
Policy-conditioned Environment Models are More Generalizable

Ruifeng Chen * 1 2 Xiong-Hui Chen * 1 2 Yihao Sun 1 Siyuan Xiao 1 Minhui Li 1 Yang Yu 1 2

Abstract
In reinforcement learning, it is crucial to have an
accurate environment dynamics model to evalu-
ate different policies’ value in downstream tasks
like offline policy optimization and policy eval-
uation. However, the learned model is known
to be inaccurate in predictions when evaluating
target policies different from data-collection poli-
cies. In this work, we found that utilizing policy
representation for model learning, called policy-
conditioned model (PCM) learning, is useful to
mitigate the problem, especially when the offline
dataset is collected from diversified behavior poli-
cies. The reason beyond that is in this case, PCM
becomes a meta-dynamics model that is trained to
be aware of and focus on the evaluation policies
that on-the-fly adjust the model to be suitable to
the evaluation policies’ state-action distribution,
thus improving the prediction accuracy. Based on
that intuition, we propose an easy-to-implement
yet effective algorithm of PCM for accurate model
learning. We also give a theoretical analysis and
experimental evidence to demonstrate the feasibil-
ity of reducing value gaps by adapting the dynam-
ics model under different policies. Experiment
results show that PCM outperforms the existing
SOTA off-policy evaluation methods in the DOPE
benchmark with a large margin, and derives sig-
nificantly better policies in offline policy selection
and model predictive control compared with the
standard model learning method.

1. Introduction
Environment model learning, which learns a model to ap-
proximate state transitions and reward functions of the envi-
ronment, has extensive applications in Offline Policy Evalu-

*Equal contribution 1National Key Laboratory for Novel Soft-
ware Technology, Nanjing University, China & School of Artificial
Intelligence, Nanjing University, China 2Polixir Technologies. Cor-
respondence to: Yang Yu <yuy@nju.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

ation (OPE) (Thomas et al., 2015; Doroudi et al., 2017) and
offline Reinforcement Learning (offline RL) (Lange et al.,
2012; Levine et al., 2020). In OPE, policy value is estimated
by calculating the return of simulated trajectories from the
learned model. In offline RL, approaches utilize the model
for planning or optimizing policy to maximize the return.
Model accuracy significantly affects the efficacy of these
methodologies. However, a learned model is known to have
a large value gap when used to evaluate a target policy dif-
ferent from data-collection policies (Xu et al., 2020; Clavera
et al., 2018; Janner et al., 2019; Yu et al., 2020). Although
the learned dynamics model achieves a small error mea-
sured under the offline data distribution, the target policy
tends to visit a different state-action distribution, which may
be unfamiliar to the dynamics model (Janner et al., 2019).
Therefore, the model will generate unreliable transitions for
the shifted distribution, resulting in erroneous value esti-
mates (Xu et al., 2021). This issue hinders the adoption of
models in more scenarios.

In this article, we provide a new offline model learning
paradigm for accurate dynamics model learning, called
policy-conditioned model (PCM) learning. PCM learning
includes an extra context for model learning, representing
the policy to be evaluated, and an extra loss to learn policy
representation. Compared with the standard model learning
paradigm, which fits the whole dataset with a unified model
and rolls out whatever target policy within the model (Yu
et al., 2020), in this way, PCM becomes a meta-dynamics
model trained to be aware of the evaluation policies and
make predictions by adapting to the policies’ state-action
distribution to improve prediction accuracy. Our major find-
ing is that PCM will enjoy more extra generalization benefits
from the adaptation mechanism when the offline dataset is
collected from more diverse behavioral policies. In practice,
we provide an easy-to-implement yet effective algorithm
for PCM learning: we implement PCM via policy repre-
sentation techniques (Duan et al., 2016; Chen et al., 2021;
Nagabandi et al., 2019), which adopt an extra network mod-
ule to on-the-fly encode policies’ representation and input
the policy representations as well as a state-action pair into
the meta-dynamics model for next-state predictions. PCM
produces different dynamics models given different policy
representations. We also theoretically show that PCM can
achieve a smaller value gap for a target policy compared

1

Policy-conditioned Environment Models are More Generalizable

with standard policy-agnostic models under some assump-
tions.

Experiments are conducted based on MuJoCo (Todorov
et al., 2012). We first conducted a proof-of-concept experi-
ment, utilizing our custom-made dataset, which verified the
effectiveness of the policy-aware mechanism for improving
the model prediction accuracy. Then apply PCM in several
downstream tasks. Results show that PCM improves the per-
formance of off-policy evaluation in the DOPE benchmark
with a large margin, and derives significantly better poli-
cies in offline policy selection and model predictive control
compared with the standard model learning method.

2. Preliminaries
2.1. Markov Decision Process and Reinforcement

Learning

We consider a Markov decision process (MDP) (Sutton &
Barto, 2018) specified by the tuple M = (S,A, r, T, γ, ρ0),
where S is the state space, A is the action space, r(s, a)
is the reward function, T (s′|s, a) is the transition function,
γ ∈ (0, 1) is the discount factor, and ρ0(s) is the initial
state distribution. In reinforcement learning (RL), we are
typically concerned with optimizing or estimating the value
of a policy π in a policy space Π. Specifically, value is
defined as:

V π = Es0∼ρ0,s1:∞,a0:∞∼π

[∞∑
t=0

γtr(st, at)

]
. (1)

For a fixed policy π, the MDP becomes a Markow chain,
and we define the occupancy measure ρπ(s, a) = (1 −
γ)

∑∞
t=0 γ

tPπ(st = s, at = a). Then the policy value can
be rewritten as V π = Es,a∼ρπ

T∗ [r(s, a)]. When different
dynamics are involved, we use an additional subscript to
indicate the transition, e.g. V πT∗ and V π

T̂
. For a learned

dynamics model T̂ , we are interested in the value difference
|V πT∗ − V π

T̂
| for the policy π.

2.2. Off-policy Evaluation

Off-policy evaluation (OPE) (Le et al., 2019; Precup et al.,
2000; Jiang & Li, 2016; Kostrikov & Nachum, 2020; Yang
et al., 2020; Wen et al., 2020) aims at estimating the value
V π of a target policy π, based on a fixed dataset of tran-
sitions D collected from some behavior policies {µi}ni=1

(or named data-collection policies). This problem is of
great practical significance for several reasons, including
providing high-confidence guarantees prior to deployment,
performing policy improvement, and model selection. A
major challenge in OPE is the distribution shift between the
behavior policy and the target policy, which induces a large
value gap between the estimated value and the true value.

3. Related Works
Off-policy Evaluation (OPE): OPE research is relevant
to many practical domains such as recommendation sys-
tems (Li et al., 2011), health (Liao et al., 2019), and ed-
ucation (Mandel et al., 2014). There exists a large body
of work on OPE, including methods based on fitted q-
evaluation (Le et al., 2019; Hao et al., 2021) and impor-
tance sampling (Kostrikov & Nachum, 2020). Another class
of OPE is model-based approachs (also referred to as the
direct method), which is focused on in this paper. While
model-based OPE has been considered by many previous
works (Thomas & Brunskill, 2016; Hanna et al., 2017), they
are confined to simple tasks and produce biased predictions
due to the restricted range of state and action space in offline
trajectories (Fu et al., 2021b). By contrast, our approach is
applied to more intricate tasks and proves that model-based
OPE can also do well in challenging continuous tasks.

Model Learning Should be Aware of Policies: There are
some previous works in other fields also proposing the idea
that the dynamics model should be aware of or focus on
certain policies rather than all the policies. PAML (Abachi
et al., 2020) proposes that model learning should incorporate
the way the planner is going to use the model. PDML (Wang
et al., 2022) dynamically adjusts the historical policy mix-
ture distribution to ensure the learned model can continually
adapt to the state-action visitation distribution of the evolv-
ing policy. However, in contrast to us, their policy awareness
is aimed at facilitating online policy learning, adapting to
the policy gradient estimate, or simply the most recently dis-
covered policies. Recently, GALILEO (Chen et al., 2023c)
adjust the weights of the data points in the offline model
learning, where data is collected from one single and biased
behavior policy, to make the model iteratively focus on the
implicitly adversarial policies that the model cannot predict
well at the moment. Our method considers accurate offline
dynamics reconstruction utilizing an explicit policy repre-
sentation module, enabling on-the-fly adaptation for target
policy evaluation to improve local accuracy directly.

Model-based Offline RL: Model-based Offline RL
(MBORL) algorithms also involve dynamics models for
some downstream tasks. From the perspective of model us-
age, MBORL can generally be categorized into two groups:
model predictive control (MPC) (Camacho & Alba, 2013)
and Policy learning (PL). In MPC, Argenson & Dulac-
Arnold (2021) directly performs planning in a learned dy-
namics model. In Policy Learning, a policy can be trained
either in an in-support region by utilizing a conservative
surrogate MDP (Yu et al., 2020; Kidambi et al., 2020; Yu
et al., 2021; Sun et al., 2023; Chen et al., 2024a), or in
out-of-policy regions by learning an adaptive policy (Chen
et al., 2021; 2023b;a; Qin et al., 2023). Some works also

2

Policy-conditioned Environment Models are More Generalizable

utilize dynamics models with off-the-shelf model-free al-
gorithms for better policy learning (Lyu et al., 2022; Wang
et al., 2021). Recent studies (Rigter et al., 2022; Yang et al.,
2022) also adopt an adversarial framework that alternates
between dynamic-model training and policy learning. How-
ever, these works pay more attention to optimizing policy
under a restricted dynamics model instead of directly learn-
ing a faithful model when using it, where the latter is what
our work focuses on.

4. Value Gaps Formulation between True
Dynamics and a Learned Model

This work focuses on the generalization of the dynamics
model for the offline evaluation, which requires the model
prediction to be as accurate as possible even beyond the
support of the dataset to achieve a small evaluation error. 1.

We first give the problem formulation and the metric to eval-
uate the gap between true dynamics and a learned model.
Offline dataset D = {τm}Mm=1 consists of previously col-
lected trajectories τm = (s0, a0, r0, s1, . . .), each of which
is generated by the interaction between one of the behavior
policies Ω = {µi|i ∈ I} and the environment.

