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Abstract001

Large Language Models (LLMs) have demon-002
strated promising performance in sequential003
recommendation, leveraging their superior lan-004
guage understanding capabilities. However,005
most existing LLM-based recommendation006
models primarily capture sequential patterns007
between items and overlook the nuanced na-008
ture of individual user preferences, i.e., users009
with similar interaction histories demonstrate010
different interests. To alleviate this limitation,011
in this paper, we propose ULMRec, a frame-012
work that effectively integrates user personal-013
ized preferences into LLMs for sequential rec-014
ommendation. For integrating the user person-015
alized preference, we design two key compo-016
nents: (1) user indexing: a personalized user017
indexing mechanism that leverages vector quan-018
tization on user reviews and user IDs to gener-019
ate meaningful and unique user representations,020
and (2) alignment tuning: an alignment-based021
tuning stage that employs comprehensive pref-022
erence alignment tasks to enhance the model’s023
capability for capturing personalized informa-024
tion. In this way, ULMRec achieves deeper025
integration of language semantics with user026
personalized preferences, facilitating effective027
adaptation to recommendation. Extensive ex-028
periments on two public datasets demonstrate029
that ULMRec significantly outperforms exist-030
ing methods, validating the effectiveness of031
our approach. The code is available at https:032
//anonymous.4open.science/r/ULMRec.033

1 Introduction034

As the dynamic nature of user interests and behav-035

ioral patterns, sequential recommendation (Kang036

and McAuley, 2018; Sun et al., 2019) has attracted037

significant attention recently. Most existing sequen-038

tial recommendation methods adopt various neural039

networks to capture item co-occurrence patterns.040

Recently, Large Language Models (LLMs) (Tou-041

vron et al., 2023) have opened new frontiers in042

recommender systems (Yue et al., 2023; Zheng043

et al., 2024) by leveraging their advanced seman- 044

tic understanding and pre-trained knowledge. For 045

instance, LlamaRec (Yue et al., 2023) leverages 046

LLMs to re-rank candidate items, demonstrating 047

their effectiveness in capturing complex user-item 048

semantic relationships. These LLM-based methods 049

have shown superior performance. However, most 050

methodologies primarily focus on the modeling of 051

item-to-item relationships (i.e., sequential patterns 052

of which items frequently co-occur together in user 053

interactions), while failing to adequately capture 054

user-specific preference patterns. In other words, 055

these methods may not effectively differentiate be- 056

tween users who, despite having similar interaction 057

histories, exhibit distinct preferences, which is il- 058

lustrated in Figure 1. 059

To bridge this gap, we propose developing an 060

effective framework that incorporates user person- 061

alized preference into LLMs. A straightforward 062

approach would be to integrate user IDs, which 063

serve as unique user identifiers, into LLMs by pre- 064

fixing them to users’ historical behaviors during 065

the fine-tuning process. However, this naive inte- 066

gration faces two significant challenges: 067

(1) Semantic gap. A significant disconnect exists 068

between the language semantics modeled by LLMs 069

and the preference information embedded in user 070

IDs within recommender systems. This discon- 071

nect occurs because LLMs are trained on natural 072

language and may not recognize the special signif- 073

icance of user IDs in a recommendation context. 074

When LLMs tokenize user IDs, they inadvertently 075

fragment and potentially destroy the inherent per- 076

sonalized preference information encoded within 077

the identifiers. 078

(2) Limited task. Fine-tuning LLMs solely on the 079

next-item prediction task may constrain the model 080

to learn merely superficial item co-occurrence pat- 081

terns in users’ historical sequences, rather than de- 082

veloping a comprehensive understanding of users’ 083

personalized preferences. This narrow focus would 084
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Existing LLM-based Item-centric Methods

Our Personalized User-centric Method
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Figure 1: Illustration of two methods for LLM-based
recommenders: item-centric and user-centric.

