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ABSTRACT

Efficient data selection is crucial to accelerate the pretraining of large language
models (LLMs). While various methods have been proposed to enhance data ef-
ficiency, limited research has addressed the inherent conflicts between these ap-
proaches to achieve optimal data selection for LLM pretraining. To tackle this
problem, we propose a novel multi-agent collaborative data selection mechanism.
In this framework, each data selection method serves as an independent agent,
and an agent console is designed to dynamically integrate the information from
all agents throughout the training process. We conduct extensive empirical stud-
ies to evaluate our multi-agent framework. The experimental results demonstrate
that our approach significantly improves data efficiency, accelerates convergence
in LLM training, and achieves an average performance gain up to 10.5% across
multiple language model benchmarks compared to the state-of-the-art methods.

1 INTRODUCTION

Efficient data selection is crucial for the pretraining of large language models (LLMs), as the quality
of training data significantly impacts the statistical efficiency of the training procedure and the model
performance (Brown, 2020; Du et al., 2022; Chowdhery et al., 2023). Recently, we have witnessed
numerous approaches, such as filtering high-quality data (Xie et al., 2023b; Wettig et al., 2024),
mixing data from multiple domains (Xie et al., 2023a; Liu et al., 2024), and selecting data that
optimally boosts downstream task performance dynamically (Engstrom; Yu et al., 2024), which
aim to improve data efficiency by prioritizing more informative training samples. However, these
methods often operate independently or in isolated settings, limiting their potential when integrated
into a collaborative framework. In this work, we want to explore how to effectively, flexibly, and
robustly combine these advanced data selection techniques through the dynamic pretraining process,
addressing the challenges of optimizing data efficiency for LLM pretraining at scale.

Nowadays, various heuristic methods have been proposed to provide measurements for the data sam-
ples used during LLM pre-training, aiming to optimize data efficiency by selecting or weighting the
most informative training examples. However, we observe that integrating multiple data selection
and mixing strategies presents significant challenges due to their inherent conflicts. For example,
high-quality data identified by scoring functions may not align with data that strongly impact model
performance as measured by influence functions (Engstrom); similar conflicts also exists between
other methods — further details are enumerated in §2. These observations actually motivate us to
launch a systematic discussion about how to effectively integrate these methods during the dynamic
pretraining process that provides superior data efficiency for LLM pretraining.

On the other hand, effectively integrating these data selection methods into a single framework is
much harder to implement than to ask for. In fact, one may have to explore an exponential space
to find the optimal combination for different data sampling schemas. Such a heavy burden will be
further amplified when we consider the dynamic adjustment during the training process introduced
by state-of-the-art online data selection approaches. In fact, different from the offline methods that
leverage fixed classifier-based scoring functions (Brown, 2020; Gao et al., 2020; Du et al., 2022;
Chowdhery et al., 2023; Sachdeva et al., 2024; Wettig et al., 2024), domain weights (Brown, 2020;
Team, 2024; Rae et al., 2021; Xie et al., 2023a; Liu et al., 2024), or down-sampled topics (Team,
2024; Chen et al., 2024), online methods use techniques like influence functions (Engstrom; Yu et al.,
2024) to assess the model’s sensitivity to individual data points during the LLM pretraining process
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Data with High Diversity 
But Low Influence

Data with High Diversity 
But Low Quality

Data with High Quality
But Low Diversity

High diversity: documents cover a 
wide range of topics. 

Low quality: quality scores fall 
below the acceptable threshold.

High diversity: documents cover 
a wide range of topics. 

Low impact: minimal influence
to the current model..

Data with High Quality 
But Low Influence

High quality: documents rated 4 to 
5 by the classifier. 

Low impact: minimal influence to 
the current model.

High quality: quality scores 
between 4 and 5.

Low diversity: 85% of them 
belong to the same topic.

Figure 1: Statistics of the SlimPajama dataset. This figure shows the distribution of overall 627B
tokens data across four dimensions: quality, domain, topic diversity, and impact on the pretrained
model at the 1500th step. Each bar represents a subset defined by a specific quality interval and
domain. This visualization reveals the conflict among diversity, quality, and model influence.

to enable dynamic selection of high-impact data at any optimization step. Such an online paradigm is
computationally intensive by itself, which presents the essential challenge for an effective dynamic
integration in our problem setting that demands a computationally efficient solution to preserve or
even amplify the advantage of each data selection heuristic.

To address these challenges, we conduct a case study to identify the inherent conflicts for existing
data selection methods and provide a multi-agent collaborative data selection framework to resolve
this issue. Concretely, we make the following contributions:

Contribution 1: In §2, we present a case study on the SlimPajama dataset, revealing intriguing
relationships among four widely used data selection metrics in LLM pretraining: data quality, topic
diversity, data impact, and data domain. The analysis highlights inherent conflicts among these
methods, yet studies (Wettig et al., 2024; Xie et al., 2023a; Yu et al., 2024) show that using any single
metric as a standalone data selection criterion can still produce effective trajectories for convergence.
This underscores the need to understand and effectively integrate these differing approaches.

Contribution 2: We propose a novel multi-agent collaborative data selection mechanism in §3. In
this framework, each data selection method operates as an agent capable of providing scores to
prioritize the training data samples. We also design an agent console to effectively integrate the
scores from all agents, producing optimized data selection results. Furthermore, we implement a
dynamic collaboration mechanism, where the contribution of each agent can be adjusted dynami-
cally throughout the LLM training process. This approach enables more flexible and adaptive data
selection, improving overall data efficiency during LLM pretraining.

Contribution 3: To evaluate our multi-agent collaborative data selection method, we conducted
extensive experiments to show that: (1) In end-to-end experiments, our approach significantly im-
proves data efficiency, leading to faster convergence in LLM training and achieving an average
improvement up to 10.5% across various language model benchmarks compared to baseline meth-
ods (§4.1); and (2) Ablation studies confirm that the design and implementation of key components
in our multi-agent framework are crucial for attaining this advanced performance (§4.2). These
findings highlight the effectiveness of our method to optimize data efficiency for LLM training.

2 CASE STUDY - INHERENT CONFLICTS IN DATA SELECTION

In this section, we present several observations derived from the SlimPajama datasets (Soboleva
et al., 2023), which reveal some inherent conflicts for different data selection measurements. To
conduct this case study, we first label all data from the SlimPajama datasets using the quality scorer
FineWeb-Edu (Lozhkov et al., 2024). We then divide the data into subsets based on domain and
quality ranges. From each subset, we uniformly sample data to assess topic diversity, i.e., the topic
classification of the sampled data according to our methods. We analyze this diversity by examining
the topic distribution within each subset. Additionally, we compute the normalized influence of the
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data on a pretrained 1.3B model at the 1500th step using influence functions to evaluate the data’s
impact on the model (Engstrom). Figure 1 illustrates the results, which presents a bar chart rep-
resenting four dimensions: quality, domain, topic diversity, and influence on the pretrained model.
The x-axis shows data quality, with higher intervals reflecting better scores from the FineWeb-Edu
quality scorer. The y-axis indicates the dataset’s domain, while the z-axis shows topic diversity
within each subset, with taller bars indicating more diversity. The color gradient represents influ-
ence on the model, with darker shades showing greater impact. From this analysis, we highlight the
following interesting observations:

• High-quality data identified by the quality scorer may not have a significant impact on model
performance. For example, ArXiv documents rated between 4 and 5 by the scorer are considered
high-quality. However, at the 1500th training step, they exert minimal impact on the model ac-
cording to the influence functions, revealing a discrepancy between data quality and model impact.
This observation is consistent with the previous discussion in Engstrom.

• High-quality data may exhibit low topic diversity. Documents in the Book domain with a quality
score of 4 to 5 are classified as high-quality by the scorer. Nevertheless, 85% of these documents
belong to the same topic, indicating a lack of diversity.

• Data with high topic diversity may not strongly influence model performance. Documents from
the C4 domain display considerable topic diversity. However, at the 1500th training step, they
have limited impact on the model as measured by the influence functions, suggesting a conflict
between diversity and model influence.

• Data with high topic diversity can be low quality. Wikipedia documents show substantial topic
diversity, which benefits the topic classifier. However, some of these documents are rated as low-
quality by the quality classifier, revealing a trade-off between diversity and quality.

We believe this inherent conflict illustrates that a naive ensemble of these mechanisms may lead to
poor performance in terms of data efficiency for LLM pretraining, which motivates the design and
implementation of our multi-agent collaborative framework in §3.

3 MULTI-AGENT COLLABORATIVE DATA SELECTION

In this section, we present the formalization of the data selection problem in §3.1, outline the overall
framework of our methods in §3.2, and detail the agent initialization and update in §3.3, along with
the collaborative mechanism in §3.4.

