go beyond certain xyz axis (e.g. beyond the view of the
camera) so that it does not run into objects unintentionally. Second, since the WidowX robot arms
do not natively support impedance control, we limit the maximum effort on each of the robot joints,
so that ineffective policies do not press too hard against objects and cause motor failure or damage
the scene. The common robot failure is due to joint failure when interacting and colliding with the
objects in the scene, hence we constantly monitor and log the joint effort values, software reboot the
joints at a safe arm position when joint errors are detected during each trial. Third, we use the safety
detectors described in Section 3 to monitor and out-of-distribution and unexpected scenarios. Finally,
we further ensure safety of the scene by taping the drawer and cloth to the table to prevent them from
falling off the table, and add a thin plastic wrap over the yellow sink to prevent robot gripper getting
jammed and damaged.

B VISUALIZATIONS OF AUTOEVAL ROLLOUTS

Fig. 10 presents evaluation trajectories in the five different Bridge-AutoEval tasks. The actual
language commands fed to the evaluated policies are:

1.“Close the drawer”

2.“Open the drawer”

3.“Put the eggplant in the yellow basket”
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4.“Put the eggplant in the blue sink”
5.“fold the cloth from top right to bottom left”

Close the

 Drawer

Open the

 Drawer

Put Eggplant

In Basket

Put Eggplant

In Sink

Fold Cloth

Figure 10: Samples of autonomous policy evaluation trials with AutoEval on the five tasks. The
classifier result of each task is visualized on the right hand side, and the reset policy is not shown.

C DETAILED EVALUATION RESULTS ON BRIDGE-AUTOEVAL

In Table 1 to Table 2, we provide detailed evaluation results for our comparison of different scalable
evaluation approaches across the five Bridge V2 evaluation tasks. For both tasks on the Drawer
scene, we evaluate all policies for 70 steps at maximum; for both tasks on the Sink scene, we run
100 steps; for the Cloth scene, we run 80 steps.

Policy Drawer Sink
Open Close To To Fold

Drawer Drawer Basket Sink Cloth
OpenVLA 40/50 46/50 1/50 0/50 13/50
Open π0 29/50 46/50 7/50 47/50 12/50

Octo 1/50 5/50 0/50 0/50 4/50
SuSIE-LL 0/50 1/50 0/50 0/50 0/50

SuSIE 1/50 18/50 0/50 0/50 9/50
MiniVLA 33/50 49/50 38/50 0/50 8/50

Table 1: AutoEval results on five Bridge-AutoEval tasks across six different generalist policies.

D EVALUATION ON BRIDGE-SIMPLER (LI ET AL., 2024B)

In AutoEval , we introduced a new Drawer Scene to the existing SIMPLER (Li et al., 2024b) setup for
the WidowX robot. The scene was visually matched with the AutoEval’s Drawer setup, and overlaid
with the same background to ensure consistency. A 3D model of the drawer, with exact dimensions
matching the real-world setup, was also created. This scene introduced two evaluation tasks: "open
and close the drawer". To add variability to each evaluation trial, we randomized the end effector’s
initial pose, the drawer’s initial pose, and the lighting conditions in the background.

In addition to the Drawer Scene, AutoEval includes a Sink Setup, which closely resembles the existing
SIMPLER (Li et al., 2024b) Sink Scene. In SIMPLER, the task here is the "move the eggplant to the
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Policy Drawer Sink
Open Close To To Fold

Drawer Drawer Basket Sink Cloth
OpenVLA 40/50 46/50 1/50 0/50 12/50
Open π0 24/50 45/50 7/50 47/50 3/50

Octo 0/50 0/50 0/50 0/50 2/50
SuSIE-LL 0/50 0/50 0/50 0/50 0/50

SuSIE 2/50 13/50 0/50 0/50 10/50
MiniVLA 32/50 49/50 38/50 0/50 8/50

Table 2: Ground truth human evaluation results for the five Bridge-AutoEval tasks across six different
generalist policies.

basket" task. We also introduced a reverse task, "move eggplant to the sink," effectively making the
scene reset-free. This allows for both forward and reverse tasks in the same environment.