not capture the fine-grained user personalized pref-085

erences, which extend beyond simple sequential086

patterns. Hence, we tackle this integration problem087

in two main aspects:088

(1) User Indexing: We develop an innovative089

allocation mechanism that creates meaningful user090

indices,designed to both preserve user preferences091

and maintain unique representations.092

(2) Alignment Tuning: We design a sophisti-093

cated alignment strategy that integrates language094

semantics with user preferences, extending beyond095

basic next-item prediction to capture comprehen-096

sive user behavior patterns.097

In this paper, we propose ULMRec, an LLM-098

based model that enhances recommendation from099

a user-centric perspective by integrating language100

semantics with personalized user preferences. Our101

model operates in two main phases: personalized102

user indexing stage and alignment-based index un-103

derstanding stage. In the first stage, we leverage104

vector quantization (Lee et al., 2022) to generate105

personalized user indices based on historical re-106

views, which contain rich information about user107

interests. Unlike traditional linear or MLP map-108

pings that focus on individual user-item interac-109

tions, vector quantization effectively captures user110

collaborative preference patterns by discretizing111

user behaviors into shared interest clusters. To en-112

sure uniqueness and semantic meaningfulness, we113

incorporate original user IDs into the quantization114

process, effectively preventing index collisions. Al-115

though our generated indices successfully encode116

personalized user information and avoid conflicts117

with the LLM’s existing token, a key challenge118

remains: how to enable the LLM to accurately in-119

terpret and utilize these indices. To address this,120

we expand beyond traditional sequential recom-121

mendation tasks and design a comprehensive set of122

preference alignment tasks in the second stage, in-123

corporating diverse personalized signals including 124

user preferences, historical behaviors, and rating 125

patterns. These alignment tasks work collabora- 126

tively to enhance the model’s capability in under- 127

standing the personalized user interests. In all, the 128

contributions of our work can be summarized as: 129

• We propose ULMRec, which could bridge the 130

semantic gap between LLMs and personal- 131

ized recommendation by integrating user pref- 132

erences into LLMs. It is the first attempt to 133

address the fundamental challenge of incorpo- 134

rating user-level personalization into LLMs. 135

• We develop a personalized user indexing 136

mechanism and combine it with carefully de- 137

signed alignment tasks. Our approach enables 138

LLMs to deeply understand fine-grained user 139

preferences, providing more comprehensive 140

and detailed user modeling. 141

• Extensive experiments on two public datasets 142

demonstrate that our approach significantly 143

outperforms existing methods, validating the 144

effectiveness of our user-centric personaliza- 145

tion injection strategy. 146

2 Related Work 147

2.1 Large Language Model 148

Large Language Models (LLMs) have revolution- 149

ized natural language processing in recent years. 150

The development of LLMs can be traced through 151

several key milestones. Initially, models like 152

BERT (Devlin et al., 2019) introduced the con- 153

cept of pre-training on vast amounts of text data, 154

enabling better understanding of language context. 155

A significant leap came with GPT-3 (Brown, 2020; 156

Ouyang et al., 2022), which demonstrated remark- 157

able few-shot learning capabilities across various 158

tasks. Despite their remarkable capabilities, LLMs 159

face significant challenges when applied to per- 160

sonalized recommender systems. The reason is 161

that these models excel at general language under- 162

standing and generation tasks, but they struggle to 163

capture fine-grained user preferences crucial for 164

effective recommendations. 165

2.2 Sequential Recommendation 166

Sequential recommendation predicts users’ inter- 167

ests by modeling sequential patterns in user-item 168

interactions. Various neural architectures like 169

RNN (Li et al., 2017), MLP (Zhou et al., 2022), 170
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CNN (Tang and Wang, 2018; Yuan et al., 2019),171

