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Abstract

Large language models (LLMs) have achieved remarkable achievements across
diverse applications; however, they remain plagued by spurious correlations and
the generation of hallucinated content. Despite extensive efforts to enhance the
resilience of LLMs, existing approaches either rely on indiscriminate fine-tuning
of all parameters, resulting in parameter inefficiency and lack of specificity, or
depend on post-processing techniques that offer limited adaptability and flexibility.
This study introduces a novel Causality-driven Robust Optimization (CDRO)
approach that selectively updates model components sensitive to causal reasoning,
enhancing model causality while preserving valuable pretrained knowledge to
mitigate overfitting. Our method begins by identifying the parameter components
within LLMs that capture causal relationships, achieved through comparing the
training dynamics of parameter matrices associated with the original samples, as
well as augmented counterfactual and paraphrased variants. These comparisons
are then fed into a lightweight logistic regression model, optimized in real time to
dynamically identify and adapt the causal components within LLMs. The identified
parameters are subsequently optimized using an enhanced policy optimization
algorithm, where the reward function is designed to jointly promote both model
generalization and robustness. Extensive experiments across various tasks using
twelve different LLMs demonstrate the superior performance of our framework,
underscoring its significant effectiveness in reducing the model’s dependence on
spurious associations and mitigating hallucinations.
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Figure 1: Examples of prediction errors caused by spurious associations due to various biases.

1 Introduction

Large language models (LLMs) have demonstrated remarkable and unprecedented capabilities
across a wide range of applications [71, 1, 108, 101]. However, they continue to face substantial
challenges concerning the prediction robustness and reliability[115, 50, 111]. Specifically, models are
prone to relying on spurious correlations for prediction, as they tend to overfit superficial statistical
patterns in the training data rather than learning the underlying causal relationships. This over-
reliance not only undermines model generalization but also constitutes a key factor contributing
to knowledge hallucination—where models generate factually incorrect outputs with unwarranted
confidence [97, 77, 15, 6]. Notably, spurious associations are especially pervasive and often stem
from various biases in the data, such as co-occurrence bias, lexical overlap bias, and single-word
bias [113, 77, 12, 110], as illustrated in Fig. 1. As LLMs are increasingly deployed in high-stakes
domains like healthcare, law, and journalism, addressing these challenges to enhance their resilience
and trustworthiness has become an urgent priority [107, 112, 103, 39].

Numerous studies have attempted to enhance the robustness and reliability of LLMs by mitigating
their dependence on spurious correlations and reducing hallucinations [82, 87, 6, 52]. Among these,
causal learning methods have emerged as a promising direction for disentangling spurious correlations
from true causal relationships. For example, Causal-Debias [106] generates counterfactual sentences
with non-causal variations but identical semantic meanings. These counterfactual sentences, alongside
the original ones, are fed into an invariant optimization function to balance model performance on
downstream tasks and debiasing effectiveness. Moreover, Causal Effect Tuning [105] leverages
causal inference to identify and preserve valuable pretrained knowledge during fine-tuning, while
simultaneously uncovering missing causal effects in the pretrained data that contribute to knowledge
forgetting. In parallel, a growing body of research has focused on mitigating hallucinations, with
methods ranging from data-related techniques to modeling and inference strategies [66, 111, 9, 80, 31].
For instance, LITCAB [49] is a lightweight calibration mechanism that employs a single linear layer
to process input text representations and predict a bias term, which is subsequently utilized to adjust
the logits. Furthermore, the self-reflective approach [31] generates relevant background knowledge
for a given query, followed by a factual consistency check; if inconsistencies are detected, the model
leverages its internal reflective capability to revise its response accordingly. While effective, existing
methods either involve indiscriminate fine-tuning of all model parameters [106, 105, 10], leading to
parameter inefficiency and a lack of specificity. This can cause the model to forget valuable pretrained
knowledge and become susceptible to overfitting, or they rely on post-processing techniques that
offer limited adaptability and flexibility, thus hindering fundamental progress in the model’s causal
reasoning and understanding capabilities [49, 31, 61, 24].

