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ABSTRACT

Graph Neural Networks (GNNs) have been extensively evaluated in the machine
learning regime. In contrast to most studies that primarily focus on the empirical
assessment of model performance across different graph datasets, we ratchet the
gear of GNN benchmarking another notch forward to understand the graph learn-
ing mechanism that shapes characteristic learning behaviors of each GNN model.
Specifically, we introduce a comprehensive benchmark framework PDEGNN-
BENCH to evaluate GNNs derived from six representative governing equations,
i.e., partial differential equations (PDEs), for graph heat isotropic/anisotropic dif-
fusion, non-local diffusion, reaction–diffusion, Hamiltonian system, wave trans-
port, and oscillatory synchronization. By linking each GNN model instance to
its corresponding governing equation, we establish new insights into the design
principle for new GNNs by understanding the relationship between mechanistic
interpretations and descriptive learning performance. To that end, we seek to ex-
plore two fundamental questions: (1) How well does each governing equation
respond to the challenge of over-smoothing in GNNs? (2) How does the homo-
geneity degree of graph topology influence model performance across PDE fam-
ilies? Taken together, our benchmark provides a systematic evaluation of leading
GNN models through the lens of underlying physical mechanisms. Through well-
designed experiments, we demonstrate that each family of governing equations
exhibits distinct model generalization and interpretability characteristics, offering
guidance for designing suitable GNNs for the new graph data.

1 INTRODUCTION

Inspired by graph theory and deep learning, Graph neural networks (GNNs) have emerged as a
powerful framework for representation learning on complex structured data (Kipf & Welling, 2016),
revolutionizing fields such as drug discovery (Stokes et al., 2020) and brain connectomics (Parisot
et al., 2018; Zhou et al., 2020; Wu et al., 2020; Bronstein et al., 2017). Particularly, recent advance-
ments have introduced a rich variety of physics-inspired GNN architectures governed by partial and
ordinary differential equations (PDE/ODE), which inject explicit inductive biases rooted in dynam-
ical systems theory. PDE-governed GNNs (Eliasof & Treister, 2021; Poli et al., 2023) have gained
attention due to their well-founded theoretical formulations, the capacity to model continuous-time
dynamics and enhanced model interpretability. By enabling a principled manipulation of graph prop-
agation processes, such as energy preservation and wave transport, these models provide a flexible
framework for tailoring message-passing behavior to the underlying structure of the data.

Despite their theoretical elegance and modeling versatility of PDE-governed GNNs, the current lit-
erature reveals substantial gaps in both theoretical understanding and empirical evaluation. Method-
ology surveys (Han et al., 2023; Liu et al., 2025) primarily emphasize theoretical formulations or
investigate families in limited settings, but fall short of delivering comprehensive quantitative com-
parisons across diverse dynamical equations. At the same time, most existing benchmarks (Dwivedi
et al., 2023; Hu et al., 2020) concentrate on architectural variants or application-specific models,
while overlooking the rich physical and mathematical diversity offered by governing equations of
dynamical systems.
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Figure 1: An overview of PDEGNN-BENCH for evaluating the dynamics in PDE-informed GNNs.
PDEGNN-BENCH covers six classes of governing equations and seven datasets with varying ho-
mophily, with all models tuned in a common search space and evaluated under 10-fold cross-
validation (Sec. 4.1). (a) The degradation of layer-wise features is monitored via two interpretable
metrics: effective rank reff and class-mix score S, where a sharp drop in either indicates the onset of
oversmoothing (Sec. 4.2.1). (b) Visual illustration of class separation at early, intermediate, and deep
layers, showing how oversmoothing leads to blurred class boundaries. (c) An envelope-based alarm
system is constructed from the empirical distribution of (reff , S) across models and depths, provid-
ing dataset-specific alarms for detecting oversmoothing (Sec. 4.2.2). (d) Model sensitivity to graph
homophily, quantified by the slope β1 from regression of accuracy against homophily (Sec. 4.3).

This oversight is particularly critical as PDE-GNNs are increasingly applied to domains such as
chemistry, traffic forecasting, and neuroimaging, where graph homophily varies widely and model
depth selection directly impacts both accuracy and runtime efficiency. In this context, two funda-
mental challenges emerge: oversmoothing, the degradation of representations with increasing depth,
and homophily sensitivity, the dependence of model performance on structural alignment. Existing
studies mainly focus on simple diffusion processes and evaluate smoothing effects on highly ho-
mophilous graphs (Zhao & Akoglu, 2019), there has been no systematic effort to examine how they
manifest across distinct PDE families, nor to analyze them jointly. Therefore, what remains unclear
is how different governing dynamics shape the coupled evolution of depth-induced oversmoothing
and topology-induced homophily effects. This gap is particularly critical in scientific domains such
as brain network modeling, where both representation stability and structural interpretability are
essential but remain poorly understood in relation to PDE-based dynamics.

To bridge these gaps in theory and evaluation, we propose PDEGNN-BENCH, the first compre-
hensive benchmark that systematically evaluates representative PDE/ODE-driven GNNs. As illus-
trated in Figure 1, we focus on six governing equations that (i) are widely studied in the literature
(Han et al., 2023), (ii) admit closed-form continuous generators, and (iii) collectively span the spec-
trum from purely diffusive to fully conservative dynamics: isotropic/anisotropic diffusion, non-local
diffusion, reaction–diffusion, Hamiltonian system, wave transport, and oscillator synchronization.
PDEGNN-BENCH evaluates these models on seven datasets that cover homophily h ∈ [0.11, 0.81]
and differ in scale, sparsity, and label balance. By incorporating unified indicators for oversmoothing
and homophily sensitivity, we provide a robust and reproducible evaluation framework.

The technical contributions in this work are highlighted as follows:

• First cross-equation benchmark with oversmoothing and homophily diagnostics. PDEGNN-
BENCH provides the first systematic benchmark comparing six PDE-governed GNNs under uni-
fied training and evaluation protocols. Through in-depth analysis of depth-wise feature expres-
siveness and class separability (effective rank captures latent dimensional collapse, while class-
mix score quantifies inter-class overlap, together they diagnose distinct aspects of oversmoothing
that accuracy alone cannot reveal) as well as performance under varying homophily, our bench-
mark reveals distinct oversmoothing behaviors and homophily sensitivity, while also uncovering
unique strengths and failure modes across PDE families.