GNN (Wu et al., 2019; Chang et al., 2021) and172

Transformer (Kang and McAuley, 2018; Sun et al.,173

2019) have been employed to capture item co-174

occurrence patterns in interaction sequences.175

With the emergence of Large Language Mod-176

els (LLMs) like Llama (Touvron et al., 2023), re-177

searchers have begun integrating them into rec-178

ommender systems (Bao et al., 2023; Cui et al.,179

2022; Yang et al., 2023; Geng et al., 2022). Com-180

mon approaches convert user behaviors into text181

sequences and design prompts for recommendation182

tasks. For instance, TallRec (Bao et al., 2023) struc-183

tures recommendation data as instructions, while184

LC-Rec (Zheng et al., 2024) uses tree-structured185

vector quantization for item indexing.186

However, existing LLM-based methods primar-187

ily focus on modeling sequential patterns and item188

co-occurrence (e.g., which products are frequently189

viewed or purchased together), often failing to ad-190

equately address the complex and nuanced nature191

of individual user preferences that extend beyond192

simple interaction sequences. Our work aims to193

bridge this gap by integrating LLMs with tradi-194

tional recommender systems from a user modeling195

perspective, thereby not only leveraging item co-196

occurrence patterns but also deeply understanding197

and incorporating personalized user preferences.198

3 Problem Statement199

Sequential recommendation aims to predict users’200

future interests based on their historical interac-201

tions. Formally, we define the problem as follows:202

Let U = [u1, u2, ..., u|M|] denotes the set of users203

and I = [i1, i2, ..., i|N |] denotes the set of items,204

where M and N represent the number of users205

and items respectively. For each user u ∈ U , their206

interaction history is represented as a sequence207

Su = [i1, i2, ..., it], where ik ∈ I and t is the se-208

quence length. Each interaction is associated with209

a timestamp, and the sequence is ordered chrono-210

logically. Given a user u and their interaction his-211

tory Su, the goal of sequential recommendation is212

to predict the next item it+1 that the user is most213

likely to interact with.214

4 Proposed Method215

In this section, we will introduce ULMRec in de-216

tail. To bridge the gap between language semantics217

and user personalized semantics effectively, we218

propose a two-stage framework that addresses this219

challenge from a user-centric perspective, as illus- 220

trated in Figure 2: 221

Personalized User Indexing Stage. In this 222

stage, we encode users’ preferences into unique 223

hierarchical semantic IDs through vector quantiza- 224

tion of user reviews and personalized information. 225

The learned indices preserve both collaborative re- 226

lationships among similar users and distinguishable 227

features for individuals. 228

Alignment-based Index Understanding Stage. 229

To establish semantic connections between user 230

indices and concrete preference information, we 231

design a comprehensive set of preference align- 232

ment tasks beyond traditional next-item predic- 233

tion. Through instruction tuning, these tasks guide 234

LLMs to understand the semantic meaning behind 235

each index and align them with specific user pref- 236

erences. 237

4.1 Personalized User Indexing 238

The key to introducing the user personalized pref- 239

erence into the LLMs is how to represent the user 240

with index IDs and integrate these IDs into LLMs. 241

Firstly, directly using original user IDs poses a 242

risk of semantic conflicts with LLM’s token se- 243

mantics. Secondly, although constructing user pro- 244

files through LLM-generated descriptions offers an 245

alternative approach, it often fails to capture the 246

nuanced and individualistic aspects of user prefer- 247

ences. In this section, we propose an approach that 248

leverages vector quantization techniques (Zeghi- 249

dour et al., 2021) to generate user indices. This 250

method enables the encapsulation of personalized 251

preference information in a format compatible with 252

LLM architectures. 253

To generate semantic user indices with rich pref- 254

erence information, we leverage user-generated 255

reviews as they provide valuable insights into in- 256

dividual preferences. For each user u ∈ U , we 257

first collect their historical reviews as a sequence 258

Wu = [w1, w2, ..., wn], where n represents the 259

number of reviews. We then employ BERT (Devlin 260

et al., 2019) to transform these reviews into high- 261

dimensional embeddings: Eu = BERT (Wu) = 262

[ew1 , ew2 , ..., ewn ]. To enhance user representation 263

and avoid potential collisions, we also obtain the 264

embedding eou of user’s original ID ou in the same 265

way as reviews and integrate it through an attention 266

mechanism. The attention process can be formu- 267

3



Instruction: Given user index, user history in chronological order and candidate items, 
recommend an item from the candidate pool with its index letter for this user.

Input:  
User Index: <a_71> <b_254> <c_87> <d_24>
User history: (1) ZapZyt Acne Treatment Gel, 1 oz (2) ...
Candidate pool: (A) Shellac Black Pool Gel Nail Polish .25 Oz (B) ...

1.A
2.D
3.G
...

Inference

user 
interaction     

retrieved
candidates  

1. Personalized User Indexing Stage

Index generation

User Index:  <a_219> <b_3> <c_95> <d_238>

Attention

review      user-id      
Vector Quantization

DecoderEncoder

ULMRec

LLM

Next-Item  
Prediction

 Rating
Prediction

  Intent-based 
Item Prediction

Index-Preference 
Alignment

History-Index  
Alignment

Preference-Index 
Alignment

IndexPref

Multi-task fine-tuningPreference generation

Preference: The 
user prefers men's 

grooming 
products like...

review      

title      

2. Alignment-based Index Understanding Stage

Figure 2: The framework of ULMRec. During training, we first construct personalized user indices via vector
quantization, then fine-tune the LLM through multi-task learning to understand these indices that encode user-
specific representations. During inference, we leverage the tuned LLM to evaluate the recommendation performance.