3.1 PROBLEM FORMULATION

We follow the definition of the data selection problem in Engstrom and Yu et al. (2024) with slight
modification. The objective for data selection is to choose a subset of size k from the entire pre-
training dataset in such a way that the trained model’s loss on downstream tasks is minimized. Let
O represent an optimization algorithm that maps a training dataset to a trained model. The optimal
subset D∗

k of the pretraining dataset D can be expressed as:

D∗
k := argmin

Dk⊂D,|Dk|=k

L(Dk | M, Teval), (1)

where L(Dk | M, Teval) := Ex∼Teval [ℓ(x;O(M,Dk))] denotes the loss (e.g., cross-entropy loss) for
modelM on example x of the downstream task Teval. Minimizing this objective directly is com-
putationally challenging. Given that the real downstream tasks are unknown during model training,
prior works have approximately optimized this problem by minimizing the loss on selected reference
tasks Dref (e.g. LAMBADA Paperno et al. (2016), SQuAD Rajpurkar (2016) and Jeopardy Tunguz
(2019) in Engstrom). Specifically, they train proxy models to compute one-step training loss (Yu
et al., 2024) or influence functions (Engstrom) on the reference tasks to approximate the true loss.
However, this approach heavily depends on the selection of the reference tasks, while the chosen
reference tasks may not be fully representative of all potential downstream tasks.

To avoid this obstacle, we do not directly minimize the loss on the reference tasks. Instead, we view
this loss as a reward signal that guides the update of predefined data selection methods. Concretely,
we define a reward function R(Dk | M, Tref), where the reward is based on the performance gain
of current modelM trained on the subset Dk and evaluated on the reference tasks Tref. Then our
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Figure 2: Illustration of multi-agent collaborative framework. Multi-agent collaborative frame-
work for pretraining data selection that integrates multiple perspectives by combining offline priors
and online model-derived preferences.

optimization goal becomes maximizing this reward over time, as:

D∗
k = argmax

Dk⊂D,|Dk|=k

E [R(Dk | M, Tref)] ,

where R(Dk | M, Tref) := Ex∼Tref [−ℓ(x;O(M,Dk))] .
(2)

3.2 MULTI-AGENT COLLABORATIVE DATA SELECTION FRAMEWORK

In order to solve the optimization problem in Equation 2, we develop a framework illustrated in
Figure 2. This framework consists of two primary stages: the offline labeling stage and the online
update stage. Before the training process, some initial information (i.e., the initialized measure-
ments in some heuristic) is computed for the entire pretraining corpus, and this information is stored
separately in each agent’s memory (formally defined below). During the training process, the cur-
rent model (i.e., LLM to be trained) is used to update the agents’ memory and their collaboration
mechanism based on rewards computed on the current model. An agent console is responsible for
aggregating the opinions of each agent and making the final data selection decision. Formally, we
define the agent in Definition 1 and the agent console in Definition 2. Detailed formulation is in
Appendix A.3.

Definition 1 (Agent). An agent A is a data selection method defined by a specific attribute (e.g.,
quality, domain, or topic) with memoryHA that stores labels for each data point and their associated
scores. During training, the agent takes several actions: (1) Sample dataDA according to predefined
sampling distribution, (2) Call the current model to compute the reward R(xi) for each sample
xi ∈ DA, (3) Get feedbacks from current model state, and (4) Update the internal weights wA in
its memory. Then it assigns a score SA to each data point based on its updated memory, prioritizing
the good data according to the updated weights. One agent’s objective is to maximize its reward by
updating this agent’s internal weights and increasing the score of higher-reward data points.

Definition 2 (Agent Console). The agent console is in charge of coordinate opinions from different
agent to make final decision of selecting dataset for next training stage. Specifically, it consolidates
scores SA(xi) from multiple agents {A1, . . . ,An} to calculate a final score S(xi) for each data
point xi, and takes final action of selecting dataset. The console adjusts the collaborative weights
θA for each agent based on their respective aggregate rewards RA, balancing their contributions
during training. In cases where there are conflicts in the decisions made by agents, the console

4
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Figure 3: Illustration of training process for topic classifier. This diagram shows the process
of training a BERT-based topic classifier using CommonCrawl data. 1.44 billion documents are
clustered to generate topics. GPT-4o handles topic summarization and annotation, while a BERT
model is trained to classify 13 topics, with humans doing final proofreading.

resolves these by adjusting the weights θA to prioritize the agents that have a greater positive impact
on the model’s performance, ensuring an effective data selection process.

Now the reward signal is actually came from multiple agents, the optimization goal in Equation
2 becomes maximizing the expectation of collaborative agents E{A1,...,An} [R(Dk | M, Tref)]. In
our current implementation, we include three agents, which are topic agents, quality agents and
domain agents. They are aiming to maximize the rewards from topic, quality and domain perspective
respectively. In the following sections, we will detail how we initialize and update a single agent
(§3.3), and how we update the agent console for multi-agent collaboration (§3.4).

3.3 SINGLE AGENT INITIALIZATION AND UPDATE

Agent initialization. As defined in Definition 1, for a particular agent, we have to maintain its
memory HA throughout the training process. Before training process begin, we label the whole
training dataset D offline and store the labeled information to the memory of corresponding agents.
Specifically, for each data point xi ∈ D, i.e., a single document in our settings, we first get the
quality, topic and domain label using scorer and classifier.

For quality agent, we adopt the FineWeb-Edu quality scorer (Lozhkov et al., 2024), which is fine-
tuned as a BERT-like regression model Merrick et al. (2024) using Llama3-70B-Instruct annotated
500k examples. This will give out a successive quality score Quality(xi) ∈ R[0,5] with higher score
represent higher quality. We then map this score into five quality intervals {Ij}5j=1, as

Quality(xi) 7→ Ij =

{
[j − 1, j), if Quality(xi) ∈ [j − 1, j) (j = 1, 2, 3, 4)

[4, 5], if Quality(xi) ∈ [4, 5] (j = 5)
(3)

We store the quality interval corresponding to each data point in the quality agent’s memory.

For the domain agent, we use the document’s meta-information, label the data with domain infor-
mation and save this into the domain agent’s memory, where the domain Domain(xi) belongs to one
of ArXiv, Book, Wikipedia, CommonCrawl, GitHub, StackExchange, C4.

For the topic agent, due to the absence of a suitable pretrained model for topic classification and la-
beling, we designed a classification schema using 1.44 billion documents collected by the Common
Crawl project (Project, 2007) and fine-tuned a BERT-like regression model on 500k GPT-4o anno-
tated samples, the overall pipeline is depicted in Figure 3. Further details on the topic classification
approach and BERT model training are provided in §A.1. Using this topic classifier, we categorize
each document into one of 13 topics: Activity, Education, Entertainment, Finance, Health, Business
and Industrial, Infrastructure, Literature and Art, Nature, Others, Law and Government, Networking,
Technology, and store the topic information in the topic agent’s memory.
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We initialize the weight of the topic agent and domain agent following the RegMix Liu et al. (2024)
framework. Unlike the original RegMix, which only considers mixing data based on domain labels,
we examine data mixing weights based on domain as well as the topic labels. We initialize our
quality agent similar to the data selection decision of QuRating Wettig et al. (2024) and FineWeb-
Edu Lozhkov et al. (2024). Further details can be found in §A.7.3. The initial weights for each agent
are stored in their respective memory.

During the training phase, we leverage the current model to adjust the weight of each agent. As
depicted in Figure 2, at the data selection stage, each agent performs several actions to update
its memory and inform decision-making. Take domain agent as an example, it takes three-step
action during data selection stage: (1) Sample pretraining data points from the pretraining data pool,
distributing them uniformly across each domain; (2) Call the current model to assess the reward of
each data point and gather feedback; (3) Update the memory of domain weights based on gathered
feedback and adjusts the score for each data point by incorporating prior knowledge from the offline
labeling process. This process is similarly followed by the quality agent and the topic agent.

Agent update. After sampling data uniformly from agent search space, each agent updates its
internal weights using local information based on the sampled data. For example, for domain agent,
it calculates the average influence of each domain. For agent A ∈ {AQuality,ADomain,ATopic}, it
updates its internal weights by calculating the overall rewards sampled from each interval as:

R
j

A =
1

|Dj
A|

∑
xi∈Dj

A

R(xi | M, Tref), (4)

where Dj
A represents the sample set of the j-th subcategory under agent A, e.g. Wikipedia for

domain agent. And xi is a sample within this sample set. Then, the sliding averaging is used to
update the weight for each subcategory wj

A with current rewards:

wj
A ← (1− ηA) · wj

A + ηA ·R
j

A, (5)

where ηA is the sliding average factor to tradesoff bias-variance. The overall updated weight of agent
A is an vector in nA dimension, wA = [w1

A, ..., w
nA
A ], where nA is the number of total subcategory

within the space of agent A. Utilizing the prior memory stored by each agent, it can give out a final
score for each data point as SA(xi) = wj

A, where j is the subcategory that xi belongs to.

