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Abstract

Large Language Models (LLMs) show great promise in complex reasoning, with
Reinforcement Learning with Verifiable Rewards (RLVR) being a key enhancement
strategy. However, a prevalent issue is “superficial self-reflection”, where models
fail to robustly verify their own outputs. We introduce RISE (Reinforcing Rea-
soning with Self-Verification), a novel online RL framework designed to tackle this.
RISE explicitly and simultaneously trains an LLM to improve both its problem-
solving and self-verification abilities within a single, integrated RL process. The
core mechanism involves leveraging verifiable rewards from an outcome verifier
to provide on-the-fly feedback for both solution generation and self-verification
tasks. In each iteration, the model generates solutions, then critiques its own on-
policy generated solutions, with both trajectories contributing to the policy update.
Extensive experiments on diverse mathematical reasoning benchmarks show that
RISE consistently improves model’s problem-solving accuracy while concurrently
fostering strong self-verification skills. Our analyses highlight the advantages of
online verification and the benefits of increased verification compute. Additionally,
RISE models exhibit more frequent and accurate self-verification behaviors during
reasoning. These advantages reinforce RISE as a flexible and effective path towards
developing more robust and self-aware reasoners.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable potential in complex reasoning
tasks. A promising avenue for further enhancing these capabilities is Reinforcement Learning (RL),
particularly methods that utilize verifiable rewards (RLVR) from outcome verifiers [Gao et al., 2024,
Guo et al., 2025, Lambert et al., 2024, Yue et al., 2025]. This paradigm, often applied to domains
like mathematics where solution correctness can be programmatically evaluated, enabling models to
improve through direct feedback on their generated solutions.

However, even with outcome-based RLVR, models may still learn to generate spurious reasoning
without truly understanding the underlying logical process or developing robust self-assessment skills.
This can lead to “superficial self-reflection” [Liu et al., 2025], where models struggle to reliably
identify errors in their own reasoning and verify the correctness of their outputs, ultimately resulting
in flawed solutions and suboptimal performance. While some approaches explicitly incorporate
self-critique [Xi et al., 2024, Xie et al., 2025] to provide additional signals, the process of learning to
solve problems and learning to verify solutions are often decoupled or lack direct, contemporaneous
feedback for the verification skill itself within the RL loop.
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To address this limitation and foster more robust reasoning, we introduce RISE (Reinforcing Rea-
soning with Self-Verification) as a novel online reinforcement learning framework. RISE is designed
to explicitly and simultaneously train an LLM to improve both its problem-solving ability and its
capacity to verify its own generated solutions within a single, integrated RL process. The key idea
is to leverage the verifiable reward signal from a rule-based outcome verifier not only to guide the
generation of correct solutions but also to align the model’s self-verification ability on-the-fly.

In the RISE framework, during each training iteration, the model first generates solutions for a batch
of problems. Subsequently, using these on-policy generated solutions and the original problems,
verification problems are constructed with a predefined template, prompting the model to critique
its own solution and provide a score. The same outcome verifier used to assess problem solutions
also provides ground-truth supervision for the verification task, based on an exact match between the
predicted verification score and the ground-truth solution score. Both the problem-solving trajectories
and the self-verification trajectories, along with their respective verifiable rewards, are then combined
to update the model’s parameters using a unified RL objective. This tight coupling enables the model
to learn not only to solve problems, but also to critique and verify its own outputs, fostering a more
dynamic and grounded self-improvement loop.

In our experiments, we implement and evaluate RISE using the Proximal Policy Optimization (PPO)
algorithm, applying it to the 1.5B, 3B, and 7B base models from the Qwen2.5 series. Compared to a
Zero-RL baseline, which incorporates only problem-solving supervision, RISE consistently improves
reasoning accuracy and achieves up to a 2.8× increase in verification accuracy on challenging
mathematical benchmarks. Moreover, RISE outperforms instruction-tuned models across both tasks.
For instance, RISE-3B improves the reasoning accuracy by 3.7 points and self-verification accuracy
by 33.4 points compared with Qwen2.5-3B-Instruct.

We also find that this enhanced self-verification ability contributes to improved test-time performance.
Specifically, RISE-3B and RISE-7B outperform standard majority voting by +0.2% and +1.9%,
respectively, under a k=4 inference budget. Further analysis reveals that RISE enhances the internal
reasoning process by encouraging more frequent and effective verification behaviors. Finally, our
ablations demonstrate that online verification is crucial to the success of RISE.