In response, this study proposes a novel Causality-driven Robust Optimization (CDRO) framework,
aimed at enhancing the causal reasoning abilities of LLMs by accurately identifying and selectively
optimizing the parameters that capture causal relationships. Initially, we leverage the instruction-
following and textual understanding capabilities of state-of-the-art (SOTA) LLMs to automate the
generation of counterfactual and paraphrased variants of the training data. The parameters encoding
causal relationships are then identified by analyzing their training dynamics across different sample
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types. Specifically, we compare loss gradient and activation patterns of parameter matrices and feed
the comparisons into a logistic regression model to automatically identify and predict the components
sensitive to causal relationships. In contrast to previous knowledge localization strategies, which
focus on causal influence at the layer level with predefined matrix types (e.g., those in feed-forward
networks), our approach performs localization at the matrix level, offering greater precision and
flexibility [58, 55]. Subsequently, we optimize the localized causal components within LLMs using
an enhanced REINFORCE++ algorithm, where the reward signals are designed to simultaneously
promote model generalization and robustness; meanwhile, the logistic regression model is updated
in real time based on the performance of the LLMs during the optimization process, facilitating the
adaptive and dynamic localization of causal components.

Extensive experiments have been conducted on both natural language understanding (NLU) and
natural language generation (NLG) tasks, leveraging twelve different LLMs with varying parameter
sizes. The results demonstrate that CDRO consistently outperforms existing approaches in reducing
stereotypical associations and mitigating hallucinations. Furthermore, it demonstrates superior
performance in out-of-distribution (OOD) settings, highlighting its efficacy in reducing the model’s
reliance on spurious correlations within the training data.

In summary, the primary contributions of our work are as follows:

• We introduce a novel approach for localizing causal knowledge in LLMs by comparing the
training dynamics of model parameters across varying instance types and utilizing a logistic
regression model to autonomously capture the relationship between these comparisons and
the predictions of causal components.

• We propose a collaborative optimization framework wherein the causal components within
LLMs are optimized using an enhanced REINFORCE++ algorithm, while the logistic
regression model for knowledge localization is simultaneously updated in real-time, driven
by the performance of the evolving LLMs.

• We conduct comprehensive experiments on both NLU and NLG tasks to assess the effective-
ness of our approach in model debiasing, hallucination mitigation, and OOD prediction. The
results consistently demonstrate the superiority of our method across all evaluated scenarios.

2 Related Work

Causality for LLMs. Despite their remarkable success, LLMs often rely on statistical correla-
tions rather than true causal relationships, making them susceptible to demographic biases, social
stereotypes, and hallucinations [97, 18, 20]. To address this, various methods have been proposed
across different stages. Pretraining methods include debiased embeddings [91, 106], counterfac-
tual corpora [116, 37], and causal foundation models [88, 70]. Fine-tuning approaches such as
Causal-Debias [106] and Causal Effect Tuning [106] aim to inject causal awareness into model
parameters [105]. Alignment techniques reduce harmful outputs by aligning models with human
values [62, 48, 4], while inference-time methods utilize causal prompts to elicit more grounded re-
sponses [2, 83, 64]. However, most existing methods either optimize all model parameters uniformly,
which results in parameter inefficiencies and an increased risk of overfitting, or rely only on inference,
thereby offering limited performance improvements [97, 20]. In contrast, our method first localizes
causal knowledge and then applies targeted reinforcement-based fine-tuning, striking a better balance
between preserving pretrained capabilities and enhancing downstream task performance.

Knowledge Localization. Prior studies have proposed various methods to localize knowledge
within LLMs, aiming to identify components responsible for encoding factual or causal information.
Parameter-based approaches such as Knowledge Neurons [16, 109] and DEPN [98] trace model
updates to locate key parameters for factual recall. Activation-based methods investigate saliency
in hidden states and attention heads via gradients or concept erasure [19, 16, 59, 26, 57]. Moreover,
causal probing techniques [84, 5] reveal causal relationships within the model via counterfactual or
mediation analysis. We extend causal probing by comparing model behaviors across diverse sample
types, including original, counterfactual, and paraphrased instances, and utilizing these comparisons
to train a logistic regression model for automated and adaptive knowledge localization in LLMs.
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Policy Optimization. To align LLMs with human intent, reinforcement learning methods such as
RLHF [76, 65] and PPO [72] are commonly employed. However, these methods typically involve
significant computational overhead due to the training of reward models. To address this, more
efficient alternatives have emerged. DPO [68] bypasses reward modeling by directly optimizing
preferences using a cross-entropy (CE) loss, while GRPO [73] reduces reliance on external evaluators
through group-based assessments. Additionally, REINFORCE++[29] enhances both stability and
effectiveness by incorporating PPO techniques into the traditional REINFORCE framework [95],
leading to improved performance. In this study, we propose an enhanced version of REINFORCE++,
which incorporates reward ranking information to refine advantage estimation and optimize LLMs’
behavior more effectively.