• Prior-driven, model-agnostic oversmoothing alarm. Leveraging the validation optima of exist-
ing models, we learn a compact, dataset-specific prior that outlines the representation regime in
which learning remains stable. This prior can act as a model-agnostic early-warning signal, au-
tomatically flagging and capping depth once feature quality begins to deteriorate during training,
thereby enabling label-efficient, model-agnostic control of oversmoothing.
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• Quantitative assessment of homophily sensitivity. We systematically analyze how structural
homophily influences generalization by regressing normalized peak accuracy against homophily
levels across various PDE-GNNs. The resulting slopes of regression offer interpretable measures
of PDE-GNNs’ reliance on homophilic structure. This unified protocol reveals that even theoreti-
cally robust PDE-informed GNNs exhibit varying degrees of homophily sensitivity in practice.

Taken together, these advantages position PDEGNN-BENCH as a unified framework through which
both depth scalability and structural robustness of PDE-governed GNNs can be rigorously exam-
ined. By disentangling the roles of governing equations, learning behavior, and graph topology, our
benchmark provides a reproducible foundation for future model design, automated depth control,
and theory-driven analysis of graph representations.

2 RELATED WORK

Continuous–time perspectives on graph representation learning have attracted strong research atten-
tion. We briefly review the most relevant survey efforts and summarize related work.

Surveys on Differential Equation-Inspired GNNs. Han et al. (2023) provides the first systematic
review of PDE-driven GNNs. They trace message passing back to discrete heat diffusion and cate-
gorize subsequent extensions as anisotropic, oscillatory, non-local, reaction-diffusion, Hamiltonian,
etc. Liu et al. (2025) provides a broader Graph NDE survey covering ODEs, SDEs and PDEs. It
is deliberately conceptual: it stresses modelling principles and open mathematical questions (e.g.
higher-order derivatives, numerical solvers). Their taxonomy is task-oriented (classification, fore-
casting, generation) and emphasizes the roles a GNN can play inside a neural DE pipeline.

Structural Limitations in GNNs. Rusch et al. (2023) formalize oversmoothing as layer-wise expo-
nential decay of a node-similarity functional and compares Dirichlet energy, MAD, and higher-order
norms as diagnostics. It further reviews mitigation techniques such as PairNorm and DropEdge and
highlights the risk of losing expressivity when merely constraining smoothness. At the same time,
a growing body of work explores why certain oversmoothing metrics succeed or fail under varying
structural homophily. Yan et al. (2022) shows that nodes with high heterophily and large relative
degree oversmooth long before Dirichlet energy vanishes, revealing a blind spot of energy-based
diagnostics. Capacity metrics such as effective rank (Zhang et al., 2025) track performance better in
that regime.

While existing surveys map the rapidly expanding design space of differential-equation-inspired
GNNs, no supply of empirical comparisons reveals how different governing equations behave on
a uniform suite of datasets. Our work fills this gap by offering the first quantitative benchmark
that instantiates representative models from each governing-equation family under identical training
protocols, evaluating over smoothing dynamics and homophily sensitivity.

3 FRAMEWORK TAXONOMY: GOVERNING EQUATIONS IN GNN MODELS

Let G = (V, E , A,X) be a graph with N = |V| nodes, adjacency A ∈ RN×N , and node features
X ∈ RN×d. The node states at time t are U(t) ∈ RN×d (aka. graph feature representations with
dimension d), with initial condition U(0) = X . We group existing PDE-informed GNNs into six
coherent classes, each characterized by a prototypical evolution equation.

3.1 GRAPH DIFFUSION (PARABOLIC HEAT FLOW)

Diffusion-based models simulate heat propagation on a graph, governed by parabolic PDEs with
isotropic or anisotropic conductance. In continuous form, node features ui(t) ∈ Rd evolve as
∂tui(t) =

∑
j ∇·

(
Aij αij(t)∇uj(t)

)
, where Aij is the fixed edge weight, αij(t) ∈ [0, 1] is a

conductance (constant, stochastic, or learned), and ∇,∇· are the discrete gradient and divergence.

Local & Isotropic Diffusion. With αij ≡ 1, the operator reduces to the graph Laplacian
∆ = D − A, Dii =

∑
j Aij , so that the dynamics become ∂tui(t) = −

∑
j ∆ij uj(t). This

homogeneous diffusion underlies GCN (Kipf & Welling, 2016) and GCNII (Chen et al., 2020b), the
latter augmenting above equation with identity mixing of initial features.

3
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Anisotropic or Feature-Adaptive Diffusion. Allowing α(t) to vary introduces ∂tui(t) =

−
∑

j ∆
α(t)
ij uj(t), where ∆α(t) := Dα(t) − A ⊙ α(t) and D

α(t)
ii =

∑
j Aijαij(t). This feature-

driven Laplacian defines geometry-adaptive diffusion. GRAND (Chamberlain et al., 2021) samples
α(t) stochastically and integrates with a neural ODE solver, while GAT (Veličković et al., 2018) sets
αij(t) = softmaxj(ϕ(ui, uj)), adapting conductance via attention.

3.2 NON-LOCAL DIFFUSION

Classical diffusion acts locally on edges, which limits expressive power on graphs with long-range
interactions. fLode (Maskey et al., 2023) introduces fractional powers of the Laplacian: ∂tui(t) =
−
∑

j(−∆)sij uj(t), 0 < s < 1, with (−∆)s = UΛsU⊤. The power-law kernel induces virtual
long-range edges, capturing strong heterophily in a single step by creating virtual edges that link
far-apart nodes.

3.3 REACTION–DIFFUSION DYNAMICS

Reaction–diffusion (RD) systems couple Laplacian smoothing with nonlinear reactions, enabling
spatial pattern formation and richer expressivity. For Laplacian ∆ and kinetics F , ∂tui(t) =
−
∑

j ∆ijuj(t)+F (ui(t)). GREAD (Choi et al., 2023) uses Fisher–KPP kinetics F (u) = βu(1−u),
yielding stable patterns that resist collapse. ACMP (Wang et al., 2022) extends to two species (u, v)
with Allen–Cahn dynamics, ∂tui = −

∑
j ∆ijuj + ui − u3

i − vi and ∂tvi = −Dv

∑
j ∆ijvj +

ε(ui − κ), where v acts as an inhibitor, producing cluster-like phase separation.