With these two scenes and four tasks, we conducted 50 runs for each scene across five different
generalist policies. The detailed results are shown in Table 3

Policy Drawer Scene Sink Scene
Open Close To To

Drawer Drawer Basket Sink
OpenVLA 32/50 2/50 1/50 0/50
Open π0 34/50 24/50 45/50 6/50

Octo 3/50 0/50 6/50 3/50
SuSIE-LL 1/50 0/50 0/50 0/50

SUSIE 0/50 41/50 7/50 0/50
MiniVLA 30/50 23/50 10/50 2/50

Table 3: Evaluation Results on SIMPLER (Li et al., 2024b) for Drawer and Sink Scene on four tasks
and six different policies.

E COMPUTING ACTION VALIDATION MSE BETWEEN POLICIES

We sample 400 trajectories from the validation set of BridgeData (Walke et al., 2023) to compute the
action mean squared error (MSE) for each policy. The results are shown in Table 4. Consistent with
the findings in SIMPLER (Li et al., 2024b), this illustrates a weak correlation of task success rate on
AutoEval with validation MSE.

Policy 200 Trajectories 400 Trajectories
MSE Norm MSE MSE Norm MSE

OpenVLA 0.0143 1.362 0.015 1.431
Open π0 0.082 1.433 0.085 1.495
Octo 0.0214 1.504 0.023 1.611
GCBC 0.008 0.817 0.009 0.870
SUSIE 0.018 1.1579 0.018 1.244

Table 4: Average Validation MSE across Policies on 400 random trajectories from BridgeV2 Dataset.
Norm MSE represents the MSE of normalized actions, while MSE represents the MSE of raw action
magnitudes.

F SUCCESS CLASSIFIER IN BRIDGE-AUTOEVAL CELLS

To train success classifiers for the Bridge-AutoEvalscenes, we finetune the Paligemma VLM to act
as a classifier. We manually collect a dataset of roughly 1000 images for each scene, and manually
label them. We form VQA questions with the labels, and finetune the base 3B parameter VLM with
quantized LoRA using a learning rate of 2e− 5, batch size of 4 for 80 iterations. For some scenes,
we combines the success classifier and the safety detector into a single fine-tuned VLM: we train the
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VLM to output “invalid” (in addition to classifying success) when there are out-of-distribution cases
that prevent evaluation from proceeding autonomously (e.g., object out of reach).

For each evaluation scene, approximately 1000 image frames are collected to fine-tune the VLM. The
corresponding language prompts are:

1. Sink Scene: "is the eggplant in the sink or in the basket? answer sink or basket or invalid"
2. Drawer Scene: "is the drawer open? answer yes or no"
3. Cloth Tabletop Scene: "is the blue cloth folded or unfolded? answer yes or no"

We evaluate our classifier both by running it on a held-out test set of roughly 100 images and
by teleoperating the robot and running the classifier on all the image observations throughout the
trajectory. We choose to deploy success classifiers in AutoEval that have an accuracy of > 95%.
When the classifier trained on the initial ∼ 1000 images does not achieve this accuracy threshold,
we found it helpful to improve classifier performance by rolling out the trained model, identifying
incorrect predictions and collecting these images, and retraining on these “hard” examples.

G RESET POLICY IN BRIDGE-AUTOEVAL CELLS

To train reset policies for the Bridge-AutoEvalcells, we finetune the generalist OpenVLA policy with
LoRA, with batch size 64 and learning rate 10−4 for 1000 iterations. For each scene, we collect
50− 100 demonstration trajectories via teleoperation, and train with a standard behavior cloning loss.
We also use a scripted policy for one of our reset policy - "Close the Drawer" task, where the reset
success rate is not sensitive to variation in scene.

Similar to the success classifiers, we choose to deploy reset policies that have a success rate of
> 95%.

H STEP-BY-STEP AUTOEVAL CONSTRUCTION GUIDE

Below, we provide a step-by-step guide for creating an AutoEval setup for a new evaluation tasks.
Refer to our code release at https://github.com/zhouzypaul/auto_eval for code on
each of the steps and detailed instructions on how to run the code. The full process takes approximately
3 hours of active human effort and a total of 5 hours including model training time for reset policy
and success detector.