Our main contributions are as follows:

• We introduce RISE (Reinforcing Reasoning with Self-Verification), a novel online reinforcement
learning framework that explicitly and simultaneously trains LLMs to improve both problem-
solving and self-verification capabilities within a single, integrated RL process, leveraging verifi-
able rewards for both tasks on-the-fly.

• We demonstrate, through extensive experiments on challenging mathematical reasoning bench-
marks using a PPO-based implementation, that RISE significantly boosts problem-solving perfor-
mance while instilling robust self-verification skills in the LLM.

• We provide comprehensive analyses elucidating the critical role of RISE’s online verification
mechanism, the benefits of scaling verification training compute, and how the developed self-
verification capability contributes to more accurate and reliable solution generation.

2 Related Work

RLVR for LLM Reasoning In the literature, reinforcement learning has been widely used to align
language models with human preferences, typically through reward models or pairwise preference
comparisons [Christiano et al., 2017, Ouyang et al., 2022, Rafailov et al., 2023]. More Recently,
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful approach for im-
proving the reasoning capabilities of LLMs in domains such as mathematics and programming [Jaech
et al., 2024, Guo et al., 2025]. Using only outcome rewards, recent work has demonstrated the
scalability of RL algorithms for LLM reasoning [Guo et al., 2025, Team et al., 2025, Zeng et al.,
2025, Hu et al., 2025]. However, leveraging verifiable rewards not only for reasoning supervision but
also as a direct training signal for self-verification remains underexplored, which is the main focus of
RISE.

Learning to Solve and Verify Solution generation and verification are two foundational capabilities
of LLMs [Huang et al., 2024, Song et al., 2024], echoing the classic P versus NP dichotomy in
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computer science [Wikipedia contributors, 2025]. In the context of LLM reasoning, previous work
has focused on teaching models either to solve problems [Guo et al., 2025, Zelikman et al., 2022], to
verify solutions [Wang et al., 2024, Lightman et al., 2023, Shi and Jin, 2025, Zhang et al., 2024], or
to leverage the verification capability to perform self-improvement [Yuan et al., 2024, Xiong et al.,
2025] and self-calibration [Huang et al., 2025]. More recently, Lin et al. [2025] introduced a self-play
framework that trains LLMs to generate code and corresponding test cases through two-stage training,
and Ma et al. [2025] proposed training methods that teach LLMs to self-verify and self-correct
based on deliberately constructed trajectories. In contrast, we introduce an online RL framework
that explicitly leverages verifiable reward signals to jointly align the model’s problem-solving and
self-verification abilities in a unified training process.

3 Reinforcement Learning Preliminaries

Policy Gradient Methods The goal of RL is to learn a policy that maximizes the expected
cumulative reward (namely return), denoted as the performance measure J . Policy gradient methods
learn a parameterized policy that can select actions to maximize J without consulting other value
functions. Grounded by the policy gradient theorem [Sutton and Barto, 2018], the optimization is
performed as gradient ascent based on the gradient of J(θ) with respect to the policy parameter θ.

A large language model is naturally a parametrized policy πθ. The state at time t, denoted as st, is the
concatenation of the prompt x and the response y<t generated so far, while the action at is the next
token yt. T refers to total timestamps (response length + 1). Thus, the gradient can be expressed as:

∇θJ(θ) = Ex∼D,y∼πθ

[
T∑

t=0

∇θ log πθ(yt | x,y<t)At

]
.

The core part of this method is the advantage function At, which determines the extent to increase
or decrease the probability of selecting this action (token) in the given state. In practice, the
advantage function is implemented as cumulative discounted rewards subtracting an optional baseline,
representing how much better an action is compared to the alternatives:

At =

T∑
t=t0

γt−t0rt − b(st0), (1)

where γ ∈ [0, 1] is the discount factor for the future rewards and rt = R(st, at, st+1) is the re-
ward from the environment at time t. Different implementations of the baseline formulate mul-
tiple variants of policy gradient methods, including using learned state-value functions (e.g., RE-
INFORCE [Williams, 1992], Actor-Critic [Barto et al., 1983]), group-level reward means (e.g.,
GRPO [Shao et al., 2024]), and leave-one-out (e.g. RLOO [Ahmadian et al., 2024]).

