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Abstract

Top-view perspective denotes a typical way in
which humans read and reason over different
types of maps, and it is vital for localization and
navigation of humans as well as of ‘non-human’
agents, such as the ones backed by large Vision-
Language Models (VLMs). Nonetheless, spa-
tial reasoning capabilities of modern VLMs
remain unattested and underexplored. In this
work, we thus study their capability to under-
stand and reason over spatial relations from the
top view. The focus on top view also enables
controlled evaluations at different granularity
of spatial reasoning; we clearly disentangle dif-
ferent abilities (e.g., recognizing particular ob-
jects versus understanding their relative posi-
tions). We introduce the TOPVIEWRS (Top-
View Reasoning in Space) dataset, consisting
of 11,384 multiple-choice questions with ei-
ther realistic or semantic top-view map as vi-
sual input. We then use it to study and evalu-
ate VLMs across 4 perception and reasoning
tasks with different levels of complexity. Eval-
uation of 10 representative open- and closed-
source VLMs reveals the gap of more than
50% compared to average human performance,
and it is even lower than the random baseline
in some cases. Although additional experi-
ments show that Chain-of-Thought reasoning
can boost model capabilities by 5.82% on aver-
age, the overall performance of VLMs remains
limited. Our findings underscore the critical
need for enhanced model capability in top-view
spatial reasoning and set a foundation for fur-
ther research towards human-level proficiency
of VLMs in real-world multimodal tasks.

1 Introduction

Large Language Models (LLMs) such as Llama 2
and 3 (Touvron et al., 2023), Mistral (Jiang et al.,
2023), and GPT models (OpenAI, 2022) have de-
livered impressive performance across a range of
text-based tasks and applications such as question

* Equal contributions.

answering, language generation, and arithmetic
reasoning (Qin et al., 2023a; Zhao et al., 2023).
Building on these text-only LLMs, the so-called
Vision Language Models (VLMs), equipped with
the capability to process and reason over multi-
modal vision-language information, have enabled
multi-modal processing (Yin et al., 2023; Wu et al.,
2023). They ground language reasoning ability
of LLMs into the information of different modal-
ities (Chandu et al., 2021). Prominent examples
of VLMs such as LLaVA (Liu et al., 2023b), GPT-
4V (OpenAI, 2023), and Gemini (Google, 2024),
have demonstrated strong performance across ap-
plications such as visual question answering (Li
et al., 2023d), image captioning (Diesendruck et al.,
2024), and object grounding (Zheng et al., 2024).

Spatial reasoning, as one of the fundamental de-
sirable properties of and requirements for VLMs,
has also gained increased attention recently (Rajabi
and Kosecka, 2023; Liu et al., 2023a; Chen et al.,
2024). It requires grounding the model’s reasoning
ability with natural language into its visual percep-
tion of the surrounding environment (Freksa, 1991).
In particular, it involves two critical steps: (i) inter-
preting the environment visually, and (ii) reasoning
over spatial relations. As a fundamental ability for
the model to recognize, understand, and navigate
through the physical world, it plays a crucial role in
various downstream tasks such as vision-language
generation (Li et al., 2024a) and embodied AI (Cho
et al., 2024).

However, previous research has focused on ex-
ploring spatial reasoning abilities of VLMs only
from a conventional first-person perspective view
(Liu et al., 2023a). In this work, we aim to study
and evaluate spatial understanding and reasoning
capability of VLMs from the top-view perspective,
also referred to as the bird’s-eye view (Li et al.,
2024b). When compared to the conventional per-
spective view, top view offers better natural align-
ment: it is a typical view to read different maps or
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Figure 1: Illustration of the four evaluation tasks with an incremental level of complexity on the two types of
top-view maps (photo-realistic versus semantic maps), covering top-view perception and spatial reasoning abilities,
with 9 sub-tasks in total (red font), focusing on different, well-defined VLM abilities. The radar graphs (top right)
compare the representative models’ performance on all sub-tasks, indicating a large gap with human performance.

present, e.g., floor plans. Moreover, it is inherently
more complex: top-view maps encapsulate a wealth
of information about different scenes, locations,
objects and their relationships in the environment
based on a single image. In addition to the photo-
realistic top-view maps, semantic top-view maps
(Nanwani et al., 2023; Li et al., 2024a) use different
colors to represent different types of objects; we
run experiments with both map types, see Figure 1.

One advantage of top-view maps is that they
define a controlled and interpretable experimental
framework. Indoor scenes, which are the focus
of this work, typically feature a relatively stable
set of objects and layouts, making them ideal for
controlled studies. This allows us to disentangle
and investigate various aspects of spatial reasoning
and VLMs’ capabilities in a controlled manner.1

1For instance, we can apply different interventions (e.g.,

In this work, we thus investigate the basic top-
view spatial understanding and reasoning abilities
of current state-of-the-art VLMs across four tasks
of gradually increasing complexity, and their finer-
grained sub-tasks. The tasks are as follows. 1)
Top-View Recognition assesses whether the model
can recognize concrete objects and scenes in top-
view maps. 2) Top-View Localization evaluates
the ability to localize objects or regions on a map
based on textual descriptions. (3) Static Spatial
Reasoning investigates whether the model can rea-
son about spatial relationships among localized
objects and regions within the map. (4) Dynamic
Spatial Reasoning evaluates reasoning about spatial
relations along the points of a dynamic navigation
path. Figure 1 illustrates all the tasks with concrete

drawing a navigation trajectory in a realistic map, or changing
the color-object mapping in a semantic top-view map).



examples. As one key finding of this study, con-
ducted evaluations reveal that current VLMs lack
sufficient capability to effectively tackle top-view
spatial reasoning challenges, indicating substantial
room for improvement in future research.

Contributions. 1) We define the top-view spa-
tial reasoning challenge for VLMs via 4 care-
fully designed tasks of increasing complexity, also
encompassing 9 distinct fine-grained sub-tasks
with a structured design of the questions focus-
ing on different model abilities. 2) We collect the
TOPVIEWRS dataset, comprising 11,384 multiple-
choice questions with either photo-realistic or se-
mantic top-view maps of real-world scenarios
through a pipeline of automatic collection followed
by human alignment. 3) We use TOPVIEWRS to
evaluate and study 10 VLMs from different model
families and sizes, highlighting the performance
gap compared to human annotators 2.

2 Related Work

Top-View Map Understanding. There are only
limited studies in NLP focused on the use of top-
view maps, though considerable research has been
conducted within the broader AI community on the
so-called bird’s-eye view, which is an instance of
top view. This body of work has explored applica-
tions in autonomous driving (Unger et al., 2023; Li
et al., 2024c), with contributions on fusing different
types of views (Qin et al., 2023b) and working with
arbitrary camera setups (Peng et al., 2023). In other
application scenarios, Yan et al. (2021) introduce a
bird’s-eye view person re-identification task with
114k images of the person.