We follow the basic idea in OPE to define the performance
metric of a dynamics model: in an MDP, a good dynamics
model means for any target policy π, the gap between the
value under true transition T ∗ and the value estimation under
T̂ is small, i.e., |V πT∗ − V π

T̂
| is small. Inspired by a previous

study (Janner et al., 2019), the value gaps between true
dynamics and a learned model is bounded by

|V πT∗ − V π
T̂
| ≤ 2γRmax

(1− γ)2
l(π, T ∗, T̂), (2)

where l(π, T ∗, T̂) = Es,a∼ρπDTV(T
∗(·|s, a), T̂ (·|s, a)) is

total variation between true and learned transitions under
the state-action distribution of the target policy π to mea-
sure the model error. Eq. (2) implies that as long as we
reduce the model error l(π, T ∗, T̂) under the target policy’s
distribution ρπ , we can guarantee the reduction of the corre-
sponding upper bound of the value gap. The full derivation
is in App. A.1.

Remark 1 (Comparison to Janner’s bound): The bound
is a variant of the previous bounds in Janner et al. (2019);
Xu et al. (2020; 2021), where we consider the generalization
ability of learned models. We adapt the bound from Janner
et al. (2019) to our multiple behavior policies setting for a

1It is noteworthy the notion of generalization here has subtle
differences from that in online policy learning case, where policy
divergence is much smaller and exploration also have impacts.

more specific comparison:

|V πT∗ − V π
T̂
| ≤ 2γRmax

(1− γ)2
l(D, T ∗, T̂)

+
4Rmax

(1− γ)2

n∑
i=1

wimax
s
DTV (π(·|s), µi(·|s)), (3)

where l(D, T ∗, T̂) = Es,a∼DDTV(T
∗(·|s, a), T̂ (·|s, a)) is

the expected error under the training data distribution D.
Equation (3) bounds the value gap by the training model
error and the additional terms of the divergence between
the target policy and behavior policies µi, which is in fact a
relaxation of Equation (2). Although it is still a valid bound,
this result only suggests minimizing the training model error
but ignores the dynamics model’s generalization ability to
the target policy since the unavoidable policy divergence
term is irrelevant to the quality of learned dynamics models.

In contrast to Janner’s bound, Equation (2) requires focusing
on the model error under target distribution, suggesting
that an improved model generalization ability could further
reduce the value gaps for target policies. This drives us to
study model adaptation ability for diverse policies.

5. Policy-conditioned Dynamics Model
Learning

In this section, we first give intuitions for policy-conditioned
model (PCM) (Sec. 5.1). Then we give a formal formulation
of PCM learning and a practical policy representation tech-
nique to achieve PCM learning (Sec. 5.2). Finally, we give
an analysis of PCM in the generalization ability (Sec. 5.3).

5.1. Intuition for Policy-Conditioned Model Learning

In Fig. 1, we use an example to illustrate why policy-
conditioned model (PCM) learning is superior to policy-
agnostic model (PAM) learning.

Suppose we wish to learn an environment model where a
biped robot is asked to move forward from an offline dataset
including different locomotion patterns, such as walking,
running, jumping, etc. Currently, the standard dynamics
model, i.e., the policy-agnostic model (PAM), learns to pre-
dict all of the transitions coming from different locomotion
patterns in a unified model. However, we notice that differ-
ent locomotion patterns usually correspond to quite different
transition patterns though these patterns can be regarded as
a single task. For instance, jumping requires both legs to be
folded and unfolded at the same time while running involves
alternate flexion and extension of the legs. If we can utilize
this nature, the learning complexity will be reduced.

Based on the above motivation, instead of learning a single
model for the whole dataset, we propose to “divide” the
dataset according to the data-collection policy and learn a

3

Policy-conditioned Environment Models are More Generalizable

policy-agnostic
dynamics model

jumping

jogging
...

model for
jumping jumping

jogging

...

model for
walking

model for
 running

offline
dataset

walking

jumping

running

jumping

walking

offline
dataset

running

policy-conditioned dynamics model

...

...

去水印

去最下面

policy-aware
module

policy-aware
module

contribution
 to prediction

large minor

...

learning evaluation

train and evaluate train evaluate

(b) development pipeline for PCM(a) development pipeline for PAM

Figure 1: An illustration of the difference between the policy-agnostic model (left) and the policy-conditioned model (right).
Suppose we wish to learn an environment where a biped robot is asked to move forward from an offline dataset including
different locomotion patterns, such as jumping, walking, running, etc. Different locomotion patterns usually correspond to
quite different transition patterns even though they can be regarded as a single task.

model for each subset. We regard each locomotion pattern
as a subtask and respectively learn a model for each subtask.
In this way, we can reduce the learning difficulty of each
model, which is expected to obtain a more accurate model
for each data-collection policy. The rationale behind this
is that each data-collection policy only focuses on a rela-
tively small subregion of the support set of the whole mixed
state-action distribution, thus training the model under the
state-action occupancy of each policy should be an easier
task than the global model training and tends to obtain more
accurate models. Moreover, if the target policy to be eval-
uated is unseen before in the dataset, e.g. jogging, which
is a locomotion pattern between walking and running, it is
hoped to yield a new model to adapt to the jogging policy
by combining the walking model and the running model.

5.2. Achieve PCM Learning via Policy Representation
Adaptation

For the datasetD collected by a set of behavior policies Ω =
{µi|i ∈ I}, the training data distribution D is a mixture of
occupancy measures

∑
i∈I wiρ

µi(s, a) , where wi is data
proportion of policy µi. Conventional model learning fits a
universal transition model directly under the whole mixed
data distribution and rolls out whatever target policy in this
policy-agnostic model (PAM):

ψ̂ = argmin
ψ∈Ψ

∑
µi∈Ω

wil(µi, T
∗, Tψ), (4)

where model T is parameterized by ψ ∈ Ψ.

The objective is sufficient for simple environments where
the model capacity is rich enough to completely recover
true transitions. However, in realistic large-scale tasks, the

model’s capacity is limited in comparison to true transition,
resulting in a non-zero error, which will be further com-
pounded during long-horizon rollout (Janner et al., 2019;
Xu et al., 2020). With an adequate model capacity, it is
possible to accurately fit true transition dynamics, which
is the unique optimal model for any target policy. Never-
theless, the usually limited model capacity prevents perfect
transition modeling and requires a proper allocation of the
finite accuracy budget to facilitate the target policy rollout as
much as possible. Since different policies perform distinct
behaviors and access varied subregions of the state-action
space, their optimal models within the model space are
different, resulting in an optimal model inconsistency, i.e.,
there does not exist a unique model within the model space
that is optimal for general target policies.

Our consequent idea is to select dynamics models adap-
tively for different policies, where each model is optimized
specially for the occupancy measure of its corresponding
policy. We name it policy-conditioned model (PCM). This
"model selection" procedure can be expressed through a
mapping F : Π → Ψ, where each policy π is associated
with a model TF (π). Learning a PCM is therefore translated
into finding an optimal F to minimize model error on the
data distribution of each policy:

F̂ = arg min
F∈F

∑
µi∈Ω

wil(µi, T
∗, TF (µi)), (5)

where F is function space of F . The difference is that PAM
attempts to fit global transition dynamics, which is more
difficult than the local transition modeling that PCM spe-
cializes in. Thus, for the behavior policies µi, model error
l(π, T ∗, TF̂ (µi)

) can be reduced to achieve smaller value
gaps compared to PAM. Sec. 6.1 empirically showcases the

4

Policy-conditioned Environment Models are More Generalizable

reduced training errors.

However, in real-world applications, the corresponding
white-box policies are typically unknown. It is impracti-
cal to learn a mapping function F (π) which directly takes
policy π as the input. Inspired by many previous works
(Duan et al., 2016; Chen et al., 2021; Nagabandi et al.,
2019) which have successfully utilized RNN as an extra rep-
resentation extractor module to map the interaction trajecto-
ries to some task-specific meta-parameters, we use similar
RNN structure to learn and infer policy representations from
given interaction trajectories, and a policy-representation-
conditioned dynamics model is learned to adapt its predic-
tions based on the input policy representation. Formally, let
τ0:t = (s0, a0, s1, a1, ..., st, at) be a trajectory generated
by a data-collection policy up to timestep 0 ≤ t ≤ H − 1
(H is the horizon of the MDP) and the offline dataset is
a set of N trajectories D = {τ (j)}Nj=1. For any timestep
t, trajectories τ0:t−1 will be fed into a RNN qϕ(τ0:t−1) to
obtain an embedding zt. After that, an adaptive dynamics
model Tψ(st+1|st, at, zt) is learned to adapt its predictions
of st+1 based on zt. Recall that we expect to get a pol-
icy representation, the embedding zt should encode salient
information about the policy. To this end, a policy represen-
tation regularizer Rπ is jointly optimized to reconstruct the
specified policy. The overall learning objective of PCM is:

min
ϕ,θ,ψ

E
t∼[0,H−2],τ

(j)
0:t+1∼D[− log Tψ(st+1|st, at, qϕ(τ (j)0:t−1))

− λRπ(qϕ(τ
(j)
0:t−1), π

(j), θ)], (6)

where λ is a hyperparameter for policy-representation regu-
larization. Since π(j) unknown in prior, in this work, we di-
rectly use the policy reconstruction term in implementation,
i.e., Rπ(qϕ(τ

(j)
0:t−1), π

(j), θ) = log pθ(at|st, qϕ(τ (j)0:t−1)),
where pθ(at|st, zt) is the jointed optimized policy decoder.
Note that the gradients would be backpropagated from Tψ
and pθ to z if optimal models’ or policies’ parameters in
different trajectories are inconsistent but have the same rep-
resentation of z, then the parameters of ϕ will be updated
automatically to distinguish them. Our pseudo-code of the
overall PCM learning is shown in Alg. 1. Besides, since
the input trajectories can last for hundreds of steps in most
RL tasks, which has proven to raise challenges for the RNN
training due to gradient vanishing (Le & Zuidema, 2016),
we incorporate the residual connection into the policy en-
coder and dynamics model, referring to the previous success
of ResNet (He et al., 2016). Two tricks for modern autore-
gressive model training (Vaswani et al., 2017; Janner et al.,
2021), layer normalization and dropout, are also incorpo-
rated to improve RNN representation stability.

5.3. Analysis of PCM learning and its implementation
In this section, we show the adaptation effect from PCM can
provide additional generalization benefits when the learned

model extrapolates to the data distribution of new target
policies absent from training dataset. We introduce an as-
sumption on the smoothness of well-trained models:

Assumption 5.1. For the learned model T , the point-wise
model error DTV(T

∗(·|s, a), T (·|s, a)) is L-Lipschitz with
respect to the state-action pairs, i.e.,∣∣∣DTV(T

∗, T)(s1, a1)−DTV(T
∗, T)(s2, a2)

∣∣∣
≤ L ·D

(
(s1, a1), (s2, a2)

)
, (7)

where D(·, ·) is some kind of distance defined on the state-
action space S ×A.

