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Abstract

Large Language Models (LLMs) have demon-
strated promising performance in sequential
recommendation, leveraging their superior lan-
guage understanding capabilities. However,
most existing LLM-based recommendation
models primarily capture sequential patterns
between items and overlook the nuanced na-
ture of individual user preferences, i.e., users
with similar interaction histories demonstrate
different interests. To alleviate this limitation,
in this paper, we propose ULMRec, a frame-
work that effectively integrates user personal-
ized preferences into LLMs for sequential rec-
ommendation. For integrating the user person-
alized preference, we design two key compo-
nents: (1) user indexing: a personalized user
indexing mechanism that leverages vector quan-
tization on user reviews and user IDs to gener-
ate meaningful and unique user representations,
and (2) alignment tuning: an alignment-based
tuning stage that employs comprehensive pref-
erence alignment tasks to enhance the model’s
capability for capturing personalized informa-
tion. In this way, ULMRec achieves deeper
integration of language semantics with user
personalized preferences, facilitating effective
adaptation to recommendation. Extensive ex-
periments on two public datasets demonstrate
that ULMRec significantly outperforms exist-
ing methods, validating the effectiveness of
our approach. The code is available at https:
//anonymous. 4open.science/r/ULMRec.

1 Introduction

As the dynamic nature of user interests and behav-
ioral patterns, sequential recommendation (Kang
and McAuley, 2018; Sun et al., 2019) has attracted
significant attention recently. Most existing sequen-
tial recommendation methods adopt various neural
networks to capture item co-occurrence patterns.
Recently, Large Language Models (LLMs) (Tou-
vron et al., 2023) have opened new frontiers in
recommender systems (Yue et al., 2023; Zheng

et al., 2024) by leveraging their advanced seman-
tic understanding and pre-trained knowledge. For
instance, LlamaRec (Yue et al., 2023) leverages
LLMs to re-rank candidate items, demonstrating
their effectiveness in capturing complex user-item
semantic relationships. These LLM-based methods
have shown superior performance. However, most
methodologies primarily focus on the modeling of
item-to-item relationships (i.e., sequential patterns
of which items frequently co-occur together in user
interactions), while failing to adequately capture
user-specific preference patterns. In other words,
these methods may not effectively differentiate be-
tween users who, despite having similar interaction
histories, exhibit distinct preferences, which is il-
lustrated in Figure 1.

To bridge this gap, we propose developing an
effective framework that incorporates user person-
alized preference into LLMs. A straightforward
approach would be to integrate user IDs, which
serve as unique user identifiers, into LLMs by pre-
fixing them to users’ historical behaviors during
the fine-tuning process. However, this naive inte-
gration faces two significant challenges:

(1) Semantic gap. A significant disconnect exists
between the language semantics modeled by LLMs
and the preference information embedded in user
IDs within recommender systems. This discon-
nect occurs because LLMs are trained on natural
language and may not recognize the special signif-
icance of user IDs in a recommendation context.
When LLMs tokenize user IDs, they inadvertently
fragment and potentially destroy the inherent per-
sonalized preference information encoded within
the identifiers.

(2) Limited task. Fine-tuning LLMs solely on the
next-item prediction task may constrain the model
to learn merely superficial item co-occurrence pat-
terns in users’ historical sequences, rather than de-
veloping a comprehensive understanding of users’
personalized preferences. This narrow focus would
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Figure 1: Illustration of two methods for LLM-based
recommenders: item-centric and user-centric.

not capture the fine-grained user personalized pref-
erences, which extend beyond simple sequential
patterns. Hence, we tackle this integration problem
in two main aspects:

(1) User Indexing: We develop an innovative
allocation mechanism that creates meaningful user
indices,designed to both preserve user preferences
and maintain unique representations.

(2) Alignment Tuning: We design a sophisti-
cated alignment strategy that integrates language
semantics with user preferences, extending beyond
basic next-item prediction to capture comprehen-
sive user behavior patterns.