3 Methodology

To enhance the causal reasoning abilities of LLMs in a parameter-efficient and targeted manner, we
propose CDRO, with its overall framework depicted in Fig. 2. This method leverages reinforcement
learning-based optimization to selectively update the model components that are most pertinent to
modeling causal relationships. Specifically, we first prompt SOTA LLMs to generate counterfactual
and paraphrased variants of the training data. By analyzing the training dynamics of parameter
matrices across different types of samples, we identify components that exhibit high sensitivity to
causal reasoning. These identified components are then optimized using an enhanced REINFORCE++
algorithm, wherein rewards are assigned based on the model’s performance on both the original and
the augmented counterfactual and paraphrased samples.

3.1 Counterfactual and Paraphrastic Data Collection

Counterfactual and paraphrased variants of the training data are first generated to facilitate the
localization of causal knowledge within LLMs. All steps in this process are performed by prompting
off-the-shelf LLMs without requiring manual annotation.

To ensure high-quality generation, we utilize SOTA LLMs, such as LLaMA-3-70B [23] and GPT-
4o [30], for data collection. Counterfactual samples are generated by minimally modifying original
instances to change their labels (in NLU tasks) or answers (in NLG tasks), while preserving thematic
consistency [44, 93]. Similar to counterfactual generation, we prompt SOTA LLMs to generate
paraphrased samples from the original data, preserving the original semantics to maintain consistent
labels or answers [96]. The inclusion of relevant details is permitted to enrich the paraphrased
content. We further prompt the LLMs2 to assess the quality of their generations. Evaluations cover
the following dimensions: alignment or divergence between the answers of augmented and original
samples, answer correctness, thematic consistency, clarity, and safety and privacy. Each instance
is rated three times on a scale from 0 to 10, and the outputs with the highest average scores across
eight generations are selected for downstream use. The specific prompts used for both generation and
evaluation are provided in the Appendix. After the data collection process, each original sample xi is
paired with a corresponding counterfactual sample x′

i, as well as a paraphrased sample x′′
i .

3.2 Localization of Causality-Sensitive Parameters

Our approach aims to localize the components within LLMs that are sensitive to causal relationships,
optimizing only these identified components to enhance the model’s causal reasoning capabilities
in a targeted manner. This optimization strategy can not only effectively preserve the knowledge
gained during pretraining, thereby mitigating the risk of catastrophic forgetting, but also enhance the
model’s resilience on downstream tasks. To facilitate effective localization, we analyze the learning
dynamics of various weight matrices across the original, counterfactual, and paraphrased augmented
samples. Specifically, we utilize two indicators of training dynamics—loss gradients and activation
maps—to evaluate how causal relationships are encoded within model parameters. The loss gradients
capture the model’s dependence on and sensitivity to specific matrices during training, while the
activation values reveal the model’s responses and the information flow across different layers. The

2These SOTA LLMs have exhibited strong self-evaluation capabilities [7], and the use of alternative models
for evaluation is also assessed, as presented in Appendix 3.
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Figure 2: Overview of the proposed CDRO framework. Our approach first prompts SOTA LLMs to
generate counterfactual and paraphrased variants of training data, then compares the characteristics
of weight matrices of different categories (e.g., query, key, value, up, and down) and layers across
different sample types. These comparisons are subsequently fed into a logistic regression model
to predict the probability of causal expression. Finally, an enhanced REINFORCE++ algorithm
is employed to optimize the identified causal components, while the logistic regression model is
concurrently updated in real time using the REINFORCE algorithm.

comparisons in these two indicators are computed between original and counterfactual samples, as
well as between paraphrased and counterfactual samples.

For the j-th weight matrix θj , we begin by computing the difference in loss gradients between the orig-
inal and counterfactual samples, defined as G1j =

∣∣∇θj

(
1
n

∑n
i=1 L(xi)

)
−∇θj

(
1
n

∑n
i=1 L(x′

i)
)∣∣

2
,

and the difference between the counterfactual and paraphrased samples as G2j =∣∣∇θj

(
1
n

∑n
i=1 L(x′

i)
)
−∇θj

(
1
n

∑n
i=1 L(x′′

i )
)∣∣

2
, where L(·) denotes the CE loss and n represents

the mini-batch size. The second indicator we consider is the activation map, specifically the hidden
states of each layer. To facilitate comparisons across different sample types, we compute the cosine
similarity of the hidden states between the original and counterfactual samples, as well as between

the counterfactual and paraphrased samples: S1i,lj =
hi,lj

·h′
i,lj

|hi,lj
||h′

i,lj
| and S2i,lj =

h′
i,lj

·h′′
i,lj

|h′
i,lj

||h′′
i,lj

| , where lj

denotes the layer index of matrix θj , and hi,lj , h′
i,lj , and h′′

i,lj represent the hidden states from the
lj-th layer for the i-th original, counterfactual, and paraphrased samples, respectively. The hidden
states of the final token are utilized, as they capture global sentence-level information.