Efforts to bridge top-view images with natural
language in applications beyond the above are less
diverse. The WAY dataset, proposed by Hahn et al.
(2020), contains 6,154 dialogs aimed at localizing
an observer’s position on a top-view map through
conversations between an observer and a locator.
This dataset has inspired follow-up research fo-
cusing on merging vision with dialog information
(Zhang et al., 2024a) and leveraging pretraining
strategies to enhance performance (Hahn and Rehg,
2022). In general, prior research does not assess
VLMs’ basic spatial reasoning abilities with top-
view images and lacks fine-grained and control-
lable analysis of these fundamental abilities.

2We release the code in https://github.com/
cambridgeltl/topviewrs.

Spatial Reasoning on Multi-Modal Vision-Text.
There has been a body of work on text-only spatial
reasoning with the advancement of LLMs (Yamada
et al., 2024), within the context of relative spatial
relation recognition (Mirzaee et al., 2021; Shi et al.,
2022), natural language navigation (Yamada et al.,
2024), and planning (Momennejad et al., 2023)
(see Appendix A for a more complete overview).

Cross-modal spatial reasoning puts forward
higher requirements for the models in terms of
language grounding (Rozanova et al., 2021; Rajabi
and Kosecka, 2023). Liu et al. (2023a) investigate
spatial reasoning with 2D natural realistic front
view images and Chen et al. (2024) extend the
analysis to 3D point clouds. The environmental
contexts become more diverse compared to syn-
thetic symbols in text-only spatial reasoning, rang-
ing from indoor environments (Koch et al., 2024) to
outdoor street views (Chen et al., 2019). Regarding
typical tasks, visual QA (VQA) is the mainstream
task for benchmarking spatial reasoning abilities
(Dong et al., 2021; Banerjee et al., 2021; Liu et al.,
2023a; Li et al., 2023a,b; Kamath et al., 2023),
while other tasks include vision-Language naviga-
tion (Chen et al., 2019; Li et al., 2024a) and user
interface grounding (Rozanova et al., 2021).3

We stress that none of the prior research efforts
allows for disentangled evaluation of models’ spa-
tial reasoning abilities. Prior work typically con-
flates object recognition with spatial reasoning. We
thus design a dataset and conduct a study that not
only offers insight into fundamental abilities but
also allows for easier interpretation of results (§4).

3 Task Definition

Following prior work (Li et al., 2023a), we frame
all tasks as multiple-choice QA tasks. Given a
top-view (realistic or semantic) map of a room M ,
the model must choose the correct option oi from
the four options provided O = {o0, o1, o2, o3} that
answers the question.4 This format simplifies the
evaluation and interpretation of the results.

Top-View Maps. We provide two different types
of top-view maps to the models: realistic maps
MReal and semantic maps MSem. Realistic maps

3Research on multi-modal spatial reasoning also intersects
with efforts from the computer vision community on scene
understanding (Teney et al., 2017), simultaneous localization
and mapping (Cadena et al., 2016), and combining LLMs with
representations of the 3D physical world (Hong et al., 2023).

4For simplicity, for each question, there is always a single
correct answer.
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are constructed by placing a simulated orthographic
camera above the scene to capture a photo-realistic
top-view image. Semantic maps represent objects
in the scene with colored bounding boxes. Each
object is assigned a specific color and labeled at
the same relative coordinates on the map to pre-
serve the object’s semantic information and spa-
tial allocation. In comparison to realistic maps,
semantic maps simplify the initial step of spatial
reasoning (i.e., environment interpretation) by la-
beling the object types with corresponding colors
and excluding irrelevant additional details such as
shape and texture found in realistic top-view maps.
Given the customizable and flexible nature of color-
object mapping, the semantic map can also serve
as an ideal testbed for evaluating models’ out-of-
distribution (OOD) performance, thereby encour-
aging further exploration beyond the scope of this
work. Example maps are in Figure 1.

Tasks and Sub-Tasks. We define 4 different tasks
which cover a total of 9 finer-grained sub-tasks,
with concrete examples shown in Figure 1. The
tasks are designed to have an increasing level of
complexity, where each subsequent task depends
on the abilities measured in the preceding one(s).
(1) Top-View Recognition evaluates the fundamen-
tal ability to interpret the input map, and covers two
sub-tasks: Object Recognition and Scene Recog-
nition. It does not require the model to identify
specific locations of objects and rooms.
(2) Top-View Localization investigates whether the
model can localize objects or rooms in the top-
view map based on textual descriptions, including
Object Localization and Scene Localization as two
sub-tasks. Beyond understanding the top-view map
as a whole, it requires the model to ground entities
in the map, representing the model’s ability to align
spatial descriptions with corresponding locations.
(3) Static Spatial Reasoning aims to evaluate the
model’s spatial reasoning ability with more com-
plex questions. It includes two sub-tasks: reason-
ing over Scene Counting and Relative Spatial Rela-
tions between different objects and rooms. These
questions require the model to perform multi-step
reasoning based on the recognition and localization
of entities in the top-view map.
(4) Dynamic Spatial Reasoning. Finally, we in-
troduce a novel task that involves dynamic spatial
reasoning over top-view maps in the context of
agent navigation. It requires the model to under-
stand the sequential relations along the points of the

navigation path (sub-task Dynamic Action Count-
ing) and answer spatial questions with regard to
the dynamic navigation path (sub-task Dynamic
Relative Spatial Reasoning) and the circumstantial
environments (Dynamic Spatial Localization).

4 TOPVIEWRS Dataset

In order to study and evaluate the abilities of state-
of-the-art VLMs on the four tasks spanning 9 sub-
tasks from §3, we now introduce a novel evaluation
dataset, TOPVIEWRS, which focuses on top-view
maps of indoor scenes (i.e., houses and rooms),
discussed in what follows.

Dataset Features. It introduces several advance-
ments and innovative features that distinguish it
from all prior visual spatial reasoning datasets.
1) Multi-Scale Top-View Maps: The selected top-
view maps of indoor scenes (see Figure 1) pro-
vide a more natural representation of spatial en-
vironments that aligns with human cognitive map
(Epstein et al., 2017). This makes benchmarking
spatial awareness more straightforward and mean-
while mitigates spurious correlations in the posi-
tions between objects commonly found in realistic
front-view images. Compared to the front view, the
multi-scale top-view maps of single rooms and full
houses add more divergence in the granularity of
the entities (objects or rooms) in spatial reasoning.
Meanwhile, we provide both realistic maps and
semantic maps for more comprehensive evaluation.
2) Realistic Environmental Scenarios with Rich
Object Sets: We provide real-world environments
from indoor scenes, with 80 objects per scene on
average, ensuring a natural distribution and com-
plexity of object locations. This also sets it apart
from existing front-view spatial reasoning datasets,
which often contain only a handful of objects.
3) Structured Question Framework: Unlike previ-
ous datasets (Li et al., 2023a; Liu et al., 2023a;
Kamath et al., 2023), which often conflate spa-
tial reasoning with object recognition, our dataset
clearly defines four tasks including 9 sub-tasks in
total using diverse question templates. This struc-
tured approach allows for a fine-grained evaluation
and analysis of models’ capabilities from various
perspectives and levels of granularity.