In this paper, we propose ULMRec, an LLM-
based model that enhances recommendation from
a user-centric perspective by integrating language
semantics with personalized user preferences. Our
model operates in two main phases: personalized
user indexing stage and alignment-based index un-
derstanding stage. In the first stage, we leverage
vector quantization (Lee et al., 2022) to generate
personalized user indices based on historical re-
views, which contain rich information about user
interests. Unlike traditional linear or MLP map-
pings that focus on individual user-item interac-
tions, vector quantization effectively captures user
collaborative preference patterns by discretizing
user behaviors into shared interest clusters. To en-
sure uniqueness and semantic meaningfulness, we
incorporate original user IDs into the quantization
process, effectively preventing index collisions. Al-
though our generated indices successfully encode
personalized user information and avoid conflicts
with the LLM’s existing token, a key challenge
remains: how to enable the LLM to accurately in-
terpret and utilize these indices. To address this,
we expand beyond traditional sequential recom-
mendation tasks and design a comprehensive set of
preference alignment tasks in the second stage, in-

corporating diverse personalized signals including
user preferences, historical behaviors, and rating
patterns. These alignment tasks work collabora-
tively to enhance the model’s capability in under-
standing the personalized user interests. In all, the
contributions of our work can be summarized as:

* We propose ULMRec, which could bridge the
semantic gap between LLMs and personal-
ized recommendation by integrating user pref-
erences into LLMs. It is the first attempt to
address the fundamental challenge of incorpo-
rating user-level personalization into LLMs.

* We develop a personalized user indexing
mechanism and combine it with carefully de-
signed alignment tasks. Our approach enables
LLMs to deeply understand fine-grained user
preferences, providing more comprehensive
and detailed user modeling.

» Extensive experiments on two public datasets
demonstrate that our approach significantly
outperforms existing methods, validating the
effectiveness of our user-centric personaliza-
tion injection strategy.

2 Related Work

2.1 Large Language Model

Large Language Models (LLMs) have revolution-
ized natural language processing in recent years.
The development of LLMs can be traced through
several key milestones. Initially, models like
BERT (Devlin et al., 2019) introduced the con-
cept of pre-training on vast amounts of text data,
enabling better understanding of language context.
A significant leap came with GPT-3 (Brown, 2020;
Ouyang et al., 2022), which demonstrated remark-
able few-shot learning capabilities across various
tasks. Despite their remarkable capabilities, LLMs
face significant challenges when applied to per-
sonalized recommender systems. The reason is
that these models excel at general language under-
standing and generation tasks, but they struggle to
capture fine-grained user preferences crucial for
effective recommendations.

2.2 Sequential Recommendation

Sequential recommendation predicts users’ inter-
ests by modeling sequential patterns in user-item
interactions. Various neural architectures like
RNN (Li et al., 2017), MLP (Zhou et al., 2022),



CNN (Tang and Wang, 2018; Yuan et al., 2019),
GNN (Wu et al., 2019; Chang et al., 2021) and
Transformer (Kang and McAuley, 2018; Sun et al.,
2019) have been employed to capture item co-
occurrence patterns in interaction sequences.

With the emergence of Large Language Mod-
els (LLMs) like Llama (Touvron et al., 2023), re-
searchers have begun integrating them into rec-
ommender systems (Bao et al., 2023; Cui et al.,
2022; Yang et al., 2023; Geng et al., 2022). Com-
mon approaches convert user behaviors into text
sequences and design prompts for recommendation
tasks. For instance, TallRec (Bao et al., 2023) struc-
tures recommendation data as instructions, while
LC-Rec (Zheng et al., 2024) uses tree-structured
vector quantization for item indexing.

However, existing LLM-based methods primar-
ily focus on modeling sequential patterns and item
co-occurrence (e.g., which products are frequently
viewed or purchased together), often failing to ad-
equately address the complex and nuanced nature
of individual user preferences that extend beyond
simple interaction sequences. Our work aims to
bridge this gap by integrating LLMs with tradi-
tional recommender systems from a user modeling
perspective, thereby not only leveraging item co-
occurrence patterns but also deeply understanding
and incorporating personalized user preferences.