Proximal Policy Optimization Proximal Policy Optimization (PPO) [Schulman et al., 2017] is
a popular algorithm of Actor-Critic method, which incorporates a critic model ϕ to help estimate
advantage for training the actor model θ (i.e., policy). One major improvement of PPO is penalizing
excessive policy updates and thereby maintaining training stability. In practice, the objective of the
actor model is defined as follows:

J (θ) = Et

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)
− βKL (πθ||πref )

]
, (2)

where rt(θ) =
πθ(yt|x,y<t)
πθold (yt|x,y<t)

. Clip() and KL() are two techniques used for limiting update magnitudes.
With Generalized Advantage Estimation (GAE) [Schulman et al., 2015], the advantage is estimated
as a λ-weighted sum of step-emporal-Difference (TD) errors:

Ât = δt + (γλ)δt+1 + · · ·+ (γλ)T−t−1δT−1, (3)

where δt = rt + γVϕ(st+1)− Vϕ(st).

T denotes response length with token indexes from 0 to T − 1. Vϕ(st) is the value predicted by the
critic model ϕ at state st, rt is the scalar reward from the environment at time t, and λ ∈ [0, 1] is
the GAE parameter that trades off between bias and variance. In practice, we set λ = γ = 1, thus
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Figure 1: Illustration of RISE, which consists of two stages: (i) Problem Solution & Verification
Generation: problems from the training batch are used to generate chain-of-thought solutions from
the model. Problems and model solutions are then formatted as verification prompts to generate
verifications of the solutions. (ii) RL Optimization: the original generation data and their verification
are mixed as the new batch, and the model is optimized based on the RL objective.

making the per-token loss averaged over the full response length T . By design, rt = 0 for t < T − 1,
and rt = r for t = T − 1 (i.e., outcome reward). After we update the actor model, the critic model
should also be updated for accurate value estimations. In practice, we use Mean Squared Error (MSE)
to measure the prediction loss and perform the update:

J (ϕ) = Et

[
max

(
(Vϕ(st)− V targ

t )2,
(
clip(Vϕ(st), Vϕold(st)− ϵ, Vϕold(st) + ϵ)− V targ

t

)2)]
,

(4)
where V targ

t = Vϕold(st) + Ât.

Verifiable Reward Unlike the rewards from conventional reward models which are continuous
values denoting the goodness of the response, verifiable rewards are usually discrete signals repre-
senting the correctness of the final result [Lambert et al., 2024, Guo et al., 2025]. Given the prompt
x and the complete response y from the LLM πθ, a classic verifiable reward is defined as a binary
value produced by a deterministic outcome verifier OV : r = OV (x,y) ∈ {0, 1}, where r = 1 if and
only if the final answer is exactly correct (e.g., the numeric result is mathematically equivalent to the
ground truth answer) and r = 0 otherwise. In practice, an auxiliary format reward can be included to
encourage the model to present its answer in a prescribed style.

4 Methodology: Reinforcing Reasoning with Self-Verification (RISE)

To address the challenge of superficial self-reflection, we propose RISE for self-improving reasoners,
which is a scalable online RL method with explicit verification objective. The key idea of RISE is
the use of the verifiable reward signal from the rule-based outcome verifier to align the model’s
verification ability on-the-fly. This enables us to teach the model to verify its own response at the
same time it solves the problem, as depicted in Figure 1 and Algorithm 1.

4.1 Online Reasoning and Verification

Problem Solution Generation Given an initial model πθ and a training set D = {(xi,y
∗
i )}

consisting of problems xi, and their corresponding ground-truth answers y∗
i , we begin each RL

iteration by sampling a data batch. At iteration t, the model first generates k solutions for each
problem in the batch, each comprising a chain-of-thought reasoning followed by a final answer.

Next, the reward is computed for each generated response. Following prior RLVR approaches, we
define a rule-based outcome verifier (OV) that incorporates both answer and format correctness:

ro(y,y
∗) =


1, boxed and matched
−0.5, boxed but not matched
−1, unboxed

(5)

Here “matched” means the final answer in the generated solution y is mathematically identical to the
provided ground truth y∗, and “boxed” means the final answer in y is wrapped in the \boxed{}.
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Algorithm 1 RISE (PPO)
Input Language model πθinit ; outcome verifier OV; dataset D; rollout number K; generation batch
size Bg , verification batch size Bv; verification prompt template T ; total iteration N .