Dataset Collection. We employ a two-stage data
collection strategy that includes automatic collec-
tion from a simulator and alignment through human
judgment. First, to approximate real-life scenar-
ios, we use the Matterport3D dataset (Chang et al.,
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Figure 2: TOPVIEWRS data statistics, showing distribution of task sizes, objects, regions, spatial and relative spatial
descriptions in realistic and semantic map settings, where the tasks are described with their initials for visualization.

2017), which includes 90 building-scale scenes
with instance-level semantic and room-level region
annotations in 3D meshes. We filter these to ex-
clude multi-floor and low-quality scenes, select-
ing 7 scenes with an average of 80 objects and 12
rooms each. Realistic top-view maps are extracted
using orthographic cameras, and semantic top-view
maps are constructed using the Habitat (Manolis
Savva* et al., 2019; Szot et al., 2021) simulation
environment. We then design a structured question
framework with 15 templates to minimize human
labor and standardize the data collection process.
To ensure quality, a second stage of manual hu-
man judgment aligns and verifies the data, ensuring
questions are natural and correct. Participants are
encouraged to discard or modify data points to im-
prove quality, maintaining alignment with human
judgments. We refer readers to Appendix B for fur-
ther details regarding the data collection process.

Dataset Statistics. The TOPVIEWRS evalua-
tion dataset comprises a total of 11,384 multiple-
choice questions after human verification, with
5,539 questions associated with realistic top-view
maps, and 5,845 with semantic top-view maps. Hu-
man verification keeps 587/784 questions from the
automatic collection phase for Top-View Recog-
nition, 1,077/1,384 for Top-View Localization,
2,340/3,080 for Static Spatial Reasoning. The
choices are uniformly distributed over choices A
(25.5%), B (24.6%), C (24.5%) and D (25.4%).
Figure 2 shows the distribution of different tasks,
objects, regions and spatial descriptions. The size
of each task aligns with its corresponding difficulty
level, where the easier task comprises fewer ex-
amples. We provide further insights and technical

details in Appendix B.4.

5 Experiments and Results

Models and Implementation. We test a repre-
sentative selection of both open-sourced and close-
sourced models which achieve state-of-the-art per-
formance on a range of multimodal benchmarks
(Liu et al., 2023c; Li et al., 2023a) in a zero-shot in-
ference setup. Regarding open-sourced models, we
study and evaluate Idefics (9B & 80B) (Laurençon
et al., 2023), LLaVA-Next (7B, 13B & 34B) (Liu
et al., 2024), InternLM-XComposer2 (7B) (Dong
et al., 2024), Qwen-VL (7B) (Bai et al., 2023). The
chosen close-sourced models are GPT-4V (Ope-
nAI, 2023) and Gemini (Google, 2024).5 All the
models are implemented within the VLMEvalKit
framework (OpenCompass Contributors, 2023).

Prompts. For realistic maps, we provide the VLMs
with the task description along with the multiple-
choice question. For semantic maps, in addition to
the information above, we also introduce the con-
cept of a semantic map to the model and provide
the color-object mapping in the prompt in order to
facilitate its understanding of the abstract map. We
only provide the color-object mappings of the col-
ors that are presented in the semantic map as a pre-
processing strategy in order to exclude irrelevant
information. For the specific prompting templates
used in this paper, we refer to Appendix C.2.

Evaluation Measures. We measure multiple-
choice QA accuracy via Exact Match (EM) and
Partial Match (PM). EM measures whether the pre-
dicted option indices are exactly the same as the

5We use GPT-4-turbo-2024-04-09 of GPT-4V and latest
stable gemini-pro-vision 1.0 of Gemini.



label indices. However, there may be cases where
the correct answer to the question can be consid-
ered partially correct, e.g., the answer is top right
while the prediction is top left. PM then calculates
the proportion of overlapping words between the
predicted answer and the gold answer. It is calcu-
lated based on the correctness of the text spans (or
words) of predicted options, as given by:

PM =
|{labels} ∩ {predictions}|

max (|{labels}| , |{predictions}|)

5.1 Results and Discussion
We first discuss the models’ performance across
our four tasks, with results summarized in Table 1,
and fine-grained sub-task performance illustrated
in Figure 3. We find that the performance of current
state-of-the-art VLMs is unsatisfactory on the pro-
posed TOPVIEWRS benchmark with model-wise
average EM and PM over all tasks below 50%.
Gemini is the best-performing model for realistic
maps, while GPT-4V excels in semantic maps. For
some models, such as Qwen-VL, the results are
sometimes much worse than the random baseline.
This issue primarily arises from the models’ diffi-
culty in following the instructions to choose from
the four provided options.

Models perform better on recognition and lo-
calization tasks compared to reasoning tasks.
Top-View Recognition consistently demonstrates
the highest performance across all models. Gemini
shows human-comparable performance with over
90% EM score. Top-View Localization exhibits
lower performance compared to Top-View Recog-
nition, followed by Static Spatial Reasoning. The
performance difference of various tasks with differ-
ent levels of complexity underscores the advantage
of our benchmark to capture well-defined and dis-
entangled phenomena, which allows for controlled
studies in controlled environments.

Regarding Dynamic Spatial Reasoning, models
perform better on this task than on the previous
tasks. Fine-grained performance in Figure 3 in-
dicates that the improved performance primarily
stems from high accuracy in dynamic action count-
ing and spatial localization, which constitute 18%
and 66% of the data respectively for this task. We
attribute the high accuracy in these areas to the
equivalence between navigation path symbols and
visual prompting (Shtedritski et al., 2023). Despite
these advancements, the overall EM accuracy re-
mains below 40%, and models still struggle with
reasoning over dynamic relative spatial relations.

Larger models do not always show better spa-
tial awareness. Surprisingly, our experiment re-
sults reveal that larger model sizes do not con-
sistently translate to better performance. In Top-
View Recognition, closed-source models outper-
form open-source models by 31.10% EM with re-
alistic maps and 29.33% EM with semantic maps.
However, the performance gap narrows as the task
complexity increases. Using realistic maps as the
visual input, Gemini stands out by achieving a min-
imum of 5.53% higher EM accuracy in Static Spa-
tial Reasoning compared to other models, while
GPT-4V performs worse than Idefics-9B on both
Static and Dynamic Spatial Reasoning tasks. This
indicates a lack of significant difference in spatial
awareness between closed-source and open-source
models for tasks with higher complexity, despite
the disparity in their model sizes. This trend holds
true within open-sourced models as well. Both
Idefics and LLaVANext model families in some
cases show comparable or worse performance with
larger sized models than smaller models. Similar
observations have been made by previous studies
(Zhong et al., 2021; Shi et al., 2024). We conjecture
that this might be caused by inadequate evidence
of the scaling law (Kaplan et al., 2020) in the com-
puter vision community (Tian et al., 2024). The
results on TOPVIEWRS thus advocate for further
investigation and analysis in this area.