Assump. 5.1 measures the local generalization ability of
a learned model, common in previous works (Tang et al.,
2022). Generally speaking, if we say the learned model
Tψ̂ generalizes well w.r.t. the state-action inputs, we mean
that for some unseen (s2, a2) deviating from a training data
(s1, a1), the point-wise model error will not increase much,
reflected by a bounded L. Based on this assumption, we
find that the expected model error of PAM under the target
policy data distribution can be controlled:

Proposition 5.2. Under Assump. 5.1, for any policy π ∈ Π,
the model error of PAM Tψ̂ under target policy-induced
distribution can be bounded:

l(π, T ∗, Tψ̂) ≤ min
µi∈Ω

{
l(µi, T

∗, Tψ̂) + L ·W1(ρ
π, ρµi)

}
,

(8)
where W1 is Wasserstein-1 distance defined on state-action
distribution space P(S ×A) with underlying metric D.

Prop. 5.2 shows that the generalization of PAMs to the target
policy solely relies on their point-level smoothness over the
state-action inputs. PCMs instead take a further step to
reduce the test model error via the policy adaptation:

Proposition 5.3. Under Assump. 5.1, for any policy π ∈ Π,
model error of PCM TF̂ (π) is bounded:

l(π, T ∗, TF̂ (π)) ≤

min
µi∈Ω

{
l(µi, T

∗, TF̂ (µi)
)︸ ︷︷ ︸

training error

+L ·W1(ρ
π, ρµi)− C(π, µi)︸ ︷︷ ︸

generalization error

}
,

(9)

where adaptation gain C(π, µi) := l(π, T ∗, TF̂ (µi)
) −

l(π, T ∗, TF̂ (π)) summarizes the adaptation effect.

Prop. 5.3 explains the PCM’s advantages over PAM: 1) a
smaller model error on the training dataset (as discussed
in Sec. 5.2); 2) a positive adaptation gain C(π, µi), where
depict the benefit of the policy adaptation effect based on
the insight that when testing on a new policy π within some
effective region, the model TF̂ (π) customized for π should

5

Policy-conditioned Environment Models are More Generalizable

have a smaller model error under the target distribution
ρπ than any TF̂ (µi)

. PAM does not include the policy-
conditioned mechanism and the adaptation gain is always
zero. Note that fine-tuning the PAM parameters for a new
policy is not practical because it requires the interaction of
the new policy with the environment to collect the target
domain experiences, which is prohibitive in general. In
contrast, the policy representation serves as an additional
covariate in PCM, which enables an extra adaptation ability
to target policies and hence a non-zero adaptation gain term
with no need for the real experiences in the target domain.
Therefore, Prop. 5.3 shows that the model error of PCM for
a new target policy π is reduced by the adaptation gain C,
if C > 0, compared with PAM (refer to Prop. A.2).

However, it is still difficult in general to rigorously ana-
lyze the adaptation gain C(π, µi) due to the complexity of
neural networks and the optimization process. We discuss
several cases of adaptation effects and extrapolation errors
in App. A.3. Empirically, as the target policy π gradually
diverges from Ω, the adaptation gain will increase from
zero and partially reduce the extrapolation error within an
effective adaptation region. When π leaves far enough from
Ω, C will reach the maximum and then start to decrease.
This trend exhibits the efficacy of policy adaptation to a
reasonable degree. We also provide experimental evidence
in Sec. 6.1.2, which aligns with the intuition.

Remark 2 (Model complexity): In our implementation
in Sec. 5.2, we introduce additional model complexity by
using the RNN module compared to the model space of
PAM, which is a gap between the analysis and the prac-
tical algorithm. One may suspect that it is the increased
model capacity helps the dynamics model learning, instead
of the policy-conditioned mechanism. We eliminate the
concerns through experiments. In particular, we find that
simply increasing the model capacity by using a larger net-
work without mechanism changes cannot bring significant
improvement (as shown in Table 8 in Appendix). The addi-
tional module works mainly because it allows an adaptive
and therefore effective utilization of the limited capacity for
different target policies, which reduces the in-distribution
model error and also brings generalization benefits for new
target policies as we show in the next subsection.

6. Experiment
In this section, we justify the efficacy of the policy adapta-
tion mechanism for model learning via a proof-of-concept
experiment (Sec. 6.1). In Sec. 6.1.2, we conduct experi-
mental studies to verify PCM enjoys smaller value gaps as
analyzed in Sec. 5.3. Then we evaluate PCM on specific
downstream tasks including off-policy evaluation (OPE),
offline policy selection (OPS), and model predictive control
(MPC) (Sec 6.2). Finally, we conduct ablation studies in

Sec. 6.3 and verify whether PCM learns reasonable policy
representation via visualization (Sec 6.4) 2.

6.1. Proof-of-Concept Verification

Prop. 5.3 indicates that the value gap of PCM for an unseen
policy π can be reduced by 1) a smaller model error on the
training dataset; 2) a positive adaptation gain C. In this
section, we conduct several proof-of-concept experiments
to verify these statements.

6.1.1. REDUCING TRAINING ERRORS

We consider a simplified setting that does not involve gener-
alization to unseen policies to justify the idea of the policy
adaptation mechanism for model learning. We collect a
dataset sampled by 10 different policies in HalfCheetah and
solely choose one of the 10 policies for evaluation. Since
there is no need for generalization, we can use a simple pol-
icy representation scheme called vector policy embedding,
F (µi). Specifically, we employ a n×m matrix to represent
the policies, where n is the number of policies in the dataset
and m is the dimension of the policy representation. The
matrix can be updated by backpropagation. We compared
the performance of the model with and without embedding.
Fig. 2(a) and 2(b) show even with such a simple policy rep-
resentation scheme, PCM can significantly outperform PAM
on the model error as well as the value gap.

Furthermore, we show that the vector policy embedding in-
deed helps the model adapt to a specific policy. We first train
and obtain an embedding for each policy, After training, we
have 10 different vector policy embeddings for these 10
policies, respectively. Then we evaluate each policy under
models given different vector embeddings and record the
value gap under each case. The results are shown in the
mismatch heatmap below. Fig. 2(c) shows that the model
performs better under policy with better-matched embed-
ding (for any two policies, the closer their numbers are,
the more similar they are), indicating that the vector policy
embedding helps the model adapt to a specific policy.

6.1.2. HAVING POSITIVE ADAPATATION GAIN

We now further verify that PCM indeed has adaptation gain
and smaller value gaps in unseen policies. All experiments
in this section are conducted in HalfCheetah.

We analyze the adaptation gain quantitatively by fixing a
data-collection policy µi and computing C(π, µi) for differ-
ent policies π. We refer to Appx. E.2 for more details. As
illustrated in Fig. 3(a), the gain gradually increases with the
policy divergence, reaches a maximum, and decreases as
the policy divergence continues increasing. This confirms

2code: https://github.com/xionghuichen/
policy-conditioned-model.git

6

https://github.com/xionghuichen/policy-conditioned-model.git
https://github.com/xionghuichen/policy-conditioned-model.git

Policy-conditioned Environment Models are More Generalizable

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0.0

0.1

0.2

0.3

0.4

0.5
M

od
el

 E
rr

or

w/o policy embedding
vector policy embedding

(a) Model error

250 500 750 1000 1250 1500 1750 2000
Epoch

0

100

200

300

400

500

600

700

800

Va
lu

e
G

ap

w/o policy embedding
vector policy embedding

(b) Value gap

0 1 2 3 4 5 6 7 8 9
Eval Policy Index

0
1

2
3

4
5

6
7

8
9

G
iv

en
 E

m
be

dd
in

g
In

de
x

0.0

0.2

0.4

0.6

0.8

1.0

(c) Heatmap

Figure 2: Illustration of model error, value gap of policy learned in with or w/o policy embedding model, and the heatmap
about the performance of evaluating policy with different policy embedding.

the analyzed cases in Sec. 5.3.

Finally, we directly compare the value gaps of PAM and
PCM and also investigate the influence of different lev-
els of dataset diversity on them. To do so, we construct
datasets with varying levels of diversity (0%, 20%, 50%,
80%, 100%), where the percentage indicates that the dataset
is created from the replay buffer of SAC (Haarnoja et al.,
2018) until the policy reaches the specific level of perfor-
mance.Appx. E.1 presents details of the data collection pro-
cess. We train PAM and PCM on each dataset and test them
on other 11 policies provided by the DOPE benchmark (Fu
et al., 2021a), which were unseen before in the datasets.
Fig. 3(b) depicts value gaps of each model trained on each
dataset, demonstrating that PCM achieves smaller value
gaps. Moreover, the results show that as the diversity of the
dataset increases, both PAM and PCM achieve smaller value
gaps, with PCM exhibiting a more substantial advantage.

0 5 10 15 20 25 30 35
Policy KL-divergence

4

2

0

2

Ad
ap

ta
tio

n
Ga

in
 (1

0
3)

(a) Adaptation gain

0% 20% 50% 80% 100%
Dataset Diversity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Va
lu

e
G

ap

0.76

0.51
0.47 0.45 0.44

0.78

0.48

0.42
0.37

0.32

PAM
PCM

(b) Value gaps

Figure 3: Illustrations of PCM having smaller value gaps.
The left shows the adaptation gain of PCM for different
unseen policies π, relative to a data-collection policy µi.
The right shows normalized value gaps of PAM and PCM
trained on datasets with different levels of diversity when
testing on 11 target unseen policies.

6.2. Evaluation on Downstream Tasks

6.2.1. OFF-POLICY EVALUATION

We compare PCM with several OPE methods, including:
Fitted Q-Evaluation (FQE) (Le et al., 2019), that esti-
mates the policy value via iteratively performing Bellman

update, Doubly Robust (DR) (Jiang & Li, 2016), that
combines the importance sampling technique with a value
estimator for variance reduction, Importance Sampling
(IS) (Kostrikov & Nachum, 2020), that performs impor-
tance sampling with a learned behavior policy, DICE (Yang
et al., 2020), that uses a saddle-point objective to estimate
marginalized importance weights dπ(s, a)/dπB (s, a), Vari-
ational Power Method (VPM) (Wen et al., 2020), that runs
a variational power iteration algorithm to estimate the im-
portance weights without the knowledge of the behavior
policy, Policy-Agnostic Model (PAM), that removes the
policy representation module in PCM and serves as the ab-
lation method. We evaluate these approaches on a variety of
tasks from DOPE-D4RL and DOPE-RL-Unplugged bench-
marks (Fu et al., 2021a), where the data in these tasks is
collected by diverse policies.