During the optimization process, the two gradient differences, G1j and G2j , along with the mean and
variance of the two cosine similarities (i.e., S1i,lj and S2i,lj ) across a batch of samples, are input
into a logistic regression model [38]. Specifically, each matrix is associated with a six-dimensional
feature vector ξj =

[
G1j ,G2j , S̄1lj , S̄

2
lj
, Ŝ1lj , Ŝ

2
lj

]
, where S̄1lj and Ŝ1lj represent the mean and variance,

respectively, of the values S1i,lj computed over a batch of training data. The symbols for S2i,lj are
defined analogously. The logistic regression model subsequently learns the relationship between the
input indicators and the predicted probability that a given matrix governs causal reasoning relevant to
the downstream task, as formalized in the following:

p(zj | ξj ;β) =
1

1 + exp
(
−β⊤ξj

) , (1)

where β = [β0, β1, · · · , β6] denotes the parameters of the logistic regression model. The predicted
probability p(zj | ξj ;β) indicates the likelihood that matrix θj encodes the causal relationship
within the model, given its corresponding characteristics ξj . The use of the logistic regression model
provides a simple, efficient, and highly interpretable framework for identifying causal components.
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3.3 REINFORCE-Based Collaborative Optimization

The parameter components sensitive to causal reasoning within LLMs and the logistic regression
model in our framework are updated in an alternating fashion. Specifically, the LLMs are optimized
using an enhanced REINFORCE++ algorithm. Since direct gradient backpropagation from the LLMs
to the logistic regression model is not feasible, we employ the standard REINFORCE algorithm [95]
to optimize it, taking advantage of its lightweight structure. In this approach, the reward signal is
derived from the performance of the LLMs. This collaborative optimization process ensures that the
knowledge localization process remains tightly aligned with the evolving learning states of the LLMs.

We define the policy network as the target LLM parameterized by θ, where θc ⊆ θ denotes the
subset of causality-sensitive parameters. To enhance optimization efficiency, we employ the low-rank
adaptation method PiSSA [56], which constrains fine-tuning to the principal subspace of the identified
causal matrices. In this case, the gradient computation for the weight matrices is also restricted to the
top r principal components, thereby improving memory efficiency. During each optimization step,
REINFORCE++ samples an output for each input x from the previous policy πθold . Accordingly, the
optimization objective can be defined as follows:

J (θc) = Ex∼XEy∼πθc
old⊆θold

(Y|x)

 1

|y|

|y|∑
t=1

min (ρt (θ
c)At, clip (ρt (θ

c) , 1− ϵ, 1 + ϵ)At)

 ,

(2)

where ρt(θc) =
πθc⊆θ(yt|x,y<t)

πθc
old⊆θold(yt|x,y<t)

represents the probability ratio between new and old policies, and

the hyperparameter ϵ serves as a small constant that limits the extent of permissible ratio variation.
Moreover, At denotes the advantage estimation for token t, computed as

At = r(x,y)− α

|y|∑
i=t

log

[
πθc

old⊆θold(yt|x,y<t)

πref(yt|x,y<t)

]
+ γ
B − rank(r(x,y))

B − 1
, (3)

where α and γ are two hyperparameters, and πref denotes the reference policy. Moreover, the rank,
rank(r(x,y)), represents the position of r(x,y) within the sorted list of rewards associated with
a batch of samples, where B denotes the batch size. Unlike the standard REINFORCE++ [29]
algorithm, we enhance the computation of the advantage function by integrating reward ranking
information, which is modeled using a linear decay function based on the rank of the reward. This
modification provides a robust and scale-invariant signal that encourages the model to focus on
relative performance, thereby fostering more stable and reliable updates. The resulting advantage
values are then normalized within each batch to ensure numerical stability.

The design of the reward function r(x,y) plays a critical role in the training effectiveness of the
REINFORCE++ algorithm. Our approach assesses model performance not only on the original
samples but also on their augmented counterfactual and paraphrased variants. Specifically, we
introduce four types of rewards, each corresponding to a specific dimension of model performance:
accuracy, robustness, calibration, and confidence.

• Accuracy ra measures the consistency between the predictions and the ground-truth answers,
where GPT-4o is employed to assess prediction correctness by evaluating the semantic
equivalence between the model-generated outputs and the reference texts for NLG tasks.