3.4 HAMILTONIAN SYSTEM DYNAMICS

Certain graph processes, such as molecular motion or power-grid oscillations, are conservative and
naturally described by Hamiltonian mechanics. The state vector z(t) = (q(t),p(t)) ∈ R2dN col-

lects node-wise positions q and momenta p, ż(t) = J∇zH(z;A),J =

(
0 I
−I 0

)
, whereH(z;A)

is the Hamiltonian energy functional. And J defines the canonical skew-symmetric matrix. This
flow preserves both volume and total energyH. HamGNN (Kang et al., 2023) parameterizesH with
a neural network and integrates above equation via symplectic solvers.

3.5 WAVE DYNAMICS

Diffusion suppresses high-frequency modes, whereas hyperbolic wave equations propagate them at
finite velocity, periodically exchanging kinetic and potential energy: ∂ttui(t)+c2

∑
j ∆ijuj(t) = 0,

where c > 0 is the wave speed. This inductive bias complements diffusion by transmitting oscil-
latory components along edges. GraphCON (Rusch & Mishra, 2022) generalizes above equation
with damping and nonlinear forcing: ∂ttui+α∂tui+c2

∑
j ∆ijuj(t) = σ

(∑
j ∆ijuj(t)

)
, α > 0,

where α dissipates energy and σ(·) provides a learnable band-pass filter. The resulting dynamics
combine wave propagation, controlled attenuation, and nonlinear expressivity.

3.6 OSCILLATORY SYNCHRONIZATION

Beyond diffusion or waves, networks of coupled oscillators exhibit collective synchronization.
KuramotoGNN (Nguyen et al., 2024) treats each node feature ui(t) as a phase evolving un-
der the classical Kuramoto model: ∂tui(t) = ωi + K

∑
j aij sin

(
uj(t) − ui(t)

)
, with learn-

able natural frequency ωi, global coupling K > 0, and attention-derived weights aij =
softmaxj

(
(WKu0

i )
⊤(WQu

0
j )/
√
dk

)
. Large aij drive phase locking, while weaker couplings sus-

tain modular rhythms, balancing global synchrony and community diversity.

BRICK (Ding et al., 2025) instead augments the dynamics with adaptive control and geometry-aware
constraints: ∂tui = ωi + γΠui

(
yi +

∑
j(W⊙A)ijuj

)
, where ωi = ξσ(xi) and yi = ζµ(xi) are

learned from the initial feature xi, W is a symmetric trainable coupling, and Πu(z) = z − ⟨z, u⟩u

4
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projects onto the tangent space of the unit sphere. This introduces a geometry-consistent, physics-
informed framework capable of modeling modular synchrony in graphs.

4 EXPERIMENTAL DESIGN AND EVALUATION FRAMEWORK

To systematically evaluate the behavior of GNNs governed by different PDE-based dynamics, we
construct a unified experimental benchmark centered on three core questions: (1) how resilient is
each model to oversmoothing as depth increases; (2) can we define a model-agnostic alarm system
that detects such collapse in real time; and (3) how sensitive is each governing equation to structural
homophily. This section outlines the proposed design for each question.

4.1 HYPERPARAMETER SEARCH PROTOCOL AND EXPERIMENTAL SETTINGS

We use seven datasets spanning homophily h ∈ [0.11, 0.81] (Texas=0.11, Wisconsin=0.21,
Squirrel=0.22, Chameleon=0.23, Cornell=0.30, Citeseer=0.74, Cora=0.81). For
datasets with reported optimal hyperparameters in the original papers, we keep them unchanged
and only vary the number of layers. For others, we use default arguments and perform tuning within
a common search space of learning rate η over a 3-point grid η ∈ {10−2, 5 × 10−3, 10−3}, while
fixing weight decay to 10−4 and hidden dimension to 64 to prevent overfitting and simplify the
search space. All experiments are conducted under the 10-fold cross-validation splits from Geom-
GCN (Pei et al., 2020), and the full hyperparameter list for all models and datasets is provided in
our code. To investigate behavior across depth, for models without explicit layer definitions, we
follow the strategy from GRAND (Chamberlain et al., 2021): we fix the ODE solver step size to
1, use a Runge–Kutta-4 integrator, and vary the integration time from 2 to 128 to simulate depths.
In addition, we adopt a two-stage protocol that retains statistical rigor while cutting the wall-clock
cost: the first split is used to select η⋆ over the depth grid, which is then fixed for the remaining runs.

4.2 OVERSMOOTHING BEHAVIOR UNDER VARIOUS GOVERNING EQUATIONS

4.2.1 EXPERIMENTAL PROTOCOL AND RESULTS FOR GOVERNING–EQUATION
OVERSMOOTHING-HOMOPHILY

A meaningful study must disentangle three orthogonal factors: 1. Governing operator (diffusion,
reaction–diffusion, Hamiltonian, wave, oscillation). 2. Graph homophily h∈ [0.11, 0.81]. 3. Depth-
induced degeneration measured by specific measurements. Previous works typically fix one axis
and vary another (e.g., MADGap (Chen et al., 2020a) on homophilous graphs, or Dirichlet energy
on a single backbone), but none explore the full 3-D space. We therefore propose the following
design. The analysis uses two complementary indicators (rationale detailed in App. A.1), computed
layer-wise on the validation split:

Effective rank quantifies the intrinsic dimensionality of the node feature matrix at layer ℓ. Let σ(ℓ)
k

be the k-th singular value of X(ℓ) ∈ RN×d. The effective rank (Zhang et al., 2025) is expresses as:

r
(ℓ)
eff = exp

[
−

d∑
k=1

p
(ℓ)
k log p

(ℓ)
k

]
, p

(ℓ)
k = σ

(ℓ)
k

/ d∑
j=1

σ
(ℓ)
j ,

A large r(ℓ)eff implies that the singular-value spectrum is relatively flat, so information is spread across
many independent directions. A monotone drift toward reff≈1 indicates the spectrum collapses and
all energy concentrates in its leading component, thus serving as a direct signature of representation
collapse, i.e. oversmoothing in the form of rank-deficiency.

Class–mix score tracks how distinguishable the classes remain after layer ℓ. Letting ρ(ℓ) =

E
(ℓ)
w /(E

(ℓ)
b + ε) (Yan et al., 2022) with within-class energy E

(ℓ)
w (X) =

∑
yi=yj

∥xi − xj∥22 and

between-class energy E
(ℓ)
w (X) =

∑
yi ̸=yj

∥xi − xj∥22 computed over the labeled validation nodes,
we define a graph homophily-free normalization as S(ℓ) = |ρ(ℓ) − 1|. If oversmoothing ho-
mogenises node representations, the within–class energy Ew and between–class energy Eb become
equal, it forces ρ(ℓ) = Ew/Eb→1 and thus S(ℓ)→0.