Fig. 4 shows the performance of PCM and other methods in
three metrics (details of the metrics and results separated by
tasks are in App. C). We find that PCM outperforms other
methods by a large margin. Specifically, the results of the
absolute error provide direct evidence that PCM can reduce
the value gap effectively. Besides, PCM obtains a higher
rank correlation and lower regret, indicating that PCM can
not only perform accurate evaluation but also select the
competitive policies among the policies to be evaluated.

6.2.2. OFFLINE POLICY SELECTION

In this section, we explore the efficacy of using PCM on
offline policy selection (OPS) for a practical offline RL algo-
rithm. Specifically, we use the implementation in OfflineRL-
Kit (Sun, 2023) to train MOPO (Yu et al., 2020) for 1000
epochs and record policy snapshots at the latest 20 epochs
for OPS. MOPO tends to give policies with different perfor-
mance even near the end of the training as shown in Tab. 10,
suitable for OPS tasks and comparing different methods.
We compare our method against PAM and FQE as well
as directly selecting the last-epoch policy. Tab. 1 shows
the performance gains by different methods, computed by
(Vselected−V̄)
Vmax−V̄

× 100%, where Vselected is the value of the se-

7

Policy-conditioned Environment Models are More Generalizable

Table 1: Performance gain of offline policy selection for MOPO (Yu et al., 2020) by different methods.

Task Name Last Epoch FQE IS DICE PAM PCM (Ours)

halfcheetah-medium-replay 39.3% 23.0% 87.8% 1.6% 1.6% 98.4%
hopper-medium-replay 56.0% 34.1% 56.0% 19.8% 47.3% 64.8%
walker2d-medium-replay -4.6% 4.6% 34.3% 13.0% -30.6% 51.9%

Average 30.2% 20.6% 59.4% 39.3% 11.5% 71.7%

FQE DR IS DICE VPM PAM PCM0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

<
Ab

so
lu

te
 E

rro
r

(a) Absolute error

FQE DR IS DICE VPM PAM PCM

0.2

0.0

0.2

0.4

0.6

>
Ra

nk
 C

or
re

la
tio

n

(b) Rank correlation

FQE DR IS DICE VPM PAM PCM0.0

0.1

0.2

0.3

0.4

0.5

<
Re

gr
et

(c) Regret

Figure 4: The performance of OPE in three metrics. To aggregate across tasks, we normalize the real policy values and
evaluate policy values to range between 0 and 1. The error bars denote the standard errors among the tasks with three seeds.

lected policy and V̄ , Vmax are the average and max values
of the evaluated policies, respectively. It is noteworthy that
the gains of FQE and PAM are even lower than directly
selecting the last-epoch policy, also indicated in (Qin et al.,
2022). In contrast, our approach shows a brilliant perfor-
mance, implying that it reliably chooses a better policy for
an offline RL algorithm to deploy. The results of PAM and
PCM on more tasks with more repetitions can be found in
Tab. 12 in Appendix.

6.2.3. MODEL PREDICTIVE CONTROL

An accurate model can also be expected to perform effective
model predictive control (MPC). We therefore compare our
proposed PCM against PAM and the true dynamics (using
MuJoCo simulator itself as true dynamics). Following Chua
et al. (2018), we use the cross-entropy method (CEM) as the
optimization technique in MPC, which samples actions form
a distribution closer to previous action samples yielding high
rewards. Details on MPC and CEM are discussed in App. F.

0 200 400 600 800 1000

Timestep

0

500

1000

1500

2000

2500

E
pi

so
de

 R
ew

ar
d

PAM
PCM
True Dynamics

(a) Performance

0 5 10 15 20 25

CEM Iteration

0

5

10

15

20

R
eg

re
t@

1

PAM
PCM

(b) Regret

Figure 5: Left shows cumulative rewards within an episode
in HalfCheetah. Right shows regrets of PAM and PCM dur-
ing CEM, obtained by tracking several planning processes.

Fig. 5(a) shows the cumulative rewards of the three meth-
ods during an episode, from which we can see that PCM
performs similarly to the true dynamics and significantly
outperforms PAM. To further explore why our approach
works better, we calculate regret values of the evalua-
tion of action sequences for PCM and PAM respectively.
We track several planning processes and compute regret∑t+T

i=t ET∗ [r(si, a
∗
i)]−

∑t+T
i=t ET∗ [r(si, âi)] for both PAM

and PCM, where ât:t+T and a∗t:t+T are the optimal action
sequences selected by the learned model and true dynam-
ics respectively. Regret is the difference between the real
value of the action sequence selected by the model and the
value of the optimal action sequence. Results in Fig. 5(b)
shows that PCM has lower regret than PAM, meaning that
our approach tends to pick out actions that are closer to the
optimal policy.

6.3. Ablation Studies

We do ablation studies to analyze the effect of the model ar-
chitecture and implementation tricks mentioned in Sec. 5.2.
The results are shown in Tab. 2. Specifically, we investigate
the effect of residual connection (PCM-res) and two re-
lated tricks borrowed from transformer (Janner et al., 2021;
Vaswani et al., 2017): layer normalization (PCM-layer) and
dropout (PCM-drop), removing them from the dynamics
model. We find that removing the layer normalization and
dropout leads to no significant performance change. The
residual connection is relatively more important mainly be-
cause it relieves the gradient vanishing for RNN-based pol-
icy encoder training. Removing the reconstruction loss for
policy representations (PCM-repr) presents significant per-

8

Policy-conditioned Environment Models are More Generalizable

Table 2: Normalized absolute error for ablations of implementation components in PCM.

Task Name PCM PCM-layer PCM-drop PCM-res PCM-repr PAM+GRU PAM

halfcheetah-medium-replay 0.31±0.08 0.37±0.05 0.32±0.04 0.43±0.03 0.47±0.06 0.48±0.12 0.53±0.04
hopper-medium-replay 0.08±0.02 0.12±0.01 0.10±0.02 0.14±0.01 0.22±0.04 0.15±0.05 0.34±0.04
walker2d-medium-replay 0.25±0.05 0.21±0.05 0.29±0.02 0.30±0.04 0.39±0.07 0.42±0.03 0.66±0.16

Average 0.21 0.23 0.24 0.29 0.36 0.37 0.51

300 200 100 0 100 200 300 400
200

100

0

100

200

300

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 V
al

ue

(a) with representation loss

60 40 20 0 20 40

40

30

20

10

0

10

20

30

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Va

lu
e

(b) without representation loss

Figure 6: Visualization for policy representations of differ-
ent policies learned by PCM in HalfCheetah. Points are
colored according to the normalized value.

formance degradation, which demonstrates the efficacy of
PCM mainly comes from our policy-embedded mechanism
for the dynamics model learning instead of just the archi-
tecture advantages. Replacing the MLP in PAM with GRU
cells used in the PCM implementations (PAM+GRU) still
underperforms our PCM, though the network architecture
indeed benefits.

6.4. Analysis of Learned Policy Representation
In this section, we conduct a study to verify whether the
PCM can learn reasonable policy representations. We select
several policies with different performance and feed the tra-
jectories generated by these policies into the policy encoder
module of PCM. We visualize the outputted policy repre-
sentations via the t-SNE (van der Maaten & Hinton, 2008)
technique in Fig. 6(a). We find that the policies with similar
performance have similar policy representations since there
is a degree of resemblance between their performed actions,
while the representations of policies with widely different

performance are far apart due to their quite different be-
havior. In contrast, the representations without the policy
reconstruction loss are randomly distributed as shown in
Fig. 6(b). This result demonstrates that PCM can effectively
identify similar policies and distinguish different policies.
We provide results on more tasks in Appx. D.

7. Discussion
This paper handles the challenge that learned dynamics
models tend to have large value gaps when evaluating a tar-
get policy different from the behavior policies if the offline
dataset is collected by diverse behavior policies. We propose
training a Policy-Conditioned Model (PCM) that generates
distinct dynamics models based on different target policies.
We demonstrate that PCM can achieve smaller value gaps
by reducing training errors and better generalization to out-
of-distribution data. Empirical results across domains and
algorithms validate the superiority of our approach.

It should be noted that several possible ways exist to im-
plement the policy-conditioned mechanism, and the RNN-
based policy encoding employed in this work is just one
of them. A limitation is that we analyze the generalization
of PAM and PCM based on the infinite sample assumption
for each behavior policy. However, for realistic situations
where only finite samples are available, the data from each
policy are limited, and additional estimation errors occur
in the model learning, which requires further analysis to
compare PAM with PCM. In the future, we aim to find a
more efficient policy representation scheme to enhance the
model’s generalization ability.

Another limitation is that we mainly focus on the model
generalization ability in the offline policy evaluation sce-
nario, and it has subtle differences from that in online and
reinforcement learning scenarios. The divergence between
the evaluation policies and the behavior policies within the
static offline dataset is usually much larger than that in on-
line policy learning case, where the experience data are
continually collected by evolving policies, and therefore
the our-of-distribution generalization is more essential in
offline scenarios. Besides, the exploration effect probably
makes some kinds of inaccurate models more beneficial in
long-term policy optimization than an accurate one, which
is more complicated and beyond our consideration.

9

Policy-conditioned Environment Models are More Generalizable

Acknowledgements
This work is supported by National Science Foundation of
China (61921006). We thank the anonymous reviewers for
their helpful discussions and suggestions on improving the
paper.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Abachi, R., Ghavamzadeh, M., and Farahmand, A. Policy-

aware model learning for policy gradient methods. CoRR,
abs/2003.00030, 2020.

Argenson, A. and Dulac-Arnold, G. Model-based offline
planning. In 9th International Conference on Learning
Representations (ICLR’21), virtual event, 2021.

Camacho, E. and Alba, C. Model Predictive Control.
Advanced Textbooks in Control and Signal Processing.
Springer London, 2013. ISBN 9780857293985.

Chen, R., Jia, C., Huang, Z., Liu, T.-S., Liu, X.-H., and
Yu, Y. Offline transition modeling via contrastive energy
learning. In Forty-first International Conference on Ma-
chine Learning, 2024a. URL https://openreview.
net/forum?id=dqpg8jdA2w.

Chen, R., Liu, X.-H., Liu, T.-S., Jiang, S., Xu, F., and Yu, Y.
Foresight distribution adjustment for off-policy reinforce-
ment learning. In Proceedings of the 23rd International
Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS’24), Auckland, New Zealand, 2024b.

Chen, X., Yu, Y., Li, Q., Luo, F., Qin, Z. T., Shang, W., and
Ye, J. Offline model-based adaptable policy learning. In
Advances in Neural Information Processing Systems 34
(NeurIPS’21), virtual event, 2021.