1: Initialize: actor πθ← πθinit , old-actor πθold , critic πϕ, reference πref

2: for iteration = 1 to N do
3: Sample Bg samples for generation Pg = {(xi,y

∗
i )}

Bg

i=1 ∼ D
4: Get generation batch: ▷ Generate solutions

G ←
{
(xi,y

(k)
i , rov(y

(k)
i ,y∗

i ))
∣∣ y

(k)
i ∼πθ(·|xi), i≤Bg, k≤K

}
5: Select Bv triples P ′ = {(xi,yi, ri)}Bv

i=1 ⊆ G for verification
6: Pv ←

{(
T (x,y), r

)
| (x,y, r) ∈ P ′} // each element is a new prob-ans tuple (x,y∗)

7: Get verification batch: ▷ Verify generations
V ←

{
(xj ,y

(k)
j , rov(y

(k)
j ,y∗

j ))
∣∣ y

(k)
j ∼πθ(·|xj), j≤Bv, k≤K

}
8: Get complete training batch B ← G ∪ V
9: Estimate advantages Â using Eq. (3) ▷ Joint optimization

10: Update critic πϕ by critic loss in Eq. (4)
11: Update actor πθ by actor loss in Eq. (2); update θold ← θ
12: end for
Output Optimized actor model πθ

This produces the generation batch G = (x,y, r), where each element includes the input problem, a
model-generated solution, and its associated reward.

Online Solution Verification To construct verification data, we apply a predefined prompt template
(see Figure 8) to G, formatting the problem-solution pair into a new verification prompt xver that
explicitly states the verification criteria and asks the model to critique the provided solution and
assign a score. Since the criteria specified in the prompt are exactly the rules employed by the
outcome verifier, the original reward r from the generation phase is reused as the ground-truth
score for the verification task. Thus, for each triple (x,y, r) ∈ G, we construct the verification data
as (xver = T (x,y), y∗

ver = r). In practice, the amount of verification data is controlled by the
verification batch size, allowing a flexible balance between problem-solving and solution verification.

For each verification prompt, the model generates K responses, each containing a natural language
critique and a final score. These responses are evaluated using the same OV criteria as Eq. (5).
Concretely, the verification reward is determined by comparing the score extracted from the model’s
verification response with the reward assigned by the rule-based outcome verifier for the same judged
solution. A reward of +1.0 is given when the model correctly predicts the score in the specified
format (e.g., \boxed{1}); a reward of −0.5 is assigned when the predicted score is incorrect but the
format is valid; and a reward of −1.0 is applied when the response is in an invalid format (missing
the \boxed{} wrapper). This process yields the verification batch V = {(x,y, r)}, maintaining the
same structure as the problem-solution batch.

4.2 RL Integration

The preceding Online Reasoning and Verification stage is architecturally agnostic to the choice of the
underlying policy-gradient algorithm; its only algorithm-specific interface is the advantage estimator
Â used in the policy update. In our formulation, advantage values are computed from a concatenated
mini-batch B = G ∪ V , encompassing samples from both the reasoning and verification tasks. Since
every sample in B is annotated with a scalar reward and the action log-probability under the current
policy πθ, any estimator that maps a sequence of state–action–reward tuples to an advantage can be
incorporated without further structural change.

For our main experiments with PPO (see Algorithm 1), we apply GAE (Eq. 3) independently to
each trajectory. The generation and verification trajectories are jointly processed within the same
stochastic gradient descent (SGD) step, enabling the actor to be optimized with respect to both types
of data. Meanwhile, the shared critic learns a unified value function across tasks. PPO’s clipping
mechanism further ensures that updates remain stable within a consistent trust region.
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Table 1: Detailed results of RISE and other baseline methods on various math benchmarks. Zero-RL
models are trained under the same setting as RISE, but without the verification objective.

Reasoning Self-Verification
Model MATH AIME AMC Mine. Olym. Avg. MATH AIME AMC Mine. Olym. Avg.
GPT-4o 79.0 13.3 55.0 50.0 42.5 48.0 83.4 33.3 67.5 50.4 54.4 57.8

