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Abstract

We utilize Hybrid Markov Logic Networks
(HMLNs) to combine embeddings learned from a
Deep Neural Network (DNN) with symbolic rela-
tional knowledge. Since a DNN may not always
learn optimal embeddings, we develop a mixture
model to reduce variance in the HMLN parame-
terization. Further, we perform inference in our
model that is robust to covariate shifts that may oc-
cur in the DNN embeddings by reparameterizing
the HMLN. We evaluate our approach on Graph
Neural Networks and show that our approach out-
performs state-of-the-art methods that combine re-
lational knowledge with DNN embeddings when
we introduce covariate shifts in the embeddings.
Further, we demonstrate the utility of our approach
in inferring latent student knowledge in a cognitive
model called Deep Knowledge Tracing.

1 INTRODUCTION

Hybrid Markov Logic Networks (HMLNs)[Wang and
Domingos, 2008] are statistical relational models that com-
pactly represent probabilistic graphical models using first-
order logic structures. They are particularly well-suited for
Neuro-symbolic (NeSy) reasoning [Kautz, 2022] since they
allow us to unify discrete symbolic knowledge with func-
tions. Specifically, real-world data in critical domains such
as education, healthcare, etc. often has relational structure,
and using a HMLN, we can develop models where we ex-
press symbolic relationships in the data combined with deep
representations (or embeddings) learned from the same data.

While representation-wise, a standard HMLN can be di-
rectly used to learn such a model, there are two main chal-
lenges in learning and inference that we address in this
paper. First, real-valued functions defined over embeddings
may have greater uncertainty compared to symbolic re-

lationships. For instance, suppose e1, e2 are embeddings
learned by a DNN for X1, X2 respectively, consider the
product between a function over the embeddings, f(e1, e2)
and a symbolic relationship such as Friends(X1, X2)
∧ LikesSports(X1) ⇒ LikesSports(X2). In this
case, the symbolic relationship is directly observable in data,
however, f(e1, e2) is indirectly inferred from data through
the DNN. In a typical HMLN formulation, we would as-
sume that a single real-valued weight can parameterize the
hybrid formula that combines the real-valued function with
the symbolic relationship. However, when the domain of
the real-valued function corresponds to embeddings learned
from the DNN, this adds an extra layer of uncertainty due to
embedding variability. To address this, we develop a mixture
model where we combine variations of the embedding to
reduce uncertainty in the parameterization.

The second challenge is related to inference. In a typical
scenario, we fix the parameters of the HMLN learned from
training data and then perform inference conditioned on
evidence observed in test data. However, in some cases, the
embeddings learned from test data could result in covariate
shift, though the conditional label distribution remains in-
variant (in the case of discriminative learning). For instance,
suppose we update the model architecture or the data during
test varies even slightly, then the change in embeddings can
be quite significant [Shu and Zhu, 2019]. This implies that
we may not be able to utilize the exact same parameters that
we learned during training to perform inference on test data.
To address this, we develop a reparameterization approach
that modifies the parameters learned during training utiliz-
ing the covariate shift in embeddings observed during test.
Specifically, we normalize the learned parameters of the
HMLN with density ratios of embeddings that occur within
those formulas. However, since the exact densities are in-
tractable to compute, we estimate them with a probabilistic
classifier [Grover et al., 2019].

In our experiments, we show that using embeddings learned
from Graph Neural Networks on commonly used bench-
marks, we can learn a model that has a better fit (measured
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through conditional log-likelihood) than current state-of-the-
art methods that augment statistical relational models with
DNNs such as Neural PSL [Pryor et al., 2023] and Deep-
StochLog [Winters et al., 2022]. We show that the difference
between our approach and existing methods is particularly
significant when the test embedding distribution varies from
the training distribution. Next, we demonstrate our approach
using a cognitive model called Deep Knowledge Tracing
(DKT) Piech et al. [2015] commonly used to represent stu-
dent knowledge, and show that our approach outperforms
the standard DKT model in the presence of covariate shift.

2 BACKGROUND

2.1 RELATED WORK

The growing area of Neuro-Symbolic (NeSy) reason-
ing [Raedt et al., 2020, Sarker et al., 2021] seeks to integrate
DNN and symbolic models. Kautz [2022] proposed a taxon-
omy of NeSy models based on how the DNN and symbolic
components interact with each other. Previously, Statistical
Relational Models [Getoor and Taskar, 2007] was a pre-
dominant approach in unifying the representational power
of first-order logic with probabilistic models to provide
a general framework for uncertainty quantification in the
presence of relational structure. Markov Logic Networks
(MLNs) [Domingos and Lowd, 2009], Probabilistic Soft
Logic (PSL) [Bach et al., 2017] and Problog [De Raedt
et al., 2007] are arguably three of the most well-known sta-
tistical relational models. pLogicNet [Qu and Tang, 2019]
utilizes MLNs to represent domain knowledge with first-
order logic and handle uncertainty, while also incorporating
knowledge graph embedding methods for efficient infer-
ence. Neural Markov Logic Networks [Marra and Kuželka,
2021] introduced an approach where instead of symbolic
rules in an MLN, neural networks are used within a log-
linear model. Problog was extended to DeepProbLog [Man-
haeve et al., 2018], which supports both symbolic and sub-
symbolic representations and inference by integrating neu-
ral networks through the use of neural predicates. [Winters
et al., 2022] further extended on this and introduced Deep-
StochLog, which introduces neural networks into stochastic
logic programs based on stochastic definite clause gram-
mars, defining a probability distribution over derivations to
enable better scalability and handling of longer sequences
compared to DeepProbLog. [Maene and De Raedt, 2023]
introduced DeepSoftLog, which is a framework that inte-
grates soft-unification and probabilistic logic programming,
where they use distance between embeddings instead of
exact-matching of the symbolic terms for unification. More
recently, PSL was extended to NeuPSL [Pryor et al., 2023]
to augment DNN learning with logical rules. However, the
aforementioned approaches do not account for variations in
DNN representations during learning/inference, which is the
focus of our work. Related to our mixture model approach,

a stacking method was developed to scale-up learning in
MLNs Islam et al. [2018] that combines multiple MLNs
that are compressed using symmetries.

2.2 HYBRID MARKOV LOGIC NETWORKS

Markov Logic Networks (MLNs) [Domingos and Lowd,
2009] compactly represent probabilistic graphical models
(PGMs) in the form of first-order logic formulas to define
a distribution over possible worlds, where a world is an
assignment to all the ground atoms (an atom substituted with
constants) in the MLN. Hybrid Markov Logic Networks
(HMLNs) generalize MLNs to include both continuous and
discrete variables. Specifically, a HMLN consists of pairs
{(Fi,Θi)}ni=1, where Fi is a first-order formula that can
contain one or more real-valued terms and Θi is its weight.