Chen, X., He, B., Yu, Y., Li, Q., Qin, Z. T., Shang, W.,
Ye, J., and Ma, C. Sim2rec: A simulator-based decision-
making approach to optimize real-world long-term user
engagement in sequential recommender systems. In 39th
IEEE International Conference on Data Engineering
(ICDE’23), Anaheim, CA, 2023a.

Chen, X., Luo, F., Yu, Y., Li, Q., Qin, Z., Shang, W., and
Ye, J. Offline model-based adaptable policy learning for
decision-making in out-of-support regions. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 45
(12):15260–15274, 2023b.

Chen, X., Yu, Y., Zhu, Z., Yu, Z., Chen, Z., Wang, C.,
Wu, Y., Qin, R., Wu, H., Ding, R., and Huang, F. Ad-
versarial counterfactual environment model learning. In
Advances in Neural Information Processing Systems 36
(NeurIPS’23), New Orleans, LA, 2023c.

Chua, K., Calandra, R., McAllister, R., and Levine, S. Deep
reinforcement learning in a handful of trials using proba-
bilistic dynamics models. In Advances in Neural Infor-
mation Processing Systems 31 (NeurIPS’18), Montréal,
Canada, 2018.

Clavera, I., Rothfuss, J., Schulman, J., Fujita, Y., Asfour,
T., and Abbeel, P. Model-based reinforcement learning
via meta-policy optimization. In Proceedings of The
2nd Conference on Robot Learning (CoRL’18), Zürich,
Switzerland, 2018.

Doroudi, S., Thomas, P. S., and Brunskill, E. Importance
sampling for fair policy selection. In Proceedings of
the Thirty-Third Conference on Uncertainty in Artificial
Intelligence (UAI’17), Sydney, Australia, 2017.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,
I., and Abbeel, P. RL2: Fast reinforcement learning via
slow reinforcement learning. CoRR, abs/1611.02779,
2016.

Fu, J., Norouzi, M., Nachum, O., Tucker, G., Wang, Z.,
Novikov, A., Yang, M., Zhang, M. R., Chen, Y., Kumar,
A., Paduraru, C., Levine, S., and Paine, T. Benchmarks
for deep off-policy evaluation. In 9th International Con-
ference on Learning Representations (ICLR’21), virtual
event, 2021a.

Fu, J., Norouzi, M., Nachum, O., Tucker, G., ziyu wang,
Novikov, A., Yang, M., Zhang, M. R., Chen, Y., Kumar,
A., Paduraru, C., Levine, S., and Paine, T. Benchmarks
for deep off-policy evaluation. In 9th International Con-
ference on Learning Representations (ICLR’21), virtual
event, 2021b.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In Proceedings of
the 35th International Conference on Machine Learning
(ICML’18), Stockholmsmässan, Sweden, 2018.

Hanna, J. P., Stone, P., and Niekum, S. Bootstrapping with
models: Confidence intervals for off-policy evaluation.
In Singh, S. and Markovitch, S. (eds.), Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence
(AAAI’17), San Francisco, CA, 2017.

Hao, B., Ji, X., Duan, Y., Lu, H., Szepesvari, C., and Wang,
M. Bootstrapping fitted q-evaluation for off-policy infer-
ence. In Proceedings of the 38th International Conference
on Machine Learning (ICML’21), virtual event, 2021.

10

https://openreview.net/forum?id=dqpg8jdA2w
https://openreview.net/forum?id=dqpg8jdA2w

Policy-conditioned Environment Models are More Generalizable

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR’16), Las Vegas, Nevada, 2016.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to
trust your model: Model-based policy optimization. In
Advances in Neural Information Processing Systems 32
(NeurIPS’19), Vancouver, Canada, 2019.

Janner, M., Li, Q., and Levine, S. Offline reinforcement
learning as one big sequence modeling problem. In Ad-
vances in Neural Information Processing Systems 34
(NeurIPS’21), virtual event, 2021.

Jiang, N. and Li, L. Doubly robust off-policy value eval-
uation for reinforcement learning. In Proceedings of
the 33nd International Conference on Machine Learning
(ICML’16), New York City, NY, 2016.

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims,
T. Morel: Model-based offline reinforcement learning. In
Advances in Neural Information Processing Systems 33
(NeurIPS’20), virtual event, 2020.

Kostrikov, I. and Nachum, O. Statistical bootstrapping for
uncertainty estimation in off-policy evaluation. CoRR,
abs/2007.13609, 2020.

Lange, S., Gabel, T., and Riedmiller, M. A. Batch reinforce-
ment learning. In Reinforcement Learning, volume 12,
pp. 45–73. 2012.

Le, H. M., Voloshin, C., and Yue, Y. Batch policy learning
under constraints. CoRR, abs/1903.08738, 2019.

Le, P. and Zuidema, W. Quantifying the vanishing gradient
and long distance dependency problem in recursive neural
networks and recursive lstms. CoRR, abs/1603.00423,
2016.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. CoRR, abs/2005.01643, 2020.

Li, L., Chu, W., Langford, J., and Wang, X. Unbiased
offline evaluation of contextual-bandit-based news article
recommendation algorithms. In Proceedings of the 4th
International Conference on Web Search and Web Data
Mining (WSDM’11), Hong Kong, China, 2011.

Liao, P., Klasnja, P. V., and Murphy, S. A. Off-policy esti-
mation of long-term average outcomes with applications
to mobile health. CoRR, abs/1912.13088, 2019.

Liu, X.-H., Xu, F., Zhang, X., Liu, T., Jiang, S., Chen, R.,
Zhang, Z., and Yu, Y. How to guide your learner: Imita-
tion learning with active adaptive expert involvement. In

Proceedings of the 22nd International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS’23),
London, UK, 2023.

Lyu, J., Li, X., and Lu, Z. Double check your state before
trusting it: Confidence-aware bidirectional offline model-
based imagination. In Advances in Neural Information
Processing Systems 35 (NeurIPS’22), New Orleans, LA,
2022.

Mandel, T., Liu, Y., Levine, S., Brunskill, E., and Popovic,
Z. Offline policy evaluation across representations with
applications to educational games. In International Con-
ference on Autonomous Agents and Multi-Agent Systems
(AAMAS’14), Paris, France, 2014.

Nagabandi, A., Clavera, I., Liu, S., Fearing, R. S., Abbeel,
P., Levine, S., and Finn, C. Learning to adapt in dynamic,
real-world environments through meta-reinforcement
learning. In 7th International Conference on Learning
Representations (ICLR’19), New Orleans, LA, 2019.

Precup, D., Sutton, R. S., and Singh, S. Eligibility traces
for off-policy policy evaluation. In Proceedings of the
17th International Conference on Machine Learning
(ICML’00), Stanford, CA, 2000.

Qin, R.-J., Zhang, X., Gao, S., Chen, X.-H., Li, Z., Zhang,
W., and Yu, Y. NeoRL: A near real-world benchmark for
offline reinforcement learning. In Advances in Neural In-
formation Processing Systems 35 (NeurIPS’22, Datasets
and Benchmarks), New Orleans, LA, 2022.

Qin, T., Wang, T., and Zhou, Z. Rehearsal learning for avoid-
ing undesired future. In Advances in Neural Information
Processing Systems 36 (NeurIPS’23), New Orleans, LA,
2023.

Rigter, M., Lacerda, B., and Hawes, N. Rambo-rl: Robust
adversarial model-based offline reinforcement learning.
In Advances in Neural Information Processing Systems
35 (NeurIPS’22), New Orleans, LA, 2022.

Sun, Y. Offlinerl-kit: An elegant pytorch offline rein-
forcement learning library. https://github.com/
yihaosun1124/OfflineRL-Kit, 2023.

Sun, Y., Zhang, J., Jia, C., Lin, H., Ye, J., and Yu, Y. Model-
bellman inconsistency for model-based offline reinforce-
ment learning. In Proceedings of the 40th International
Conference on Machine Learning (ICML’23), Honolulu,
HI, 2023.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tang, H., Meng, Z., Hao, J., Chen, C., Graves, D., Li, D.,
Yu, C., Mao, H., Liu, W., Yang, Y., et al. What about

11

https://github.com/yihaosun1124/OfflineRL-Kit
https://github.com/yihaosun1124/OfflineRL-Kit

Policy-conditioned Environment Models are More Generalizable

inputting policy in value function: Policy representation
and policy-extended value function approximator. In
Proceedings of the 30th AAAI Conference on Artificial
Intelligence (AAAI’22), virtual event, 2022.

Thomas, P. S. and Brunskill, E. Data-efficient off-policy
policy evaluation for reinforcement learning. CoRR,
abs/1604.00923, 2016.

Thomas, P. S., Theocharous, G., and Ghavamzadeh, M.
High-confidence off-policy evaluation. In Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelli-
gence (AAAI’15), Austin, TX, 2015.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS’12), Algarve, Portugal, 2012.

van der Maaten, L. and Hinton, G. Visualizing data using
t-sne. Journal of Machine Learning Research, 9(86):
2579–2605, 2008.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems 30 (NeurIPS’17), Long Beach, CA,
2017.

Wang, J., Li, W., Jiang, H., Zhu, G., Li, S., and Zhang,
C. Offline reinforcement learning with reverse model-
based imagination. In Advances in Neural Information
Processing Systems 34 (NeurIPS’21), virtual event, 2021.

Wang, X., Wongkamjan, W., and Huang, F. Live in the
moment: Learning dynamics model adapted to evolving
policy. CoRR, abs/2207.12141, 2022.

Wen, J., Dai, B., Li, L., and Schuurmans, D. Batch station-
ary distribution estimation. In Proceedings of the 37th In-
ternational Conference on Machine Learning (ICML’20),
virtual event, 2020.

Xu, T., Li, Z., and Yu, Y. Error bounds of imitating policies
and environments. In Advances in Neural Information
Processing Systems 33 (NeurIPS’20), virtual event, 2020.

Xu, T., Li, Z., and Yu, Y. Error bounds of imitating poli-
cies and environments for reinforcement learning. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 44(10):6968–6980, 2021.

Yang, M., Nachum, O., Dai, B., Li, L., and Schuurmans, D.
Off-policy evaluation via the regularized lagrangian. In
Advances in Neural Information Processing Systems 33
(NeurIPS’20), virtual event, 2020.

Yang, S., Zhang, S., Feng, Y., and Zhou, M. A unified frame-
work for alternating offline model training and policy
learning. In Advances in Neural Information Processing
Systems 35 (NeurIPS’22), New Orleans, LA, 2022.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J. Y., Levine,
S., Finn, C., and Ma, T. MOPO: model-based offline
policy optimization. In Advances in Neural Information
Processing Systems 33 (NeurIPS’20), virtual event, 2020.