Calculating the rewards. For each sampled data point, we approximate rewards using influence
functions Engstrom; Yu et al. (2024). The influence function value is computed to measure the
impact of each sample on the model’s performance. The formula for the influence function is:

R(xi | M, Tref) = Êx∼Tref [−ℓ(x;O(M,Dk))] ,

= −∇ML(Tref | M)⊤H−1
M∇ML(xi | M),

(6)

where HM = 1
n

∑n
i=1∇2

MLM(xi | M) is the Hessian and its positive definite. Details of calcu-
lating influence functions for pretraining data point can be found in §A.9.

3.4 MULTI-AGENT COLLABORATION

Ultimately, the agent console defined in Definition 2 aggregates all agents’ feedback to compute a
final score for each data point, determining the final data selection decision.

Multi-agent collaboration. In the context of multi-agent collaboration, the weighted score for
each agent must be calculated to evaluate their respective contributions effectively. This calculation
takes into account various factors specific to each agent. For every data sample xi, the overall score
S(xi) is determined by the following formula:

S(xi) = (θQuality · SQuality(xi) + θDomain · SDomain(xi) + θTopic · STopic(xi)), (7)

where SQuality(xi), SDomain(xi), and STopic(xi) are the scores calculated by the quality, domain, and
topic agents for the sample xi, respectively. And θA ∈ {θQuality, θDomain, θTopic} is the collaborative
weight for each agent, which is updated during training process.

6
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Algorithm 1 Multi-agent collaborative data selection for LLM pretraining
Require: Training data D, reference task Dref, main modelM, optimizer O, total training steps T , selected

size k, update step U , Memory for each agentHA
1: Initialize model parameters for main modelM
2: Initialize Dk as a size-k randomly sampled subset from D
3: for t = 1 to T do
4: if t mod U = 0 then
5: for each agent A do
6: Sample data points according to agent’s predefined sampling distribution
7: Compute rewardsRM(xi;Dref) for each sampled data point xi

8: Update agent weight wA ← wA + ηA ·RA
9: end for

10: Compute agent score RA and average score R according to Eq. 8
11: Update collaborative weight θA ← θA + ηA · (RA −R).
12: Calculate coordinator score S(xi) for xi ∈ D according to Eq. 7
13: Select dataset for next training stage Dk ← Top-k(S(xi)) for xi ∈ D
14: end if
15: Sample a batch of data B from Dk

16: Update Main ModelM←O(M, B)
17: end for

Collaborative weight update. To dynamically adjust the importance of each agent during vari-
ous training phases, we modify the agent’s collaborative weight based on its overall rewards. We
compute the reward of each agent and the average reward across all agents:

RA =
1

|n|

n∑
j=1

wj
A ·R

j

A, R =
1

k

∑
RA, (8)

This information is then used to update each agent’s collaborative weight, which is stored in the
agent console’s memory for future decision-making:

θA ← θA + ηA · (RA −R). (9)

By continuously refining these weights, the collaboration strategy adapts to optimize overall perfor-
mance and appropriately adjust the role of each agent throughout different stages of training. The
complete training pipeline is outlined in Algorithm 1.

4 EXPERIMENTS

We conduct a series of experiments to evaluate the effectiveness of our multi-agent collaborative data
selection method. Comprehensively, we find that: (1) In the end-to-end experiments, our approach
introduces significant improvement in terms of data efficiency leading to faster convergence for
LLM training, and achieves up to 10.5% improvements on average across various language model
benchmarks when compared with other baseline approaches (§4.1); (2) We also verify that the design
and implementation of the core components in our multi-agent framework design are necessary to
reach this advanced performance through a set of carefully designed ablation studies (§4.2).

4.1 END-TO-END EXPERIMENTS

We evaluate our multi-agent framework against a wide category of state-of-the-art approaches to
compare the data efficiency for LLM pretraining. We train a 1.3 billion parameter LLAMA-2 archi-
tecture model with 30 billion selected tokens.

Experimental setup. We first enumerate the experimental setup as below:

• Pretraining datasets. We utilize the popular SlimPajama (Soboleva et al., 2023) dataset includ-
ing 627 billion tokens, which is derived from the RedPajama (Computer, 2023) dataset. The
SlimPajama (Soboleva et al., 2023) provide the meta-data about the domain information for each
sample. Before the training process, we annotate the entire dataset using the FineWeb-Edu qual-
ity scorer (Penedo et al., 2024) along with our custom-trained BERT-based topic classifier. The
training details for the topic classifier is provided in Appendix §A.1.
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Table 1: Our approach improves model performance across multiple tasks. To ensure all demonstra-
tions fit within the 1024-token context window, we present a comprehensive results table for 0-shot,
3-shot, and 5-shot scenarios in Appendix A.8. The selected tasks in this table include: Problem
Solving: ARC-Easy (3), ARC-Challenge (3), MathQA (3), MMLU (3); Commonsense Reasoning:
OpenBookQA (3), SocialIQA (3), Winogrande (0), CommonsenseQA (5); and Reading Compre-
hension: BoolQ (0), Race (5). For the QuRating and DSIR methods, we use their best-performing
variants: QuRating-Edu and DSIR-Wiki, respectively. Accuracy is reported with the highest value
in each column shown in bold.

Selection Method
Problem
Solving

Commonsense
Reasoning

Reading
Comprehension Average

(4 tasks) (4 tasks) (2 tasks) (10 tasks)

Random sampling - 30B tokens 31.1 32.9 43.1 34.2
Random sampling - 60B tokens 33.6↑2.5 33.7↑0.8 46.1↑3.0 36.1↑1.9

Perplexity PPL (Ankner et al., 2024) 29.9↓1.2 30.5↓2.4 42.4↓0.7 32.7↓1.5

Classifier-based data selection
QuRating (Wettig et al., 2024) 34.1↑3.0 34.1↑1.2 41.4↓1.7 35.6↑1.4

FineWeb-Edu (Penedo et al., 2024) 32.6↑1.5 33.0↑0.1 45.3↑2.2 35.3↑1.1

DSIR (Xie et al., 2023b) 30.9↓0.2 32.0↓0.8 41.5↓1.6 33.5↓0.7

Domain mixing methods
DOGE Fan et al. (2024) 30.9↓0.2 32.2↓0.7 45.1↑2.0 34.3↑0.1

DoReMi (Xie et al., 2023a) 30.4↓0.7 32.6↓0.3 44.8↑1.7 34.1↓0.1

DMLaw (Ye et al., 2024) 30.2↓0.9 32.1↓0.9 45.1↑2.0 33.9↓0.3

RegMix (Liu et al., 2024) 30.7↓0.4 32.5↓0.4 44.6↑1.5 34.2↑0.0

Influence MATES (Yu et al., 2024) 30.9↓0.2 34.0↑1.1 46.5↑3.4 35.3↑1.1

Multi-agent collaboration (ours) 36.7↑5.6 34.8↑1.9 45.9↑2.8 37.8↑3.6

• Training details. We adopt the model architecture from LLAMA-2 (Touvron et al., 2023b) at
the scale of 1.3 billion parameters (see the detailed configuration in Appendix §A.7-Table 8).
Following the principles of the scaling law (Hoffmann et al., 2022) and the DCLM framework (Li
et al., 2024), we decide to use a total of 30 billion tokens. All training tokens are sampled from
the 670 billion-token SlimPajama (Soboleva et al., 2023) dataset using various sampling strategies.
Further details regarding the training process can be found in §A.7.

• Evaluation benchmarks. To evaluate the pre-trained models thoroughly, we conduct extensive
assessments across various downstream tasks, categorized into three areas: (1) problem solving:
MMLU (Hendrycks et al., 2021), ARC-Easy/Challenge (Clark et al., 2018), and MathQA Welbl
et al. (2017); (2) commonsense reasoning: SIQA (Sap et al., 2019), WinoGrande (Sakaguchi et al.,
2020), OpenbookQA (Mihaylov et al., 2018), and CommonsenseQA (Talmor et al., 2019); (3)
reading comprehension: RACE (Lai et al., 2017) and BoolQ (Clark et al., 2019). Evaluations are
conducted using the lm-evaluation-harness framework (Gao et al., 2023) in an in-context
learning setting, and average accuracy is reported for easy comparison.

• Baselines. We select a wide range of baselines to conduct extensive the data efficiency compari-
son, where these methods can be classified to five main categories: (1) random sampling, we test
this policy with both the standard data volume of 30B tokens and a supplemented version with 60B
tokens; (2) perplexity-based data selection Ankner et al. (2024); (3) classifier-based data selection,
where we select the following methods: QuRating Wettig et al. (2024), FineWeb-Edu Penedo et al.
(2024), DSIR-Book Xie et al. (2023b) and DSIR-Wiki Xie et al. (2023b); (4) domain mixing-
based methods, where we select the following methods: DOGE Fan et al. (2024), DoReMi Xie
et al. (2023a), DMLaw Ye et al. (2024) and RegMix Liu et al. (2024); and (5) influence function
based methods for online data selection, i.e., MATES Yu et al. (2024). Implementation details of
these baselines can be found in §A.7.2.