Each ground formula of the HMLN (substituting variables
in a formula with constants from their respective domains)
represents a potential function in a PGM, where the ground
atoms are nodes and a clique between them represents the
potential function. Symbolic ground predicates are binary
random variables and real-valued ground predicates have a
continuous value. The probability distribution is a log-linear
model defined as follows.

PΘ(ω) =
1

Z
exp

(∑
i

Θisi(ω)

)
(1)

where ω is a world, i.e., an assignment to all ground
predicates and Z is the partition function, i.e., Z =∑

ω′ exp (
∑

i θisi(ω
′)). si(ω) is the sum of values over

all groundings of Fi.

We can perform marginal inference in HMLNs using Gibbs
sampling [Geman and Geman, 1984]. Specifically, given a
query variable Y (we assume this to be a single variable)
and observed evidence X = x (that includes real-valued
terms), we compute P (Y = y|X) as follows. We initial-
ize the assignments to all non-evidence variables (Y) as
y(0). In each iteration, we pick a single variable Y ′ ∈ Y
and sample an assignment to Y ′ = y′ from the conditional
HMLN distribution PΘ(Y

′|y−y′ ,x) to obtain the next state
of the Markov Chain y(1). Here, y−y′ is the assignment
to all variables other than Y ′ and therefore the conditional
distribution is typically easy to compute. We estimate the
marginal probabilities from samples collected after a burn-
in period (initial samples are ignored to allow the MCMC
chain to mix) using the following estimator.

P̂ (Y = y|x) = 1

T

T∑
t=1

Pθ(Y = y|y(t)
−y,x) (2)

It can be shown that as T → ∞, P̂ (Y = y|x) converges to
the true marginal probability P (Y = y|x).



3 APPROACH

We motivate our learning approach from a Bayesian perspec-
tive. Specifically, let f denote the optimal density function
that can be learned from a dataset D. Let M denote an
HMLN with parameters ΘM when trained using D and Φ,
where Φ corresponds to representations learned by a DNN
from D. In our case, we assume that the parameters have
finite values, i.e., we do not consider hard constraints (where
the weight has an infinite value) in the HMLN. We can there-
fore express the conditional probability over the density as
follows.

P (f |D) =

∫
Φ

∫
ΘM

P (ΘM,Φ|M,D)dΘM × fΘM,ΦdΦ

(3)

where fΘM,Φ is the density function computed using the
HMLN. If we assume that the DNN learning is indepen-
dent of the HMLN, we can simplify the above equation as
follows.

P (f |D) =

∫
Φ

∫
ΘM

P (ΘM|Φ,M,D)dΘM

× P (Φ|D)× fΘM,ΦdΦ (4)

Clearly, computing the optimal density is hard since the
weighting factors of fΘM,Φ require the computation of in-
tractable probabilities. Further, since Φ is learned through a
DNN, the representation may be sub-optimal which induces
uncertainty when we try to learn a single parameterization
for the density. To reduce this uncertainty, an approach that
is used is to instead average over multiple parameteriza-
tions [Smyth and Wolpert, 1997]. Specifically, we learn
a mixture over parameterizations for an HMLN based on
variants of representations learned by the DNN.

3.1 MIXTURE MODEL

Let the dataset D be partitioned into (y,x), where y is an
assignment on query atoms (Y) and x is an assignment
on evidence atoms (X). To make equations more readable,
we use the shorthand y, x to represent Y = y, X = x
respectively when the context is clear. Let {Φi}ni=1 denote
n different DNN representations for D. Given the HMLN
structure M, the conditional log-likelihood (CLL) of the
K-component mixture model is as follows.

ℓ(y|x) =
n∑

i=1

log

K∑
j=1

αjPΘj (y|x,Φi) (5)

where PΘj (·) is the j-th parameterization of M and αj

is the mixture coefficient. We learn the mixture model by
maximizing the negative CLL.

min
α1...αK ;Θ1...ΘK

n∑
i=1

− log

K∑
j=1

αjPΘj (y|x,Φi) (6)

As is typical in mixture models, we use the EM algorithm
to optimize the above objective. In the E-step, we fix the
K parameterizations of M, i.e., {Θj}Kj=1 and compute the
probability of the query variables w.r.t each parameterization
in the mixture. Specifically,

γij =
αjPΘj (y|x,Φi)∑K

k=1 αkPΘk(y|x,Φi)
(7)

However, note that unlike tractable models (e.g. Gaus-
sians), computing PΘj (y|x,Φi) for an HMLN is computa-
tionally intractable since it requires the partition function
which is #P -hard. Therefore, we instead approximate the
joint distribution over the query variables using Gibbs sam-
pling. Specifically, we compute the mean-field approxima-
tion over the query variables,

∏
Y ∈Y PΘj (Y |x,Φi), where

PΘj (Y |x,Φi) is the marginal probability over a single query
variable computed from samples drawn from the HMLN
with parameters Θj .

In the M-Step, we update the K parameterizations of the
HMLN given the mixture component probabilities. To do
this, we maximize the relaxed objective (with the approxi-
mated probability) as follows.

min
α1...αK ;Θ1...ΘK

n∑
i=1

K∑
j=1

−γij logPΘj (y|x,Φi) (8)

Proposition 1. If parameterized by positive weights Θj , the
negative CLL − logPΘj (y|x,Φi

M) is a convex function.

From the above proposition, and from Jensen’s inequality, it
follows that the M-step optimizes a lower bound on Eq. (5).
To optimize the relaxed objective, we use gradient descent.
Specifically, the gradient w.r.t the k-th HMLN formula in
parameterization Θj is as follows.

∂ℓ̂

∂θjk
=

n∑
i=1

γij ∗ (sk(y|x,Φi)− E[sk(y|x,Φi)]) (9)

where sk(y|x,Φi) is the value of the k-th formula observed
in D and E[sk(y|x,Φi)] is its expected value based given
the parameterization Θj . However, computing the exact
expected value in Eq. (9) is intractable since it requires
computation of the normalization constant. Therefore, we
use the Voted Perceptron approach [Singla and Domingos,
2005] to estimate the expectation from the Maximum a Pos-
teriori (MAP) assignment. Specifically, the MAP solution is
the most probable state of non-evidence atoms in the HMLN
given the evidence atoms. In our case, the MAP objective
can be written as follows.

argmax
y′

∑
i

∑
k

θiksk(y
′,x,Φi) (10)

Existing approaches such as MaxWalkSAT [Selman et al.,
1996] or ILP solvers (which we use in our experiments) can



be used to solve Eq. (10) and approximately compute the
MAP assignment. To estimate the expected value of the k-th
formula in the gradient equation Eq. (9), we simply com-
pute the value of the formula based on the state of its atoms
in the MAP assignment. We then update the parameteri-
zations θ1 . . . θK by multiplying the gradient with a small
learning rate. Finally, we update the mixture coefficients
αk =

∑
i γij

n . We stop when the weights have converged to
a local minima or after a fixed number of iterations.