• Robustness ro evaluates the model’s ability to maintain consistent and accurate performance
under input perturbations. We assess robustness using augmented counterfactual and para-
phrased samples. For counterfactuals, robustness is measured by the prediction accuracy on
the augmented samples. For paraphrases, it is quantified by calculating the cosine similarity
between the hidden states of the model’s responses to the original and paraphrased inputs3

• Calibration rc measures the extent to which the model’s predicted probabilities faithfully
represent the true likelihood of outcomes. It is evaluated using two standard metrics:
Expected Calibration Error (ECE) and Brier Score [3]. Detailed definitions and computation
procedures for these two metrics are provided in Appendix 1.

3The metrics for augmented counterfactual and paraphrased samples are rescaled according to their respective
evaluation scores, as detailed in Section 3.1.
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Table 1: Comparison of gender and race debiasing performance using SEAT and downstream results
on three NLU tasks. The best and second-best results are highlighted in bold and underlined. CDRO
consistently surpasses previous baselines in both debiasing and downstream task performance.

Dataset SST-2 CoLA QNLI
Metric Gender (↓) Race (↓) Acc. (↑) Gender (↓) Race (↓) Mcc. (↑) Gender (↓) Race (↓) Acc. (↑)
BERT 0.29 0.30 92.4% 0.18 0.16 57.6% 0.37 0.30 91.3%
CDA 0.47 0.39 81.3% 0.29 0.30 53.2% 0.38 0.35 89.1%
Dropout 0.48 0.37 81.9% 0.27 0.31 52.2% 0.44 0.48 90.1%
Context-Debias 0.23 0.20 91.9% 0.47 0.32 55.4% 0.36 0.33 89.9%
Auto-Debias 0.28 0.31 92.1% 0.22 0.20 52.9% 0.24 0.24 91.1%
MABEL 0.35 0.28 92.2% 0.42 0.19 57.8% 0.44 0.30 91.6%
Sent-Debias 0.21 0.17 89.1% 0.22 0.20 55.4% 0.32 0.27 90.6%
FairFil 0.18 0.18 91.6% 0.12 0.14 56.5% 0.22 0.24 90.8%
Causal-Debias 0.11 0.11 92.9% 0.11 0.06 58.1% 0.15 0.11 91.6%
PCFR 0.09 0.13 91.9% 0.08 0.11 55.7% 0.11 0.13 89.2%
CDRO (Ours) 0.05 0.06 94.2% 0.05 0.04 59.4% 0.07 0.07 92.8%

ALBERT 0.22 0.29 92.6% 0.24 0.19 58.5% 0.21 0.20 91.3%
CDA 0.38 0.39 92.4% 0.16 0.18 53.1% 0.31 0.28 90.9%
Dropout 0.28 0.25 90.4% 0.25 0.27 47.4% 0.20 0.24 91.7%
Context-Debias 0.11 0.10 77.3% 0.17 0.14 55.4% 0.20 0.15 91.6%
Causal-Debias 0.08 0.13 92.9% 0.16 0.16 57.1% 0.09 0.01 91.6%
PCFR 0.06 0.10 92.3% 0.13 0.11 55.3% 0.08 0.11 89.4%
CDRO (Ours) 0.04 0.07 93.8% 0.08 0.09 59.8% 0.05 0.01 92.5%

RoBERTa 0.41 0.43 94.8% 0.41 0.38 57.6% 0.48 0.49 92.8%
Context-Debias 0.26 0.24 80.3% 0.30 0.35 55.4% 0.37 0.35 91.8%
Causal-Debias 0.09 0.10 93.9% 0.16 0.13 54.1% 0.09 0.05 92.9%
PCFR 0.06 0.09 93.5% 0.15 0.13 55.4% 0.07 0.10 89.4%
CDRO (Ours) 0.04 0.06 96.5% 0.09 0.08 58.7% 0.05 0.03 93.7%

• Confidence rf evaluates the model’s prediction confidence in generating a complete se-
quence from a given input by computing the product of the conditional probabilities of each

token in the sequence: |y|
√∏|y|

t=1 p (yt | x,y<t) [49].

Higher values of accuracy, robustness, and confidence metrics reflect improved model performance,
whereas lower values of calibration metrics indicate better prediction reliability. Accordingly, the
reward employed during optimization is defined as a weighted sum of the four reward components:
r = ra + λ(ro − rc + rf ), where the value of λ is fixed as 0.5 in our experiments to maintain the
relative dominance of the accuracy-related reward component.