lated as:268

αi = softmax(eTwi
Aieou),xu =

n∑
i=1

αiewi ,

(1)269

where Ai is a learnable weight matrix, αi is the270

attention weight for the i-th review, and xu is the271

aggregated review representation.272

Then, using it as input, we train a Residual-273

Quantized Variational AutoEncoder (RQ-274

VAE) (Zeghidour et al., 2021) to hash the user275

information into discrete personalized semantic276

IDs in a unified space. Through its hierarchical277

latent spaces, this model can effectively capture278

complex non-linear relationships. Specifically,279

RQ-VAE encodes the input user embedding x280

to obtain a latent representation z. At the initial281

level (l = 0), residual is defined as z. And in each282

level l, we have a codebook C l = {vl
k}Kk=1, where283

vl
k represents the codebook vector and K is the284

codebook size. At the 0-th level, we map the latent285

representation r0 = z to the closest vector v0
k in286

codebook C0, where the index of it is the 0-th287

codeword d0. Then, at the next level, the residual288

vector is computed as: r1 = r0 − v0
d0

. This289

process iteratively finds the closest embedding in290

each codebook level to get p codewords as the291

hierarchical semantic IDs. Finally, the sum of each292

quantized codebook vector is an approximation293

of the original input vector. Below describes294

this process, where di represents the index of the295

closest embedding, namely the i-th codeword of296

user indices.297

di = argmin
k

∥∥ri − vi
k

∥∥2
2
, (2) 298

299

ri+1 = ri − vi
di
. (3) 300

After generating the semantic IDs, the quantized 301

representation of z, computed as: ẑ =
∑p−1

i=0 vi
di

, 302

is used as the decoder input to re-construct the 303

input user embedding x. The training loss contains 304

reconstruction loss and RQ loss, which are defined 305

as follows: 306

LRECON = ∥x− x̂∥22, (4) 307
308

LRQ =

p−1∑
i=0

∥∥sg [ri]− vi
di

∥∥2
2
+β

∥∥ri − sg
[
vi
di

]∥∥2
2
,

(5) 309310

LRQ−VAE = LRECON + LRQ. (6) 311

4.2 Alignment-based Index Understanding 312

Although user semantic IDs are constructed, the 313

LLMs often struggle to fully grasp their intrinsic 314

meanings. To better integrate the user semantic IDs 315

into the LLMs, we design a series of customized 316

tasks aimed at aligning these indices with person- 317

alized user semantics. This approach encourages 318

LLMs to comprehensively learn about the under- 319

lying personal preferences from provided context. 320

To mitigate catastrophic forgetting in LLM train- 321

ing, we employ a cross-task data shuffling strategy 322

that promotes balanced learning by maintaining 323

exposure to diverse training examples. 324
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4.2.1 Next-Item Prediction325