Models perform better in easier tasks with se-
mantic maps. In simple tasks such as Top-View
Recognition, models generally perform better with
semantic maps than with realistic maps, except for
Qwen-VL, showing an improvement of 20.35%.
However, this advantage decreases in more com-
plex tasks. For Top-View Localization and Static
Spatial Reasoning, models struggle to utilize se-
mantic top-view maps, yielding performances akin
to random baselines in both EM and PM accuracy.
One possible explanation is that the semantic top-
view image and the input prompt with color-object
mapping deviate too much from the models’ train-
ing data distribution. This is further evidenced by
the predictions from open-sourced models such as
Qwen-VL, which fail to respond to instructions and
answer with numbers or RGB values 91.25% of the
time for Top-View Localization and 47.65% of the
time for Static Spatial Reasoning.

Fine-Grained Insights with Sub-Tasks Models
using realistic maps excel more in the sub-task of
Scene Recognition, which involves larger entities,



Model Idefics LLaVANext XComposer2 Qwen-VL GPT-4V Gemini
Model Size 9B 80B vicuna 7B mistral 7B vicuna 13B 34B 7B 7B API API
Realistic Map

EM 41.10 26.71 67.47 61.30 61.64 67.81 37.67 27.05 69.52 90.41
Top-View Recognition

PM 41.10 26.88 67.64 61.47 61.99 67.81 37.67 27.26 69.86 90.58
EM 30.39 30.00 42.16 33.92 41.18 50.98 27.84 16.27 46.27 48.24

Top-View Localization
PM 46.42 46.08 56.67 48.63 54.31 61.76 41.86 26.31 60.39 60.98
EM 24.07 26.07 19.87 24.36 20.25 22.73 25.79 14.71 22.16 31.61

Static Spatial Reasoning
PM 33.68 38.52 34.40 37.34 36.26 35.56 38.73 21.15 35.59 45.22
EM 38.10 27.94 38.81 24.31 29.08 23.79 24.07 22.11 30.29 32.60

Dynamic Spatial Reasoning
PM 40.88 30.68 42.15 26.69 32.89 27.28 26.86 24.65 33.86 35.80

Semantic Map
EM 60.68 59.32 88.81 80.00 88.14 94.58 43.05 19.66 97.29 94.92

Top-View Recognition
PM 60.68 59.32 88.81 80.00 88.49 94.58 43.05 20.05 97.29 94.92
EM 31.21 27.34 25.40 32.10 17.28 38.45 24.87 9.70 44.44 35.27

Top-View Localization
PM 47.62 45.41 44.27 47.80 23.66 53.79 41.09 13.99 58.55 49.91
EM 23.82 28.07 18.72 24.28 16.63 18.41 23.05 14.85 21.73 26.22

Static Spatial Reasoning
PM 34.13 38.17 30.57 37.26 29.94 31.22 35.50 21.99 33.09 39.12
EM 36.67 34.55 37.45 26.23 19.92 33.12 21.60 23.55 39.30 31.41

Dynamic Spatial Reasoning
PM 39.92 37.75 40.69 28.89 23.63 36.86 24.32 26.09 43.20 34.86

Table 1: Comparison of 10 models on both realistic and semantic top-view maps. Performance is analysed according
to four tasks with EM and PM. The best performance for each task is illustrated in bold.
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(a) Performance with realistic top-view maps
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Figure 3: Visualization of fine-grained comparison with 10 models and human on 9 sub-tasks using realistic and
semantic top-view maps, demonstrating that most current models perform on par with random baseline in spatial
reasoning and has a large gap with human performance. Exact numbers are reported in Table 15 in the Appendix.

compared to Object Recognition. This gap is also
evident in a 12.66% and 19.73% performance dif-
ference between object-level and scene-level local-
ization with both map types. Conversely, with se-
mantic maps, the model struggles more with scene-
level recognition than with realistic maps, showing
an 11.09% lower performance than object-level
recognition among closed-source models. Most
models perform similarly to a random baseline in
reasoning over spatial relations but show higher
accuracy in scene counting. This likely occurs be-
cause 95% of the correct room counts are within
a narrow range (1 or 2), reflecting real-life dis-

tributions. Thus, models leverage commonsense
knowledge as the shortcut for counting, as seen in
the 54.73% performance gap (with GPT-4V) be-
tween counting scenes and actions. However, the
spatial localization and reasoning abilities of both
open-source and closed-source models still remain
unsatisfactory, even at the level of sub-tasks.

5.2 Further Discussion

Gap to Human Performance. We now study how
humans perform on this dataset and the gap be-
tween current models and human performance. To
this end, we recruited 4 human participants who



Task Ability Size Human GPT-4V

TVR Object Recognition 5 95 100
Scene Recognition 5 100 80

TVL Object Localization 5 95 20
Scene Localization 10 85 60

SSR Scene Counting 5 100 80
Relative Spatial Relation 10 80 0

DSR
Dynamic Action Counting 5 85 0
Dynamic Spatial Localization 10 85 40
Dynamic Relative Spatial Reasoning 5 85 0

Table 2: Comparison with human and GPT-4V on all the
sub-tasks, demonstrating a huge gap between GPT-4V
and human.

were not involved in dataset creation for human
evaluation. A total of 60 data points with realistic
top-view maps are randomly selected from the sub-
tasks, covering all fine-grained question types.6 We
use Fleiss Kappa as the measure of inter-annotator
agreement. The kappa score is 0.747, indicating
substantial agreement shared by the human partic-
ipants according to Landis and Koch (1977). The
average performance of the human participants is
shown in Table 2, the scores 90% accuracy across
all the sub-tasks. The experimental results show
that there is still a large gap with human perfor-
mance by over 50% across all the sub-tasks that
involve spatial awareness. We also observe that
with GPT-4V, human performs 47.78% higher than
the model on average. The gap between human and
model performance is larger on complex reasoning
tasks compared to the recognition tasks, indicating
plenty of room for improvement.