Results. We present the results of three types of downstream tasks in Table 1, with the complete
0-shot (Table 10), 3-shot (Table 11), and 5-shot (Table 12) results for all tasks enumerated in §A.8.
We highlight that our methods show a substantial improvement in the average performance across
all downstream tasks when compared with all the baselines. Concretely, we observe that when
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compared with the random sampling based approach, our method not only significantly outperforms
the standard 30 billion token setup but also surpasses the model trained on 60 billion tokens with
a performance gain of 4.7%. Similarly, we also show an improvement of 15.6% compared with
perplexity-based data selection Ankner et al. (2024), an improvement of up to 6.2% compared with
classifier-based data selection, an improvement of up to 10.2% compared with domain mixing-
based methods, and an improvement of 7.1% compared with influence function based approach, i.e.,
MATES Yu et al. (2024).

Figure 4: Downstream three-shot per-
formance of the 1.3B model in relation
to pretraining steps, using 7500 steps
for 30B tokens. Our methods outper-
form baselines from all categories.

Discussion. We highlight that our proposed multi-agent
collaborative data selection mechanism introduces statis-
tical efficiency in terms of LLM training convergence
and also provides some computational efficiency in terms
of data processing overheads. In terms of statistical ef-
ficiency, our method consistently outperforms others at
every benchmarked training step, as shown in Figure 4.
While MATES Yu et al. (2024) performs comparably to
our methods during the early training phase (steps 1500 to
3000), its performance drops in later stages. This aligns
with its original paper, which notes that relying solely
on influence functions for specific reference tasks (e.g.,
LAMBADA (Paperno et al., 2016)) can degrade perfor-
mance in mid-to-late pretraining. Despite this, MATES
still outperforms other methods without dynamic adjust-
ments shown in Figure 4. In contrast, our multi-agent col-
laborative data selection mechanism can dynamically ad-
just the corresponding weights from different agents and
select data based on the most up-to-date model preferences, effectively mitigating biases and sur-
passing other domain-mixing and data-selection techniques. In terms of computational efficiency,
we also achieve higher computational efficiency than previous methods. For example, QuRat-
ing Wettig et al. (2024) requires around 7.13× 1020 FLOPs to label the entire SlimPajama dataset,
while our offline labeling takes just 9.91 × 1019 FLOPs. MATES Yu et al. (2024), which recalcu-
lates influence scores and trains a BERT model for each labeling cycle, incurs 1.98 × 1020 FLOPs
for a four-stage update. Additionally, MATES’ labels are only usable in the next training stage,
making it time-consuming and difficult to scale. In contrast, our method can improve the compu-
tational efficiency from two aspects: (1) we find that a group of light-weight agents collaboratively
enables superior data selection, which is more computational efficiency than any method that re-
quires a heavy data processing or label procedure; (2) the collaborative, dynamic learning procedure
introduced in our multi-agent framework is computational efficient; by using a sampled holdout set
and CPU-based calculations for updating agent parameters, our computational overhead is ignorable
compared with heavy LLM training computation.

4.2 ABLATION STUDY

We introduce a set of carefully designed ablation studies to justify the design and implementation of
our multi-agent collaborative data selection framework. Concretely, (1) we test the combination of
different agents to show the advance introduced by collaboration, and (2) we verify the necessity of
the dynamic adjustment of the agent’s weight for data selection.

Results and discussion. The results of the ablation study are shown in Table 2. We want to highlight
the result from two aspects: First, the ablation study underscores the importance of each agent in
achieving optimal performance across the training tasks. When the quality, domain, and topic agents
are used together, the model performs best, highlighting the benefits of their combined use, as shown
in Table 2. In terms of evaluating each agents’ contributions, we find that the quality agent excels
in problem-solving tasks like ARC-E and MathQA by leveraging educational knowledge but is less
effective for domain-specific or context-heavy tasks like BoolQ and RACE. The domain agent en-
hances commonsense reasoning (e.g., CommonsenseQA) and reading comprehension (e.g., BoolQ)
by incorporating domain-specific knowledge. The topic agent is most effective for multi-topic tasks
like MMLU and contributes significantly to commonsense reasoning tasks like SocialIQA. Second,
the ablation study verifies the design and implementation of the collaborative dynamic adjustment
of the agents’ weights (introduced §3.4) for efficient data selection. When agents were initialized
with equal, fixed weights instead of using dynamic weighting, overall performance dropped signif-
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Table 2: This ablation study examines the performance of various combinations of agent collabora-
tion and update mechanisms. All models are in 1.3B LLaMA2 architecture. Three-shot accuracy is
reported for all tasks, with the highest value in each column shown in bold.

Problem Solving Commonsense Reasoning Reading Compreh.

Selection Method ARC-E ARC-C MathQA MMLU O.B.QA SIQA W.G. C.S.QA BoolQ RACE Average

Quality&Domain&Topic Agent 65.8 31.5 23.0 26.6 24.6 39.9 54.1 20.1 60.4 30.5 37.7
without collaboration update 59.4 26.3 21.3 25.1 20.5 38.9 52.9 19.8 58.1 28.3 35.1

Domain&Quality Agent 63.3 29.7 22.6 25.1 21.8 40.5 53.1 20.3 59.5 28.8 36.5
Topic&Quality Agent 62.9 28.1 22.3 26.5 22.6 39.6 51.8 21.7 56.7 30.7 36.3
Domain&Topic Agent 55.6 25.2 21.8 26.5 23.1 39.1 53.7 20.9 57.5 29.0 35.2

Quality Agent 59.1 29.7 22.4 25.3 21.1 38.5 51.2 19.1 57.2 28.3 35.2
Domain Agent 54.1 25.6 21.4 25.9 22.3 38.1 53.6 20.0 58.1 27.9 34.7
Topic Agent 55.3 25.3 21.9 27.1 22.1 39.4 51.5 19.8 56.3 28.9 34.8

No Agent 54.6 23.0 22.1 24.9 18.8 40.3 52.9 21.5 53.0 29.8 34.1

icantly, as shown in Table 2. This highlights the critical role of dynamic weight adjustment in the
collaborative framework. Detailed analysis is in Appendix A.5.1.

5 RELATED WORK

Data selection in LLM pretraining. Selecting high-quality pretraining data from large corpora
is crucial for effective LLM training. Recent approaches leverage various methodologies for effi-
cient data selection. Concretely, classifiers (Brown, 2020; Chowdhery et al., 2023; Du et al., 2022;
Xie et al., 2023b) and language modeling perplexity (Wenzek et al., 2020; Thrush et al., 2024)
have been applied to identify data resembling high-quality samples; recently, more advanced qual-
ity scores based on classifier have shown the effectiveness in data selection, e.g., QuRating (Wettig
et al., 2024), FineWeb-Edu (Lozhkov et al., 2024), etc. Data mixture is another effective way to
improve data diversity, at both token level (Touvron et al., 2023a; Gao et al., 2020; Soboleva et al.,
2023) and sample level, e.g., DoReMi (Xie et al., 2023a), DOGE (Fan et al., 2024), DMLaw (Ye
et al., 2024), and RegMix (Liu et al., 2024); very recently, topic distributions has also been consid-
ered as an effective data mixing method, e.g., the downsampling overrepresented topics in Llama
3.1 (Team, 2024). Influence functions have been studied to understand for data efficiency (Koh
& Liang, 2017), and some recent attempts based on efficient approximation have been proposed to
improve data efficiency in LLM pretraining (Schioppa et al., 2022; Grosse et al., 2023; Isonuma
& Titov, 2024); for example, MATES (Yu et al., 2024) uses a staged BERT model to assess data
influence, QUAD (Zhang et al., 2024) leverage cluster information to reduce the computational cost
of calculating individual data influence.

Multi-agent collaborative frameworks. Multi-agent collaborative frameworks (Russell & Norvig,
2016; Wooldridge, 2009) facilitate cooperative problem solving among autonomous agents and have
been widely applied to solve various problems, e.g., neural optimizer search (Bello et al., 2017),
collebrative LLM programming (Hong et al.). In these systems, agents may have conflicting goals
and independently take actions based on their objectives; a reward mechanism evaluates these ac-
tions, providing feedback that allows each agent to adjust and refine its strategy over time; a central
console coordinates the agents by synthesizing their feedback and guiding the overall system to-
wards more optimal decisions (Russell & Norvig, 2016; Wooldridge, 2009). Collaboration among
agents is dynamic, as they adapt their ability to work together improves (Olfati-Saber, 2006).