1. Train Reset Policy: Start by collecting approximately 50− 100 high-quality robot demon-
strations of resetting behavior from sensible final states of policy rollouts. Try to cover
a diverse set of “reset start states”, including those that failed the original task, to obtain
a robust reset policy. Once you collected the dataset, fine-tune a generalist policy like
OpenVLA (Kim et al., 2024), e.g., using LoRA fine-tuning, on your the small demonstration
dataset. If you find that the reset is unreliable and fails often, consider collecting more reset
demonstrations particularly on the positions where the reset policy fails and re-train the
policy. For a small set of tasks that has more structure, you can also use scripted policies to
reset the scene. See our code release for code to record tele-operated policies for WidowX
robots and replaying it to reset the scene. An easy way to make reset policies stronger is to
simply execute it for multiple times if it fails. Proceed when your reset has success rate of
> 95%.

2. Train Task Success Classifier (And Safety Detector): While the success classifier and the
safety detectors serve two different functions, in practice you can train a combined three-way
(success, failure, invalid) classifier that acts as both the success and safety detector. This
classifier will output “invalid” when OOD events happen (e.g. objects out of reach) and
human intervention is needed, else it will output whether the task is successfully completed
or not. Collect approximately 1000 images of success and failure (and invalid) states. Be
sure to collect lots of failures (and invalid) states because there are many ways in which
the robot can fail. Then fine-tune a vision-language model like Paligemma (Beyer et al.,
2024) on this dataset. Test the performance of your classifier by tele-operating the robot and
scoring the observations along the trajectory. You can improve the classifier by saving the
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observations that it mis-classifies and re-train by incorporating these “hard examples” into
the original dataset of images. Proceed when your success classifier has accuracy > 95%.

3. Set Up Safety and Robustness Measures: We have implemented multiple safety measures
described in Appendix A for the WidowX robot. To set up new AutoEval tasks on WidowX
robots (or ViperX or similar robots), you can directly use our infrastructure; to set up
AutoEval on a new robot embodiment, consider implementing the following safety measures.
First, if your robot does not have an integrated p-stop that prevents forceful collisions with
the environment, implement a limit on the motor current to prevent high-force contact with
the environment that may damage the robot and the scene. Also implement a software
mechanism to reboot the motors when they fail. Second, use a workspace boundary to limit
the reach of the robot: limit the robot from reaching out-of-scene objects and prevent the
robot from removing objects that are in the scene. Finally, use an “on-call” system that sends
push notifications to human monitors when the robot reports an irrecoverable safety issue or
the reset policy fails for N ≈ 3 times in a row (as determined by the success detector). We
implement a Slack bot that sends notifications through Slack channels.

4. Prepare for Policy Submission: Power on the robots and start the low-level robot controllers.
We set up the robot environment as a server that waits to receive actions from the policy.
Then, start the webserver to access the UI for tracking the evaluation jobs queue and
submitting a policy through the webapp. Next, host your policy that needs to be evaluated
as a server. Finally, submit the IP and port of your policy server to the AutoEval web UI as
an evaluation job to the AutoEval system. The evaluation job will be automatically queued
and ran. See the code release for more detailed instructions.

I BRIDGE-AUTOEVAL DEPLOYMENT DETAILS

As described in Section 4, we open access to our Bridge-AutoEval cells to the research community.
The two different AutoEval cells accepts and executes jobs in parallel. While the two WidowX robots
will accept evaluation jobs 24/7, we enforce a 20 minute rest period every 6 hours where the robot
will torque off and let the motors cool off (see Fig. 8 for why this is necessary). The reset period will
only happen between evaluation jobs.

Since we host the reset policies for the four tasks in Bridge-AutoEval 24/7, we optimize for lightweight
policies (as compared to the fine-tuned OpenVLA reset policy we use in Section 5). For the two tasks
on Drawer, we use scripted reset poliy; for the two tasks on Sink, we fine-tune MiniVLA (Belkhale
& Sadigh, 2024) on the same demos. We find that all reset policies have success rate > 95%.

J EVALUATION RESULTS REPRODUCIBLE ACROSS MONTHS

We find that AutoEval reproduces results even after more than 2 months of continued use, demon-
strating its robustness to aging effects. We compare AutoEval results that are two months apart
for two policies on three tasks as shown in Table 5. During the two months, AutoEval operated
continuously for a rough total of 200 hours. Table 5 shows that all evaluations perform similarly when
evaluated two months apart, and the reset policy and success classifiers still have accuracies 96%
and 96% respectively. We attribute such robustness to (1) safety controllers (Appendix A) limiting
robot joint efforts to prevent high-force contact and damages, and (2) foundation model pre-training
(Paligemma VLM, OpenVLA) making policies and detectors resilient to minor scene changes. Over
two months, we have observed minimal “aging” – e.g. there are light scratches on the drawer upon
close examination, but they are not visible in the 256x256 pixel policy image observations and does
not impact the drawer physics.