Chain-of-Thought Helps Elicit Spatial Reason-
ing. Due to the compositionality of Static Spatial
Reasoning based on Top-View Recognition and Lo-
calization in task design, the model is supposed to
answer the question based on the locations of the
entities in the top-view map. Inspired by this re-
quirement, we explored whether Chain-of-Thought
(CoT) reasoning (Wei et al., 2022) could facilitate
spatial reasoning by initially prompting the model
to localize entities before producing the final an-
swer to the question. To implement this, we mod-
ified the instruction to include: “You should first
localize the entity and then answer the question
based on the locations”, thereby encouraging the
model to process information and think step by step.
Considering that CoT has shown effectiveness in

6We did not run human evaluation on semantic maps be-
cause they are inherently easier to reason over; they skip the
process of recognizing the objects before reasoning, which
makes the task simpler but with more sufficient and accurate
information for reasoning.

Model GPT-4V Gemini

w/o. CoT w. CoT ∆ w/o.CoT w. CoT ∆

RGB 22.16 26.74 +4.58 31.61 40.02 +8.41

Scene Counting 76.74 25.58 -51.16 53.49 48.84 -4.65

Relative Spatial Relations 19.82 26.79 +6.97 30.68 39.64 +8.96

Semantic 21.73 28.07 +6.34 26.22 30.16 +3.94

Scene Counting 37.50 47.92 +10.42 20.83 29.17 +8.34

Relative Spatial Relations 21.12 27.31 +6.19 26.43 30.20 +3.77

Table 3: Comparison of model performance with or
without Chain of Thought (CoT) on Static Spatial Rea-
soning, showing that CoT helps elicit spatial reasoning.

larger models (Wei et al., 2022; Li et al., 2023c),
we conducted experiments with GPT-4V and Gem-
ini to evaluate this hypothesis. As shown in Table
3, incorporating CoT into the reasoning process
notably enhances performance. Specifically, the
models’ accuracy improved by 6.50% when using
realistic maps and 5.14% with semantic maps. This
improvement underscores the potential of step-by-
step reasoning in enhancing the efficacy of spatial
reasoning tasks.

6 Conclusion

In this study, we designed four tasks to examine the
capabilities of VLMs as top-view spatial reasoners,
progressing from basic top-view map comprehen-
sion to dynamic spatial reasoning along navigation
paths. To facilitate this examination, we collect a
natural, high-quality dataset, TOPVIEWRS, which
includes 11,384 multiple-choice questions, featur-
ing either realistic or semantic top-view maps as the
visual input. Our extensive experiments involved
evaluating 10 VLMs across various model families
and sizes on TOPVIEWRS. The results highlight a
critical observation: particularly in complex reason-
ing tasks, VLMs frequently perform only as well
as a random baseline, with even more pronounced
deficits when handling tasks with semantic maps.
Moreover, there is a noticeable performance gap
compared to human annotators, underscoring the
significant potential for further improvements in
this field. In response to these findings, we dis-
covered that employing chain-of-thought reasoning
enhances model performance in spatial reasoning
by 5.82%. Despite this progress, the overall perfor-
mance of VLMs on spatial reasoning remains less
than satisfactory. We hope that our study can set
the stage for future research in multimodal spatial
reasoning and encourage further investigations into
refining the reasoning techniques, moving VLMs
closer to human-level proficiency in understanding
and reasoning over real-world environments.



Limitations

The TOPVIEWRS dataset primarily evaluates
model performance in entity recognition, localiza-
tion, and spatial reasoning over 2D top-view maps.
However, it does not yet include task-oriented plan-
ning with spatial awareness, which involves more
complex sequential decision-making and dynamic
interactions. Our dataset assumes one correct an-
swer per question, but exploring scenarios with
multiple correct answers or no correct answers
could further challenge systems and provide valu-
able insights. We also advocate for further re-
search to explore how spatial awareness in mod-
els impacts downstream tasks such as navigation
instruction generation (Li et al., 2024a) and task
completion by language agents in real-world en-
vironments (Parashar et al., 2023). Moreover, our
study is currently limited to 2D top-view maps,
whereas spatial reasoning can encompass a variety
of modalities and perspectives, such as 3D point
clouds. From the perspective of the models, the
rapid progress in VLMs makes it hard to include
all new releases such as Idefics 2 (Laurençon et al.,
2024). Additionally, multimodal in-context learn-
ing (MICL) remains underexplored and is only sup-
ported by VLMs trained with interleaved image-
text data (Baldassini et al., 2024). Although not
universal across all VLMs, MICL has been effec-
tive in handling out-of-distribution tasks (Zhang
et al., 2024b), which could also be interesting in
TOPVIEWRS, especially with semantic maps as
visual inputs. In future work, we aim to extend
our analysis to include more modalities, evaluate a
broader range of models and their capabilities, and
investigate additional downstream tasks involving
spatial awareness.
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A Additional Related Work

In addition to Section 2, we provide additional
related work for the comprehensive understanding
of spatial reasoning.

Spatial Reasoning on Text. Spatial reasoning
has been investigated with the advancement of
LLMs (Yamada et al., 2024). Various benchmarks
have been proposed to evaluate models’ spatial rea-
soning abilities, including relative spatial relation
recognition (Weston et al., 2016; Mirzaee et al.,
2021; Shi et al., 2022), natural language navigation
(Yamada et al., 2024), and planning (Momennejad
et al., 2023). Mirzaee and Kordjamshidi (2022)
suggest that introducing synthetic data of spatial
reasoning when pre-training helps to improve the
spatial awareness of the model. Yang et al. (2023)
justify the feasibility of using a logical form as
an intermediate representation to improve the spa-
tial reasoning ability in easy scenarios. Instead
of describing the spatial relations with natural lan-
guage, Wu et al. (2024) feed the model with a 2D
square grid similar to ASCII-art format and prove
that visualising the reasoning procedure explicitly
helps to improve the model’s ability in multi-hop
spatial reasoning. Constrained by language de-
scriptions, most datasets focus on reasoning over
symbols within simple scenarios (e.g. grid-based
navigation) and are synthetically generated. How-
ever, real-life scenarios are often more complex
and rich in physical semantics. This raises con-
cerns about the models’ actual spatial reasoning
abilities compared to their proficiency in under-
standing linguistic patterns.

B Dataset Construction

The TOPVIEWRS is derived from Matterport3D
(Chang et al., 2017) for non-commercial academic
use only, under the Term of Use (Matterport End
User Licence Agreement For Academic Use of
Model Data).

In addition to the introduction in Section 4, we
provide further details with regard to TOPVIEWRS
dataset construction.

B.1 Top-View Map Construction
To ensure high-quality top-view map representa-
tions, we exclude the 3D environments with low
coverage of mesh grids. We also prefer environ-
ments that are single-floor, in order to avoid the
obstruction of objects from different floors. Af-
ter manually going through 90 building-scale 3D

environments from Matterport3D (Chang et al.,
2017), we select a total of 7 scenes: 17DRP5sb8fy,
2azQ1b91cZZ, 2t7WUuJeko7, 5LpN3gDmAk7,
EU6Fwq7SyZv, 8WUmhLawc2A, i5noydFURQK.