3.2 REPARAMETERIZED INFERENCE

The marginal probability of a ground atom can be written
as a ratio of partition functions. Specifically, for a ground
atom Y , we can compute its marginal as follows.

P (Y = 1|x,Φ) =
K∑
i=1

αi
Zi(Y = 1|x,Φ)

Zi(Y = 1|x,Φ) + Zi(Y = 0|x,Φ)
(11)

where Zi(Y = y|x,Φ) is the partition function of the i-th
parameterization of the HMLN in the mixture conditioned
on evidence atoms x and representation Φ. Suppose y′

−Y de-
notes an assignment to all atoms other than Y , the partition
function sums over all possible states of y′

−Y .

Zi(Y = y|x,Φ) =
∑
y′
−Y

exp

∑
j

θij
∑
k

sjk(y
′
−Y ,x,Φ)


(12)

While Eq. (11) yields the exact marginal probabilities, the
computation is intractable (#P ) since we need to sum over
all possible states of y′

−Y . A typical approach is to use
sampling methods such as Gibbs sampling to approximate
the marginals. However, performing inference using the
parameterizations learned by maximizing the CLL in Eq. (8)
assumes that the DNN representations that we condition on
during learning and inference follow the same distribution.

If the representations diverge significantly, then weights cor-
responding to the (locally) optimal CLL will not yield accu-
rate uncertainty estimates during inference. DNNs can learn
different representations that minimize the same empirical
risk due to variations in architecture, data, hyperparameters
etc. Therefore, when we condition on DNN representations
during inference, we want to account for possible covari-
ate shift that may have occurred in the representation. To
address this, we reparameterize the HMLNs by importance
weighting the formulas proportional to the amount of co-
variate shift in the DNN representation.

3.2.1 Reparameterization with Density-Ratios (DR)

Our approach to reparameterize the HMLN is based on the
domain-aware MLN (DA-MLN) formalization proposed

in Mittal et al. [2019]. Specifically, the idea in DA-MLNs is
to scale-down the parameters of a first-order formula in the
MLN based on a factor computed from its ground formu-
las. In contrast to regular MLNs, using reparameterization,
DA-MLNs represent marginal distributions more effectively
even as the domain-size (number of ground formulas) in-
creases. In DA-MLNs, the scaling factor for reparameteriza-
tion is defined as an aggregate function over the number of
connections within the groundings of a first-order formula
in the MLN. For completeness, we repeat the definition of
DA-MLNs below.

Definition 1. Given a first-order formula F , let the vari-
ables that occur only in predicate V in F and no other
predicates in F be V̄ (F ). The number of connections for V
is max(1,

∏
x∈V̄ (F ) |∆x|), where ∆x is the domain of the

variable x.

Let formula F contain predicates V1 . . . Vk. We compute the
number of connections for V1 . . . Vk in F , say C1 . . . Ck and
the scale-down factor is an aggregate over C1 . . . Ck. Given
an MLN with m formulas having parameters θ1 . . . θm, if
the scaling-factors for the m formulas are w1 . . . wm, the
reparameterized DA-MLN marginal distribution is defined
as follows.

P̂ (Y = y|X = x) =
1

Z
exp

(
m∑
i=1

θi
wi

ni(x,y)

)
(13)

where ni(x,y) denotes the number of satisfied groundings
of the i-th first-order formula given the data (x,y). Note
that, the typical aggregate function used in DA-MLNs to
compute the scale-down factor is max(C1 . . . Ck). In our
case, we define the scale-down factor for HMLNs based on
the observation that formulas contain real-valued terms with
covariate shift. We motivate this with a simple example.

Example 1. Consider a single formula θ : f(x, y)∗ (R(x)∧
Q(y)), where θ is the parameter for the formula (we assume
it to be 0.1 for this example) and f(x, y) is a real-valued
term. Let the domain-size for all variables be equal to 3.
Thus, there are 9 groundings of the formula in the HMLN.
Let the real-valued term encode a soft equality in the HMLN,
i.e. x = y is defined as −(x−y)2. This imposes a Gaussian
penalty for deviating from the equality with the standard

deviation of the Gaussian being
√

1
2θ . Let the groundings for

f(x, y) during training be sampled from a 2-D Gaussian as
shown in Fig 1 (a). During inference, let the groundings be
drawn from the Gaussian with the same mean but a different
covariance structure as shown in Fig. 1 (b). For a given
world (here, we assume the world where all groundings of
R(x), Q(x) are True), we calculate the CLL of the world
over all the ground atoms conditioned on the real-valued
terms. The x-axis in Fig. 1 (c) shows the absolute difference
between the exact CLL when groundings for f(x, y) are
sampled from (a) and the exact CLL when groundings for
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Figure 1: Illustrating reparameterization for a synthetic example. (a) 2-D Gaussian assumed to be the true distribution from
which real-valued terms are sampled. (b) 2-D Gaussian which is covariate-shifted (used during inference). (c) The x-axis
denotes the difference between CLLs computed using samples from (a) and (b). The y-axis denotes the difference between
CLLs computed using samples from (a) and (b) after reparameterization using the density ratio.

f(x, y) are sampled from (b) for 5000 different cases. The
y-axis in Fig. 1 (c) shows the same CLL difference, however,
this time, we reparameterize the weight θ by normalizing it
with density ratios. Specifically, we compute the ratio over
probability densities for each sampled grounding of f(x, y)
w.r.t the distributions in (a) and (b). As we see from Fig. 1 (c),
the reparameterization of the HMLN reduces the difference
between the CLLs by accounting for the shift in covariate
structure.

Generalizing the above example, we reparameterize the
HMLN with a weighting-function over the DNN representa-
tions. Specifically,

P̂ (Y = y|X = x,Φ) =
1

Z
exp

(
m∑
i=1

θi
wi(Φ)

si(x,y,Φ)

)
(14)

We want wi(Φ) to specify the density ratio (DR) between the
DNN representations observed during inference and those
used to learn the parameters. However, computing the exact
DR for DNNs is infeasible since the densities do not have a
closed-form solution. Therefore, we instead use a probabilis-
tic classifier to estimate the DR approximately. Specifically,
let C denote a model such that C : ϕ → [0, 1], where 1
indicates that ϕ ∈ Φ is a DNN representation (embedding)
used in inference and 0 indicates that it is an embedding
used in training. We compute the weight of an embedding
as follows.

w(ϕ) = η
C(ϕ)

1− C(ϕ)
(15)

where η is the ratio of the number of embeddings in training
to those used in the test. Similar to the approach in Grover
et al. [2019], we train C as a shallow neural network which
yields calibrated probabilities. Specifically, we use cross-
entropy loss to train the shallow (1-hidden layer) neural
network to distinguish between embeddings used in training
and those used during inference. Further, as post-processing,

we rescale the logits in the neural network using the tem-
perature scaling approach in Guo et al. [2017]. Specifically,
we use a validation set to determine the scaling parameters
such that the expected calibration error of the model is min-
imized. We use this final calibrated network to determine
the reparameterization weights. The modified distribution
of the HMLN is as follows.