During the optimization process, the logistic regression model is also updated in real-time to ensure
dynamic and adaptive knowledge localization. Specifically, the update is performed using the
REINFORCE algorithm [95], where the reward quantifies the variation in the LLMs’ performance
before and after each update. This performance variation is measured on a small validation set and
evaluated using the four metrics described earlier. Consequently, the optimization is formulated as

β ← β + τE{(x,y)}Ez∼p(z|ξ;β)

[
rdev · ∇β log p (z|ξ;β)

]
, (4)

where rdev represents the computed reward signal and τ denotes the step size of each update.

4 Experiments

Extensive experiments have been conducted to evaluate the effectiveness of the proposed approach.
First, we examine its ability to mitigate model biases across various NLU tasks. Next, we assess its
effectiveness in reducing hallucinations on multiple NLG tasks. Finally, we evaluate its robustness
in OOD scenarios. Due to space limitations, further details regarding the datasets, the compared
baselines, and the experimental settings are provided in the Appendix.

Evaluation for Debiasing Ability. Unwanted stereotypical associations are known to degrade
model performance [28, 45]. Building on prior research [106, 25], we use human-created stereotypes
to investigate and mitigate biases in LLMs, specifically incorporating gender [35] and race [53] word
lists. Experiments are conducted on three downstream tasks: SST-2 for sentiment classification [75],
CoLA for grammatical acceptability judgment [90], and QNLI for question answering [69], utilizing
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Table 2: Performance comparison between CDRO and other baselines across five NLG tasks.
The proposed CDRO method consistently outperforms previous baselines in mitigating knowledge
hallucinations, achieving the highest Acc@q and Cov@p scores. To ensure a fair comparison, the
values of q and p are aligned with those configured in [49, 114].

Task NQ SciQ TriviaQA TruthfulQA WikiQA
Metric Acc@50 (↑) Cov@50 (↑) Acc@50 (↑) Cov@90 (↑) Acc@50 (↑) Cov@60 (↑) Acc@50 (↑) Cov@40(↑) Acc@50 (↑) Cov@50 (↑)
Label Smooth. 0.208 0.061 0.212 0.003 0.302 0.019 0.181 0.000 0.273 0.000
Temp. Scaling 0.288 0.115 0.764 0.211 0.500 0.111 0.314 0.136 0.388 0.012
LITCAB 0.300 0.105 0.762 0.221 0.478 0.201 0.314 0.195 0.397 0.062
Calib. Tuning 0.310 0.115 0.761 0.224 0.482 0.222 0.386 0.393 0.441 0.162
P(IK) 0.286 0.000 0.656 0.004 0.372 0.023 0.267 0.005 0.339 0.004
Verbalization 0.254 0.055 0.660 0.117 0.404 0.053 0.233 0.224 0.372 0.202
Self-Consis. 0.340 0.217 0.744 0.124 0.446 0.079 0.405 0.500 0.628 0.621
ITI 0.297 0.098 0.745 0.213 0.462 0.168 0.300 0.165 0.376 0.058
R-Tuning 0.293 0.084 0.692 0.119 0.400 0.063 0.341 0.332 0.416 0.258
HADEMIF 0.355 0.120 0.766 0.228 0.501 0.240 0.430 0.510 0.653 0.338
DoLa 0.301 0.108 0.759 0.224 0.476 0.205 0.316 0.190 0.400 0.125
SH2 0.322 0.101 0.760 0.221 0.482 0.225 0.352 0.479 0.478 0.297
CDRO (Ours) 0.376 0.228 0.781 0.245 0.520 0.258 0.456 0.529 0.665 0.627

three LLMs: BERT-base [17], ALBERT-large [41], and RoBERTa-base [51]. Unless otherwise
specified, the training data are augmented using the LLaMA-3-70B [23] model. We report results
as the average of five runs for each task. The compared baselines include a range of debiasing
approaches, encompassing non-task-specific methods-CDA [91], Dropout [91], Context-Debias [35],
Auto-Debias [25], and MABEL [27]—as well as task-specific methods, including Sent-Debias [45],
FairFil [11], Causal-Debias [106], and PCFR [28]. Following prior research [106, 25], evaluation
metrics consist of accuracy (or Matthew correlation for CoLA) and two bias assessment measures:
SEAT [54] for both gender and racial bias, and CrowS-Pair [60] for gender bias. In SEAT, scores closer
to 0 indicate lower bias, while in CrowS-Pair, scores approaching 50% reflect reduced stereotyping.