Realistic Top-View Map We extract realistic top-
view maps using MeshLab by placing an ortho-
graphic camera on the top of the 3D scenes and
taking a camera shot.

Semantic Top-View Map We construct the se-
mantic top-view map with Habitat simulation envi-
ronment (Manolis Savva* et al., 2019; Szot et al.,
2021). For each building floor, Matterport3D con-
tains the 2D and 3D semantic segmentation human
annotations, which can be retrieved to identify the
type of objects as well as the rooms. The 3D co-
ordinates of the entity’s (object and room) center
(xi, yi, hi) and the size of the entity’s bounding box
(wx, wy, wh) can also be retrieved as part of the cir-
cumstantial information. This information is then
used for the construction of the semantic top-view
map.

When we obtain the object information for
the purpose of constructing a top-view seman-
tic map, we design certain rules to exclude spe-
cific types of objects from all 40 object anno-
tation categories of Matterport3D. We believe
these objects could either 1) be less meaningful
in terms of semantics or 2) take up a large area
in the semantic map, which obstructs other ob-
jects beneath. The filtered objects include:‘misc’,
‘ceiling’, ‘objects’, ‘floor’, ‘wall’,
‘void’, ‘curtain’, ‘column’, ‘beam’,
‘board panel’.

We also filter out the objects based on their
heights hobj and sizes wobj compared to the rooms’
heights hroom and sizes wroom. We only keep the
objects if they satisfy the following relations:

0.9× (hroom − 1

2
wroom) ≤ hobj −

1

2
wobj

1.1× (hroom +
1

2
wroom) ≥ hobj +

1

2
wobj

After having all the object annotations, we use
the get_topdown_map API of the Habitat simula-
tor to get the top-down map of the scene, which
describes the navigable area and the overall shape
of the environment, but without any object annota-
tions. Based on this map, we then draw the bound-
ing boxes with different colors to represent the
objects in the environments. Considering that the

https://kaldir.vc.in.tum.de/matterport/MP_TOS.pdf
https://kaldir.vc.in.tum.de/matterport/MP_TOS.pdf
https://kaldir.vc.in.tum.de/matterport/MP_TOS.pdf


objects on the top may obstruct the bottom ob-
jects in the top-view map, to mimic this characteris-
tic, we create the semantic top-view map based on
the heights of the objects, where lower objects are
drawn first. Table 4 shows the mapping between
the RGB values and object types used for the cre-
ation of a semantic top-view map in our work.

RGB Values Label
[31, 119, 180] void
[174, 199, 232] wall
[255, 127, 14] floor
[255, 187, 120] chair
[44, 160, 44] door

[152, 223, 138] table
[214, 39, 40] picture

[255, 152, 150] cabinet
[148, 103, 189] cushion
[197, 176, 213] window
[140, 86, 75] sofa

[196, 156, 148] bed
[227, 119, 194] curtain
[247, 182, 210] chest_of_drawers
[51, 105, 30] plant

[199, 199, 199] sink
[188, 189, 34] stairs
[219, 219, 141] ceiling
[23, 190, 207] toilet
[158, 218, 229] stool
[57, 59, 121] towel
[82, 84, 163] mirror

[107, 110, 207] tv_monitor
[156, 158, 222] shower
[99, 121, 57] column
[140, 162, 82] bathtub
[181, 207, 107] counter
[206, 219, 156] fireplace
[140, 109, 49] lighting
[189, 158, 57] beam
[231, 186, 82] railing
[231, 203, 148] shelving
[132, 60, 57] blinds
[173, 73, 74] gym_equipment
[214, 97, 107] seating
[231, 150, 156] board_panel
[123, 65, 115] furniture
[165, 81, 148] appliances
[206, 109, 189] clothes
[222, 158, 214] objects

Table 4: RGB values and corresponding labels.

After having the top-view maps of the whole
floor, we crop them into smaller rooms according
to the region boundaries obtained from the Habitat
simulator.

B.2 Structured Question Framework Design

In order to minimize human labour and standard-
ize the collection pipeline, we adopt the template-
based question generation method following the
practice of Liu et al. (2023a) and design 15 differ-
ent templates in total to construct the sub-tasks for
each task. Specifically, we consider benchmarking
different perspectives of the model’s ability within
each task in a fine-grained manner when design-
ing the templates. The question templates are also
multi-scale in terms of objects or rooms with full or
partial top-view maps for Top-View Recognition,
Top-View Localization and Static Spatial Reason-
ing. For Dynamic Spatial Reasoning, the designed
questions evaluate the recognition and reasoning
from the scale of single navigation points (Dynamic
Action Counting and Spatial Localization) to the
whole path (Dynamic Relative Spatial Reasoning).

Below we provide the designed templates for all
9 sub-tasks that fall into a total of 4 tasks, with
concrete examples shown in Figure 1. We also
introduce the logic for selecting the correct answer
and other wrong choices when constructing the
multiple-choice questions.

B.2.1 Top-View Recognition

Object Recognition

Template 1 Which of the following objects
are in the room?

Template 2 Which of the following objects
are not in the room?

Scene Recognition

Template 1 What room is this?

Template 2 What types of rooms are included
in the top-view map below?

Table 5: Templates for Object and Scene Recognition

Table 5 shows the templates we use for
the Top-View Recognition task. Considering
that some objects and rooms may be hard
to recognize from the top view, in addition
to the set of filtered objects, we also re-
move some objects (‘picture’, ‘mirror’,



‘window’, ‘blinds’, ‘towel’, ‘furniture’,
‘door’, ‘tv_monitor’, ‘cabinet’) and rooms
(‘hallway’, ‘entryway/foyer/lobby’, ‘tv’)
when we use the templates to generate questions.

B.2.2 Top-View Localization

Object Localization

Template 1 Where is the <object> in the top-
down map?

Scene Localization

Template 1 Where is the <room> in the top-
down map?

Template 2 What objects does <room> have?

Table 6: Templates for Object and Scene Localization
Tasks

Table 6 shows the templates for the Top-
View Localization task. For the objects, we
adopt the range in Top-View Recognition. For
the rooms, we define a set of rooms that are
easy and natural to recognize for humans, in-
cluding: ‘office’, ‘workout/gym/exercise’,
‘kitchen’, ‘bedroom’, ‘dining room’,
‘bar’, ‘balcony’, ‘toilet’, ‘bathroom’,
‘living room’, ‘stairs’.

B.2.3 Static Spatial Reasoning

Scene Counting

Template 1 How many <room> are there in
the map?

Relative Spatial Relation

Template 1 What’s <object1>’s relative spa-
tial relation to <object2>?

Template 2 What’s <room1>’s relative spa-
tial relation to <room2>?