The first instruction tuning task focuses on next-326

item prediction. We construct prompts by combin-327

ing three key elements: the user index, a chrono-328

logical sequence of historical interactions, and a329

set of previously retrieved candidate items. LLMs330

are enforced to predict the next item that a user331

is most likely to interact with from the candidates.332

This task enables the LLM to develop its core rec-333

ommendation capabilities. However, to sufficiently334

integrate personalized user preferences, additional335

deep semantic alignment tasks are necessary.336

4.2.2 Index-Preference Alignment337

To explicitly align user indices with their pref-338

erence information, we employ two processes:339

(1) Preference extraction: We utilize GPT-3.5-340

Turbo (Brown, 2020) to extract user preferences341

from reviews, which reflect users’ attitudes and342

tastes comprehensively; (2) Index-preference align-343

ment: To enhance LLMs’ understanding and in-344

ference capabilities regarding user indices, we in-345

struct them to reconstruct user preferences based346

solely on the user index. In this way, the LLM347

could effectively interpret and utilize these indices348

in subsequent tasks, grounding them in actual user349

preferences and behaviors.350

4.2.3 Preference-Index Alignment351

In order to further enhance the LLMs’ ability to un-352

derstand user preferences, we reverse the input and353

output of the index-preference alignment task. This354

reversed task serves as a counterpart to the earlier355

index-to-preference mapping, creating a bidirec-356

tional understanding of the relationship between357

user indices and preferences. With this support, the358

model could better associate user preferences with359

their respective indices in a bidirectional learning360

process.361

4.2.4 History-Index Alignment362

Users with similar interaction histories may have363

distinct preferences, for example, one user might364

prioritize price while another focuses on quality.365

To address this nuance, we design a task that aligns366

historical behaviors with unique user indices. This367

alignment aims to couple each user’s interaction368

history with their distinctive index, enabling LLMs369

to differentiate between users with similar behav-370

iors but divergent preferences.371

4.2.5 Rating Prediction 372

To explicitly capture users’ preferences towards 373

specific items better, we incorporate the rating 374

score for deep alignment. In this task, we pro- 375

vide the LLM with user index, preference, history, 376

and past ratings. Notably, the rating for the last in- 377

teracted item is omitted, leaving it for the LLM to 378

predict. This task enhances the LLM’s ability to un- 379

derstand and predict fine-grained user preferences, 380

contributing to more personalized recommenda- 381

tions. 382

4.2.6 Intent-based Item Prediction 383

User preferences generated via GPT contain rich 384

intent information, potentially benefiting predic- 385

tion. We hypothesize that the LLM could interpret 386

user intentions from these preferences and make 387

informed recommendations. Then we design a task 388

in which the LLM is provided with user preferences 389

derived from “preference extraction” and candidate 390

items, instructing them to decode user interests 391

and select the most probable preferred item. This 392

approach aims to capture nuanced user intentions 393

beyond observable behaviors. 394

4.3 Model Training and Inference 395

During training, we first utilize LRURec (Yue et al., 396

2024) retriever to obtain Top-20 candidate items 397

for each user-item interaction. Then, we employ 398

Llama-2-7b (Touvron et al., 2023) as the backbone 399

model. For the task of predicting the next item, we 400

follow LlamaRec (Yue et al., 2023) to use index 401

letters to identify candidates and employ the verbal- 402

izer to transform LLM outputs into ranking scores 403

over these candidates. 404

As the objectives of all alignment tasks are to 405

generate tokens based on the given context, we 406

directly employ the cross-entropy loss of the gener- 407

ation target as follows: 408

L = −
m∑
i=1

yi log (ŷi) , (7) 409

where m denotes the vocabulary size, yi repre- 410

sents the actual token, and ŷi represents the pre- 411

dicted probability. In our experiments, we adopt 412

QLoRA (Dettmers et al., 2024) to perform quanti- 413

zation on model parameters for efficient training. 414

During inference, we evaluate the ULMRec per- 415

formance on the next-item prediction task with the 416

user index and the user historical behaviors. Be- 417

sides, we extracts logits using the verbalizer to rank 418

relevant items in the candidate item pool. 419
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5 Experiment420

5.1 Experimental Settings421

We conduct our experiments on two widely used422

Amazon datasets that are popular for LLM training423

in recommendation: Beauty and Video Games (He424

and McAuley, 2016; McAuley et al., 2015). Fol-425

lowing previous work (Yue et al., 2023; Zheng426

et al., 2024), we filter out users with fewer than427

five interactions. The detailed statistics of these428

processed datasets are presented in Table 1.429

Dataset # Users # Items # Interact. # Length # Sparsity

Beauty 22,332 12,086 198k 8.87 99.9%
Games 15,264 7,676 148k 9.69 99.8%

Table 1: Statistics of the datasets.