P̂ (Y = y|X = x,Φ) =

1

Z
exp

 m∑
i=1

∑
ϕ∈Φi

θi
w(ϕ)

si(x,y, ϕ)

 (16)

where Φi is the projection of Φ on the i-th formula, i.e.,
ϕ ∈ Φi iff ϕ occurs in at-least one grounding of the i-th
formula and si(x,y, ϕ) is the value of the ground formula
that contains ϕ.

Analysis. It turns out that reparameterization of the
HMLN is a form of importance weighting that is commonly
used in importance sampling to estimate expectations from
intractable distributions [Neal, 2001]. Specifically, let Q
denote the embedding distribution used during parameter
learning and Q̂ the distribution during inference. Let ϕ be an
embedding observed during inference. To simplify notation,
let us denote the value of a ground formula (in Eq. (16))
containing ϕ as f(ϕ). The expected value of f(ϕ) can be
expressed as follows.

EQ[f(ϕ)] = EQ̂

[
Q(ϕ)

Q̂(ϕ)
θif(ϕ)

]
= EQ̂

[
θi

w(ϕ)
f(ϕ)

]

Using the linearity of expectations, we see that the ex-
pected value of a first-order formula can be expressed as∑

ϕ∈Φi

θi
w(ϕ)f(ϕ). The estimated expectation is asymptoti-

cally unbiased if the ratio Q(ϕ)

Q̂(ϕ)
is known up to a normaliza-

tion constant [Liu, 2001]. However, in our case, since this



ratio cannot be computed analytically, we use an approxima-
tion from the probabilistic classifier. If the approximation
is close to the exact DR, the reparameterization is more
accurate. Specifically, we can show the following result.

Proposition 2. For any embedding ϕ, let w∗
i (ϕ) be the exact

DR and wi(ϕ) be the approximate DR computed by the
probabilistic classifier. If the value of each ground formula
is bounded between (0,1) and | 1

w∗
i (ϕ)

− 1
wi(ϕ)

| ≤ ϵ, then
ℓ∗ − ℓ ≤ 2ϵm, where m is the number of ground formulas,
ℓ∗ denotes the CLL reparameterized by the exact DR and ℓ
denotes the CLL reparameterized by the approximate DR.

Marginal Probabilities. Next, we compare the marginal
probabilities of the reparameterized HMLN with those in a
non-reparameterized HMLN. These results are obtained by
extending the ones for DA-MLNs.

Proposition 3. Given an HMLN [θ : f(x, y) ∗ (R(x) ∨
S(y))], where f(x, y) is real-valued, if |∆x| = |∆y| = n
then for the non-reparameterized distribution, the marginal
probability for a single-variable query (P (R(A)) converges
to a constant, i.e., limn→∞ P (R(A)) = 1.

Specifically, the above proposition shows that as the number
of ground formulas increases, the marginal distribution tends
to become independent of the embeddings, which is not
useful in quantifying uncertainty in the HMLN. On the
other hand, for the reparameterized distribution, we can
show that the marginals are dependent on the parameters
and embeddings through the following result.

Proposition 4. Given an HMLN [θ : f(x, y)∗(R(x)∨S(y))],
where f(x, y) is real-valued, if |∆x| = |∆y| = n and
f(x, y) = v, if the importance weight is 1/n for each
grounding, the marginal probability for a single-variable
query (P (R(A)) converges to a function over θ, v, i.e.,
limn→∞ P (R(A)) = 1

1+e
−θ∗v

2

.

Note that for both the above propositions, due to the struc-
ture of the HMLN, it turns out that we can use lifted in-
ference rules [Gogate and Domingos, 2011] to derive the
marginal probability expressions in closed form. However, it
has been shown this is infeasible in the general case [Van den
Broeck and Darwiche, 2013]. Thus, it follows that the exact
marginals are intractable to compute and we cannot prove
the above propositions for general HMLN structures. In
our case, the typical HMLN hybrid formulas we use in our
experiments roughly resemble the fully-connected structure
(R(x) ∨ S(y)), excluding the assumption of shared value
among groundings. When we remove this assumption, if
every grounding can have a unique value, it follows from
Van den Broeck and Darwiche [2013], that the lifted in-
ference rules do not hold and once again, the marginals
cannot be computed exactly. While in this work, we do not
focus on exact inference, analyzing tractable structures for
reparameterized HMLNs is an interesting future direction.

Table 1: HMLN structures.

GNN Class(+x1,+c) ∧ Cites(+x1, x2)⇒ Class(x2,+c)

Dist(+ex1 , ex2) < τ ∗ (Class(+x1,+c) ⇔ Class(x2,+c))

DKT (Correct(+s, p1) ∧ PreRequisite(p1, p2) ⇒ Correct(+s, p2))

Dist(+es1 , es2) < τ ∗ (Correct(+s1, p) ⇔ Correct(s2, p))

3.2.2 Mixtures of Markov Chains

We compute marginal probabilities in our model by con-
structing mixtures of Markov chains where components
of the mixture correspond to the component HMLN dis-
tributions. Two or more Markov chains can be combined
to create mixtures following the result in Tierney [1994].
Specifically, given the mixture coefficients α1 . . . αK , a mix-
ture of Markov chains is one where the kernel corresponding
to the i-th Markov chain is applied with a probability αi. In
our case, we assume that each of the Markov chains in the
mixture are constructed using Gibbs sampling. Specifically,
we initialize the assignments to the non-evidence variables
as y(0). In iteration t, we pick the i-th HMLN distribution
in the mixture with probability proportional to αi and then,
as in standard Gibbs sampling, we sample a variable in the
HMLN from the conditional distribution given assignments
to all the other variables to generate the next state y(t). As-
suming that all weights of the component HMLN are finite
(i.e., there are no hard constraints that have value ∞), there
are no worlds in the HMLN distribution that have 0 prob-
abilities and therefore, each of the Markov chains induced
by the Gibbs samplers are irreducible and aperiodic. Thus,
from Tierney [1994], it follows that the mixture of Markov
chains is irreducible and aperiodic. Therefore, we can esti-
mate the single variable marginals based on the estimator
in Eq. (2) and the estimated marginals converge to the true
marginals as the number of iterations T → ∞. To determine
convergence, we use the Gelman-Rubin statistic [Vats and
Knudson, 2021] to check if parallel chains from dispersed
starting assignments to y converge to the same distribution.