5
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Together, the two metrics serve as complementary indicators of oversmoothing: one signals global
rank collapse, while the other signals the loss of class separability.

GCN GAT GRAND

GREAD

fLode

ACMP KuramotoGNN

GraphCON

HamGNN

Isotropic Diffusion Anisotropic Diffusion Non-Local Diffusion Wave Transport

Reaction–Diffusion Hamiltonian System Phase-Coupled Oscillators

BRICK
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(a) Depth-wise trends of effective rank reff and class-mix score S across ten models and seven datasets (ordered
by graph homophily). A decline in either metric indicates the onset of oversmoothing.

GCN GAT GRAND

GREAD

fLode

ACMP

GraphCON

BRICKHamGNN KuramotoGNN

0.0 1.0

(b) Test accuracy (mean ± std) on seven datasets ordered by increasing homophily (left to right) and depth
(bottom to top). Missing entries indicate unavailable or invalid results.

Figure 2: Overview of oversmoothing indicators and performance across depths and homophily.

Joint trends in oversmoothing and accuracy across depth and homophily
From the perspective of governing equation. Figure 2a presents the depth-wise evolution of ef-
fective rank reff and class-mix score S, while Figure 2b shows corresponding test accuracy for ten
models across seven datasets ordered by increasing homophily (from Texas to Cora). Declines in
reff or S indicate reduced expressiveness or class separability, signaling potential oversmoothing. A
summary of oversmoothing trends and tipping depths for each model class is provided in Table 1.

Isotropic Diffusion. Discussion: (a) GCN rapidly loses discriminative power after 4–8 layers on
high-homophily graphs, as seen in (b) the sharp drop of S (and accuracy) beyond 16 layers on
Cora/Citeseer (Figures 2a, 2b). For low-homophily graphs, (c) both S and accuracy stay low
but stable, indicating limited capacity largely affected by depth. Meanwhile (d) reff stays stable on
high-homophily graphs, indicating preserved feature diversity despite failed classification. Explana-
tion: isotropic diffusion (heat equation) uniformly damps high-frequency components across layers,
leading to feature homogenization and oversmoothing.

Anisotropic Diffusion. Discussion: GRAND (a) maintains stable reff and S across depths, with
degradation only on a few low-homophily graphs (e.g., Wisconsin, Texas) at 128 layers. Ac-
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Table 1: Oversmoothing behavior summary based on layer-wise indicators reff and S.

Model Type Low h High h Tipping Depth (low/high h) Risk
Isotropic Diffusion (GCN) Rapid collapse of reff, sharp S peak Collapse slightly delayed 2–4 High
Anisotropic Diffusion (GRAND) Stable S and reff Mostly stable; slight drop at deep layers 64 / – Low
Non-local Diffusion (fLode) Mostly, gradual decline in S, minor drop in reff Noticeable S drop, moderate reff degradation 8 / 4 Medium
Wave-based Transport (GraphCON) Smooth reff, stable up to moderate depth Abrupt collapse at shallow depth 16 / 2 Medium
Reaction-Diffusion (GREAD) Moderate degradation by 8 layers High reff but low S persists 8 / – Medium
Reaction-Diffusion (ACMP) Stable with depth, strong reff until 128 layers Mild drop in S and reff 64 / – Low
Hamiltonian (HamGNN) Stable up to 4 layers Irregular reff, collapse after 16 layers 4 / 16 High
Phase-coupled Oscillatory (KuramotoGNN) Stable when solvable, some numerical failure Failed reff and S at shallow layers – / – Very High
Phase-coupled Oscillatory (BRICK) Stable across depths, minor drop in S Stable with high S, low degradation – / – very Low

curacy tracks this stability, and (b) notably S is higher on low- than high-homophily graphs, unlike
other models. Explanation: Through noise injection and resampling, GRAND adaptively preserves
local information. Its anisotropic diffusion adjusts edge weights to suppress irrelevant signals while
preserving class boundaries.

Non-local Diffusion. Discussion: fLode (a) exhibits a decline in reff and S with depth, (b) more
pronounced on high-homophily graphs where accuracy also lags behind competitors. Explanation:
fractional diffusion enables non-local propagation but weakly preserves local class structure, causing
subtle loss of discriminability and weaker S, despite only moderate reduction in feature diversity.

Wave-based Transport. Discussion: GraphCON (a) performs well on low-homophily graphs (e.g.,
Texas, Wisconsin), although both reff and accuracy degrade gracefully with depth. However, on
high-homophily graphs, (b) a sharp drop in S and accuracy occurs at shallow depths (depth 4), re-
vealing a sensitivity to over-depth stacking. Explanation: Although the wave equation’s propagation
mechanism maintains high-frequency signals, transmits information with finite speed, and supports
long-range dependencies in low-homophily settings, excessive depth in homogeneous graphs may
lead to phase interference and signal cancellation, undermining feature quality.

Reaction–Diffusion. Discussion: GREAD and ACMP remain stable with depth, though (a) ACMP
generally achieves higher reff and accuracy. Their trends align, (b) on low-homophily graphs
(Squirrel, Chameleon), both yield low S despite high reff, indicating features retain diversity
but lack separability. Explanation: reaction–diffusion balances smoothing with local activations,
preserving diversity but not discriminability unless reactions are class-specific.

Hamiltonian Systems. Discussion: HamGNN is (a) stable S on low-homophily graphs (Texas,
Wisconsin), with accuracy and S maintained across depth. On high-homophily graphs
(Citeseer), degradation starts at layer 8 with (b) collapsing S and (c) irregular reff, and by layer
16 both accuracy and reff drop sharply. Explanation: while Hamiltonian dynamics conserve en-
ergy, insufficient regularization causes chaotic trajectories as depth grows, and numerical errors and
initialization amplify this, especially in high-homophily graphs.