3 Problem Statement

Sequential recommendation aims to predict users’
future interests based on their historical interac-
tions. Formally, we define the problem as follows:
LetU = [u1,uz, ..., ujrq)] denotes the set of users
and Z = [i, 2, ..., 9|zr|] denotes the set of items,
where M and N represent the number of users
and items respectively. For each user v € U, their
interaction history is represented as a sequence
Sy = [i1,12, ..., 1], where i, € 7 and ¢ is the se-
quence length. Each interaction is associated with
a timestamp, and the sequence is ordered chrono-
logically. Given a user v and their interaction his-
tory Sy, the goal of sequential recommendation is
to predict the next item i, that the user is most
likely to interact with.

4 Proposed Method

In this section, we will introduce ULMRec in de-
tail. To bridge the gap between language semantics
and user personalized semantics effectively, we
propose a two-stage framework that addresses this

challenge from a user-centric perspective, as illus-
trated in Figure 2:

Personalized User Indexing Stage. In this
stage, we encode users’ preferences into unique
hierarchical semantic IDs through vector quantiza-
tion of user reviews and personalized information.
The learned indices preserve both collaborative re-
lationships among similar users and distinguishable
features for individuals.

Alignment-based Index Understanding Stage.
To establish semantic connections between user
indices and concrete preference information, we
design a comprehensive set of preference align-
ment tasks beyond traditional next-item predic-
tion. Through instruction tuning, these tasks guide
LLMs to understand the semantic meaning behind
each index and align them with specific user pref-
erences.

4.1 Personalized User Indexing

The key to introducing the user personalized pref-
erence into the LLMs is how to represent the user
with index IDs and integrate these IDs into LLMs.
Firstly, directly using original user IDs poses a
risk of semantic conflicts with LLM’s token se-
mantics. Secondly, although constructing user pro-
files through LLM-generated descriptions offers an
alternative approach, it often fails to capture the
nuanced and individualistic aspects of user prefer-
ences. In this section, we propose an approach that
leverages vector quantization techniques (Zeghi-
dour et al., 2021) to generate user indices. This
method enables the encapsulation of personalized
preference information in a format compatible with
LLM architectures.

To generate semantic user indices with rich pref-
erence information, we leverage user-generated
reviews as they provide valuable insights into in-
dividual preferences. For each user u € U, we
first collect their historical reviews as a sequence
W, = [wi,ws,...,w,], where n represents the
number of reviews. We then employ BERT (Devlin
et al., 2019) to transform these reviews into high-
dimensional embeddings: E, = BERT(W,) =
[€w; s €wsy) -, €w, | To enhance user representation
and avoid potential collisions, we also obtain the
embedding e, of user’s original ID o,, in the same
way as reviews and integrate it through an attention
mechanism. The attention process can be formu-
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Figure 2: The framework of ULMRec. During training, we first construct personalized user indices via vector
quantization, then fine-tune the LLM through multi-task learning to understand these indices that encode user-
specific representations. During inference, we leverage the tuned LLM to evaluate the recommendation performance.

lated as:

n
T
a; = softmaz(e,, Aie,, ), X, = E i€y, ,

i=1
(1
where A; is a learnable weight matrix, «; is the
attention weight for the i-th review, and x,, is the
aggregated review representation.