We evaluate our model performance against430

two categories of baseline models: (1) Classical431

sequential recommendation models: NARM (Li432

et al., 2017), BERT4Rec (Sun et al., 2019), SAS-433

Rec (Kang and McAuley, 2018), LRURec (Yue434

et al., 2024), Llama-2 (Touvron et al., 2023), and435

LlamaRec (Yue et al., 2023). (2) Recent repre-436

sentative LLM-based sequential recommendation437

models: a. Prompt-based methods: P5 (Geng et al.,438

2022), POD (Li et al., 2023), and PeaPOD (Ramos439

et al., 2024); b. Item-indexing based methods:440

TIGER (Rajput et al., 2024), CID+IID (Hua et al.,441

2023), TransRec (Lin et al., 2024), and IDGen-442

Rec (Tan et al., 2024); c. User-profile based meth-443

ods: PALR (Yang et al., 2023), RDRec (Wang444

et al., 2024), and P2Rec (Liu et al., 2024).445

In evaluation, we adopt three widely used met-446

rics: Mean Reciprocal Rank (MRR@k), Normal-447

ized Discounted Cumulative Gain (NDCG@k) and448

Recall (Recall@k). In our experiment, we set k as449

5 and 10. Besides, in the ranking stage, we perform450

evaluation on the retrieved subset and then combine451

the ranking metrics with retrieval performance as452

the overall metrics.453

5.2 Performance Comparison454

5.2.1 Main Performance455

As shown in Table 2, we evaluate the performance456

of ULMRec and other baseline methods both on457

valid retrieval subsets and entire datasets. From the458

results, we can observe: (1) Among traditional se-459

quential recommendation models, SASRec consis-460

tently outperforms NARM and BERT4Rec across461

all metrics, underscoring the effectiveness of self-462

attention mechanisms in capturing sequential de-463

pendencies; (2) LLM-based methods show promis- 464

ing results in recommendation tasks over traditional 465

methods, particularly in the Games dataset. Lla- 466

maRec achieves the best results among baselines, 467

indicating the potential of LLMs in recommenda- 468

tion scenarios; (3) Our proposed ULMRec demon- 469

strates consistent and substantial improvements 470

over all baselines. Taking the Games dataset as 471

an example, ULMRec achieves relative improve- 472

ments of 8.7%, 8.4%, and 7.7% in R@5, R@10, 473

and M@10 respectively, compared to the strongest 474

baseline LlamaRec, validating the effectiveness of 475

our user-centric learning paradigm design. 476

5.2.2 Further Comparison with LLM-based 477

Methods 478

Furthermore, we compare our model with recent 479

representative LLM-based methods in Table 3. 480

Similar to LlamaRec, we compare against the re- 481

ported results from their original papers. From 482

the results, we can find: (1) P5, POD and Pea- 483

POD attempt to incorporate user/item IDs directly 484

in LLMs. Due to the interpretation difficulty of 485

discrete IDs in LLMs and the potential loss of 486

collaborative preference information during tok- 487

enization their improvements remain limited; (2) 488

TIGER, CID+IID, TransRec and IDGenRec focus 489

on enhancing sequential recommendation through 490

item indexing methods. However, by primarily 491

focusing on item-related information, these meth- 492

ods neglect the high-order user personalized pref- 493

erence, which is also crucial to recommendation; 494

(3) PALR, RDRec and P2Rec have explored dif- 495

ferent approaches to incorporate user information 496

through prompts, preference generation, and cate- 497

gory distribution modeling. However, these meth- 498

ods lack a unique identifier for users, which may 499

cause confusion in distinguishing different user per- 500

sonalized preferences; (4) In contrast, our ULMRec 501

addresses these limitations through hierarchical 502

user indexing and comprehensive preference align- 503

ment. Experimental results show significant im- 504

provements over the second best baseline, achiev- 505

ing 32%, 19%, 16%, and 8% improvements in 506

R@10, R@5, N@10, and N@5 respectively. 507

5.3 Ablation Study 508

To further explore how different alignment tasks 509

impact the model performance, we conduct abla- 510

tion experiments with six variants (Games dataset 511

as examples), including: (1) w/o pref: removing the 512

index-preference alignment task; (2) w/o intention: 513
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Method
Ranking Overall

M@5 N@5 R@5 M@10 N@10 R@10 M@5 N@5 R@5 M@10 N@10 R@10

Games

NARM 0.2039 0.2424 0.3600 0.2248 0.2931 0.5168 0.0479 0.0576 0.0874 0.0541 0.0729 0.1351
BERT4Rec 0.1765 0.2109 0.3160 0.1947 0.2551 0.4530 0.0422 0.0512 0.0788 0.0478 0.0649 0.1214
SASRec 0.2177 0.2571 0.3776 0.2408 0.3134 0.5521 0.0515 0.0617 0.0930 0.0583 0.0783 0.1446
Llama-2 0.2264 0.2720 0.4117 0.2558 0.3439 0.6352 0.0477 0.0574 0.0868 0.0539 0.0725 0.1339
LRURec 0.2504 0.3009 0.4544 0.2811 0.3760 0.6879 0.0533 0.0640 0.0966 0.0598 0.0800 0.1463
LlamaRec 0.2825 0.3360 0.4995 0.3158 0.4173 0.7522 0.0600 0.0714 0.1061 0.0671 0.0887 0.1599
Our 0.3071 0.3641 0.5379 0.3364 0.4354 0.7592 0.0647 0.0768 0.1134 0.0709 0.0918 0.1600