4 EXPERIMENTS

4.1 IMPLEMENTATION

HMLNs. We used Gurobi to implement the voted percep-
tron parameter learning for HMLNs. We used a maximum
of 100 iterations (or until convergence) to learn the mixture
model. In each gradient step, we used a learning rate of
0.01. For the HMLNs, we used an approach similar to the
approach used in MLNs to learn multiple parameters for a
formula instead of a single weight for all groundings since
this limits the type of distributions that we can represent.
Specifically, in MLNs a variable that is indicated with a “+”
sign implies that for each grounding of that variable, we
learn a separate weight. Thus, we can control the number



Table 2: The top table shows results when the train and test embeddings are generated using GCNs based on the original
graph benchmarks. The bottom table shows results for benchmarks when we introduce covariate shift in the test embeddings.
Time shown indicates time taken for inference. Results (mean and standard deviation over 5 runs of the experiment) are
shown for 1000 test nodes in the benchmarks. To compute accuracy for a test node, we select the class that has the maximum
marginal probability corresponding to that node.

Experiments Cora Citeseer

CLL Accuracy (%) Time
(secs) CLL Accuracy (%) Time

(secs)
DeepStochLog -0.74±0.2 72.8±1.2 155.61±6.26 -1.2±0.1 65.5±2.8 83±11.42

PSL -0.64±0.11 72.84±2.15 4.56±0.29 -0.61±0.10 51.9±1.2 4.78±1.24
NeuPSL -0.28±0.06 81.2±0.76 6.5±0.4 -0.34±0.08 68.48±1.14 3.71±0.08
HMLN -0.23±0.08 65.43±3.35 49.58±1.5 -0.11±0.05 59.95±2.10 47.27±1.3

MIX-HMLN -0.21±0.08 79.37±1.15 151±2.1 -0.09±0.06 65.14±1.8 146.1±3.3
Cora (covariate shifted) Citeseer (covariate shifted)

CLL Accuracy (%) Time
(secs) CLL Accuracy (%) Time

(secs)
DeepStochLog -0.64±0.06 49.3±0.12 181.26±8.73 -0.71±0.04 28.8±0.5 74.4±8.78

PSL -0.97±0.04 65.92±1.98 4.05±0.21 -1.10±0.04 40.14±1.31 3.38±0.27
NeuPSL -0.62±0.02 66.54±1.73 7.37±0.19 -0.55±0.13 36.2±2.68 5.64±0.24
HMLN -0.29±0.11 58.67±3.23 50.16±1.6 -0.21±0.09 53.52±3.88 48.16±1.5

HMLN(DR) -0.166±0.07 58.92±1.79 48.98±2.1 -0.29±0.08 64.31±2.14 47.14±1.6
MIX-HMLN -0.149±0.08 77.028±1.12 178.5±3.15 -0.11±0.09 64.93±2.21 165.65±2.73

of groundings with shared weights, and in our case, we use
a single “+” variable in each of our HMLN formulas. We
assumed HMLN semantics for real-valued features over
embeddings. Specifically, to represent the soft inequality,
α < t, we use the log-sigmoid function, − log(1 + e(α−t)).

Probabilistic Classifier. For the probabilistic classifier,
we used a calibrated neural network to estimate the DR.
Specifically, we trained a single-hidden layer network to
distinguish between training and test embeddings with a
cross-entropy loss function. To improve calibration, we used
the Temperature Scaling approach [Guo et al., 2017] on the
output probabilities of the classifier.

Gibbs Sampling. For inference, we implemented the mix-
ture of Markov chains with 10 parallel Markov chains with
a total of 100K samples. We determined convergence using
the PSRF (potential scale reduction factor) of the Gelman-
Rubin diagnostic [Gelman and Rubin, 1992]. PSRF is a
standard diagnostic method to assess if the sampler has
converged by comparing within chain variance to variance
across parallel MCMC chains. We used a burn-in period of
5K samples after which we used the samples to compute the
marginal probabilities.

We implemented our approach in Google Cloud with a Tesla
T4 GPU (16GB). Our implementation is available here 1.

1https://github.com/anupshakya07/uquant

4.2 GRAPH EMBEDDINGS

We used two benchmark datasets, Cora and Citeseer, where
the DNN learns embeddings to perform node classification.
The HMLN structure is shown in Table 1. The first property
specifies the homophily relation; nodes that are connected
in the graph have the same class. The second formula speci-
fies that embeddings whose distance is smaller than τ (with
τ = 0.2) have similar classes. The soft inequality function
is used to specify the real-valued feature. Since there are n2

groundings in the hybrid formula, we reduce this by elimi-
nating groundings where the distance between embeddings
is large since the grounding has a very small value.

To learn the mixture model, we need to generate variants of
embeddings. To do this, we use the dropout [Gal et al., 2017]
mechanism. Specifically as shown in Gal and Ghahramani
[2016], dropout is a Bayesian approximation of a Gaussian
process. Thus, using dropout, we can sample from the family
of embeddings generated by the DNN. To learn the mixture
model, we set the initial dropout value to 0.1 and increment
it by 0.05. For each value of dropout, we learn a different
embedding, and we used 10 components in our mixture
model.

We compare our approach with DeepStochLog [Winters
et al., 2022], Probabilistic Soft Logic (PSL) [Bach et al.,
2017] and NeuPSL [Pryor et al., 2023]. PSL is a purely sta-
tistical relational model, while DeepStochLog and NeuPSL
are both state-of-the-art extensions of well-known statistical
relational models (PSL and ProbLog respectively) to incor-



Table 3: Ablation Study. We vary the train and test models used to learn the embeddings. For the results on GCN (Test), the
GAT model is used for training the HMLN and for GAT (Test), the GCN is used in training. We show the mean and standard
deviation over 5 runs.

Method
Cora Citeseer

GCN (Test) GAT (Test) GCN (Test) GAT (Test)
CLL Accuracy (%) CLL Accuracy (%) CLL Accuracy (%) CLL Accuracy (%)

HMLN -0.28±0.18 61.55±1.26 -0.35±0.13 74.53±1.13 -0.20±0.15 57.26±2.19 -0.14±0.16 75.51±0.1
HMLN + MIX -0.22±0.09 65.34±1.26 -0.28±0.11 68.35±0.86 -0.15±0.09 62.86±1.06 -0.12±0.9 73.54±2.06

HMLN + MIX + DR -0.18±0.05 81.27±0.29 -0.2±0.06 78.9±0.37 -0.14±0.03 64.23±0.89 -0.09±0.05 76.29±0.83

porate DNN representations. In each case, we compare the
conditional log-likelihood (CLL) scores on the set of test
nodes. We perform marginal inference on test nodes and
similar to prior approaches, we approximate the test CLL
as the log average of the marginals computed over the test
nodes. We run 5 experiments and compute the mean and
standard deviation in the test CLL estimates. We also com-
pare between 3 variants of our approach as follows. HMLN:
we learn a single HMLN model, HMLN(DR): we learn a
single HMLN model but perform reparameterization during
inference and MIX-HMLN: we learn a mixture of HMLNs
and perform reparameterization during inference.