Qwen2.5-1.5B
Base 2.0 0.0 1.9 0.8 0.6 1.1 19.4 21.9 22.7 15.9 21.1 20.2
Instruct 37.5 0.8 19.4 8.3 11.7 15.5 48.8 22.1 36.5 36.9 29.6 34.8
SFT 10.1 0.0 4.1 1.8 2.0 3.6 19.0 5.8 12.3 10.5 10.9 11.7
Zero-RL 55.3 2.1 25.9 17.4 19.5 24.0 54.1 5.0 30.7 21.0 23.0 26.8
RISE 54.6 2.9 27.5 17.2 19.8 24.4 75.9 85.0 70.6 66.0 74.9 74.5
Qwen2.5-3B
Base 32.7 1.3 15.3 10.3 10.7 14.1 39.5 13.6 22.5 29.9 21.2 25.3
Instruct 61.0 3.8 34.1 25.6 24.6 29.8 65.6 21.0 45.5 37.6 35.0 40.9
SFT 14.4 0.4 5.3 2.9 2.8 5.2 21.5 2.1 10.9 17.9 13.2 13.1
Zero-RL 64.2 6.7 37.5 27.4 26.6 32.5 64.9 13.0 39.7 30.3 31.2 35.8
RISE 64.3 7.9 42.5 26.2 26.6 33.5 81.0 86.3 74.4 56.1 73.6 74.3
Qwen2.5-7B
Base 38.3 2.1 21.9 11.9 13.2 17.5 58.4 45.9 51.5 48.4 48.4 50.5
Instruct 73.8 10.0 50.6 35.9 35.8 41.2 77.2 26.3 57.0 40.2 45.2 49.2
SFT 28.7 0.8 13.8 6.2 7.2 11.3 40.5 36.6 47.4 39.2 36.1 40.0
Zero-RL 74.5 12.1 51.3 34.2 36.7 41.7 75.9 21.7 56.5 37.3 41.6 46.6
RISE 74.8 12.5 55.9 34.6 36.7 42.9 83.8 75.0 72.5 48.6 65.9 69.2

5 Experiment

5.1 Experiment Setup

Dataset We follow the previous study [Zeng et al., 2025] to utilize MATH-Hard (Level
3–5) [Hendrycks et al., 2021] as our training set, which in total comprising 8,523 problems. This
training set is used for all SFT baselines, Zero-RL baselines, and RISE models.

Models We conduct our main experiments on three Qwen2.5 models [Yang et al., 2024] with different
sizes (i.e., 1.5B, 3B, and 7B) for their strong reasoning capabilities. The RL training of our models is
based on the verl [Sheng et al., 2025] framework with a train batch size of 1024 and a mini-batch
size of 128. We follow [Zeng et al., 2025] by setting the sampling temperature to 1.0 and rollout
8 responses for each problem. The RISE models have a default verification batch size 128. We
set the RL configurations same for RISE models and Zero-RL models, ensuring a fair comparison.
Additionally, we include the RL experiments on Qwen3 models in Appendix H.1, where we observe
larger performance gains, further demonstrating the effectiveness of RISE on newer models.

Benchmarks We evaluate model performance on standard mathematical reasoning benchmarks:
MATH500 [Hendrycks et al., 2021, Lightman et al., 2023], Minerva Math [Lewkowycz et al., 2022],
OlympiadBench [He et al., 2024], and competition-level benchmarks AIME 2024 and AMC 2023.
Following [Zeng et al., 2025], we generate 8 responses per problem using a sampling temperature of
1.0, and report Pass@1 accuracy [Chen et al., 2021] as the evaluation metric. Solution correctness
is based on exact match of the final answer, and verification correctness depends on the agreement
between the predicted verification score and the score from the outcome verifier.

5.2 Experimental Results

Table 1 presents the results of RISE across model sizes and benchmarks.

RISE significantly enhances self-verification capabilities while improving reasoning perfor-
mance. RISE models consistently outperform their Zero-RL counterparts across both reasoning
and self-verification tasks on all model sizes. The improvement in self-verification is particularly dra-
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matic: RISE-1.5B achieves 74.5% average verification accuracy compared to just 26.8% for Zero-RL,
representing a 47.7 percentage point improvement. This demonstrates that our integrated approach
successfully develops robust self-verification skills while simultaneously enhancing problem-solving
capabilities. Notably, the verification improvements are particularly pronounced on the most
challenging benchmarks like AIME24 and OlympiadBench, suggesting that RISE enables models
to better recognize their limitations and errors on difficult problems.

Scaling model size improves reasoning performance while maintaining strong verification
capabilities. Scaling model size from 1.5B to 7B parameters consistently enhances reasoning
performance across all benchmarks. Interestingly, the verification performance of RISE models
remains consistently high across model sizes, with all models achieving over 69% average accuracy.
The ability to maintain strong verification capabilities while scaling reasoning performance aligns with
our contribution of developing a framework that simultaneously improves both critical capabilities.