Beauty

NARM 0.1961 0.2284 0.3263 0.2128 0.2689 0.4517 0.0289 0.0342 0.0503 0.0321 0.0420 0.0746
BERT4Rec 0.1587 0.1901 0.2861 0.1743 0.2281 0.4043 0.0246 0.0298 0.0457 0.0276 0.0372 0.0686
SASRec 0.2296 0.2679 0.3843 0.2491 0.3152 0.5312 0.0336 0.0397 0.0582 0.0371 0.0481 0.0844
Llama-2 0.2617 0.3047 0.4360 0.2876 0.3687 0.6365 0.0344 0.0401 0.0574 0.0378 0.0485 0.0837
LRURec 0.2944 0.3403 0.4801 0.3259 0.4168 0.7170 0.0376 0.0435 0.0614 0.0417 0.0533 0.0916
LlamaRec 0.3016 0.3524 0.5071 0.3350 0.4337 0.7600 0.0385 0.0450 0.0648 0.0428 0.0554 0.0971
Our 0.3253 0.3792 0.5436 0.3520 0.4445 0.7468 0.0428 0.0499 0.0715 0.0463 0.0585 0.0982

Table 2: Performance of Ranking and Overall. Ranking evaluates recommendations within the Top-20 retrieved
items subset. Overall evaluates recommendations across the entire item space. The best and second-best results are
in bold and underlined.

P5 PALR TIGER CID+IID TransRec POD PeaPOD RDRec P2Rec IDGenRec Our

N@5 0.0367 N/A 0.0321 0.0356 0.0365 0.0395 0.0445 0.0461 0.0445 0.0486 0.0499
R@5 0.0493 N/A 0.0454 0.0512 0.0504 0.0537 0.0588 0.0601 0.0604 0.0618 0.0715

N@10 0.0416 0.0446 0.0384 0.0427 0.0450 0.0443 0.0493 0.0504 0.0509 0.0541 0.0585
R@10 0.0645 0.0721 0.0648 0.0732 0.0735 0.0688 0.0738 0.0743 0.0852 0.0814 0.0982

Table 3: The overall performance compared to other LLM-based models on Beauty dataset.

removing the intent-based item prediction task; (3)514

w/o rating: removing the rating prediction task; (4)515

w/o history: removing the history-index alignment516

task; (5) w/o turnpref: removing the preference-517

index alignment task; (6) w/o all-align: removing518

all alignment tasks except next-item prediction.519

Our ablation results are shown in Figure 3. From520

the results, we can find each alignment task con-521

tributes positively to recommendation performance,522

demonstrating the effectiveness of our designed523

comprehensive preference alignment. As expected,524

w/o all-align obtains the poorest performance, in-525

dicating that LLMs could not effectively capture526

user personalized preferences solely based on the527

next-item prediction task. Notably, w/o turnpref528

shows a worse performance compared to w/o pref.529

This may be because that w/o turnpref taking the530

user’s personalized preferences as input makes it531

easier for LLMs to understand and generate the532

corresponding user index.533

5.4 Further Analysis534

5.4.1 Index-only Recommendation535

To evaluate our indexing method’s capability in536

capturing user intentions, we conduct a special-537

ized experiment called ULMRec-uid, where recom-538

mendations are made solely based on user indices539

without any chronological interaction history. This540

ULMRec w/o pref w/o intention w/o rating w/o history w/o turnpref w/o all-align0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Sc
or

e

R@5
M@5
N@5

ULMRec w/o pref w/o intention w/o rating w/o history w/o turnpref w/o all-align

0.04

0.06

0.08

0.10

0.12

Sc
or

e

R@5
M@5
N@5

Ranking Results

Overall Results

Figure 3: Ablation study of different alignment tasks.

setup isolates and tests the model’s ability to learn 541

user semantic preferences purely through our in- 542

dexing mechanism. We use Games dataset in the 543

ranking phase as the example. As shown in Table 4, 544

our model with aligned indices significantly outper- 545

forms traditional approaches like BERT4Rec, par- 546

ticularly in the R@10 metric (0.6647 vs. 0.4530), 547

despite the absence of historical interaction data. 548

These results provide strong evidence that ULM- 549

Rec can effectively construct comprehensive user 550

profiles and accurately capture personalized inter- 551

ests throught user indices alone, highlighting the 552

potential of LLM-based approaches in scenarios 553

where historical interaction data is limited or un- 554

available. 555
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Model
Metric

M@5 N@5 R@5 M@10 N@10 R@10

ULMRec 0.3071 0.3641 0.5379 0.3364 0.4354 0.7592

ULMRec-uid 0.1843 0.2330 0.3822 0.2209 0.3233 0.6647

BERT4Rec 0.1765 0.2109 0.3160 0.1947 0.2551 0.4530

Table 4: Performance comparison of index-only rec-
ommendation, where ULMRec-uid indicates generating
recommendations solely based on the learned indices.
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Figure 4: Performance comparison of different user in-
dexing methods (N-ID: Numerical IDs, O-ID: Original
IDs, P-ID: Personalized IDs) with and without align-
ment.