Then, using it as input, we train a Residual-
Quantized Variational = AutoEncoder (RQ-
VAE) (Zeghidour et al., 2021) to hash the user
information into discrete personalized semantic
IDs in a unified space. Through its hierarchical
latent spaces, this model can effectively capture
complex non-linear relationships. Specifically,
RQ-VAE encodes the input user embedding x
to obtain a latent representation z. At the initial
level (I = 0), residual is defined as z. And in each
level I, we have a codebook C! = {v{ }[£ , where
vfC represents the codebook vector and K is the
codebook size. At the O-th level, we map the latent
representation ro = z to the closest vector vg in
codebook C?, where the index of it is the O-th
codeword d. Then, at the next level, the residual
vector is computed as: r; = rg — Vgo. This
process iteratively finds the closest embedding in
each codebook level to get p codewords as the
hierarchical semantic IDs. Finally, the sum of each
quantized codebook vector is an approximation
of the original input vector. Below describes
this process, where d; represents the index of the
closest embedding, namely the ¢-th codeword of
user indices.

(@)

d; = argkfnin HI‘Z — V%c”i ,

3)

After generating the semantic IDs, the quantized
representation of z, computed as: Z = Z?:_ol Vﬁli,
is used as the decoder input to re-construct the
input user embedding x. The training loss contains
reconstruction loss and RQ loss, which are defined
as follows:

%
riy1 =0 — le_.

“

Lrecon = [|x — %|3,

4B I —sg [Vi] ;-

)
(6)

p—1
Lrq =) |lsglr] —vg,
=0

LrQ-vAE = LrECON + LRQ-

4.2 Alignment-based Index Understanding

Although user semantic IDs are constructed, the
LLMs often struggle to fully grasp their intrinsic
meanings. To better integrate the user semantic IDs
into the LLMs, we design a series of customized
tasks aimed at aligning these indices with person-
alized user semantics. This approach encourages
LLMs to comprehensively learn about the under-
lying personal preferences from provided context.
To mitigate catastrophic forgetting in LLM train-
ing, we employ a cross-task data shuffling strategy
that promotes balanced learning by maintaining
exposure to diverse training examples.



4.2.1 Next-Item Prediction

The first instruction tuning task focuses on next-
item prediction. We construct prompts by combin-
ing three key elements: the user index, a chrono-
logical sequence of historical interactions, and a
set of previously retrieved candidate items. LLMs
are enforced to predict the next item that a user
is most likely to interact with from the candidates.
This task enables the LLM to develop its core rec-
ommendation capabilities. However, to sufficiently
integrate personalized user preferences, additional
deep semantic alignment tasks are necessary.

4.2.2 Index-Preference Alignment

To explicitly align user indices with their pref-
erence information, we employ two processes:
(1) Preference extraction: We utilize GPT-3.5-
Turbo (Brown, 2020) to extract user preferences
from reviews, which reflect users’ attitudes and
tastes comprehensively; (2) Index-preference align-
ment: To enhance LLMs’ understanding and in-
ference capabilities regarding user indices, we in-
struct them to reconstruct user preferences based
solely on the user index. In this way, the LLM
could effectively interpret and utilize these indices
in subsequent tasks, grounding them in actual user
preferences and behaviors.

4.2.3 Preference-Index Alignment

In order to further enhance the LLMs’ ability to un-
derstand user preferences, we reverse the input and
output of the index-preference alignment task. This
reversed task serves as a counterpart to the earlier
index-to-preference mapping, creating a bidirec-
tional understanding of the relationship between
user indices and preferences. With this support, the
model could better associate user preferences with
their respective indices in a bidirectional learning
process.

4.2.4 History-Index Alignment

Users with similar interaction histories may have
distinct preferences, for example, one user might
prioritize price while another focuses on quality.
To address this nuance, we design a task that aligns
historical behaviors with unique user indices. This
alignment aims to couple each user’s interaction
history with their distinctive index, enabling LLMs
to differentiate between users with similar behav-
iors but divergent preferences.

4.2.5 Rating Prediction

To explicitly capture users’ preferences towards
specific items better, we incorporate the rating
score for deep alignment. In this task, we pro-
vide the LLM with user index, preference, history,
and past ratings. Notably, the rating for the last in-
teracted item is omitted, leaving it for the LLM to
predict. This task enhances the LLM’s ability to un-
derstand and predict fine-grained user preferences,
contributing to more personalized recommenda-
tions.