6 CONCLUSIONS

In this paper, we introduce a multi-agent collaborative data selection framework to enhance effi-
ciency in LLM pretraining. Our framework allows multiple data selection methods to operate as in-
dependent agents, with an agent console designed to dynamically integrate their outputs throughout
the LLM training process. Empirical studies show it improves data efficiency, speeds up conver-
gence, and achieves up to 10.5% average performance gains over state-of-the-art methods. These
results demonstrate the effectiveness of dynamically combining data selection strategies to resolve
conflicts and optimize LLM pretraining.
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A APPENDIX

A.1 DETAILS OF TRAINING TOPIC CLASSIFIER

As shown in Figure 3, we first cluster 1.4 billion documents obtained from Common Crawl (Project,
2007) into 10,000 clusters using KNN. And we use GPT-4o (OpenAI, 2024) to generate a summary
for the content in each cluster. Additionally, we implement two parallel steps: unsupervised and
supervised. In the unsupervised step, we perform secondary clustering of the 10,000 clusters into
100 clusters, from which we extract 20 summaries for each cluster. We utilize GPT-4o to extract
category labels, refining these into a coherent hierarchical labeling system for the classification of
42 distinct topics.

In the supervised data processing step, leveraging Gopher cleaning ruls (Rae et al., 2021) and Min-
Hash (Broder, 1997) deduplication, we clean the whole datasets and cluster the datasets into 10,000
clusters. We then extract 50 equidistant samples from each cluster. This process yields approxi-
mately 500,000 data points, which we categorize into the aforementioned 42 topics by calling GPT-
4o (OpenAI, 2024) using the prompt shown below:

Figure 5: We illustrate the prompt construction process for GPT-4 to reorganize the topic of 500k
data points.

Since GPT-4o is not specialized for classification tasks, we obtain actual topic data with slightly
more than 42 topics, as shown in Figure 6. We then manually summarize the topics provided by
GPT-4 into 13 categories, ensuring that the subtopics within each category shared similarities. The
detailed category distributions appear in Figure 6, along with specific clustering information. Ul-
timately, we employ the annotated data to fine-tune a BERT-like regression model (Devlin et al.,
2018). Following model classification, we conduct human proofreading to ensure accuracy, and we
present the final results below.

A.2 GUIDELINES FOR GENERALIZING A NEW CRITERIA AS AN AGENT

This section provides a detailed guidelines for incorporating a new criterion into our multi-agent
system. The process is designed to ensure seamless integration and effective collaboration between
existing and new agents.

Our framework offers several significant benefits when integrating a new agent. First, it offers
flexibility, as the addition of new criteria can be performed independently of the core framework.
This decoupling ensures that introducing new components does not require significant structural
changes, allowing for smooth integration with minimal disruption to existing processes. Second,
the approach is highly scalable. By enabling the training of new classifiers offline, the system
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Algorithm 2 Integrating a New Criterion into Multi-Agent Collaboration

Require: Sampled datasetDsample, pretraining datasetDtrain, reference dataset Dref, existing agents {Ai}, scor-
ing weights {θi}, memoryHA for each agent.

1: Annotating Data for the New Criteria
2: Sample data from the whole datasets, and annotate sampled dataset Dsample according to new criterion.
3: Training a Classifier for the New Criteria
4: Train a supervised classifier on Dsample.
5: Defining the New Agent

• Action Space: Sample and assess data points across subcategories of the new Criteria.
• Memory: Store prior scores and update based on model feedbacks.

6: Labeling the Pretraining Dataset
7: Use trained classifier to label the whole training dataset Dtrain and store these labels in memoryHAnew .
8: Defining Agent Weights and Collaboration Strategy

1. Define the subcategory weights updating mechanism for Anew using Eq. 5:

wj
new ← (1− ηnew) · wj

new + ηnew ·Rj
new.

2. Integrate Anew into the scoring function using Eq. 7:

S(xi) = θQualitySQuality(xi) + θDomainSDomain(xi) + θTopicSTopic(xi) + θnewSnew(xi).

9: Agent Initialization with Regression Techniques
10: Initialize the agent weights wnew using regression techniques (e.g., RegMix).

can be easily adapted to handle a wide variety of data selection goals, which can evolve over time
as new criteria emerge. Finally, the framework ensures extensibility, meaning it can seamlessly
accommodate new objectives, whether simple or complex. This extensibility is key to maintaining
efficient and effective collaboration across multiple agents, regardless of the size or complexity of
the task at hand. As demonstrated in Algorithm 1, our framework seamlessly integrates a new agent
through a series of straightforward steps. This approach ensures that the multi-agent framework
remains flexible and effective in addressing diverse data selection objectives while preserving its
collaborative efficiency.

A.3 CONNECTION OF MULTI-AGENT COLLABORATIVE SELECTION METHOD TO
MULTI-AGENT RL

The proposed multi-agent collaborative selection method is fundamentally inspired by the intelligent
agent defined in Russell & Norvig (2016), where the agent generally refers to an entity that perceives
some status and map the observed status into actions. However, our framework also has many
similarity compare with traditional multi-agent framework in reinforcement learning, where multiple
agents work together to optimize a shared objective. In this section, we formally demonstrate the
relationship between our framework and traditional Multi-agent RL.

A.3.1 OVERALL DEFINITION IN REINFORCEMENT LEARNING FORMULATION

We first clearly formulate each component of framework compare with components in general
MARL framework for understanding the mechanism of our framework. As our goal is to select the
opt the global action at each step involves selecting a subset of data, Dk, from the entire dataset, D.
This subset is used to update the model, where batches are drawn from Dk for training. The global
state is represented by the current model parameters, M , which evolve as the model is trained. The
state transition is formalized as:

M ′ = O(M,Dk), (10)

where M ′ denotes the updated model after training on Dk.

The reward function measures the improvement in model performance on a reference task, Tref,
which serves as a proxy for the true downstream task Teval. The reward is defined as:

R(M ′|M, Tref) = Ex∼Tref [−l(x;M ′)], (11)
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where l(x;M ′) is the loss on Tref. For individual data points, the reward is estimated using influence
functions:

R(xi|M, Tref) = Influence(xi,M, Tref). (12)
This formulation links data selection directly to its impact on improving the model’s performance
on Tref.

A.3.2 AGENT DESIGN

The estimation of value is as follows: The agent stores a reward estimation vector for each subset.
The update rule is given by

wj
A(t+ 1) = (1− ηA) · wj

A(t) + ηA · R̄j
A. (13)

The sliding average is used here because if all data in a subset were fully processed to compute R̄j
A,

there would be no need for a sliding average. However, since only a portion of the data is sampled,
the estimate has higher variance, which is not favorable for training. At the same time, the influence
score itself is dynamic (even if the data remains constant, the model evolves). Averaging with
outdated scores introduces bias. Therefore, the sliding average factor ηA strikes a ’bias-variance
tradeoff’. We assume the score estimate for each data point xi in Dj

A with respect to the dimension
of interest for the agent, is given by

SA(xi) = wj
A, wherexi ∈ Dj

A. (14)

A.3.3 MULTI-AGENT COLLABORATION

Assume that the score of a single data point in the reference task is obtained as a weighted sum of
multiple components. The total score for each data point is given by Equation 8 as:

S(xi) =
∑

A∈set(A)

θA · SA(xi), (15)

where θA are collaborative weights. A central coordinator adjusts these weights over time based on
the agents’ contributions to the overall reward:

θA(t+ 1) = θA(t) + ηA(R̄A − R̄), (16)

where R̄A is the agent’s average reward, and R̄ is the global average reward:

R̄A =
1

n

n∑
j=1

wj
A · R̄

j
A, R̄ =

1

|set(A)|
∑

A∈set(A)

R̄A. (17)

We consider three possible cases for our framework, comparing its relationship with traditional
optimization problem.
• Single-agent case: If only one agent is involved, θ becomes irrelevant, reducing the problem to

a classical optimization scenario where the agent greedily selects the optimal data based on one
criteria.

• Multi-agent competitive mechanism: When multiple agents are present, θ reflects each agent’s
capability. Selecting the best-performing agent for decision-making introduces a heuristic com-
petitive mechanism, building upon the classical optimization framework.

• Multi-agent collaborative mechanism: Alternatively, when multiple agents are involved, θ can
be used to weigh each agent’s contributions for decision-making. This introduces a smoother
heuristic cooperative mechanism, extending the classical optimization framework by leveraging
weighted collaboration. This heuristic cooperative mechanism dynamically adjusts the influence
of each agent based on the model’s current preferences, enabling more effective data filtering
decisions.

In practice, we choose to use the multi-agent collaborative mechanism for data selection. We have
added comparisons with single-agent and competitive mechanisms in Table 3 to further elaborate
the effectiveness of collaboration.
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Table 3: This ablation study examines the performance of various combinations of agent collabo-
ration (Agent) and dynamic collaborative weight update (Dynamic). Accuracy is reported for all
tasks, with the highest value in each column shown in bold.