5.4.2 Analysis of Different User Indexing556

Methods557

To systematically evaluate our proposed user index-558

ing method, we compare three distinct approaches:559

(1) Numerical IDs (N-ID): Traditional numerical560

identifiers (e.g., 1, 2, 3) commonly used in recom-561

mender systems; (2) Original IDs (O-ID): Raw562

alphanumeric identifiers from the dataset (e.g.,563

A1GNYV0RA0EQSS); (3) Personalized IDs (P-564

ID): Our proposed vector quantization approach565

that encodes user preferences into structured in-566

dices (e.g., <a 219> <b 2> <c 95> <d 238>). We567

further examine each method’s performance with568

and without alignment tasks to understand their569

interaction with the LLM. As shown in Figure 4,570

our VQ-based method with alignment consistently571

achieves superior performance across all metrics,572

validating the effectiveness of our approach. No-573

tably, both N-ID and O-ID perform better without574

alignment tasks. This could be attributed to LLMs575

interpreting these IDs as raw text, maintaining their576

original semantic understanding. The alignment577

process, in these cases, actually disrupts this inher-578

ent interpretation, leading to performance degrada-579

tion. In contrast, our P-ID method, combined with580

carefully designed alignment tasks, successfully581

enables the LLM to integrate user preferences into582

the representations.583

<a_129> <a_129> <b_249> <a_129> <b_249> 
<c_171>

<a_129> <b_249>
 <c_171> <d_19>

prefer beauty 
products

prefer high-quality 
haircare and 
skincare products

prefer effective hair 
tools and 
treatments

prefer effective hair 
color products

<a_111> <a_111> <b_154> <a_111> <b_154> 
<c_147>

<a_111> <b_154> 
<c_147> <d_247>

prefer fun 
and engaging 
games

enjoy engaging 
video games with 
strong narrativess

enjoy deep RPGs 
and strategy 
games

prefer single-player 
experiences

Beauty

Games

Figure 5: Case study for hierarchical preference evolu-
tion with multi-level user indices.

5.4.3 Complexity Analysis 584

In this section, we analyze the complexity of ULM- 585

Rec. We employ GPT-3.5-Turbo to generate user 586

preferences once per user, while fine-tuning and in- 587

ference each require a single Llama-2 call per data 588

point. Notably, ULMRec’s efficiency is compara- 589

ble to other LLM-based recommenders, averaging 590

0.615s per test instance on Beauty (vs. LlamaRec’s 591

0.636s) and 0.423s on Games (vs. LlamaRec’s 592

0.417s). 593

5.4.4 Case Study 594

To further explore the relationship between user 595

preference and indices, we present two illustrative 596

cases in Figure 5. We demonstrate how our model 597

captures hierarchical user preferences through dif- 598

ferent levels of indices on both Beauty and Games 599

datasets. As the level of indices increases, we ob- 600

serve that the preferences become progressively 601

more specific, evolving from general beauty prod- 602

ucts to hair colors in Beauty dataset, and from gen- 603

eral gaming interests to specific single-player ex- 604

periences in Games dataset, enabling more precise 605

and targeted recommendations. 606

6 Conclusion 607

In this paper, we introduce ULMRec, an LLM- 608

based recommender that integrates user-item inter- 609

actions and user personalized information into the 610

LLMs. Our approach generates unique semantic 611

user indices through vector quantization, then em- 612

ploys alignment tasks to incorporate user-specific 613

preference semantics, which include sequential rec- 614

ommendation, explicit and implicit alignments, en- 615

abling LLMs to map indices to user characteristics 616

and bridge semantic gaps across domains. Experi- 617

ments demonstrate ULMRec’s effectiveness in both 618

indexing and alignment, outperforming state-of- 619

the-art models in recommendation. 620
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7 Limitation621

While ULMRec exhibits competitiveness perfor-622

mance, we still observe some limitations of ULM-623

Rec. (1) Transferrable ability: The model would624

currently be limited to single-domain recommen-625

dations without cross-domain transfer capabilities.626

(2) Generation-recommendation trade-off: While627

the model achieves enhanced recommendation per-628

formance, it might compromise its inherent lan-629

guage generation capabilities.630
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