4.2.6 Intent-based Item Prediction

User preferences generated via GPT contain rich
intent information, potentially benefiting predic-
tion. We hypothesize that the LLM could interpret
user intentions from these preferences and make
informed recommendations. Then we design a task
in which the LLM is provided with user preferences
derived from “preference extraction” and candidate
items, instructing them to decode user interests
and select the most probable preferred item. This
approach aims to capture nuanced user intentions
beyond observable behaviors.

4.3 Model Training and Inference

During training, we first utilize LRURec (Yue et al.,
2024) retriever to obtain Top-20 candidate items
for each user-item interaction. Then, we employ
Llama-2-7b (Touvron et al., 2023) as the backbone
model. For the task of predicting the next item, we
follow LlamaRec (Yue et al., 2023) to use index
letters to identify candidates and employ the verbal-
izer to transform LLM outputs into ranking scores
over these candidates.

As the objectives of all alignment tasks are to
generate tokens based on the given context, we
directly employ the cross-entropy loss of the gener-
ation target as follows:

L==> yilog(§), (7)
=1

where m denotes the vocabulary size, y; repre-
sents the actual token, and g; represents the pre-
dicted probability. In our experiments, we adopt
QLoRA (Dettmers et al., 2024) to perform quanti-
zation on model parameters for efficient training.

During inference, we evaluate the ULMRec per-
formance on the next-item prediction task with the
user index and the user historical behaviors. Be-
sides, we extracts logits using the verbalizer to rank
relevant items in the candidate item pool.



S Experiment

5.1 Experimental Settings

We conduct our experiments on two widely used
Amazon datasets that are popular for LLM training
in recommendation: Beauty and Video Games (He
and McAuley, 2016; McAuley et al., 2015). Fol-
lowing previous work (Yue et al., 2023; Zheng
et al., 2024), we filter out users with fewer than
five interactions. The detailed statistics of these
processed datasets are presented in Table 1.

#Users # Items # Interact.

22,332
15,264

Dataset # Length  # Sparsity

12,086 198k 8.87 99.9%
7,676 148k 9.69 99.8%

Beauty
Games

Table 1: Statistics of the datasets.

We evaluate our model performance against
two categories of baseline models: (1) Classical
sequential recommendation models: NARM (Li
et al., 2017), BERT4Rec (Sun et al., 2019), SAS-
Rec (Kang and McAuley, 2018), LRURec (Yue
et al., 2024), Llama-2 (Touvron et al., 2023), and
LlamaRec (Yue et al., 2023). (2) Recent repre-
sentative LLM-based sequential recommendation
models: a. Prompt-based methods: PS5 (Geng et al.,
2022), POD (Li et al., 2023), and PeaPOD (Ramos
et al., 2024); b. Item-indexing based methods:
TIGER (Rajput et al., 2024), CID+IID (Hua et al.,
2023), TransRec (Lin et al., 2024), and IDGen-
Rec (Tan et al., 2024); c. User-profile based meth-
ods: PALR (Yang et al., 2023), RDRec (Wang
et al., 2024), and P2Rec (Liu et al., 2024).

In evaluation, we adopt three widely used met-
rics: Mean Reciprocal Rank (MRR@k), Normal-
ized Discounted Cumulative Gain (NDCG @k) and
Recall (Recall@k). In our experiment, we set k as
5 and 10. Besides, in the ranking stage, we perform
evaluation on the retrieved subset and then combine
the ranking metrics with retrieval performance as
the overall metrics.