Problem Solving Commonsense Reasoning Reading Compreh.

Agent Dynamic ARC-E ARC-C MathQA MMLU O.B.QA SIQA W.G. C.S.QA BoolQ RACE Average

with with 65.8 31.5 23.0 26.6 24.6 39.9 54.1 20.1 60.4 30.5 37.7
with without 59.4 26.3 21.3 25.1 20.5 38.9 52.9 19.8 58.1 28.3 35.1
without - 59.2 26.1 20.3 25.4 21.3 39.1 52.6 20.1 56.5 29.1 35.0

A.4 DETAILED ANALYSIS OF COMPUTATIONAL OVERHEAD

In this subsection, we compare the computational overhead of our multi-agent collaboration frame-
work with baseline approaches. The analysis focuses on three aspects: offline computation effi-
ciency, online computation efficiency, and overall FLOPs requirements. Table 4 summarizes
these comparisons.

Table 4: Comparison of Computational Overhead Across Methods

Selection Method Offline Computation Online Computation Overall
Cost (FLOPs) Cost (FLOPs) (FLOPs)

Qu-Rating (Wettig et al., 2024) 7.13× 1020 N.A. 7.13× 1020

MATES (Yu et al., 2024) N.A. 1.99× 1020 1.99× 1020

Multi-agent collaboration (ours) 9.91× 1019 1.19× 1018 1.00× 1020

A.4.1 OFFLINE COMPUTATION EFFICIENCY

Our method achieves superior offline efficiency by requiring only 9.91×1019 FLOPs for a one-time
dataset labeling process using a 109M BERT-based model for inference. This is nearly an order of
magnitude more efficient than Qu-Rating, which consumes 7.13×1020 FLOPs due to its reliance on
a larger 1.3B Sheared-LLaMA model. MATES does not utilize offline computation, relying solely
on online updates, which avoids this cost but limits its flexibility and scalability. The offline labeling
in our method ensures robust initial scores for large-scale datasets while laying the groundwork for
efficient online updates.

A.4.2 ONLINE COMPUTATION EFFICIENCY

For adaptive online updates, both our approach and MATES compute influence scores with 1.19 ×
1018 FLOPs. However, MATES involves labeling the entire dataset with a 109M BERT-based model
in every round, amounting to 1.98 × 1020 FLOPs across four data selection stages. In contrast,
our method avoids re-labeling the entire dataset, significantly reducing the computational cost by
focusing on labeling the large pretraining datasets only once.

Overall, our approach cuts the computational cost in half compared to MATES and requires only
about 1/7 of the computational resources used by Qu-Rating.

A.5 ANALYSIS OF ABLATION STUDY

A.5.1 ANALYSIS OF AGENT ROLES ON DIFFERENT TYPE OF TASKS

We show the agent ablation study conducted on 373M LLaMA2 models Table 5 as well as 1.3B
LLaMA2 models Table 2. First, the ablation study underscores the importance of each agent
in achieving optimal performance across the training tasks. When the quality, domain, and topic
agents are used together, the model performs best, highlighting the benefits of their combined use,
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Table 5: This ablation study examines the performance of various combinations of agent collabora-
tion and update mechanisms. All models are in 373M LLaMA2 architecture. Accuracy is reported
for all tasks, with the highest value in each column shown in bold.

Problem Solving Commonsense Reasoning Reading Compreh.

Selection Method ARC-E ARC-C MathQA MMLU O.B.QA SIQA W.G. C.S.QA BoolQ RACE Average

Quality&Domain&Topic Agent 57.9 24.7 21.9 25.4 20.2 37.9 52.6 20.4 59.6 29.4 35.0
without collaboration update 47.9 20.4 21.0 25.1 17.2 37.3 51.3 20.0 56.5 28.3 32.5

Domain&Quality Agent 55.1 18.6 21.7 24.4 17.4 37.1 51.2 19.8 61.7 28.2 33.5
Topic&Quality Agent 56.2 24.4 21.8 25.2 19.4 36.3 49.0 19.7 56.1 28.5 33.6
Domain&Topic Agent 44.6 18.3 21.7 25.7 16.2 36.6 51.9 19.9 61.6 27.8 32.4

Quality Agent 53.0 24.7 21.8 25.5 18.0 36.3 49.5 18.1 57.0 28.0 32.9
Domain Agent 44.1 19.1 20.8 25.6 16.6 36.8 52.0 19.7 56.7 28.2 32.0
Topic Agent 42.7 19.2 21.0 27.0 17.4 37.1 50.7 19.7 54.6 28.5 31.8

No Agent 42.5 20.0 21.1 23.8 14.6 35.9 50.1 18.8 56.1 27.9 31.1

Table 6: This ablation study examines the performance of various combinations of reference task.
Accuracy is reported for all tasks, with the highest value in each column shown in bold.

Problem Solving Commonsense Reasoning Reading Compreh.

Reference Tasks ARC-E ARC-C MathQA MMLU O.B.QA SIQA W.G. C.S.QA BoolQ RACE Average

LAMBADA&SQuAD&Jeopardy 65.8 31.5 23.0 26.6 24.6 39.9 54.1 20.1 60.4 30.5 37.7
LAMBADA 64.3 31.2 22.3 26.8 23.5 39.6 54.6 20.4 59.6 30.1 37.2
SQuAD 65.1 30.9 23.4 25.9 24.9 40.1 53.8 21.2 59.1 29.3 37.4
Jeopardy 63.9 30.3 23.6 26.3 24.1 40.7 54.5 21.8 59.1 30.2 37.5
Random selection 54.6 23.0 22.1 24.9 18.8 40.3 52.9 21.5 53.0 29.8 34.1

as shown in Table 2. In terms of evaluating the performance of each agent, we find that the quality
agent outperforms other single-agent configurations, excelling in problem solving tasks. However,
its performance drops on tasks requiring domain knowledge or contextual understanding. Here,
the domain and topic agents play a crucial role, as they excel in these areas. Despite this, neither
performs well on problem solving tasks, except for the topic agent, which significantly improves
MMLU performance, indicating that topic diversity may benefit such tasks. In terms of evaluating
the combination of the agents, we find that removing any agent noticeably reduces overall accuracy,
though the impact varies. Excluding the quality agent leads to the largest drop, significantly affect-
ing performance in problem solving tasks, and commonsense reasoning tasks like OpenbookQA.
This highlights the quality agent’s vital role in reasoning and problem-solving. Similarly, excluding
the topic agent causes a performance drop in ARC-Challenge and a significant reduction in MMLU,
emphasizing its importance in tasks covering diverse subjects; removing the domain agent results
in a performance drop in commonsense reasoning tasks, underscoring its key contribution to these
areas. Second, the ablation study verifies the design and implementation of the collaborative dy-
namic adjustment of the agents’ weights (introduced §3.4) for efficient data selection. Concretely, in
this variant, all agents were initialized with equal weights, which remained fixed throughout train-
ing without adjusting for individual agent performance. Surprisingly, this fixed-weight approach
(equal to random sampling) resulted in a significant drop in overall performance compared to the
dynamic weighting used in the collaborative update framework, as shown in Table 2. We believe this
result from the ablation study is a strong indicator that the dynamic adjustment of the celebration
mechanism is essential for efficient data selection.

A.5.2 ABLATION STUDY ON REFERENCE TASKS SELECTION

In our experiments of selecting reference tasks in Table 6, we observe that while the choice of ref-
erence tasks can influence performance, the impact on average performance is marginal (within 0.5
points). Using different reference tasks consistently leads to a significant improvement in average
performance compared to random data selection, demonstrating that our method is not sensitive to
the choice of reference tasks.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 7: This ablation study compares the performance of a 3B model using random sampling
versus multi-agent collaboration. Accuracy is reported for all tasks, with the highest value in each
column shown in bold.

Problem Solving Commonsense Reasoning Reading Compreh.