Phase-coupled Oscillatory. Discussion: KuramotoGNN is (a) stable on low-homophily graphs but
(b) struggles on high-homophily ones, where (c) numerical issues in reff confirm instability, and
reported results could not be reproduced. In contrast, BRICK remains robust across all datasets, (d)
with only minor dips (e.g., Wisconsin) consistently reflected in reff, S, and accuracy. Explana-
tion: phase coupling fosters synchrony while preserving oscillatory modes; BRICK adds stronger
control and regularization, preventing collapse even at large depths.

From the perspective of graph homophily and structural type. On high-homophily graphs (e.g.,
Cora, Citeseer), anisotropic diffusion (GRAND), reaction–diffusion models (GREAD, ACMP),
and phase-coupled oscillatory model (BRICK) remain stable across depth, showing strong resistance
to oversmoothing. In contrast, isotropic diffusion (GCN), non-local diffusion (fLode), wave-based
transport (GraphCON), and Hamiltonian systems (HamGNN) degrade rapidly with depth due to
oversmoothing or collapse. On low-homophily graphs (Texas, Wisconsin, Squirrel,
Chameleon, Cornell), models separate into two categories. Type I – Depth-stable / mild
degradation: GCN (though with low accuracy), ACMP, and BRICK maintain stable behavior with-
out severe oversmoothing. Type II – Heterophily-sensitive: performance varies with heterophily
subtype. GRAND, GraphCON, and KuramotoGNN degrade on structurally heterophilous graphs
(Texas, Wisconsin, Cornell), while fLode, GraphCON, GREAD, HamGNN, and Ku-
ramotoGNN fail on topologically heterophilous graphs (Squirrel, Chameleon). This high-
lights that robustness depends not only on depth but also on the type of heterophily. A summary of
model performance trends categorized by graph homophily is provided in Table 2.
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Table 2: Model performance trends categorized by graph homophily and structure.

Graph Type Stable Models Oversmoothing / Degrading Models
High homophily
(Cora, Citeseer)

GRAND, GREAD, ACMP, BRICK
(resistant to oversmoothing)

GCN, fLode, GraphCON, HamGNN, KuramotoGNN
(oversmooth or collapse with depth)

Low homophily
(Texas,
Wisconsin,Squirrel,
Chameleon, Cornell)

Type I – Depth-stable/mild degradation: GCN (low accuracy), ACMP, BRICK
Type II – Heterophily-sensitive:
Structural heterophily-sensitive (Texas, Wisconsin, Cornell): GRAND, GraphCON, KuramotoGNN
Topological heterophily-sensitive (Squirrel, Chameleon): fLode, GraphCON, GREAD, HamGNN, KuramotoGNN

From the perspective of oversmoothing indicators. Both effective rank (reff) and class-mix score
(S) track accuracy (Acc) closely, which could serve as reliable proxies for oversmoothing. Abrupt
drops (e.g., GCN within 8 layers, GRAND at 128 layers) or anomalies (e.g., a spike in reff for
HamGNN on Cora at 16 layers) consistently coincide with Acc degradation. Although numerical
ranges vary across models, some patterns are clear: when both indicators remain very low (e.g.,
< 0.1 in GCN on Chameleon, Squirrel), the model typically fails to learn meaningful repre-
sentations from the outset. When they remain stable at moderate-to-high levels (ACMP), the model
demonstrates resistance to oversmoothing. Accordingly, Table 1 reports the tipping depth at which
oversmoothing begins to degrade representations.

4.2.2 A MODEL–AGNOSTIC OVERSMOOTHING ALARM

The depth at which a GNN begins to oversmooth varies widely across models and datasets. But
results reveal a common collapse geometry shared across models, thereby motivating a unified over-
smoothing alarm whose signal is derived directly from hidden representations and thus provides a
model-agnostic alternative to manual depth tuning.

Early heuristics monitor either global dispersion or pairwise distances. PairNorm (Zhao & Akoglu,
2019) normalizes the feature matrix to curb shrinkage but provides no stopping rule. MADGap
(Chen et al., 2020a) triggers on a threshold of mean absolute deviation, but fails on strongly het-
erophilous graphs. DDCD (Shen et al., 2024) solely uses the difference Ew − Eb as an early–stop
proxy. To our knowledge, no prior work combines a capacity metric with a class–aware energy ratio
into a single alarm. The mechanism below fills that gap.

Oversmoothing alarm mechanism. Given a set of validation–optimal quadruples
(ℓ⋆,Acc

(ℓ⋆)
val , r

(ℓ⋆)
eff , S(ℓ⋆)) for every model–dataset pair (see the details in App. A.3), we col-

lect Rd =
{
(r⋆eff,i, S

⋆
i )|record i belongs to d

}
for each dataset d ∈ D. We wish to extract a

dataset–level prior that allows future practitioners to (i) locate the typical region where past archi-
tectures governed by different dynamic equations achieved their best trade-off between effective
rank and class separability, and (ii) issue an early alarm when a new architecture drifts far from this
region. To that end we transform the discrete samples into a (reff , S) density heatmap and derive a
95%–level empirical envelope (Ed = I(d)r ×I(d)S ), which is detailed in App. A.4.

(a) Empirical (reff , S) landscape for seven benchmark datasets.
Grey dots indicate the validation–optimal operating points of ten
models, progressively darker blue contours show higher levels of the
bivariate KDE. Red (vertical) and green (horizontal) dashed lines
show the dataset–specific 95% empirical envelope.

(b) Homophily sensitivity across models.
Slopes β1 from regressing validation ac-
curacy on homophily h (Acc⋆(h) = β0 +
β1 h). Positive β1 (blue) indicates benefit
from homophily, while negative β1 (red)
suggests robustness to heterophily. Darker
lines denote significant trends (p < 0.05).

Figure 3: Oversmoothing landscapes across datasets and homophily trends across models.
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As illustrated in Figure 3a, across all seven datasets the (reff , S) density maps reveal a consistent
qualitative pattern. Models whose optima fall inside this nucleus, e.g., the cluster around (reff ≈
0.7, S ≈ 0.4) on Wisconsin, rarely display either rank collapse or excessive high-frequency
noise, and therefore provide a reliable safe region for depth selection. By contrast, points outside
the dashed envelope occur with probability below 5% and align with representation pathologies
predicted by aforementioned conclusions. Specifically, those left of the envelope (low reff ), e.g.,
outliers on Squirrel, indicate severe oversmoothing, those above (high S), e.g., Cora’s solitary
peak, reflect excessive high-frequency content without accuracy gain. In these cases, the validation
curve soon plateaus or degrades, confirming the envelope as a label-efficient early alarm.