Yu, T., Kumar, A., Rafailov, R., Rajeswaran, A., Levine, S.,
and Finn, C. COMBO: conservative offline model-based
policy optimization. In Advances in Neural Information
Processing Systems 34 (NeurIPS’21), virtual event, 2021.

12

Policy-conditioned Environment Models are More Generalizable

Appendix
A. Proofs
A.1. Value Gap Bounds

First, we prove the bound 2 of value gap:

|V πT∗ − V π
T̂
| ≤ 2Rmaxγ

(1− γ)2
Es,a∼ρπDTV(T

∗(·|s, a), T̂ (·|s, a)). (10)

Proof. In the proofs in this subsection, we use ρπ
T̂

to denote the occupancy measure under the transition model T̂ , and still
use ρπ to denote the occupancy measure in the real dynamics.

|V πT∗ − V π
T̂
| = 1

1− γ
|
∑
s,a

(ρπ(s, a)− ρπ
T̂
(s, a))r(s, a)| (11)

(a)

≤ 2Rmax

1− γ
DTV(ρ

π, ρπ
T̂
) (12)

(b)

≤ 2Rmaxγ

(1− γ)2
Es,a∼ρπDTV(T

∗(·|s, a), T̂ (·|s, a)), (13)

where (a) holds because

|
∑
s,a

(ρπ(s, a)− ρπ
T̂
(s, a))r(s, a)| ≤

∑
s,a

|ρπ(s, a)− ρπ
T̂
(s, a)||r(s, a)| (14)

≤ Rmax

∑
s,a

|ρπ(s, a)− ρπ
T̂
(s, a)| (15)

= 2RmaxDTV(ρ
π, ρπ

T̂
), (16)

and (b) holds because

DTV(ρ
π, ρπ

T̂
) ≤ γ

1− γ
Es,a∼ρπDTV(T

∗(·|s, a), T̂ (·|s, a)), (17)

which follows the proof of Lemma 11 in (Xu et al., 2021).

For comparison, we apply the traditional bound (Janner et al., 2019; Xu et al., 2020) to our mixture training data distribution
setting:

|V πT∗ − V π
T̂
| ≤ 2Rmaxγ

(1− γ)2
Es,a∼ρmixDTV (T

∗(·|s, a), T̂ (·|s, a)) (18)

+
4Rmax

(1− γ)2

n∑
i=1

wimax
s
DTV (π(·|s), µi(·|s)), (19)

which consists of the model error under the training data distribution and additional unavoidable policy divergence terms.
This result only suggests minimizing the training model error but ignores the generalization ability to the target policy.

13

Policy-conditioned Environment Models are More Generalizable

Proof.

|V πT∗ − V π
T̂
| ≤ |V πT∗ −

∑
i

wiV
µi

T∗ |+ |
∑
i

wiV
µi

T∗ −
∑
i

wiV
µi

T̂
|+ |

∑
i

wiV
µi

T̂
− V π

T̂
|

≤
∑
i

wi(|V πT∗ − V µi

T∗ |+ |V π
T̂
− V µi

T̂
|) + |

∑
s,a

(ρmix(s, a)− ρmix
T̂

(s, a))r(s, a)|

(∗)
≤ 2Rmaxγ

(1− γ)2
Es,a∼ρmixDTV (T

∗(·|s, a), T̂ (·|s, a))

+
4Rmax

(1− γ)2

∑
i

wimax
s
DTV (π(·|s), µi(·|s)),

where (∗) holds because

|V πT∗ − V µi

T∗ | ≤
2Rmax

(1− γ)2
max
s
DTV (π(·|s), µi(·|s)), (20)

|V π
T̂
− V µi

T̂
| ≤ 2Rmax

(1− γ)2
max
s
DTV (π(·|s), µi(·|s)), (21)

and

|
∑
s,a

(ρmix(s, a)− ρmix
T̂

(s, a))r(s, a)| ≤ 2Rmax

1− γ
DTV(ρ

mix, ρmix
T̂

) (22)

≤ 2Rmax

1− γ

∑
i

wiDTV(ρ
µi , ρµi

T̂
) (23)

≤ 2Rmaxγ

(1− γ)2

∑
i

wiEs,a∼ρµiDTV(T
∗(·|s, a), T̂ (·|s, a)) (24)

≤ 2Rmaxγ

(1− γ)2
Es,a∼ρmixDTV(T

∗(·|s, a), T̂ (·|s, a)). (25)

A.2. Proofs in Section 4

Assumption A.1. For the learned model T , the point-wise model error DTV(T
∗(·|s, a), T (·|s, a)) is L-Lipschitz with

respect to the state-action pairs, i.e.,∣∣∣DTV(T
∗, T)(s1, a1)−DTV(T

∗, T)(s2, a2)
∣∣∣ ≤ L ·D

(
(s1, a1), (s2, a2)

)
, (26)

where D(·, ·) is some kind of distance defined on the state-action space S ×A.
Proposition A.2. Under Assump. A.1, for any policy π ∈ Π, the model error of PAM Tψ̂ can be bounded:

l(π, T ∗, Tψ̂) ≤ min
µi∈Ω

{
l(µi, T

∗, Tψ̂) + L ·W1(ρ
π, ρµi)

}
, (27)

where W1(·, ·) is the Wasserstein-1 distance defined on the state-action distribution space P(S ×A) with the underlying
metric D.

Proof. The Wasserstein-1 metric has a dual representation:

W1(p, q) = sup
∥f∥Lip≤1

∫
f(x)dp(x)− f(y)dq(y), (28)

where ∥f∥Lip is the Lipschitz constant of function f . Therefore we have

|l(π, T ∗, Tψ̂)− l(µi, T
∗, Tψ̂)| = |Es,a∼ρπDTV(T

∗, Tψ̂)(s, a)− Es,a∼ρµiDTV(T
∗, Tψ̂)(s, a)|

≤ sup
∥f∥Lip≤L

∫
f(s, a)dρπ(s, a)− f(s, a)dρµi(s, a) (29)

= L ·W1(ρ
π, ρµi). (30)

14

Policy-conditioned Environment Models are More Generalizable

This holds for all µi ∈ Ω, therefore

l(π, T ∗, Tψ̂) ≤ min
µi∈Ω

{l(µi, T ∗, Tψ̂) + L ·W1(ρ
π, ρµi)}. (31)

Definition A.3. For a data-collection policy µi and a target policy π, we can define the adaptation gain of a learned
policy-conditioned model:

C(π, µi) := l(π, T ∗, TF̂ (µi)
)− l(π, T ∗, TF̂ (π)). (32)

Proposition A.4. Under Assump. A.1, for any policy π ∈ Π, the model error of PCM TF̂ (π) is bounded:

l(π, T ∗, TF̂ (π)) ≤ min
µi∈Ω

{
l(µi, T

∗, TF̂ (µi)
)︸ ︷︷ ︸

training error

+L ·W1(ρ
π, ρµi)− C(π, µi)︸ ︷︷ ︸

generalization error

}
. (33)

Proof. Similar to the proof in Prop. A.2, for some behavior policy µi, the inaccuracy of µi-adapted model on the test
distribution ρπT∗ can be bounded by that on the training distribution ρµT∗ and the generalization error caused by the distribution
extrapolation

l(π, T ∗, TF̂ (µi)
) ≤ l(µi, T

∗, TF̂ (µi)
) + L ·W1(ρ

π, ρµi). (34)

The π-adapted model TF̂ (π) enjoys an adaptation gain compared to TF̂ (µi)
, compensating the extrapolation effect

l(π, T ∗, TF̂ (π)) = l(π, T ∗, TF̂ (µi)
)− C(π, µi). (35)

Therefore the generalization error of the π-adapted model TF̂ (π) on the test distribution ρπ is reduced

l(π, T ∗, TF̂ (π)) ≤ l(µi, T
∗, TF̂ (µi)

) + L ·W1(ρ
π, ρµi)− C(π, µi). (36)

This holds for all µi ∈ Ω, therefore

l(π, T ∗, TF̂ (π)) ≤ min
µi∈Ω

{l(µi, T ∗, TF̂ (π)) + L ·W1(ρ
π, ρµi)− C(π, µi)}. (37)

A.3. Analysis on the intermediate adaptation

It is hard in general to rigorously analyze the adaptation gain C(π, µi) because of the complexity of neural networks and the
optimization process. To provide more concrete intuitions, in the following, we show some special cases for PCM to explain
the benefit of such adaptation effects.

Case 1: Direct match. If the TF̂ (π) simply equals to TF̂ (µi)
for some training policies µi, e.g., equals to the one has

the smallest occupancy divergence with respect to the target π, then the adaptation gain is exactly zero, which means no
adaptation effect is enabled. Hence in this case the advantage compared to PAM solely comes from the reduced error in
training policy distributions.

Case 2: Imaginary retraining. Another example corresponds to the (probably unachievable) perfect generalization case,
where F̂ (π) = argminψ∈Ψ l(π, T

∗, Tψ). In this case, we can imaginary ρπ based on π and search the optimal model
parameter directly. Therefore the adaptation gain completely cancels out the extrapolation error and the optimal model
accuracy under the capacity limitation. This case can be regarded as a ceiling of model accuracy for any practical
PCM algorithms.

Case 3: Intermediate adaptation. In general, we argue that the generalization ability of a well-trained PCM will fall between
the two extreme cases, where the adaptation gain is greater than zero and able to partially reduce the extrapolation error
within a certain region as π diverges from Ω gradually. When π is far enough from Ω, C will reach the maximum and then
may start to decrease and will be less than zero finally.

We argue that the generalization ability of PCM will more resemble Case 3, in which C will first increase and gradually
decrease after reaching the maximum. We provide some empirical evidence in Sec. 6.1.2, which can support our intuition.

We provide a formulation of the intermediate adaptation effect in the following.

15

Policy-conditioned Environment Models are More Generalizable

Assumption A.5. Assume that the adaptation gain C(π, µi) of a well-trained policy-conditioned model satisfies the
following properties:

1. if µi = π, the adaptation gain C(π, µi) equals zero, since the adaptation effect is not activated;

2. as π diverges from µi gradually, the adaptation effect becomes significant, an therefore C(π, µi) increases from zero;

3. when π is far enough from µi, C(π, µi) reaches the maximum and then may start to decrease due to the finite samples
and bounded generalization, so it leaves the effective adaptation region.