5.2 Performance Comparison
5.21

As shown in Table 2, we evaluate the performance
of ULMRec and other baseline methods both on
valid retrieval subsets and entire datasets. From the
results, we can observe: (1) Among traditional se-
quential recommendation models, SASRec consis-
tently outperforms NARM and BERT4Rec across
all metrics, underscoring the effectiveness of self-
attention mechanisms in capturing sequential de-

Main Performance

pendencies; (2) LLM-based methods show promis-
ing results in recommendation tasks over traditional
methods, particularly in the Games dataset. Lla-
maRec achieves the best results among baselines,
indicating the potential of LLMs in recommenda-
tion scenarios; (3) Our proposed ULMRec demon-
strates consistent and substantial improvements
over all baselines. Taking the Games dataset as
an example, ULMRec achieves relative improve-
ments of 8.7%, 8.4%, and 7.7% in R@5, R@10,
and M @10 respectively, compared to the strongest
baseline LlamaRec, validating the effectiveness of
our user-centric learning paradigm design.

5.2.2 Further Comparison with LLM-based
Methods

Furthermore, we compare our model with recent
representative LL.M-based methods in Table 3.
Similar to LlamaRec, we compare against the re-
ported results from their original papers. From
the results, we can find: (1) P5, POD and Pea-
POD attempt to incorporate user/item IDs directly
in LLMs. Due to the interpretation difficulty of
discrete IDs in LLMs and the potential loss of
collaborative preference information during tok-
enization their improvements remain limited; (2)
TIGER, CID+IID, TransRec and IDGenRec focus
on enhancing sequential recommendation through
item indexing methods. However, by primarily
focusing on item-related information, these meth-
ods neglect the high-order user personalized pref-
erence, which is also crucial to recommendation;
(3) PALR, RDRec and P2Rec have explored dif-
ferent approaches to incorporate user information
through prompts, preference generation, and cate-
gory distribution modeling. However, these meth-
ods lack a unique identifier for users, which may
cause confusion in distinguishing different user per-
sonalized preferences; (4) In contrast, our ULMRec
addresses these limitations through hierarchical
user indexing and comprehensive preference align-
ment. Experimental results show significant im-
provements over the second best baseline, achiev-
ing 32%, 19%, 16%, and 8% improvements in
R@10, R@5, N@10, and N@5 respectively.

5.3 Ablation Study

To further explore how different alignment tasks
impact the model performance, we conduct abla-
tion experiments with six variants (Games dataset
as examples), including: (1) w/o pref: removing the
index-preference alignment task; (2) w/o intention:



Ranking Overall

Method M@5 N@5 R@5 M@I0 Nel0 R@I0 M@5 N@5 R@5 Me@l0 N@l0 R@l0
NARM 02039 02424 03600 | 0.2248 02931 05168 | 0.0479 00576 0.0874 | 0.0541 0.0729 0.1351
BERT4Rec  0.1765 02109 03160 | 0.1947 02551 04530 | 0.0422 00512 00788 | 0.0478 0.0649 0.1214

SASRec 02177 02571 03776 | 0.2408 03134 05521 | 00515 00617 00930 | 0.0583 0.0783 0.1446

Games | [lama-2 02264 02720 04117 | 0.2558 03439 0.6352 | 0.0477 00574 0.0868 | 0.0539 0.0725 0.1339
LRURec 02504 03009 04544 | 02811 03760 0.6879 | 0.0533 00640 0.0966 | 0.0598 0.0800 0.1463
LlamaRec ~ 02825 03360 04995 | 0.3158 04173 07522 | 0.0600 00714 0.1061 | 0.0671 0.0887 0.1599

Our 03071 03641 05379 | 03364 0.4354 07592 | 0.0647 0.0768 0.1134 | 0.0709 0.0918 0.1600

NARM  0.1961 02284 03263 | 02128 02689 04517 | 00289 00342 00503 | 0.0321 0.0420 0.0746
BERT4Rec  0.1587 0.1901 02861 | 0.1743 02281 04043 | 0.0246 00298 0.0457 | 0.0276 0.0372 0.0686

SASRec 02296 02679 03843 | 02491 03152 05312 | 00336 00397 00582 | 0.0371 00481 0.0844