K INITIAL STATES IN BRIDGE-AUTOEVAL CELLS

We find that our learned reset policy is able to reset to a consistent distribution of initial states. As
an example, we plot the centroids of all eggplant initial positions for three representative AutoEval
runs of the “Eggplant to Basket” task in Fig. 11 (50 trials each). Qualitatively, we find that the reset
distributions of other tasks are similarly overlapping, and also roughly cover the task distribution.
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Policy Open Close Eggplant
Drawer Drawer to Basket

OpenVLA (old) 39/50 48/50 4/50
OpenVLA 40/50 46/50 1/50

Avg. ∆ Success +2% -2% -6%
Open π0 (old) 30/50 45/50 9/50

Open π0 29/50 46/50 7/50
Avg. ∆ Success -2% +2% -4%

Table 5: AutoEval results obtained two months apart: results remain highly consistent across two
different policies on three different tasks. All correlate well to human evaluations.

Figure 11: Initial state distribution for 3 different AutoEval runs is consistent. Red dots show the
centroid position of the eggplant. Each run uses 50 trials.

L IMPROVING AUTOEVAL WITH ADDITIONAL HUMAN INVOLVEMENT

Though AutoEval results highly correlate with ground truth human-run evaluations, it is not perfect
(as shown in Fig. 9). Additional human effort, when available, can further improve AutoEval’s
accuracy. The easiest and most effective way to apply extra human effort can be spent going through
the evaluation report after AutoEval finishes to remove the runs where the reset policy fails, and
relabel the success manually. Going through 50 trials of AutoEval roughly takes 1− 2 minutes of
human time. This enables ground-truth judgment of evaluations runs while still saving the majority
of human time required in robot evaluations.

M LIMITATION

AutoEval environment creation time. Our current approach for creating new environments for
automated evaluation requires some up-front human effort to train the reset policy and success
classifier. In our experience, the complete process only takes a few hours for a new scene and is
quickly outweighed by the time savings of autonomous evaluation, but future work can explore more
efficient ways of constructing reset policies and success classifiers to further reduce the effort for
setting up a new scene for autonomous evaluation. We also expect that future improvements to vision
foundation models and generalist policies will make the training of robust success classifiers and
reset policies easier, possibly to the point where we can “train” these modules simply by providing a
handful of examples in context.

Evaluating policy robustness. There are various dimensions of out-of-distribution robustness we
may be interested in evaluating for robot policies, e.g., robustness to varying camera angles, distractor
objects, lighting conditions, or table textures (see Gao et al. (2025) for a more comprehensive
taxonomy). Varying each of these axes in a controlled way as part of an automated evaluation pipeline
may require major engineering efforts, and AutoEval currently does not support such evaluations. In
the future, a decentralized network of AutoEval cells may be able to increase evaluation diversity
across many of these axes.

Mobile manipulation tasks. Our experiments capture a set of robot manipulation tasks that are
reflective of the kind of tasks commonly used for evaluating generalist robot policies today, where
the primary focus is on table-top manipulation tasks. We believe that our approach will transfer well
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to a wide range of other single-arm and bi-manual table top manipulation tasks. However, mobile
robot tasks, particularly mobile manipulation tasks, may pose new challenges e.g. with regards to
robust resets at room scale, success estimation under partial observability, and operational safety, all
of which pose important directions for future work.

Binary success metrics. AutoEval evaluation currently only supports binary success estimates (did
the policy succeed at a task or fail). When humans run evaluations, they can provide a more granular
assessment of the policy’s performance, including task progress scores and a qualitative analysis of
the policy’s proficiency. While AutoEval users can obtain similar assessments from re-watching the
logged evaluation videos, this is a time-consuming process. In future work, it would be exciting to
investigate whether more granular performance analysis can be provided in an automatic evaluation
framework, e.g., by querying powerful video summarization models.
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