In the first set of experiments, we learn the HMLN
using embeddings from Graph Convolutional Networks
(GCNs) [Kipf and Welling, 2017]. The homophily property
that the HMLN encodes is aligned with the representation
learned by a GCNs [Ma et al., 2022]. Our results showing
the CLL on test nodes are shown in Table 2. MIX-HMLN
has the largest CLL compared to the other approaches. This
indicates that MIX-HMLN has the smallest uncertainty in
inferring the alignment between the embeddings and the
relational property. NeuPSL had a slightly higher accuracy
in labeling the test nodes, however, it also has a higher
uncertainty (as indicated by the smaller CLL).

Next, we introduce covariate shifts in the test embeddings
using an approach similar to Alchihabi and Guo [2023].
Specifically, we remove edges and add Gaussian noise to
the node features to create a perturbed graph. We learn em-
beddings (with covariate shift) by training the GCN on the
perturbed graph. The GCN accuracy of test node classifica-
tion on the perturbed graph is similar to the accuracy on the
original graph (the difference in accuracy was less than 1%).
Thus, the embeddings from the perturbed graph encode the
same relationships as the embeddings on the original graph.

Our results are shown in Table 2. As shown here, MIX-
HMLN outperforms all the other methods in CLL scores by
significantly higher margins in this case since we account
for the covariate shift during inference. As shown in the
table, our approach which is a mixture model takes longer
to run as compared to the other single model approaches.
At the same time, the mixture reduces uncertainty which
in the context of learning using embeddings is important
since deep models that generate these embeddings may

converge to distinct local minima. Thus, we trade-off a loss
of efficiency for lower uncertainty (evidenced by the higher
CLL scores). In future, we plan to develop more efficient
inference methods based on activating specific components
in the mixture similar to approaches used in mixture of
experts.

Ablation Study. Here, we introduce covariate shift by
modifying the DNN architecture during inference. Specif-
ically, we use GCNs and Graph Attention Networks
(GATs) [Velickovic et al., 2018] where one of them gener-
ates training embeddings and the other one generates test
embeddings. Table 3 shows our results for the three vari-
ants of our approach. As seen here, the CLL consistently
increases when we add the mixture model learning and fur-
ther increases when we add the reparameterization in each
case.

4.3 DEEP KNOWLEDGE TRACING

Deep Knowledge Tracing (DKT) [Piech et al., 2015] uses
DNNs to learn dense embeddings representing student
skills over latent concepts. Specifically, DKT is a Se-
quence2Sequence model trained over observations that sim-
ulate exercises of varying difficulty that students work. To
train the model, the exercises are generated using Item Re-
sponse Theory (IRT) [Drasgow and Hulin, 1990] (details in
the Appendix B). The HMLN for this task shown in Table 1
represents pre-requisite relational structure, i.e., the first for-
mula specifies that if a student gets an exercise correct then
they have acquired skills corresponding to pre-requisites
associated with that exercise. The second formula is a hy-
brid formula that relates student performance to their DKT
embeddings. To learn the mixture model, we learn DKT
embeddings over multiple problem orderings but we main-
tain the same pre-requisite structure over problems in each
ordering. Specifically, if X is pre-requisite to Y , then X
must appear before Y in the problem ordering. We used a
total of 5 different orderings to learn the mixture model.

For training embeddings, we use data with problem diffi-
culty values (encodes in the IRT model parameters) ranging
from 1 to 3. For the test embeddings, we use difficulty val-
ues from 4 to 5. Thus, we simulate the condition when the
students work on new exercises of increasing difficulty. This



Table 4: (p, n, c) denotes that there are p problems, n∗1000
students and c latent concepts are used by the IRT model
to generate the training data. Results show F1-score for
predictions made on 200 test problems on all the students in
the training data.

Training Dataset DKT HMLN MIX-HMLN
(50, 1, 2) 0.80 0.7 0.80
(75, 2, 3) 0.76 0.67 0.78
(100, 4, 5) 0.74 0.57 0.78
(200, 5, 5) 0.62 0.54 0.72
(400, 8, 10) 0.71 0.56 0.74

induces a covariate shift in the DKT embeddings learned
for test data. We compute the marginal probability over the
atoms Correct(S, P ), where S, P represents the student
and problem respectively. Table 4 compares the F1-scores
of predicting student performance (we threshold the proba-
bility at 0.5) with the original DKT model over all students
for all the test problems. As seen here, MIX-HMLN outper-
forms DKT across all settings. This illustrates that utilizing
pre-requisite relational structure combined with reparame-
terization in the presence of covariate shift improves gener-
alization when the number of problems, number of latent
concepts and the number of students in the data grows larger.

5 LIMITATIONS

One of the main limitations with our approach is that we
assume prior knowledge is known (and reasonably correct)
and can be expressed in first-order logic. A second limita-
tion is that we assume embeddings in training and testing
are generated by models optimizing the same function (i.e.,
for the same downstream task). From a practical perspective,
as is the case with mixture models in general, our approach
takes longer than methods that utilize a single model. We
also assume that our HMLN does not contain hard con-
straints (formulas that have infinite weights) in the current
work.

6 CONCLUSION

We used HMLNs to combine embeddings learned from a
DNN with symbolic relational knowledge. However, when
we use representations from different DNNs during training
and testing, the embeddings may have covariate shift even
if the two DNNs are optimizing the same function. We de-
veloped an approach to learn HMLNs assuming a covariate
shift in embeddings using two main ideas. First, instead
of a single model, we learned a mixture model to reduce
uncertainty in the learned representation. Next, we reparam-
eterized the learned HMLN weights to account for covariate
shift in embeddings during inference. To determine this

shift efficiently, we used a calibrated probabilistic classifier
that estimates the density ratio between embeddings in the
training and test distributions. We evaluated our approach
on Graph Neural Networks and also within a well-known
cognitive model called Deep Knowledge Tracing that infers
student knowledge over time. We illustrated that in the pres-
ence of relational structure and covariate shift, our approach
outperforms state-of-the-art methods.