Table 7: Templates for Scene Counting and Relative
Spatial Relation Tasks

Table 7 lists the templates for the Static Spa-
tial Reasoning task. For rooms, we restrict the
regions within the same range as in Top-View
Localization. For the objects, we focus on the
objects that are common and big enough to rec-
ognize in daily life, which includes: ‘chair’,
‘table’, ‘cushion’, ‘sofa’, ‘bed’,
‘chest_of_drawers’, ‘sink’, ‘toilet’,

‘bathtub’, ‘stool’, ‘plant’, ‘stairs’,
‘shower’, ‘fireplace’, ‘gym_equipment’,
‘seating’.

B.2.4 Dynamic Spatial Reasoning

Dynamic Action Counting

Template 1 How many turning <action> are
there along the path?

Dynamic Relative Spatial Reasoning

Template 1 Which direction does the naviga-
tion path head for?

Dynamic Spatial Localization

Template 1 What rooms does the navigation
path pass by?

Template 2 At which room does the naviga-
tion path <action>?

Template 3 At which object does the naviga-
tion path <action>?

Table 8: Templates for Dynamic Action Counting, Dy-
namic Relative Spatial Reasoning, and Dynamic Spatial
Localization Tasks

For Dynamic Action Counting, we define that
a valid turn should involve more than a 30-degree
rotation. For Dynamic Relative Spatial Reasoning,
the direction is also defined by the relative spatial
relation between the starting point and ending point,
where the spatial description is determined by 30
degree intervals.

Multiple-Choice Question-Answer Pairs For
the answer to the questions, because we have all
the spatial information and semantic annotation of
the objects in the scene, we write a set of rules
with code for each type of question in order to
automatically obtain the golden answer according
to the simulation environments. For all the wrong
choices in the multiple-choice settings, they are
randomly chosen from other possible candidates of
the same kind (e.g. objects, rooms, numbers, etc.).
After having all the options for multiple-choice
questions, we randomize the order of the options
to make the correct choices evenly distributed in
ABCD.

B.3 Alignment with Human Judgments

We realize that semantic annotations of environ-
ments may sometimes be inaccurate. Moreover,



even though we exclude some unreasonable ob-
jects, the top views of objects can sometimes be
challenging to recognize, even for humans. To ad-
dress these issues, we have implemented a second
stage in our dataset creation process: alignment
and verification based on human judgments.

When validating the automatically collected
data, the human participants are supposed to check
the correctness of the question-answer pair and
choose one of the following four actions according
to their own judgments: 1) skip the data if it is too
bad and strange, 2) modify the data pair by replac-
ing the options or the entities in the question in
order to make it answerable by humans, 3) correct
the answer if it’s wrong, 4) keep the data if it is
answerable by humans and correct. In order to en-
sure the quality of the dataset, we communicated to
the human participants that they are supposed to be
cautious of "accepting" a data point. On a practical
level, the participants may either discard this data
point or modify the options of this data to make
the correct choice more distinguishable by humans.
This helps to exclude the data points where differ-
ent human judges may diverge and thus ensure the
alignment between the dataset and general human
judgments.

We conduct human alignment on Top-View
Recognition, Top-View Localization and Static
Spatial Reasoning. We didn’t do human alignment
on Dynamic Spatial Reasoning because we fall
short of hands in going over the quality of all the
data points. Therefore, in our experiments, we also
provide the corresponding rules of how we obtain
the answer for the model with textual description
in the prompt (see Appendix C.2).

B.4 Dataset Statistics
We provide further insights about the datasets with
regard to the object and room distribution in Figure
4 and sub-tasks statistics in Table 9.

The visualization demonstrates that the objects
or regions that are hard to recognize (e.g. gym
equipment, utility room, etc.) show fewer occur-
rence within our dataset compared to those which
are easy to identify with little obscure (e.g. bed,
table, bedroom, etc.). Bed, chair and table are the
top-3 most frequently mentioned objects and bed-
room, dining room and living room are the most
common regions in the dataset. Among all the
spatial descriptions, the diagonal spatial relations
(e.g. top right, up left) are more frequently referred
to as the correct choice as relative spatial descrip-

tions in Static Spatial Reasoning while being less
frequently used as absolute spatial descriptions in
Top-View Localization.

Regarding the sizes for each sub-task, object-
level recognition and localization take a large por-
tion of data in the Top-View Recognition and Lo-
calization tasks. For Static Spatial Reasoning, rea-
soning over relative spatial relations takes the main
part of the data. Dynamic Spatial Localization is
the largest task according to the sizes. The numbers
are different with realistic maps and semantic maps
for each task. The disparity stems from the second
stage of dataset creation, where the human anno-
tators may exclude some data points with realistic
maps due to various possible reasons including but
not limited to the obscure image or etc.

C Experiments

C.1 Inference Parameters

We adopt most of the inference parameters for each
model from the implementations of VLMEvalKit
(OpenCompass Contributors, 2023). Table 10
shows the configuration of the inference process
for different models. If not specified in Table 10,
we use the default configuration in Huggingface.

C.2 Prompt

Table 11 and 12 show the prompt templates of each
task used in the main experiments (Table 1) with re-
alistic and semantic top-view maps as visual input
respectively. Table 13 and 14 show the prompt tem-
plates used for Chain-of-Thought reasoning using
realistic and semantic top-view maps (Table 3).

Within the prompt templates, <QUESTION> and
<OPTIONS> are replaced with the question and op-
tion list O = {o0, o1, o2, o3} (e.g. “A. bed; B.
chair; C. table; D. cushion”). For semantic top-
view maps, <MAPPING> is replaced with the RGB-
object mapping, as shown below.

(196, 156, 148) -> bed
(44, 160, 44) -> door
...

In the task of Dynamic Spatial Reasoning,
<TASK-SPECIFIC INSTRUCTION> contains the
rules of how we obtain the answer from the sim-
ulator for the sub-task Dynamic Action Counting,
which is described as follows.

Suppose you are a navigation agent tracing
the path. Your job is to assess whether
there's a turn at each intermediate point
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Figure 4: Dataset Statistical Analysis

Task Sub-Task Realistic Semantic
TVR Object Recognition 195 198

Scene Recognition 97 97

TVL Object Localization 410 470
Scene Localization 100 97

SSR Scene Counting 43 48
Relative Spatial Relation 1,004 1,245

DSR Dynamic Action Counting 668 668
Dynamic Spatial Localization 2,436 2,436
Dynamic Relative Spatial Reasoning 586 586

Total 5,539 5,845

Table 9: Distribution of sub-tasks with realistic and semantic top-view maps.



Idefics 9B&80B
max_new_tokens 20
LLaVANext 7B&13B&34 B

temperature 0
num_beams 1

max_new_tokens 20
do_sample False

top_p None
XComposer2

temperature 1
beams 5

max_token 20
repetition_penalty 1

do_sample False
Qwen-VL

max_new_tokens 20
GPT4V

temperature 0
max_tokens 1024

img_size 512
img_detail low

Gemini
temperature 0
max_tokens 1024

Table 10: Configurations of inference parameters.

and sum up the total turns for the final
outcome.