Table 1 presents the gender and race debiasing performance using the SEAT evaluation of various
methods, alongside their accuracy on these tasks, with results using the CrowS-Pair evaluation
provided in Appendix 3. The proposed CDRO approach demonstrates superior effectiveness in
mitigating gender and race bias, as evidenced by its lowest SEAT scores across all three tasks.
Moreover, while previous debiasing methods often degrade downstream task performance, CDRO
not only achieves SOTA debiasing effectiveness but also enhances model performance in downstream
applications. This advantage can be largely attributed to the selective and fine-grained optimization
of the model parameters that are responsible for encoding causal relationships.

Evaluation for Hallucination Mitigation. We evaluate our approach on five representative NLG
benchmarks: Natural Questions (NQ) [40], SciQ [92], TriviaQA [32], TruthfulQA [47], and Wik-
iQA [100]. LLaMA-2-7B [81] is adopted as the primary backbone, given its widespread use in
studying knowledge hallucination in LLMs. Additionally, we incorporate seven other popular LLMs
with parameters ranging from 1.5B to 30B: GPT-2 XL (1.5B) [67], GPT-J (6B) [86], LLaMA-7B [80],
LLaMA-30B, LLaMA-2-13B, LLaMA-3-8B [23], and Vicuna-13B [13]. To ensure a fair comparison,
we adhere to the evaluation framework outlined in [49]. Specifically, the model’s confidence is
computed as the geometric mean of token probabilities. Moreover, GPT-4 [1] is employed to assess
the correctness of model outputs by determining the semantic equivalence between the generated
text and the reference. Subsequently, two metrics are utilized to evaluate the effectiveness of various
approaches in hallucination mitigation: Acc@q and Cov@p. The Acc@q metric measures the
precision of the model by evaluating the accuracy of the top-q percent of predictions. The Cov@p
metric measures recall by identifying the largest proportion of the most confident predictions where
accuracy exceeds a specified threshold p.

We compare CDRO with various approaches designed to enhance prediction reliability. These
include model calibration techniques including Temperature Scaling [46], Label Smoothing [78],
LITCAB[49], and Calibration Tuning[36], as well as hallucination detection and mitigation methods,
including Verbalization [79], P(IK)[33], Self-Consistency[79], R-Tuning [102], DoLa [14], SH2 [34],
ITI [43], and HADEMIF [114]. The results for LLaMA-2-7B are summarized in Table 2, with some
values referenced from [114]. The evaluation outcomes for other LLMs are presented in Fig. 6 of the
Appendix. Our method demonstrates consistent superiority over existing baselines across all five
tasks, attaining the highest Acc@q and Cov@p scores. These findings highlight the effectiveness
of our approach in mitigating hallucinations, which can be attributed to the suppression of spurious
correlations and the enhancement of the model’s causal reasoning capabilities.
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Large

Small

Figure 3: (a) Update of matrices across various layers during the training process. (b) Evolution of the
regression coefficients on QNLI. (c) Average performance across ablations of four reward components
on NLU and NLG tasks. (d) Ablation studies on reward ranking information for advantage estimation.

Table 3: Performance comparison on the OOD datasets utilizing the
RoBERTa-base model. The proposed CDRO framework consistently
achieves the highest accuracy among all compared baselines.

Dataset SST-2 MNLI QQP
OOD data IMDB-Cont IMDB-CAD HANS AdvNLI PAWS
Fine-tuning 84.51% 88.39% 67.80% 31.22% 38.45%
Span Cutoff 85.53% 89.21% 68.38% 31.14% 38.80%
HiddenCut 87.82% 90.44% 71.16% 32.83% 41.52%
IPT-Adapter 85.01% 88.75% 66.30% 32.54% 38.94%
Causal-Debias 88.45% 91.44% 76.21% 37.53% 44.35%
PCFR 88.51% 91.78% 76.64% 38.01% 44.62%
CDRO (Ours) 89.62% 92.65% 77.68% 39.40% 46.01%

REINFORCE++

CDRO

REINFORCE++

CDRO

REINFORCE++

CDRO

REINFORCE++

CDRO

Figure 4: Accuracy compar-
ison between CDRO and
vanilla REINFORCE++
on IMDB-Cont using
RoBERTa-base model.