Algorithm 1 in App. A.4 details the procedure (with Wisconsin as an example) describes how to
use this prior when training a new model. The key idea is to monitor (r(ℓ)eff , S

(ℓ)) during depth growth
and trigger early stop once the representation (i) leaves Ed and (ii) shows a persistent decline, which
could indicate the onset of over-smoothing. It requires no hyperparameter search beyond load-
ing the pre-computed envelope and is thus label–efficient. When validation labels are unavailable
(e.g., in pre-training), the same logic can be applied with reff alone, with its lower envelope as the
rank–collapse threshold.

Two heuristic principles guide this alarm: (i) If the representation lies within ranges of past suc-
cessful models, this does not guarantee optimality, but the risk of rank collapse or high-frequency
noise is low. (ii) If it deviates, the event serves as a warning. One should check validation curves,
and if performance improves, add the new point to the experience set Rd and update the envelope,
allowing the prior to adapt to genuine innovations.

4.3 ASSESSING HOMOPHILY SENSITIVITY ACROSS GOVERNING EQUATIONS

By training on seven datasets spanning homophily h ∈ [0.11, 0.81] while holding other factors fixed,
we reveal how variations in peak accuracy reflect each governing equation’s sensitivity to structural
homogeneity. To make this sensitivity explicit, we further introduce a post-hoc visualization.

Accuracy–Homophily Response. To assess how structural homophily affects each model’s gener-
alization ability, we fit a linear regression A⋆

norm(h) = β0 + β1h, where A⋆
norm(h) is the validation-

optimal accuracy normalized per dataset via min–max scaling across models. This normalization
removes absolute performance bias due to intrinsic dataset difficulty (e.g., some datasets lead to
uniformly high or low accuracy), and highlights each model’s relative standing on each dataset. As
a result, the fitted slope β1 more faithfully reflects a model’s ranking as homophily varies.

As shown in Figure 3b, most diffusion-based models exhibit steep positive slopes: GCN and GAT
yield β1 ≈ 1.0, confirming their strong dependence on homophilic structure. GRAND, fLode, and
reaction–diffusion model ACMP show moderate positive correlations (β1 ≈ 0.6–0.8), indicating a
moderate homophilic structural preference. Conservative wave models GraphCON and HamGNN
also reach moderately high values (β1 ≈ 0.7), indicating that even energy-conserving dynamics still
benefit from homophily. By contrast, KuramotoGNN is the only model with a negative slope (due
to missing values). BRICK shows a flatter response curve with weak positive correlation, reflecting
relative robustness to homophily.

TAKEAWAY. Acc–homophily slopes rank structural bias as: diffusion≫ reaction ≈ wave/ Hamilto-
nian > non-local > oscillation. Diffusion requires homophilic graphs to excel, oscillation remains
stable across h, and others show moderate dependence. Thus, most PDE-GNNs benefit from ho-
mophily, with even theoretically robust models exhibiting dataset-dependent behaviors in practice.

5 DISCUSSION AND CONCLUSION

This work presents PDEGNN-BENCH to systematically compare six families of PDE-governed
GNNs under unified training and evaluation protocols. Our study uncovered how distinct governing
equations shape depth scalability, oversmoothing behaviors, homophily sensitivity, and proposed a
prior-driven, model-agnostic oversmoothing alarm. In the future, we will extend PDEGNN-BENCH
to larger and more diverse real-world datasets to test the generality of our findings. Also, incorpo-
rating automated search over PDE-governed GNNs, combined with our oversmoothing alarm, may
yield principled pipelines for designing depth-scalable and structure-robust models.
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A APPENDIX

A.1 DEFINITION OF OVERSMOOTHING AND CATEGORIZING CRITERIA

A.1.1 WHAT IS OVERSMOOTHING?

A message–passing layer in a GNN can be seen as a small dose of blurring: each node averages (or
linearly mixes) its features with those of its neighbours. After a few layers, this denoises the signal,
but if the blurring continues indefinitely, every pixel of the image turns the same grey. On a graph,
every node within a connected component eventually receives (almost) the same embedding, so the
model can no longer distinguish them. This loss of feature diversity is called oversmoothing.

Preliminary. Given an undirected weighted graph G = (V,E,W ) with |V | = n and a node feature
matrix X(k) ∈ Rn×d after k message–passing layers, oversmoothing is informally defined as the
degeneration of X(k) towards a low–dimensional (often constant) subspace as k → ∞ (Li et al.,
2018).

Original formal definition (Li et al., 2018): Linearising a Graph Convolutional Network (GCN)
layer gives

H(k+1) = D̃−1/2 Ã D̃−1/2 H(k) W (k), Ã = A+ I, D̃ii =
∑

jÃij ,

where P = D̃−1/2Ã D̃−1/2 is a symmetric Markov matrix with ordered eigenvalues 1 = λ1 > λ2 ≥
· · · ≥ λn ≥ −1. If the weight matrices W (k) are well conditioned, the propagation dominates:

H(k) ≈ P kH(0) =

n∑
i=1

λk
i uiu

⊤
i H

(0).

Because |λi| < 1 for i > 1, the high–frequency components λk
i decay exponentially with depth.

Hence P k→ u1u
⊤
1 (u1 is the constant eigenvector), and∥∥H(k)

i −H
(k)
j

∥∥
2
−→ 0, ∀ i, j in the same component.

Li et al. (2018) termed this depth regime oversmoothing. It is the inevitable outcome of re-
peatedly applying a smoothing (low–pass) operator on a connected graph: class–discriminative,
high–frequency directions vanish exponentially fast, so deep GNNs collapse to a space with mini-
mal class information. Recognising and quantifying this collapse, especially on graphs with different
levels of homophily, has been an active research topic since the seminal analysis of Li et al. (2018).

While the phenomenon is easy to observe experimentally, its quantitative diagnosis is less straight-
forward. We propose a taxonomy based on the underlying signal property each metric monitors and
on whether class label is required. A metricM(X) is assigned to Category A–E according to

• the core quantity whose decay or growth it tracks (energy, dispersion, capacity, class sep-
arability, or topological predictor), and

• its label requirement: label-free (◦) vs. label-aware (•).

Notation. Let D be the degree matrix and L = D −W the Laplacian. Denote by yi ∈ 1, . . . , C the
class label of node i when available. For a vector v we write ∥v∥2 for its Euclidean norm and σi(X)
for the i–th singular value of X .