In the future, we plan to extend our approach to verify
properties of embeddings. Specifically, we would want to
understand if embeddings align with symbolic relational
properties that can be specified by domain experts. We plan
to apply this approach in cognitive models of student learn-
ing, where explainability of embeddings is important to
have practical applicability. Further, we also plan to develop
more scalable solutions for inference within our model. As
mentioned earlier, there is a trade-off between inference
efficiency and lower uncertainty. There are two potential di-
rections that could be explored to improve scalability. First,
using a mixture of experts has been very successful in DNNs,
including Large Language Models, and we can adapt similar
approaches for computational efficiency within our model.
Next, there has been substantial research in lifted inference
methods in Markov Logic Networks Gogate and Domin-
gos [2011] where the idea is to leverage exact/approximate
symmetries to improve scalability in standard inference ap-
proaches such as Gibbs sampling Venugopal and Gogate
[2012]. We plan to adapt some of these approaches to scale
up inference in our HMLN model.
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APPENDIX

A PROOFS

Proposition 1. If parameterized by positive weights Θj , the negative Conditional Log-Likelihood − logPΘj (y|x,Φi
M) is a

convex function.

Proof.
− logPΘj (y|x,Φi) = logZ −

∑
k

θjksk(x,y,Φ
i)

Note that in this case, we partition the ground atoms in the HMLN into query and evidence atoms and we assume that Φi is
always observed as evidence. Thus,

logZ = log

∑
y′

exp

(∑
k

θjksk(y
′,x,Φi

)
Thus, since logZ is a log-sum over exponentials, the result follows.

Proposition 2. For any embedding ϕ, let w∗
i (ϕ) be the exact DR and wi(ϕ) be the approximate DR computed by the

probabilistic classifier. If the value of each ground formula is bounded between (0,1) and | 1
w∗

i (ϕ)
− 1

wi(ϕ)
| ≤ ϵ, then ℓ∗ − ℓ

≤ 2ϵm, where m is the number of ground formulas, ℓ∗ denotes the CLL reparameterized by the exact DR and ℓ denotes the
CLL reparameterized by the approximate DR.

Proof.

ℓ∗(y, x,Φ) =

(
m∑
i=1

θi
w∗

i (Φ)
si(x,y,Φ)

)
− logZ

ℓ∗(y, x,Φ) =

(
m∑
i=1

θi
w∗

i (Φ)
si(x,y,Φ)

)
− log

∑
x,y′,Φ

(
m∑
i=1

θi
w∗

i (Φ)
si(x,y

′,Φ)

)

≤

(
m∑
i=1

(
θi

wi(Φ)
+ ϵ)si(x,y,Φ)

)
− log

∑
x,y′,Φ

(
m∑
i=1

(
θi

wi(Φ)
− ϵ)si(x,y

′,Φ)

)

=

m∑
i=1

ϵsi(x,y,Φ) +

(
m∑
i=1

θi
wi(Φ)

si(x,y,Φ)

)
− log

∑
x,y′,Φ

(
m∑
i=1

(
θi

wi(Φ)
)si(x,y

′,Φ)− log exp

m∑
i=1

ϵsi(x,y
′,Φ)

)
= 2ϵm+ ℓ(y,x,Φ)

Proposition 3. Given an HMLN [θ : f(x, y) ∗ (R(x)∨ S(y))], where f(x, y) is real-valued, if |∆x| = |∆y| = n then for the
non-reparameterized distribution, the marginal probability for a single-variable query (P (R(A)) converges to a constant,
i.e., limn→∞ P (R(A)) = 1.

Proof.

P (R(A)) =
1

1 +
ZR(A)=0

ZR(A)=1

Using the lifted inference rules from Gogate and Domingos [2011], we write the two partition functions as follows.

ZR(A)=1 = eθ∗v∗n ∗ 2n

ZR(A)=0 = (1 + eθ∗v)n

lim
n→∞

ZR(A)=0

ZR(A)=1
=

(1 + eθ∗v)n

eθ∗v∗n ∗ 2n
= 0

lim
n→∞

P (R(A)) =
1

1 + 0
= 1.



Proposition 4. Given an HMLN [θ : f(x, y) ∗ (R(x) ∨ S(y))], where f(x, y) is real-valued, if |∆x| = |∆y| = n and
f(x, y) = v, if the importance weight is 1/n for each grounding, the marginal probability for a single-variable query
(P (R(A)) converges to a function over θ, v, i.e., limn→∞ P (R(A)) = 1

1+e
−θ∗v

2

.

Proof.

P (R(A)) =
1

1 +
ZR(A)=0

ZR(A)=1

Using the lifted inference rules from Gogate and Domingos [2011], we write the two partition functions as follows.

ZR(A)=1 = e(θ∗v/n)∗n ∗ 2n = eθ∗v ∗ 2n

ZR(A)=0 = (1 + eθ∗v/n)n

lim
n→∞

ZR(A)=0

ZR(A)=1
=

(1 + eθ∗v/n)n

eθ∗v ∗ 2n
= e−θ∗v/2

lim
n→∞

P (R(A)) =
1

1 + e−θ∗v/2

B DEEP KNOWLEDGE TRACING

Knowledge Tracing [Corbett and Anderson, 1994] is a classical cognitive model that models student knowledge over time
to encode latent student skills. Specifically, students work out problems and the model observes if the student answered a
problem correctly/incorrectly to model knowledge acquired by the student over time. Knowledge tracing aims to model
knowledge acquired by the student so that we can use this to predict how they may perform in future problems. This can
be used in several applications such as to develop interventions targeting specific areas of deficiency, improve student
engagement, alternate strategies that may be used to teach a student, etc. Bayesian Knowledge Tracing (BKT) [Corbett and
Anderson, 1994] is a classical approach for knowledge tracing that uses a Hidden Markov Model to learn from temporal data.
Specifically, in BKT, a student’s knowledge is represented by a set of latent variables. As the student answers exercises related
to specific skills, BKT updates the latent variable probabilities based on the correctness (or incorrectness) of their answers.
Deep Knowledge Tracing (DKT) [Piech et al., 2015] leverages DNNs to learn dense embeddings representing student skills.
Specifically, DKT is a Sequence2Sequence model trained over observations that simulate exercises that students work on of
varying difficulty. Specifically, knowledge over skills is represented by the hidden layer in the Sequence2Sequence model.
The model is trained over sequential observations that simulate exercises that students work on of varying difficulty. To train
the model, the exercises are generated using Item Response Theory (IRT) [Drasgow and Hulin, 1990]. Specifically, given
parameters α, β that represent student skill in a specific concept and exercise difficulty respectively, the probability that
the student completes the exercise correctly is P (correct|α, β) = c + 1−c

1+exp(β−α) , where c is the probability of a random
guess (which is set to 0.25). The dataset initializes the difficulty level for each exercise and also sets initial skill levels for
each student. We used difficulty levels ranging from 1 to 5, with 5 being the most difficult. The students’ skills are updated
over time as they encounter more exercises related to the same concept.

C ALGORITHMS

The algorithm to train the mixture model is summarized in Algorithm. 1. The algorithm for performing marginal inference
is summarized in Algorithm 2.