Selection Method ARC-E ARC-C MathQA MMLU O.B.QA SIQA W.G. C.S.QA BoolQ RACE Average

Random Sampling 34.8 17.7 21.3 23.0 12.0 32.9 50.2 19.6 37.8 20.9 27.0
Multi-agent collaboration (Ours) 42.9 21.3 21.9 24.0 15.8 33.9 51.0 20.4 54.8 21.2 30.7

A.6 GENERALIZATION TO 3.6B MODELS

To evaluate the scalability of our approach, we conducted additional experiments training a 3.6 bil-
lion parameter model based on the LLaMA 3.2 architecture, which further demonstrates the scalabil-
ity of our method. So far we have trained on 36 billion tokens and achieved strong performance, with
plans to continue training with additional tokens according to scaling laws. As Table 7shows, when
compared to random selection, our method shows consistent performance improvements across all
downstream tasks, achieving a 13.7% increase in average accuracy—significantly higher than the
10.5% improvement observed with the 1.3B models. Based on trends across three different model
sizes (373M, 1.3B, and 3.6B), our approach consistently outperforms random selection by over 10%
on average. This consistent advantage makes us believe that it suggests our method has strong
potential for training even larger models, including those with 10B+ parameters

A.7 DETAILS OF PRETRAINING

A.7.1 DETAILS OF PRETRAINING MODELS ARCHITECTURE

The specific architecture of pretraining model is shown in Table 8. Each model was trained on 32x
NVIDIA A800, employing a global batch size of 4×220 tokens and completing 7,500 steps in about
14 hours. The average token processing rate per GPU was about 20,000 tokens per second. The
learning rate was set to 5 × 10−5, and the Adam optimizer was employed with hyperparameters
(β1 = 0.9, β2 = 0.95, ϵ = 10−8).

Table 8: Architecture of pre-trained decoder-only models.

Hyperparameter 370M Model Value 1.3B Model Value 3.6B Model Value

Vocabulary Size 32,000 32,000 128,256
MLP Ratio 8/3 8/3 8/3
Hidden Dimension Size 2048 1024 3072
Number of Layers 24 24 28
Number of Attention Heads 16 8 24
Number of KV Attention Heads 16 8 8
RoPE Base 10,000 10,000 500,000
Maximum Context Window Length 1024 1024 1024
Number of Parameters 373,867,520 (370M) 1,345,423,360 (1.3B) 3,606,752,256 (3.6B)

A.7.2 DETAILS OF BASELINE METHOD IMPLEMENTATION

Regarding the classifier methods, QuRating (Wettig et al., 2024) and DSIR (Xie et al., 2023b), we
implement QuRating by downloading the open-source checkpoint from Hugging Face. Notably, the
released model has a context length of 4096, whereas ours is 1024. However, this discrepancy does
not impact our testing tasks, as our maximum of 5-shot examples remains within the 1024 limit.
Despite this, we have totally similar model configuration as well as the total number of training
tokens with all the checkpoints we downloaded. Similarly, the replication of PPL is based on the
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Figure 6: We illustrate the distribution of manually annotated and clustered data, which includes 13
topics: Infrastructure, Law and Government, Networking, Activity, Business and Industry, Nature,
Literature and Art, Education, Finance, Technology, Entertainment, Health, and Others.

publicly available checkpoint from the original paper. For FineWeb-Edu (Lozhkov et al., 2024), we
download the quality scorer to label all the training data from SlimPajama datasets, and adopt the
methodology described in the corresponding publication and train all the model from scratch.

Domain mixing refers to the technique of combining data from different sources or domains to
enhance the diversity and robustness of a model’s training dataset. In our implementation, we apply
various mixing methods: DoReMi (Xie et al., 2023a), DOGE (Fan et al., 2024), DMLaw (Ye et al.,
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2024), and RegMix (Liu et al., 2024). Each method contributes distinct proportions of data from
specific domains, as reflected in the domain weights presented in Table 9. Notably, the weights
indicate the percentage of contributions from each domain.

Table 9: Exact domain weights (%) on SlimPajama obtained by data mixing methods. Abbrevia-
tions: C.C. = CommonCrawl, Wiki = Wikipedia, StackEx. = StackExchange

Mixing Method C.C. C4 GitHub Books ArXiv Wiki StackEx.

SlimPajama 52.20 26.70 5.20 4.20 4.60 3.80 3.30
DoReMi 38.11 11.41 6.54 8.19 4.24 23.07 8.47
DOGE 21.35 26.93 7.03 4.50 8.80 14.82 16.58
DMLaw 12.50 25.00 14.06 9.38 25.00 1.56 12.50
RegMix 17.37 51.03 0.23 0.23 0.08 29.77 1.27

For the reproduction of MATES (Yu et al., 2024), we start by utilizing Random-Slimpajama at the
1500th training step as our primary pretraining model and fine-tune the BERT-base from the original
thesis as our data influence model. During the training of the data influence model, we uniformly
sample 1/13 of the data as hold-out data from each area of our dataset and employ LAMBADA (Pa-
perno et al., 2016) as a reference task, following the MATES methodology. Ultimately, we use the
trained BERT-base data influence model to predict the entire training dataset, selecting the top 1/20
as our pretraining data. This selection process is executed using the Gumbel-Top-k algorithm (Kim
et al., 2016), consistent with MATES. We leverage a four-step updates similar to the original paper,
and conduct the above implementation at 1500th, 3000th, 4500th and 6000th model training steps
using the current models.

A.7.3 DETAILS AGENT WEIGHT INITIALIZATION

We employ an agent weight initialization technique within the RegMix (Liu et al., 2024) framework,
which is crucial for the effective training of proxy models. Our dataset is organized into three distinct
categories: domain, quality, and topic. For each category, we initialize the data weights based on
the original proportions across 512 configurations and subsequently train a TinyLlama-1M with 1
billion tokens as a proxy model for each configuration. We evaluate this model on previously unseen
data mixtures, specifically using validation set loss, following RegMix, for assessment. We then fit
a regression model based on the performance results of the 512 proxy models to predict the optimal
data mixture for training large-scale LLMs. The results of the LightGBM regression analysis and
Spearman correlation of the loss prediction performance are presented in 7.

Upon training the regression model, we systematically investigate the entire spectrum of potential
data mixtures by utilizing the trained model to predict the target values for each candidate mixture.
This process allows us to identify the input that produces the optimal target value. Following the
simulation and identification of the most effective data mixture, we then generalize this top-ranked
configuration for large-scale model training, incorporating a significantly larger volume of tokens.

A.8 FULL EXPERIMENTAL RESULTS

We show the full results of all tasks in Table 10, Table 11 and Table 12. In analyzing the full ex-
periment results, it is evident that our model consistently outperforms other methods across various
tasks. Overall, for the zero-shot scenario, the classifier method outperforms the influence function in
terms of average performance, while domain mixing yields the poorest results. Our method achieves
an impressive average accuracy of 36.5, significantly surpassing the next best classifier, QuRating’s
series, which scores 35.5. This underscores the robustness of our approach, particularly in challeng-
ing problem-solving domains such as ARC-C, ARC-E, and MMLU, where we exceed competing
models by considerable margins.

Our model demonstrates superior performance in the three-shot scenario, achieving an impressive
average accuracy of 37.7, thereby maintaining its lead. Notably, we excel in the ARC-E and ARC-C
benchmarks, attaining scores of 65.8 and 31.5, respectively, which highlights our model’s effective
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(a) Topic

(b) Quality Interval

(c) Domain

Figure 7: We present the results of the LightGBM regression analysis and Spearman correlation
regarding the loss prediction performance and the weights of each candidate data-(a) Topic, (b)
Quality Interval and (c) Domain after mixture across all categories.

utilization of few-shot learning. In contrast, the leading alternative methods underperform, particu-
larly in more complex tasks such as MMLU and BoolQ.

In the five-shots evaluation, our model continues to demonstrate competitive performance, with
scores reflecting a consistent trend of superiority across various domains, while other non-leading
methods also maintain high levels. These results underscore our model’s robust capacity to gener-
alize across diverse question-answering tasks, affirming its advantages over conventional classifiers
and highlighting its potential for practical applications in real-world scenarios.

A.9 IMPLEMENTATION DETAILS OF OUR METHODS

To further refine the model’s performance, we calculate rewards for each sampled data point by ap-
proximating the rewards using influence functions, as shown in Equation 6. Following Engstrom, we
choose LAMBADA Paperno et al. (2016), SQuAD Rajpurkar (2016) and Jeopardy Tunguz (2019)
as reference tasks. We followed methods provided in Engstrom, Xia et al. and Park et al. (2023)
to calculate the Hessian and the gradients in the influence functions. In our implementation, we
project gradients into an 8,192-dimensional space for both the validation and training datasets. To
optimize the gradient computation process, we divide each data category into eight slices, thereby
enabling parallel computation across eight GPUs. Each slice contains 1,250 data points. After cal-
culating gradients for each slice, the results are concatenated in their original sequence to ensure
data integrity. This slicing strategy not only accelerates the processing by utilizing GPU parallelism
but also maintains consistency in gradient calculation. Additionally, for the validation datasets, we
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Table 10: Table Showing Various Selection Methods and Their Scores with Changes. We report
accuracy for all tasks, and bold the best result in each column. Abbreviations: O.B.QA = Open-
bookQA W.G. = WinoGrande, C.S.QA = CommonSenseQA, Compreh. = Comprehensions

Problem Solving Commonsense Reasoning Reading Compreh.