A.1.2 TAXONOMY OVER-SMOOTH CRITERIA

A. Raw Smoothness / Energy Metrics (◦): Dirichlet Energy (DE)

E(X) =
1

2

∑
(i,j)∈E

wij∥xi − xj∥22 = tr(X⊤LX). (1)

DE discretises the continuous Dirichlet integral
∫
∥∇f∥2; minimising equation 1 therefore imple-

ments a graph heat flow (Oono & Suzuki, 2020). Deep GCNs drive E(X(k)) → 0, signalling
oversmoothing on homophilous graphs.

Pros/Cons. Easy O(|E|) computation, but blind to early class mixing on heterophilous graphs
because E may remain non-zero while classes are already indistinguishable (Yan et al., 2022).
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B. Feature Dispersion Metrics (◦): Mean Average Distance (MAD) and Total Pairwise Squared
Distance (TPSD)

A distance-normalized variant, MADGap, subtracts the average within a K–hop neighbourhood
from the global MAD (Chen et al., 2020a).

MAD(X) =
2

n(n− 1)

∑
i<j

∥xi − xj∥2. (2)

PairNorm (Zhao & Akoglu, 2019) proposed Total Pairwise Squared Distance (TPSD), which explic-
itly normalises embeddings so that TPSD stays constant, thereby preventing collapse.

TPSD(X) =
∑
i<j

∥xi − xj∥22 (3)

Pros/Cons. Dispersion metrics capture any contraction but cannot tell benign contraction (necessary
on heterophily) from harmful over-mixing.

C. Capacity / Rank Collapse Metrics (◦): Effective Rank and Spectral entropy
Let σi be the singular values of X . Define probabilities pi = σi/

∑
j σj and the Effective Rank

is defined as
reff(X) = exp

[
−
∑
i

pi log pi

]
. (4)

If reff → 1, the feature matrix becomes (almost) rank-one—a tight proxy for expressivity loss
irrespective of homophily level (Zhang et al., 2025).

The Shannon entropy H = −
∑

i pi log pi itself can also be monitored (Yang et al., 2023).

Pros/Cons. Label–free and data–agnostic, but requires SVD (O(nd2)).

D. Class–Aware Separability Metrics (•): Within/Between-Class Energy
Ew(X) =

∑
(i,j)∈E,yi=yj

∥xi − xj∥22, (5)

Eb(X) =
∑

(i,j)∈E,yi ̸=yj

∥xi − xj∥22, (6)

with ratio ρ = Ew/Eb (Yan et al., 2022). Desired trends differ:

• Homophily: Ew ↓, Eb stable ;⇒; ρ ↑.
• Heterophily: Ew stable, Eb ↓ ;⇒; ρ ↓.

DDCD regularizes training to maximise the contrast |Ew − Eb| and reports robustness across both
regimes (Shen et al., 2024).

Pros/Cons. Decouples “collapse inside class” from “mixing across class”, offering a unified lens.
Needs labels and care on imbalanced data (add ε).

A.1.3 METRIC-HOMOPHILY INTERACTION

A growing body of works does not treat graph homophily (or heterophily) as a mere dataset statistic,
but rather as a control variable for analyzing why particular oversmoothing metrics succeed or fail.

Node-Level Heterophily and Relative Degree Yan et al. (2022) defines hi as the fraction of edges
from i to different classes and shows that nodes with high hi and high relative degree oversmooth
long before the Dirichlet Energy (Category A) approaches 0. This result exposes a “blind spot” of
energy-based metrics on heterophilous regions of a graph.

Rethinking Oversmoothing with effective rank This study (Zhang et al., 2025) presents con-
vincing evidence that the effective rank of the feature matrix (CategoryC) drops in lock-step with
test accuracy regardless of the homophily ratio (0.05–0.95 across 18 datasets). Energy and dis-
persion metrics fail on the strongly heterophilous subsets, confirming the robustness of rank-based
measures.
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Dual-dimensional class-difference decoupling By subtracting the within-class centroid from ev-
ery embedding and maximising the between-class energy, DDCD (Shen et al., 2024) turns a Cat-
egory D metric into a training regulariser. The method performs consistently on both Cora (ho-
mophilous) and Texas (heterophilous), highlighting the value of explicitly modelling class separa-
bility.

Structural–Heterophily Ratio Begga et al. (2023) proposes a structural heterophily ratio, which
is the quotient of initial Laplacian energy to one-step ”harmonicity” and derives closed-form bounds
linking this ratio to accuracy degradation. Although not a metric of the embeddings themselves,
these quantities guide scheduling of residual jumps or early stopping and are not metrics of X
themselves.

Collectively, these studies substantiate two claims: (i) label–agnostic metrics from Categories A
and B become unreliable as heterophily rises, and (ii) rank–based (C) and class–aware (D) fami-
lies maintain a near-monotonic relationship with accuracy across the entire homophily spectrum.
Taken together, we ultimately adopt Category C (capacity/rank-based) and Category D (class-aware
separability) metrics.

A.2 DATASET DETAILS AND INFERENCE TIME

Table 3: Dataset description for node classification.

Texas Wisconsin Squirrel Chameleon Cornell Citeseer Cora
Hom. ratio h 0.11 0.21 0.22 0.23 0.3 0.57 0.81

# Nodes 183 251 5,201 2,277 183 3,327 2,708
# Edges 295 466 198,493 31,421 280 4,676 5,278

# Classes 5 5 5 5 5 7 6

Figure 4: Inference Time

A.3 VALIDATION-OPTIMAL CONFIGURATION FOR DATASET-MODEL PAIRS

Table 4 reports, for each model–dataset pair, the validation-optimal configuration
(ℓ⋆, Acc

(ℓ⋆)
val , r

(ℓ⋆)
eff , S(ℓ⋆)), which identifies the peak generalization layer ℓ⋆ and its associated

structural indicators.

Table 4: Validation-optimal configuration (ℓ⋆, Acc
(ℓ⋆)
val , r

(ℓ⋆)
eff , S(ℓ⋆)) for each model–dataset pair.