Evaluation for OOD Generalization. Models influenced by spurious correlations in training data
often exhibit degraded generalization, particularly in OOD scenarios [8]. Accordingly, we conduct
experiments on three representative tasks from the GLUE benchmark [85]: SST-2 [75], MNLI [94],
and QQP [89], each accompanied by publicly available OOD datasets. For SST-2, the OOD evaluation
is conducted on the IMDB-Cont [21] and IMDB-CAD [37] datasets. The OOD datasets for MNLI
comprise HANS [99] and AdvNLI [63], while PAWS-QQP [104] serves as the OOD dataset for QQP.
We employ three widely utilized pretrained language models—BERT-base [17], RoBERTa-base [51],
and BART-base [42]—and report accuracy as the evaluation metric. The compared baselines for
improving model generalization in OOD scenarios include Span Cutoff [74], HiddenCut [8], IPT-
Adapter [22], Causal-Debias [106], and PCFR [28].

Table 3 reports the comparative results using the RoBERTa-base model, while the comparison results
for other models are provided in Appendix 5. As shown, the proposed CDRO method significantly
outperforms all compared baselines across a range of OOD datasets. In particular, it yields
average performance improvements of 1.16% over the strongest baseline and 7.00% over vanilla
fine-tuning. These results demonstrate the effectiveness of CDRO in mitigating spurious correlations
and enhancing the resilience capability of LLMs even under distributional shifts.

Analysis of Training Process. We investigate the update behavior of parameter matrices during
training, categorizing them by layer position and functional type. From Fig. 3(a), the proportion of
updates decreases in deeper layers after a period of training, indicating that the parameter matrices
sensitive to causal relationships increasingly concentrate in the earlier and intermediate layers as the
model converges. The update patterns for different matrix types are shown in Fig. 7 in the Appendix,
where query and key matrices are primarily updated during the early stages, while value, up, and
down matrices receive more updates later on. Additionally, Fig. 3(b) shows the evolution of the
coefficients in the logistic regression model throughout training. The indicators G1j and G2j show

positive correlations with predictions, while S
1

lj , S
2

lj , Ŝ1
lj

, and Ŝ2
lj

exhibit negative correlations. These

results suggest that layers with lower values of S
1

lj and S
2

lj , and matrices with higher values of G1j
and G2j , are more sensitive to causal variations, indicating their crucial role in encoding causal signals.
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Furthermore, layers with lower variances (i.e., Ŝ1
lj

and Ŝ2
lj

) are more likely to be selected, as they
consistently capture causal information across different samples.

Ablation and Sensitivity Studies. We conduct ablation studies on the four reward components.
As shown in Fig. 3(c), the model attains its best performance when all four types of rewards are
jointly incorporated, underscoring their complementary contributions. We then assess the impact
of incorporating reward ranking information into advantage estimation. From the results presented
in Fig. 3(d), the integration of reward ranking consistently leads to performance improvements.
Furthermore, Fig. 4 presents the accuracy trajectories during training, demonstrating that CDRO
steadily outperforms the vanilla REINFORCE++ in terms of accuracy.

5 Conclusion

This study presents a novel causality-informed robust optimization framework, termed CDRO,
aimed at mitigating LLMs’ reliance on spurious correlations and enhancing their resilience across
diverse tasks. Our approach first identifies parameter components capturing causal relationships
by analyzing training dynamics in weight matrices across original, counterfactual, and paraphrased
samples. These dynamics are modeled via a logistic regression mechanism, enabling the automatic
and adaptive localization of causality-relevant parameters. To further refine the optimization process,
we introduce a collaborative reinforcement learning strategy that alternately updates the identified
causal parameters and the logistic regression model. Extensive experiments on various NLU and NLG
tasks demonstrate that CDRO consistently surpasses the compared baselines in mitigating spurious
correlations, suppressing knowledge hallucinations, and enhancing overall model performance.
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contributions.
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• The answer NA means that the abstract and introduction do not include the claims
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much the results can be expected to generalize to other settings.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Appendix 8.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
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• The authors should reflect on the factors that influence the performance of the approach.
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used reliably to provide closed captions for online lectures because it fails to handle
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address problems of privacy and fairness.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: All formulas in this manuscript are properly numbered and consistently cross-
referenced throughout the text.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
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proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental settings are detailed in Section 4 and the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets utilized in this study are publicly available and our code will be
made publicly available upon acceptance of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide a comprehensive description of the experimental set-
tings—including datasets, hyperparameters, and the optimization process—in Section 4 and
the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the standard errors of the results in Section 4 and the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details regarding the computational resources are provided in Section 4 and
the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research in this paper complies with NeurIPS ethical standards in all
aspects.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The potential broader impacts have been discussed in Appendices 8 and 9.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper presents no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have provided appropriate citations and explanations for the papers, models,
and datasets referenced in this work.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: In Sections 3 and 4, and the Appendix.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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