Beauty | [jama-2 02617 03047 04360 | 0.2876 03687 06365 | 0.0344 00401 00574 | 0.0378 0.0485 0.0837
LRURec 02944 03403 04801 | 03259 04168 07170 | 0.0376 00435 00614 | 0.0417 00533 0.0916
LlamaRec 03016 03524 05071 | 0.3350 0.4337 07600 | 0.0385 00450 0.0648 | 0.0428 0.0554 0.0971

Our 03253 03792 0.5436 | 03520 0.4445 0.7468 | 0.0428 0.0499 0.0715 | 0.0463 0.0585 0.0982

Table 2: Performance of Ranking and Overall. Ranking evaluates recommendations within the Top-20 retrieved
items subset. Overall evaluates recommendations across the entire item space. The best and second-best results are

in bold and underlined.

P5 PALR TIGER CID+IID TransRec POD PeaPOD RDRec P2Rec IDGenRec Our
N@5 0.0367 N/A 00321 0.0356 0.0365 0.0395 0.0445 0.0461 0.0445 0.0486 0.0499
R@5 0.0493 N/A 0.0454 0.0512 0.0504  0.0537 0.0588  0.0601 0.0604 0.0618 0.0715
N@10 0.0416 0.0446 0.0384  0.0427 0.0450  0.0443 0.0493  0.0504 0.0509 0.0541 0.0585
R@10 0.0645 0.0721 0.0648  0.0732 0.0735  0.0688 0.0738  0.0743  0.0852 0.0814 0.0982

Table 3: The overall performance compared to other LLM-based models on Beauty dataset.

removing the intent-based item prediction task; (3)
w/o rating: removing the rating prediction task; (4)
w/o history: removing the history-index alignment
task; (5) w/o turnpref: removing the preference-
index alignment task; (6) w/o all-align: removing
all alignment tasks except next-item prediction.

Our ablation results are shown in Figure 3. From
the results, we can find each alignment task con-
tributes positively to recommendation performance,
demonstrating the effectiveness of our designed
comprehensive preference alignment. As expected,
w/o all-align obtains the poorest performance, in-
dicating that LLMs could not effectively capture
user personalized preferences solely based on the
next-item prediction task. Notably, w/o turnpref
shows a worse performance compared to w/o pref.
This may be because that w/o turnpref taking the
user’s personalized preferences as input makes it
easier for LLMs to understand and generate the
corresponding user index.

5.4 Further Analysis

5.4.1 Index-only Recommendation

To evaluate our indexing method’s capability in
capturing user intentions, we conduct a special-
ized experiment called ULMRec-uid, where recom-
mendations are made solely based on user indices
without any chronological interaction history. This

=1 R@S m —
0.50] E1 M@5
=1 N@5

ULMRec w/o pref w/o intention w/o rating w/o history w/o turnpref w/o all-align

Ranking Results

=1 R@S5 = —
=1 Mes
=1 Nes

ULMRec w/o pref w/o intention w/o rating  w/o history w/o turnpref w/o all-align

Overall Results

Figure 3: Ablation study of different alignment tasks.

setup isolates and tests the model’s ability to learn
user semantic preferences purely through our in-
dexing mechanism. We use Games dataset in the
ranking phase as the example. As shown in Table 4,
our model with aligned indices significantly outper-
forms traditional approaches like BERT4Rec, par-
ticularly in the R@10 metric (0.6647 vs. 0.4530),
despite the absence of historical interaction data.
These results provide strong evidence that ULM-
Rec can effectively construct comprehensive user
profiles and accurately capture personalized inter-
ests throught user indices alone, highlighting the
potential of LLLM-based approaches in scenarios
where historical interaction data is limited or un-
available.



Metic | \ies | Nes | R@s | M@10 | N@10 | R@10
Model

ULMRec | 03071 | 0.3641 | 0.5379 | 0.3364 | 0.4354 | 0.7592
ULMRec-uid | 0.1843 | 0.2330 | 0.3822 | 0.2209 | 0.3233 | 0.6647
BERT4Rec | 0.1765 | 0.2109 | 0.3160 | 0.1947 | 0.2551 | 0.4530

Table 4: Performance comparison of index-only rec-
ommendation, where ULMRec-uid indicates generating
recommendations solely based on the learned indices.
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Figure 4: Performance comparison of different user in-
dexing methods (N-ID: Numerical IDs, O-ID: Original
IDs, P-ID: Personalized IDs) with and without align-
ment.