Texas Wisconsin Squirrel Chameleon Cornell CiteSeer Cora

GCN (4, 0.59, 0.17, 0.29) (4, 0.55, 0.16, 0.1) (2, 0.28, 0.04, 0.02) (2, 0.39, 0.06, 0.03) (2, 0.55, 0.38, 0.11) (2, 0.77, 0.03, 0.51) (2, 0.88, 0.03, 0.58)
GAT (4, 0.63, 0.35, 0.25) (4, 0.58, 0.31, 0.32) (2, 0.31, 0.3, 0.01) (4, 0.46, 0.37, 0.16) (2, 0.58, 0.61, 0.18) (2, 0.77, 0.38, 0.41) (2, 0.88, 0.4, 0.57)
GRAND (2, 0.81, 0.92, 0.62) (2, 0.85, 0.93, 0.59) (32, 0.4, 0.91, 0.18) (8, 0.58, 0.9, 0.31) (2, 0.74, 0.94, 0.57) (4, 0.77, 0.86, 0.34) (8, 0.88, 0.78, 0.2)
fLode (8, 0.72, 0.86, 0.21) (4, 0.74, 1.01, 0.28) (32, 0.58, 0.85, 0.01) (4, 0.7, 0.91, 0.08) (8, 0.67, 0.88, 0.15) (2, 0.75, 0.88, 0.18) (2, 0.86, 0.81, 0.3)
GraphCON (2, 0.82, 0.29, 0.44) (2, 0.83, 0.37, 0.6) (2, 0.34, 0.53, 0.09) (2, 0.46, 0.4, 0.22) (2, 0.76, 0.37, 0.41) (2, 0.77, 1.52, 0.41) (2, 0.85, 1.6, 0.36)
GREAD (2, 0.73, 0.92, 0.53) (2, 0.82, 0.96, 0.58) (64, 0.54, 0.91, 0.15) (8, 0.65, 0.93, 0.3) (2, 0.65, 0.94, 0.51) (2, 0.76, 0.75, 0.41) (8, 0.87, 0.66, 0.35)
ACMP (2, 0.77, 0.83, 0.63) (2, 0.81, 0.84, 0.52) (32, 0.42, 0.93, 0.11) (4, 0.6, 0.93, 0.23) (4, 0.71, 0.88, 0.61) (2, 0.77, 0.78, 0.4) (8, 0.88, 0.57, 0.22)
Hamiltonian-GNN (4, 0.63, 1.11, 0.12) (2, 0.56, 1.11, 0.14) (2, 0.55, 0.77, 0.79) (2, 0.7, 0.62, 0.51) (2, 0.55, 1.43, 0.25) (2, 0.76, 0.89, 0.65) (8, 0.87, 1.3, 0.78)
KuramotoGNN (2, 0.73, 0.96, 0.48) (2, 0.76, 1.0, 0.37) (2, 0.44, 0.85, 0.26) (2, 0.62, 0.85, 0.28) (2, 0.58, 1.05, 0.38) (2, 0.41, 1.1, 0.05) (2, 0.37, 1.5, 16.09)
BRICK (2, 0.87, 0.68, 0.65) (4, 0.85, 1.07, 0.6) (8, 0.53, 0.43, 0.11) (4, 0.67, 0.29, 0.15) (2, 0.8, 1.03, 0.52) (4, 0.76, 0.62, 0.14) (32, 0.88, 0.58, 0.53)
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A.4 CONSTRUCTING THE (reff , S) DENSITY ENVELOPES

Step 1: Long-form tabulation. Let D denote the set of datasets and M the set of models.
For every (d,m) ∈ D×M we parse the table entry (l*, Acc, r_eff, S) into a record
(d,m, ℓ⋆,Acc⋆, r⋆eff , S

⋆). Concatenating all records yieldsR =
{
(r⋆eff,i, S

⋆
i )
}|D|·|M|
i=1

.

Step 2: Robust descriptive statistics. For each dataset d ∈ D we collect Rd ={
(r⋆eff,i, S

⋆
i ) | record i belongs to d

}
. Denote by µ̂

(d)
r = median {r⋆eff ∈ Rd}, µ̂

(d)
S =

median {S⋆ ∈ Rd} the coordinate-wise medians, and by ÎQR
(d)

r , ÎQR
(d)

S the corresponding inter-
quartile ranges. Following Tukey’s normal approximation formula, a robust 95% empirical interval
for each axis is

I(d)r =
[
µ̂(d)
r −

1.57ÎQR
(d)

r√
Nd

, µ̂(d)
r +

1.57ÎQR
(d)

r√
Nd

]
, I(d)S =

[
µ̂
(d)
S −

1.57ÎQR
(d)

S√
Nd

, µ̂
(d)
S +

1.57ÎQR
(d)

S√
Nd

]
,

where Nd = |Rd|.

Step 3: Kernel density estimation (KDE). To visualise the joint distribution, we perform a bi-
variate Gaussian KDE f̂d(r, S) overRd. We draw filled contour levels

{
(r, S) : f̂d(r, S) = αk

}K

k=1
with decreasing thresholds α1 > α2 > · · · > αK > 0, producing a blue-scale density heatmap.
Empirically, K = 4 and a bandwidth selected by Silverman’s rule provide smooth yet localised
contours.

Step 4: Envelope overlay and export. The Cartesian product Ed = I(d)r × I(d)S is drawn as two
pairs of dashed lines (red for reff , green for S).

Algorithm 1 Envelope–guided oversmooth alarm (Wisconsin)

Require: training graph of the WISCONSIN dataset;
1: maximum depth Lmax; history length k

Ensure: selected depth ℓ⋆

2: Prior envelope for Wisconsin (derived in Figure 3a):

I(WI)
r = [0.69, 1.2], I(WI)

S = [0.3, 0.59].

3: Initialize history buffers Hr ← [ ], HS ← [ ].
4: for ℓ← 1 to Lmax do
5: Train (or load) the ℓ-th layer and compute (r

(ℓ)
eff , S

(ℓ)).
6: Append r

(ℓ)
eff to Hr and S(ℓ) to HS .

7: if |Hr| ≥ k then
8: trendr ←

(
∆Hr < 0 for last k steps

)
9: trendS ←

(
∆HS < 0 for last k steps

)
10: inside←

(
r
(ℓ)
eff ∈I

(WI)
r

)
∧

(
S(ℓ)∈I(WI)

S

)
11: if not inside and trendr and trendS then
12: return ℓ⋆ ← ℓ− 1 ▷ early stop: oversmoothing detected
13: end if
14: end if
15: end for
16: return ℓ⋆ ← Lmax ▷ no oversmoothing observed

A.5 USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are only used as grammar checking and polishing of sentences.
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