Under Assump. A.5, there exists an Li > 0 such that C(π, µi) ≥ Li ·W1(ρ
π, ρµi) for a data-collection policy µi and a

target policy π within the effective adaptation region, which can be justified by the empirical result in Fig. 3(a). Then we
have

Proposition A.6. Under the assumption of the adaptation gain, the generalization error of the learned policy-conditioned
model can be bounded:

l(π, T ∗, TF̂ (π)) ≤ min
i∈Iπ

{
l(µi, T

∗, TF̂ (µi)
) + (L− Li)W1(ρ

π, ρµi)
}
, (38)

where Iπ is the index set of the training policies in whose effective adaptation region the target policy π lies.

Proof. Substituting the assumption on the adaptation gain into the consequence of Prop. A.4 yields

l(π, T ∗, TF̂ (π)) ≤ min
µi∈Ω

{
l(µi, T

∗, TF̂ (µi)
) + L ·W1(ρ

π, ρµi)− C(π, µi)
}

(39)

≤ min
i∈Iπ

{
l(µi, T

∗, TF̂ (µi)
) + (L− Li)W1(ρ

π, ρµi)
}
, (40)

where we replace the whole data-collection policy set Ω with a local data-collection policy index set Iπ because the
adaptation gain is locally assumed.

Prop. A.6 shows that the coefficient of extrapolation term is reduced from L to L − Li thanks to the adaptation effect,
implying better generalization to unseen policies within a reasonable effective region. Note here we do not argue that
policy-conditioned models can generalize better to any target policy since here we only make local assumptions on the
adaptation effect, and for those policies quite distinct from all the data-collection policies we do not expect a high fidelity no
matter for policy-agnostic or policy-conditioned models.

16

Policy-conditioned Environment Models are More Generalizable

B. Implementation Details
B.1. Pseudocode

The pseudocode of PCM via policy representation is listed in Alg. 1

Algorithm 1 Policy-conditioned Model Learning

Require: Offline dataset D = {τ (j)}Nj=1 with N trajectories, policy encoder qϕ, policy decoder pθ, policy-conditioned
dynamics model Tψ .
for i = 1 to niter do

sample a trajectory τ ∼ D
sample a timestep t ∼ [0, len(τ)]
use the trajectory τ0:t+1 to optimize ϕ, θ, ψ according to Eq. (6).

end for

B.2. Implementation Details of Policy-Agnostic Model (PAM)

PAM is a 4-layer feedforward neural network with 200 hidden units. In addition, we borrow the design of blocks in
Transformer. We employ a residual connection around each of the two layers, followed by layer normalization. That is, the
output of each layer is LayerNorm(x+ Layer(x)), where Layer(x) = Dropout(Activation(Linear(x))).

B.3. Implementation Details of Policy-Conditioned Model (PCM)

PCM follows the same architecture as PAM except for an additional policy encoder and a policy decoder. The policy
encoder is a 3-layer GRU with 128 hidden units and outputs a 128-dim embedding. Then the outputted embedding will be
concatenated with the first layer’s output of the dynamics model. The policy decoder takes a state and an embedding as
input and outputs an action distribution. It is also constructed by a 4-layer MLP with 200 hidden units.

We present hyperparameters for model training in Tab. 3, which are shared by PAM and PCM (except λ since it is a
hyperparameter unique to PCM).

Table 3: Training hyperparameters of PAM and PCM.

Hyperparameters Value Description

Batch size 32 Batch size for gradient descent.
Optimizer Adam Optimizer.

Learning rate 1e-4 Learning rate for gradient descent.
Dropout rate 0.1 Dropout rate.

λ 0.01 Weight of policy representation loss.

C. Details of OPE
C.1. Off-policy Evaluation with PCM

Since we argue that our proposed PCM tends to have a smaller value gap, an obvious application that can make full use of
its superiority is off-policy evaluation (OPE). OPE via a learned dynamics model is straightforward, which only needs to
compute the return using simulated trajectories generated by the evaluated policy under the learned dynamics model. Due to
the stochasticity in the model and the policy, we estimate the return for a policy with Monte-Carlo sampling. See Alg. 2 for
pseudocode.

In practical evaluation, we choose γ = 0.995 and N = 10.

C.2. Metrics

The metrics we use in our paper are defined as follows:

17

Policy-conditioned Environment Models are More Generalizable

Algorithm 2 Off-policy Evaluation with PCM

Require: Policy-conditioned dynamics model (qϕ, pθ, Tψ) learned on D, evaluated policy π, number of rollouts N . set of
initial states S0, discount factor γ, horizon length H .
for i = 1 to N do
Ri = 0
Sample initial state s0 ∼ S0

Initialize τ−1 = 0
for t = 0 to H − 1 do
zt = qϕ(τt−1)
at ∼ π(·|st)
st+1, rt ∼ Tψ(·|st, at, zt)
Ri = Ri + γtrt
τt = (τt−1, st, at)

end for
end for
return 1

N

∑N
i=1Ri

Absolute Error The absolute error is defined as the difference between the value and estimated value of a policy:

AbsErr = |V π − V̂ π|, (41)

where V π is the true value of the policy and V̂ π is the estimated value of the policy.

Rank correlation Rank correlation measures the correlation between the ordinal rankings of the value estimates and the
true values, which can be written as:

RankCorr =
Cov(V π1:N , V̂

π
1:N)

σ(V π1:N)σ(V̂ π1:N)
, (42)

where 1 : N denotes the indices of the evaluated policies.

Regret@k Regret@k is the difference between the value of the best policy in the entire set, and the value of the best policy
in the top-k set (where the top-k set is chosen by estimated values). It can be defined as:

Regret @k = max
i∈1:N

V πi − max
j∈topk(1:N)

V πj , (43)

where topk(1 : N) denotes the indices of the top K policies as measured by estimated values V̂ π .

C.3. Detailed Results

Detailed results tables are presented here (averaged over 3 random seeds).

Table 4: Raw absolute error for each algorithm on D4RL and RL Unplugged tasks.

Task Name FQE DR IS DICE VPM PAM PCM (Ours)

halfcheetah-medium-replay 1003±132 1001±129 1409±154 1440±158 1384±148 1009±76 622±160
hopper-medium-replay 234±71 267±60 375±54 364±49 392±44 185±22 44±11
walker2d-medium-replay 313±73 296±54 427±60 347±51 424±64 358±85 140±28
ant-medium-replay 410±79 421±72 603±101 583±110 612±105 558±11 529±23
halfcheetah-medium-expert 1014±101 1015±103 1400±146 1078±132 1427±111 1184±421 935±41
hopper-medium-expert 282±76 426±99 106±29 259±54 442±43 313±130 114±5
walker2d-medium-expert 233±42 217±46 436±62 322±60 425±611 446±59 95±34
ant-medium-expert 319±67 326±66 604±102 471±100 604±106 524±11 564±81

cartpole-swingup 19±1 24±3 69±2 23±2 38±4 22.4±7.8 10±1
cheetah-run 48±2 40±2 44±2 23±11 62±4 14±4 8±1
fish-swim 20±2 20±2 35±2 59±2 31±1 13±0 11±0

18

Policy-conditioned Environment Models are More Generalizable

Table 5: Normalized absolute error for each algorithm on D4RL and RL Unplugged tasks.

Task Name FQE DR IS DICE VPM PAM PCM (Ours)

halfcheetah-medium-replay 0.50±0.06 0.50±0.06 0.75±0.08 0.72±0.08 0.69±0.07 0.53±0.04 0.31±0.08
hopper-medium-replay 0.43±0.13 0.49±0.11 0.69±0.10 0.67±0.07 0.72±0.08 0.34±0.04 0.08±0.02
walker2d-medium-replay 0.56±0.13 0.53±0.10 0.76±0.11 0.67±0.09 0.76±0.11 0.66±0.16 0.25±0.05
ant-medium-replay 0.36±0.07 0.37±0.06 0.53±0.09 0.51±0.10 0.54±0.09 0.49±0.01 0.46±0.02
halfcheetah-medium-expert 0.51±0.05 0.51±0.05 0.70±0.07 0.54±0.07 0.71±0.06 0.59±0.21 0.46±0.02
hopper-medium-expert 0.43±0.12 0.65±0.15 0.16±0.04 0.39±0.08 0.67±0.07 0.57±0.24 0.21±0.01
walker2d-medium-expert 0.42±0.08 0.39±0.08 0.78±0.11 0.58±0.11 0.76±0.11 0.82±0.11 0.17±0.06
ant-medium-expert 0.28±0.06 0.29±0.06 0.53±0.09 0.41±0.09 0.53±0.09 0.46±0.01 0.49±0.07

cartpole-swingup 0.17±0.01 0.22±0.02 0.57±0.02 0.19±0.01 0.31±0.03 0.20±0.07 0.09±0.01
cheetah-run 0.68±0.03 0.57±0.03 0.63±0.03 0.33±0.05 0.88±0.06 0.22±0.07 0.15±0.01
fish-swim 0.44±0.03 0.45±0.04 0.77±0.04 1.32±0.05 0.69±0.02 0.28±0.01 0.25±0.01

Table 6: Rank correlation for each algorithm on D4RL and RL Unplugged tasks.

Task Name FQE DR IS DICE VPM PAM PCM (Ours)

halfcheetah-medium-replay 0.26±0.37 0.32±0.37 0.59±0.26 -0.15±0.41 -0.07±0.36 0.71±0.13 0.86±0.06
hopper-medium-replay 0.17±0.15 0.24±0.25 0.41±0.32 0.21±0.34 -0.11±0.22 0.91±0.03 0.94±0.02
walker2d-medium-replay -0.19±0.36 -0.37±0.39 0.65±0.24 0.55±0.23 -0.52±0.25 0.14±0.42 0.71±0.16
ant-medium-replay 0.57±0.28 0.45±0.32 0.07±0.39 -0.24±0.39 -0.26±0.29 -0.05±0.12 0.06±0.11
halfcheetah-medium-expert 0.62±0.27 0.62±0.27 -0.06±0.37 -0.08±0.35 -0.47±0.29 0.44±0.46 0.84±0.02
hopper-medium-expert -0.33±0.30 -0.41±0.27 0.37±0.27 -0.08±0.32 0.21±0.32 0.54±0.32 0.74±0.03
walker2d-medium-expert 0.25±0.32 0.19±0.33 0.24±0.33 -0.34±0.34 0.49±0.37 0.21±0.13 0.88±0.13
ant-medium-expert 0.37±0.35 0.35±0.35 -0.21±0.35 -0.33±0.40 -0.28±0.28 -0.35±0.49 0.02±0.12

cartpole-swingup 0.70±0.07 0.55±0.09 -0.23±0.11 -0.16±0.11 0.01±0.11 0.63±0.13 0.90±0.01
cheetah-run 0.56±0.08 0.56±0.08 -0.01±0.12 0.07±0.11 0.01±0.12 0.64±0.08 0.74±0.03
fish-swim 0.10±0.12 0.11±0.12 -0.17±0.11 0.44±0.09 0.56±0.08 0.20±0.13 0.45±0.03

Table 7: Regret for each algorithm on D4RL (Regret@1) and RL Unplugged (Regret@5) tasks.