5.4.2 Analysis of Different User Indexing
Methods

To systematically evaluate our proposed user index-
ing method, we compare three distinct approaches:
(1) Numerical IDs (N-ID): Traditional numerical
identifiers (e.g., 1, 2, 3) commonly used in recom-
mender systems; (2) Original IDs (O-ID): Raw
alphanumeric identifiers from the dataset (e.g.,
A1GNYVORAOEQSS); (3) Personalized IDs (P-
ID): Our proposed vector quantization approach
that encodes user preferences into structured in-
dices (e.g., <a 219> <b 2> <c 95> <d 238>). We
further examine each method’s performance with
and without alignment tasks to understand their
interaction with the LLM. As shown in Figure 4,
our VQ-based method with alignment consistently
achieves superior performance across all metrics,
validating the effectiveness of our approach. No-
tably, both N-ID and O-ID perform better without
alignment tasks. This could be attributed to LLMs
interpreting these IDs as raw text, maintaining their
original semantic understanding. The alignment
process, in these cases, actually disrupts this inher-
ent interpretation, leading to performance degrada-
tion. In contrast, our P-ID method, combined with
carefully designed alignment tasks, successfully
enables the LLM to integrate user preferences into
the representations.

prefer beauty
products

prefer high-quality
haircare and
skincare products

prefer effective hair
color products

<a_129> <b_249>
<171

<a_129> - <a_129><b_249>
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<a_ii> <b_154> <a_iit> <b_154>
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<«c_147> <c_147> <d_247>

prefer fun enjoy engaging enjoy deep RPGs
and engaging video games with and strategy
games strong narrativess games
Games

Figure 5: Case study for hierarchical preference evolu-
tion with multi-level user indices.

5.4.3 Complexity Analysis

In this section, we analyze the complexity of ULM-
Rec. We employ GPT-3.5-Turbo to generate user
preferences once per user, while fine-tuning and in-
ference each require a single Llama-2 call per data
point. Notably, ULMRec’s efficiency is compara-
ble to other LLM-based recommenders, averaging
0.615s per test instance on Beauty (vs. LlamaRec’s
0.636s) and 0.423s on Games (vs. LlamaRec’s
0.417s).

5.4.4 Case Study

To further explore the relationship between user
preference and indices, we present two illustrative
cases in Figure 5. We demonstrate how our model
captures hierarchical user preferences through dif-
ferent levels of indices on both Beauty and Games
datasets. As the level of indices increases, we ob-
serve that the preferences become progressively
more specific, evolving from general beauty prod-
ucts to hair colors in Beauty dataset, and from gen-
eral gaming interests to specific single-player ex-
periences in Games dataset, enabling more precise
and targeted recommendations.

6 Conclusion

In this paper, we introduce ULMRec, an LLM-
based recommender that integrates user-item inter-
actions and user personalized information into the
LLMs. Our approach generates unique semantic
user indices through vector quantization, then em-
ploys alignment tasks to incorporate user-specific
preference semantics, which include sequential rec-
ommendation, explicit and implicit alignments, en-
abling LLMs to map indices to user characteristics
and bridge semantic gaps across domains. Experi-
ments demonstrate ULMRec’s effectiveness in both
indexing and alignment, outperforming state-of-
the-art models in recommendation.



7 Limitation

While ULMRec exhibits competitiveness perfor-
mance, we still observe some limitations of ULM-
Rec. (1) Transferrable ability: The model would
currently be limited to single-domain recommen-
dations without cross-domain transfer capabilities.
(2) Generation-recommendation trade-off: While
the model achieves enhanced recommendation per-
formance, it might compromise its inherent lan-
guage generation capabilities.
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