Selection Method ARC-E ARC-C MathQA MMLU O.B.QA SIQA W.G. C.S.QA BoolQ RACE Average

Random sample
Uniform-30B 54.3 23.4 22.3 23.9 18.6 39.8 52.8 19.2 55.4 30.0 34.0
Uniform-60B 55.2 24.6 22.5 23.4 21.0 39.7 51.9 19.5 59.8 33.1 35.1

Perplexity-based data selection
PPL 49.3 20.1 22.4 23.6 16.2 36.0 48.1 18.8 61.4 29.3 32.5

Classifier-based data selection
QuRating-Facts 56.1 23.3 22.4 24.8 21.6 39.2 54.1 19.9 61.5 31.6 35.5
QuRating-Req 54.9 24.4 23.2 25.2 21.4 38.1 54.5 20.6 61.6 31.3 35.5
QuRating-Writing 53.6 23.2 23.4 23.2 21.0 38.1 52.8 19.7 59.4 31.6 34.6
QuRating-Edu 57.0 24.4 22.0 25.0 20.4 40.3 53.7 20.2 60.1 32.2 35.5
FineWeb-Edu 53.8 23.4 21.8 23.9 19.8 39.2 51.7 20.8 59.7 32.0 34.6
DSIR-Book 45.4 20.8 22.0 23.0 18.8 39.9 54.6 19.7 58.3 30.8 33.3
DSIR-Wiki 50.6 21.1 21.6 23.0 19.2 36.6 53.0 19.8 60.5 29.2 33.5

Domain mixing methods
DOGE 49.4 21.8 22.5 23.0 18.0 38.0 52.7 19.9 60.0 30.0 33.5
DoReMi 50.1 20.2 22.5 23.7 17.8 38.7 52.8 19.7 58.6 30.8 33.5
DMLaw 49.6 21.9 23.2 23.6 17.8 38.6 51.8 20.1 60.4 29.0 33.6
RegMix 50.0 22.3 22.1 22.9 18.8 38.0 52.8 19.9 58.9 31.2 33.7

Influence functions
MATES 50.0 21.4 22.7 25.3 19.0 39.8 53.6 21.3 59.9 32.1 34.5

Multi-Agent Collaboration (Ours) 61.1 28.2 22.6 26.0 24.4 38.2 54.2 19.5 61.0 29.8 36.5

Table 11: Table showing various selection methods and their three-shots performance. We report
accuracy for all tasks, and bold the best result in each column. Abbreviations: O.B.QA = Open-
bookQA W.G. = WinoGrande, C.S.QA = CommonSenseQA, Compreh. = Comprehensions

Problem Solving Commonsense Reasoning Reading Compreh.

Selection Method ARC-E ARC-C MathQA MMLU O.B.QA SIQA W.G. C.S.QA BoolQ RACE Average

Random sample
Uniform-30B 54.6 23.0 22.1 24.9 18.8 40.3 52.9 21.5 53.0 29.8 34.1
Uniform-60B 58.8 25.5 23.0 27.2 20.0 41.8 53.6 19.6 56.9 32.7 35.9

Perplexity-based data selection
PPL 50.6 21.3 22.7 25.2 15.6 37.7 48.9 20.1 61.5 22.3 32.6

Classifier-based data selection
QuRating-Facts 59.5 25.7 22.6 25.9 19.8 40.2 54.6 19.2 60.8 24.8 35.3
QuRating-Req 59.3 25.9 22.7 26.1 19.6 39.7 53.7 20.5 58.5 22.7 34.9
QuRating-Writing 56.9 25.7 23.1 26.0 20.4 41.1 53.6 20.2 51.4 22.6 34.1
QuRating-Edu 60.8 26.5 22.5 26.7 20.2 41.4 54.6 20.6 55.5 22.7 35.1
FineWeb-Edu 56.2 25.7 22.3 26.2 20.6 40.1 50.5 19.7 56.6 31.4 34.9
DSIR-Book 48.7 21.0 22.6 25.6 18.6 42.5 53.7 19.5 57.9 22.9 33.3
DSIR-Wiki 53.2 22.4 22.6 25.3 17.6 37.1 52.7 21.4 61.6 24.2 33.8

Domain mixing methods
DOGE 52.4 21.9 22.4 27.0 17.4 39.9 52.0 18.2 57.8 29.8 33.9
DoReMi 53.2 21.4 22.2 24.7 18.2 38.4 50.9 20.6 59.7 31.1 34.0
DMLaw 51.5 21.4 22.4 25.2 18.2 39.0 50.7 19.4 52.6 29.8 33.0
RegMix 53.1 22.1 22.2 25.4 19.0 39.1 53.5 18.4 60.7 30.0 34.4

Influence functions
MATES 52.6 21.8 22.6 26.7 20.4 40.9 53.7 19.7 57.6 31.8 34.8

Multi-Agent Collaboration (Ours) 65.8 31.5 23.0 26.6 24.6 39.9 54.1 20.1 60.4 30.5 37.7

uniformly sample 500 data points to ensure a balanced evaluation procedure. All prompts across
the datasets are carefully aligned to maintain task coherence, a crucial factor in multi-task learning
scenarios. Furthermore, we implement a sliding window of 1,024 tokens with a 256-token overlap
to ensure consistent tokenization across the entire dataset. This sliding window technique efficiently
extracts a maximum of 1,024 tokens from each data point, ensuring uniform encoding across differ-
ent datasets and tasks, thus improving the overall consistency and reliability of the data processing
pipeline.
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Table 12: Table showing various selection methods and their five-shots performance. We report
accuracy for all tasks, and bold the best result in each column. Abbreviations: O.B.QA = Open-
bookQA W.G. = WinoGrande, C.S.QA = CommonSenseQA, Compreh. = Comprehensions

Problem Solving Commonsense Reasoning Reading Compreh.

Selection Method ARC-E ARC-C MathQA MMLU O.B.QA SIQA W.G. C.S.QA BoolQ RACE Average

Random sample
Uniform-30B 54.5 21.9 22.4 25.6 19.2 39.7 54.2 19.7 53.2 30.8 34.1
Uniform-60B 59.1 26.0 22.4 26.9 21.6 42.1 54.3 21.0 55.7 32.4 36.2

Perplexity-based data selection
PPL 49.2 21.2 22.5 24.9 14.6 36.7 49.8 20.6 60.6 23.3 32.4

Classifier-based data selection
QuRating-Facts 60.5 25.4 23.4 26.4 20.2 40.3 51.9 19.0 58.0 23.3 34.8
QuRating-Req 59.9 26.4 22.8 25.6 21.8 40.1 53.7 19.6 56.9 22.3 34.9
QuRating-Writing 57.3 25.3 22.6 25.0 21.4 41.6 53.5 19.6 49.5 22.1 33.8
QuRating-Edu 60.8 26.5 22.5 26.5 20.2 41.4 54.6 21.1 55.5 22.7 35.2
FineWeb-Edu 56.6 24.9 22.6 25.8 19.8 39.4 51.2 19.7 55.9 30.9 34.7
DSIR-Book 49.7 21.1 22.1 25.6 19.8 41.7 54.1 18.3 55.6 22.9 33.1
DSIR-Wiki 53.6 22.3 23.0 25.3 17.6 36.7 52.2 20.4 60.2 22.6 33.4

Domain mixing methods
DOGE 53.0 21.8 22.0 26.3 17.2 40.1 51.7 18.8 58.5 30.1 33.9
DoReMi 52.7 22.2 22.4 25.5 16.2 39.3 51.9 20.9 60.0 31.0 34.2
DMLaw 52.4 21.4 23.0 25.7 17.2 39.2 50.6 19.2 51.4 29.9 33.0
RegMix 53.5 24.0 21.2 25.0 19.6 41.0 53.2 19.0 61.3 30.2 34.8

Influence functions
MATES 53.6 21.6 22.6 26.1 20.4 41.7 53.1 20.4 60.1 32.0 35.2

Multi-Agent Collaboration (Ours) 64.9 31.1 22.4 26.3 23.6 39.0 53.1 20.4 60.4 30.7 37.2

A.10 DETAILS OF INFLUENCE CHANGES DURING DIFFERENT PRETRAINING STAGES

We present the details of influence change during the pretraining process for domain (Figure 8),
quality intervals (Figure 9) and topic (Figure 10).

Figure 8: We present the normalized influence for each domain across various training steps.

B DATA DISTRIBUTION ANALYSIS OF THE SLIMPAJAMA DATASET

We finally present the data distribution analysis of the SlimPajama dataset from three dimensions:
topic, domain and quality intervals, as Figure 11 to Figure 13 shows.
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Figure 9: We present the normalized influence for each quality interval across various training steps.

Figure 10: We present the normalized influence for each topic across various training steps.
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Figure 11: The illustration of the joint distribution of topics and domains.
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Figure 12: The illustration of the joint distribution of quality intervals and domains.

Figure 13: The illustration of the joint distribution of quality intervals and topics.
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