Task Name FQE DR IS DICE VPM PAM PCM (Ours)

halfcheetah-medium-replay 0.36±0.16 0.33±0.18 0.13±0.10 0.30±0.07 0.25±0.09 0.23±0.12 0.15±0.04
hopper-medium-replay 0.31±0.18 0.33±0.20 0.11±0.06 0.26±0.10 0.33±0.23 0.16±0.12 0.08±0.04
walker2d-medium-replay 0.24±0.20 0.68±0.23 0.02±0.05 0.18±0.12 0.46±0.31 0.21±0.12 0.05±0.01
ant-medium-replay 0.05±0.19 0.17±0.31 0.18±0.06 0.09±0.10 0.03±0.08 0.21±0.10 0.08±0.03
halfcheetah-medium-expert 0.14±0.07 0.14±0.07 0.73±0.42 0.38±0.37 0.80±0.34 0.36±0.45 0.12±0.05
hopper-medium-expert 0.41±0.20 0.34±0.35 0.06±0.03 0.20±0.08 0.13±0.10 0.14±0.14 0.08±0.04
walker2d-medium-expert 0.22±0.14 0.30±0.12 0.13±0.07 0.78±0.27 0.24±0.42 0.43±0.46 0.10±0.04
ant-medium-expert 0.36±0.14 0.37±0.13 0.46±0.18 0.60±0.16 0.32±0.24 0.59±0.28 0.06±0.04

cartpole-swingup 0.06±0.04 0.28±0.05 0.73±0.16 0.68±0.41 0.50±0.13 0.04±0.06 0.00±0.00
cheetah-run 0.17±0.05 0.09±0.05 0.40±0.21 0.27±0.05 0.37±0.04 0.24±0.18 0.00±0.00
fish-swim 0.50±0.03 0.61±0.12 0.12±0.05 0.35±0.24 0.02±0.02 0.18±0.14 0.11±0.06

Table 8: Ablation of the model capacity.

Task Name absolute error rank correlation regret

PAM 0.51 ± 0.04 0.47 ± 0.10 0.22 ± 0.07
PAM (larger) 0.26 ± 0.05 0.61 ± 0.07 0.12 ± 0.08
PCM 0.19 ± 0.03 0.77 ± 0.05 0.07 ± 0.03

19

Policy-conditioned Environment Models are More Generalizable

D. Visualizations for Policy Representations
We provide the visualization of policy representations in more tasks as shown in Fig. 7. The results shows that PCM can
effectively identify similar policies and distinguish different policies.

200 150 100 50 0 50 100 150

150

100

50

0

50

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 V
al

ue

(a) Hopper

800 600 400 200 0 200 400 600

1000

750

500

250

0

250

500

750

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 V
al

ue

(b) Walker2d

100 80 60 40 20 0
60

40

20

0

20

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Va

lu
e

(c) Carpole-swingup

70 60 50 40 30 20 10 0 10

80

60

40

20

0

20

40

60

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Va

lu
e

(d) Fish-swim

Figure 7: Illustrations of the t-SNE visualization for policy representations of different policies learned by PCM in Hopper,
Walker2d, Carpole-swingup, and Fish-swim. For each task, several policies (denoted by different markers) are plotted,
which are colored according to the normalized performance.

20

Policy-conditioned Environment Models are More Generalizable

Table 9: Hyperparameters of MPC.

Hyperparameters Value Description

Planning horizon 30 Length of the planning horizon.
Num candidates 500 Number of the sampled sequence actions.
Num elites 50 Number of elites.
α 0.1 How much of the previous mean is used for the next CEM iteration.
CEM iteration 25 Number of the CEM iterations.

E. Experiment Details of the Empirical Evidence Versification
We now introduce some experimental details in Sec 6.1.2.

E.1. Details of Data Collection

Data collection for evaluating model error and adaptation gain. We train SAC (Haarnoja et al., 2018) for 1000 epochs
(each epoch contains 1k gradient steps) in HalfCheetah environment. Then we record policy snapshots at 10, 20,..., 100
epochs and use each policy to sample 20 trajectories for data collection. When evaluating adaptation gain, we fix a
data-collection policy µi and select various policies during SAC training as target policies.

Data collection for evaluating value gap. We construct datasets with varying levels of diversity (20%, 50%, 80%), where
the percentage indicates that the dataset is created from the replay buffer of SAC (Haarnoja et al., 2018) until the policy
reaches the specific level of performance. We train PAM and PCM on each dataset and test them on the other 11 policies
provided by the DOPE benchmark (Fu et al., 2021a), which were unseen before in the datasets.

E.2. Details of Adaptation Gain

Recall that the adaptation gain is defined as

C(π, µi) := l(π, T ∗, TF̂ (µi)
)− l(π, T ∗, TF̂ (π)),

where l is the TV divergence between true and learned dynamics. However, directly computing C is intractable since
the true transition T ∗ is unknown. Therefore, we instead use the mean squared error 1

|S|
∑|S|
i=1

(
ŝ(i) − s(i)

)2
to compute

inconsistency between true and learned dynamics, where ŝ ∼ Tψ and s ∼ T ∗.

F. Details of model predictive control
Once a model is learned, we can use it for control by predicting the future outcomes of candidate policies or actions and
then selecting the particular candidate that is predicted to result in the highest reward. A classical planning method is model
predictive control (MPC) (Camacho & Alba, 2013) which plans for a sequence of actions. We choose MPC here for several
reasons, including implementation simplicity and lower computational burden.

Given the state of the system st at time t, the planning horizon H , and an action sequence at:t+H = {at, ..., at+H}, the
dynamics model Tψ will predict a state trajectory st:t+H . At each time step t, the MPC controller applies the first action
at of the sequence of the optimized actions argmaxat:t+H

∑H
i=t r(si, ai). A common way to generate candidate action

sequences is random shooting, which simply generates N independent random action sequences. This approach has been
shown to achieve success on many control tasks, but it has significant drawbacks: it scales poorly with the dimension of both
the action space and the planning horizon. As suggested in Chua et al. (2018), we use CEM instead of random shooting,
which samples actions from a distribution closer to previous action samples that yielded high rewards.

All the experiments in Sec. 6.2.3 share the same hyperparameters as shown in Tab. 9.

G. Details of Offline Policy Selection (OPS)
We train MOPO (Yu et al., 2020) for 1000 epochs and record policy snapshots at the latest 20 epochs for OPS. We report
these policies’ performance in Tab. 10, used for our OPS tasks, and compare them with the maximum performance within
the dataset. The results show that MOPO usually gives different policies even near the end of training, suitable for OPS

21

Policy-conditioned Environment Models are More Generalizable

tasks and comparing different methods. Besides, for the halfcheetah and hopper task, the policies learned by MOPO have
better performance than the behavior policies within the dataset, indeed showing a generalization beyond the dataset.

We compare our method against FQE, IS, DICE, PAM as well as directly selecting the last-epoch policy. The raw
performance of policies selected by each OPS approach on each task is listed in Tab. 11. Tab. 1 shows the performance gains
by different methods. The performance gain is computed by (Vselected−V̄)

Vmax−V̄
× 100%, where Vselected represents the value of the

selected policy and V̄ , Vmax are the average and max values of the evaluated policies, respectively. It is noteworthy that
the gains of FQE and PAM are even lower than directly selecting the last-epoch policy, which is also indicated in another
work (Qin et al., 2022). In contrast, our approach shows a brilliant performance, implying that it can reliably choose a better
policy for an offline RL algorithm to deploy.

Table 10: Statistics of the policy performance used for OPS tasks.

Task Min Max Mean Max within dataset

halfcheetah-medium-replay 59.4 75.7 70.6 ± 4.3 42.4
hopper-medium-replay 42.7 106.0 96.0 ± 14.8 98.6
walker2d-medium-replay 18.5 88.4 79.5 ± 14.8 89.9

Table 11: Raw performance of offline policy selection for MOPO (Yu et al., 2020) via different approaches.

Task Name Last Epoch FQE IS DICE PAM PCM (Ours)

halfcheetah-medium-replay 72.3 70.0 74.8 71.3 71.3 75.9
hopper-medium-replay 102.0 100.0 102.0 98.7 101.2 102.8
walker2d-medium-replay 79.3 80.3 83.5 81.2 76.5 85.4

Average 84.5 83.4 86.8 83.7 83.0 88.0

Following an anonymous reviewer’s suggestion, we also conducted the OPS experiments on more tasks and tried more
repetitions. The results of PAM and PCM averaged over three seeds are reported in Tab 12.

Table 12: Performance of offline policy selection for MOPO (Yu et al., 2020) of PAM and PCM methods on more tasks.

Task Name PAM PCM

halfcheetah-medium-replay -2.1%±13.3% 78.9%±14.1%
hopper-medium-replay 43.1%±3.1% 54.7%±10.5%
walker2d-medium-replay -4.5%±23.4% 82.8%±21.9%
halfcheetah-medium-expert 35.7%±13.8% 50.3%±21.3%
hopper-medium-expert -35.3%±46.8% 56.7%±13.3%
walker2d-medium-expert 1.6%±43.9% 20.4%±38.7%

Average 6.42%±24.05% 57.3%±19.97%

22

Policy-conditioned Environment Models are More Generalizable

Appendix References
Fu, J., Norouzi, M., Nachum, O., Tucker, G., Wang, Z., Novikov, A., Yang, M., Zhang, M. R., Chen, Y., Kumar, A., Paduraru,

C., Levine, S., and Paine, T. Benchmarks for deep off-policy evaluation. In 9th International Conference on Learning
Representations (ICLR’21), virtual event, 2021.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust your model: Model-based policy optimization. In Advances in
neural information processing systems 32 (NeurIPS’19), Vancouver, BC, Canada, 2019.

Xu, T., Li, Z., and Yu, Y. Error bounds of imitating policies and environments. In Advances in Neural Information Processing
Systems 33 (NeurIPS’20), virtual event, 2020.

Xu, T., Li, Z., and Yu, Y. Error bounds of imitating policies and environments for reinforcement learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(10):6968–6980, 2021.

23