For other sub-tasks in Dynamic Spatial Reason-
ing, <TASK-SPECIFIC INSTRUCTION> is replaced
with an empty string.

C.3 Experimental Results
Table 15 shows the fine-grained sub-task perfor-
mance of all the models, which corresponds to
Figure 3.



Realistic Top-View Maps

Top-View Recognition, Top-View Localization and Static Spatial Reasoning

This is a top-view map of a room. Please respond to the question below by selecting one choice
from a list of available options provided. Your response should only include the letter of the chosen
option (A, B, C, or D) with no additional explanation.
Question: <QUESTION>
Options: <OPTIONS>;
Answer:

Dynamic Spatial Reasoning

This is a top-view map of a room with the navigation path. The path starts from the green triangle
(RGB [0, 255, 0]) and ends at the red star (RGB [255, 0, 0]). The direction of the path is denoted
by a series of yellow arrows (RGB [255, 255, 0]), with intermediate points highlighted in RGB
[25, 255, 255]. <TASK-SPECIFIC INSTRUCTION> Please respond to the question below by
selecting one choice from a list of available options provided. Your response should only include
the letter of the chosen option (A, B, C, or D) with no additional explanation.
Question: <QUESTION>
Options: <OPTIONS>;
Answer:

Table 11: Prompt templates for main experiments with realistic top-view maps.



Semantic Top-View Maps

Top-View Recognition, Top-View Localization and Static Spatial Reasoning

This is a semantic top-view map of a room. Various objects are depicted by colored bounding
boxes, each with its corresponding color, and there may be instances of overlap between them.
Below are the RGB color codes associated with each object, presented in the format RGB ->
Object:
<MAPPING>
Please respond to the question below by selecting one choice from a list of available options
provided. Your response should only include the letter of the chosen option (A, B, C, or D) with
no additional explanation.
Question: <QUESTION>
Options: <OPTIONS>;
Answer:

Dynamic Spatial Reasoning

This is a semantic top-view map of a room with the navigation path. In the semantic map, various
objects are depicted by colored bounding boxes, each with its corresponding color, and there may
be instances of overlap between them. The navigation path starts from the green triangle (RGB [0,
255, 0]) and ends at the red star (RGB [255, 0, 0]). The direction of the path is denoted by a series
of yellow arrows (RGB [255, 255, 0]), with intermediate points highlighted in RGB [25, 255, 255].
Below are the RGB color codes associated with each object and symbol, presented in the format
RGB -> Object:
<MAPPING>
<TASK-SPECIFIC INSTRUCTION> Please respond to the question below by selecting one choice
from a list of available options provided. Your response should only include the letter of the chosen
option (A, B, C, or D) with no additional explanation.
Question: <QUESTION>
Options: <OPTIONS>;
Answer:

Table 12: Prompt templates for main experiments with semantic top-view maps.

Realistic Top-View Maps

Static Spatial Reasoning

This is a top-view map of a room. Please respond to the question below by selecting one choice
from a list of available options provided. You should explain your reasoning step-by-step by first
localizing the entities and then reasoning over the question based on the locations. You should
conclude your chosen option (A, B, C, or D) starting with ’The answer is ’.
Question: <QUESTION>
Options: <OPTIONS>;
Answer: Let’s think step by step.

Table 13: Prompt templates for Chain-of-Thought experiments with realistic top-view maps.



Semantic Top-View Maps

Static Spatial Reasoning

This is a semantic top-view map of a room. Various objects are depicted by colored bounding
boxes, each with its corresponding color, and there may be instances of overlap between them.
Below are the RGB color codes associated with each object, presented in the format RGB ->
Object:
<MAPPING>
Please respond to the question below by selecting one choice from a list of available options
provided. You should explain your reasoning step-by-step by first localizing the entities and then
reasoning over the question based on the locations. You should conclude your chosen option (A, B,
C, or D) starting with ’The answer is ’.
Question: <QUESTION>
Options: <OPTIONS>;
Answer: Let’s think step by step.

Table 14: Prompt templates for Chain-of-Thought experiments with semantic top-view maps.

Idefics LLaVANext XComposer2 Qwen-VL GPT-4V Gemini

Model Size 9B 80B vicuna 7B mistral 7B vicuna 13B 34B 7B 7B API API

Realistic Map

TVR
Object Recognition 32.31 25.64 66.15 61.03 58.97 65.64 38.97 17.95 68.21 89.23

Scene Recognition 58.76 28.87 70.10 61.86 67.01 72.16 35.05 45.36 72.16 92.78

TVL
Object Localization 26.83 26.10 40.24 30.24 40.00 50.49 26.34 16.34 40.73 45.21

Scene Localization 45.00 46.00 50.00 49.00 46.00 53.00 34.00 16.00 69.00 61.00

SSR
Scene Counting 25.58 32.56 16.28 18.60 2.33 16.28 25.58 48.84 76.74 53.49

Relative Spatial Relations 24.00 25.80 20.02 24.60 21.02 23.01 25.80 13.25 19.82 30.68

DSR

Dynamic Action Counting 31.89 26.80 27.54 26.95 25.30 27.40 27.54 32.34 22.01 26.95

Dynamic Spatial Localization 42.57 29.27 45.03 23.89 32.88 24.63 22.62 20.11 34.15 35.30

Dynamic Relative Spatial Reasoning 26.62 23.72 25.77 23.04 17.58 16.21 26.11 18.77 23.72 27.82

Semantic Map

TVR
Object Recognition 54.55 51.01 92.93 87.37 92.42 98.48 50.00 12.63 100.00 99.49

Scene Recognition 73.20 76.29 80.41 64.95 79.38 86.60 28.87 34.02 91.75 85.57

TVL
Object Localization 28.51 23.19 22.98 28.94 10.85 34.47 24.47 6.17 41.49 31.28

Scene Localization 44.33 47.42 37.11 47.42 48.45 57.73 26.80 26.80 58.76 54.64

SSR
Scene Counting 37.50 50.00 12.50 10.42 6.25 4.17 14.58 22.92 37.50 20.83

Relative Spatial Relations 23.29 27.23 18.96 24.82 17.03 18.96 23.37 14.54 21.12 26.43

DSR

Dynamic Action Counting 36.68 27.69 33.38 26.80 28.89 25.30 27.25 30.39 22.90 26.95

Dynamic Spatial Localization 39.20 38.79 41.87 25.82 17.98 39.00 19.46 22.95 47.17 33.42

Dynamic Relative Spatial Reasoning 26.11 24.74 23.72 27.30 17.75 17.58 24.06 18.26 25.26 28.16

Table 15: Fine-grained results of 10 VLMs on different sub-tasks, corresponding to the visualization in Figure 3.
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