D MORE RESULTS

The tables 5 - 8 show additional results on the comparison of the log-likelihoods for the different components while learning
the Mix-HMLN. These results are for inference on the Cora dataset. Fig. 2 shows the reliability diagrams for the calibrated
neural network which we use to compute the importance weights.



Table 5: Conditional Log-Likelihood on the original Cora graphs for the individual HMLN components.

Experiments Cora

CLL Avg.
Marginals Accuracy (%) Time

(secs)
HMLN comp 1 -0.21±0.08 0.83 55.43±3.35 49.58±1.5
HMLN comp 2 -0.34±0.04 0.71 56.37±2.13 50.24±2.6
HMLN comp 3 -0.33±0.05 0.71 55.22±1.05 49.87±1.9
HMLN comp 4 -0.27±0.08 0.78 60.28±2.1 52.4±2.05
HMLN comp 5 -0.39±0.12 0.87 69.53±2.3 51.2±1.7
HMLN comp 6 -0.26±0.08 0.71 64.75±3.88 51.85±2.19
HMLN comp 7 -0.28±0.08 0.70 59.8±1.88 52.16±3.27
HMLN comp 8 -0.35±0.08 0.75 60.54±3.73 52.62±1.59
HMLN comp 9 -0.27±0.04 0.75 57.48±3.46 51.74±1.34

HMLN comp 10 -0.30±0.04 0.74 59.97±1.6 52.72±1.79

Table 6: Conditional Log-Likelihood on the original Citeseer graphs for the individual HMLN components.

Experiments Citeseer

CLL Avg.
Marginals Accuracy (%) Time

(secs)
HMLN comp 1 -0.10±0.05 0.81 59.95±2.10 47.27±1.3
HMLN comp 2 -0.16±0.04 0.77 59.32±2.23 44.3±1.6
HMLN comp 3 -0.12±0.05 0.80 57.97±2.19 49.11±1.1
HMLN comp 4 -0.12±0.04 0.80 58.45±2.02 49.2±2.1
HMLN comp 5 -0.16±0.07 0.76 61.33±0.79 47.1±2.1
HMLN comp 6 -0.17±0.06 0.80 58.80±1.34 48.51±1.6
HMLN comp 7 -0.13±0.05 0.78 61.56±2.30 48.86±1.8
HMLN comp 8 -0.12±0.07 0.78 60.35±2.23 48.66±1.9
HMLN comp 9 -0.16±0.07 0.79 59.87±1.47 49.81±1.4

HMLN comp 10 -0.15±0.05 0.76 58.84±1.21 49.44±1.3

Table 7: Conditional Log-Likelihood on the covariate shifted Cora graph for the individual HMLN components with
reparameterization.

Experiments Noisy Cora

CLL Avg.
Marginals Accuracy (%) Time

(secs)
HMLN comp 1 -0.166±0.07 0.87 58.92±1.79 48.98±2.1
HMLN comp 2 -0.19±0.6 0.80 56.67±2.23 49.65±1.8
HMLN comp 3 -0.18±0.07 0.79 59.72±2.19 48.5±2.3
HMLN comp 4 -0.17±0.06 0.81 60.15±1.88 52.2±1.6
HMLN comp 5 -0.19±0.04 0.75 63.22±1.24 50.21±1.5
HMLN comp 6 -0.16±0.03 0.73 60.20±1.37 50.92±1.4
HMLN comp 7 -0.15±0.04 0.79 63.47±2.09 49.63±2.1
HMLN comp 8 -0.18±0.04 0.78 60.32±1.30 48.62±1.2
HMLN comp 9 -0.19±0.03 0.73 61.05±2.06 49.03±1.9

HMLN comp 10 -0.16±0.06 0.80 61.11±2.28 48.17±1.7



Figure 2: Reliability diagram for calibrating a few of the HMLN components for MixHMLNs on the covariate shifted CORA
dataset. The figures on the left are before temperature scaling and the figures on the right are after temperature scaling.



Algorithm 1 Mixture of HMLNs
Input: HMLN structure M, D = (y,x), Representations {Φi}ni=1

Output: Mixture Model with HMLN parameters {Θi}Ki=1

1: Initialize αi . . . αK

2: Initialize {Θi}Ki=1

3: while not converged or t ≤maxiters do
4: // E − Step
5: Compute the component weight matrix with weights γij using Eq. (7)
6: // M − Step
7: for j = 1 through K do
8: // Perform gradient descent
9: Compute the MAP assignment and MAP objective Mj to all non-evidence variables given weights Θj

10: for θjk do
11: Compute the expected value of the k-th formula in the MAP assignment
12: Update θjk using the gradient in Eq. (9)
13: end for
14: end for
15: for j = 1 through K do
16: Update the mixture coefficients α(t)

i

17: end for
18: end while

Table 8: Conditional Log-Likelihood on the covariate shifted Citeseer graph for the individual HMLN components with
reparameterization.

Experiments Noisy Citeseer

CLL Avg.
Marginals Accuracy (%) Time

(secs)
HMLN comp 1 -0.29±0.08 0.75 64.31±2.14 47.14±1.6
HMLN comp 2 -0.30±0.06 0.71 62.34±2.23 45.46±1.6
HMLN comp 3 -0.33±0.07 0.72 61.34±2.19 42.18±1.1
HMLN comp 4 -0.28±0.04 0.72 62.13±1.93 48.3±2.1
HMLN comp 5 -0.30±0.06 0.72 61.72±1.39 48.44±3.1
HMLN comp 6 -0.27±0.04 0.74 64.80±1.84 44.24±2.1
HMLN comp 7 -0.31±0.03 0.75 64.49±1.37 45.19±2.1
HMLN comp 8 -0.28±0.03 0.70 60.53±1.55 46.71±3.4
HMLN comp 9 -0.28±0.07 0.70 61.49±1.59 46.04±2.8

HMLN comp 10 -0.33±0.05 0.75 60.16±2.36 46.51±2.7



Algorithm 2 Marginal Inference

Input: evidence x̂, non-evidence ŷ, test representation Φ̂, probabilistic classifier C, HMLN parameters {Θi}Ki=1

Output: Marginal probabilities for ŷ

1: Initialize ŷ(0) to a random state
2: while Not converged do
3: Select component HMLN Θj to sample with probability αj

4: Compute the DR for each grounding using C
5: Reparameterize the j-th HMLN with the DRs using Eq. (16)
6: Gibbs sampling steps
7: for y ∈ ŷ do
8: From the reparameterized HMLN, sample a single non-evidence variable y using the Gibbs kernel
9: if burn-in complete then

10: Update marginal estimates for ŷ using the estimator in Eq. (2)
11: end if
12: end for
13: end while
14: return marginal estimates for ŷ
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