RISE models outperform standard SFT and base models by a substantial margin. The results
clearly demonstrate that RISE models substantially outperform their SFT and base model counterparts.
For instance, RISE-7B achieves 42.9% average reasoning accuracy compared to just 11.3% for SFT-
7B and 17.5% for the base model. This substantial improvement demonstrates the effectiveness of
our integrated, online learning approach built upon state-of-the-art RLVR paradigms.

5.3 Test-Time Scaling with Self-verification
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Figure 2: Test-time scaling performance across different sampling budgets (“k”).

To further evaluate the benefits of the enhanced self-verification capabilities developed by RISE, we
investigate its impact at test-time using self-consistency majority voting (“maj@k”) [Wang et al.,
2023] and verification-weighted majority voting. In the latter, following [Wang et al., 2024], the
model’s self-generated verification scores for each candidate solution are used to weight its contribu-
tion in the majority vote. The results, presented in Figure 2, compare RISE models against Zero-RL
models across different sampling budgets (“k=4” and “k=8”). With the lightweight verification cost
(Appendix G.2), the experiments maintain fairness in terms of total sampling cost.

RISE consistently improves test-time scaling performance with self-verification and majority
voting. RISE models outperform their Zero-RL counterparts when employing test-time strategies
such as majority voting and verification-weighted selection. Across model sizes and sampling budgets,
RISE achieves higher average accuracy, with the largest relative gains observed when self-verification
scores are used to re-rank majority votes. For example, RISE-7B achieves an average score of 49.8%
with k = 8 + self-verify, surpassing Zero-RL’s 48.3% under the same conditions. This consistent
improvement confirms the effectiveness of integrating self-verification in both training and inference.

Verification-weighted voting delivers further accuracy gains. Incorporating self-verification
scores as weights in the voting process leads to additional accuracy improvements for all RISE models.
For instance, RISE-3B and RISE-7B models see improvements of +0.2% and +1.9% over standard
majority voting at the k = 4 budget, respectively. These results indicate that the self-verification
policy learned by RISE provides meaningful confidence signals for answer calibration.

7



5.4 Comparison with Off-the-shelf Verifiers
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Figure 3: Comparisons between RISE
(self-verify) and off-the-shelf verifiers.

We further compare the verification accuracy between
our RISE models as self-verifiers and off-the-shelf veri-
fiers, including a discriminative verifier (Math-Shepherd-
7B [Wang et al., 2024]) and a generative verifier (GPT-
4o [OpenAI, 2024]). Specifically, we use the verification
prompt in Figure 8 for both RISE models and GPT-4o
and adhere to the original logic for Math-Shepherd to ver-
ify the generated solutions. The results of RISE-1.5B,
3B and 7B are presented in Figure 3, which show that
RISE models consistently outperform existing outcome
verifiers in judge their solutions’ correctness. This serves
as a great advantage for the model to further improve its
test-time performance, by leveraging the self-verification
signal either externally or internally. Detailed results and
evaluation implementation can be found in Appendix D.

5.5 Analysis

In this section, we provide some insights into how RISE improves performance.
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Figure 4: Reasoning and verification reward at train time.

RISE demonstrates robust and si-
multaneous learning of problem-
solving and self-verification, with
self-verification skills developing no-
tably faster across different model
scales. The learning curves, il-
lustrated by the reward trends in
Figure 4, reveal a consistent and
steady improvement in both rea-
soning (problem-solving) and self-
verification rewards throughout the
RL training process for all evaluated
models. This uniform positive pro-
gression across varying model sizes highlights the robustness of the RISE framework in co-training
these two abilities, a core contribution of our work. A key observation is that the self-verification
reward generally exhibits a more rapid increase and reaches a higher relative level compared to the
problem-solving reward within the same training period. This aligns with the “Generation-Verification
Gap” posited by Song et al. [2024], suggesting that models might acquire verification capabilities
more readily than problem-solving abilities.
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Figure 5: Impact of verification data ratio.

Impact of Verification Compute
In the main experiment, we trained
our RISE models with a verification
batch size of 128, which is 12.5% of
the generation batch 1024. We fur-
ther explore the model performance
by scaling up the verification data
batch, i.e., the train-time compute, up
to 100% of the generation batch. In
practice, we choose the percentages S
of {0, 12.5%, 25%, 50%, 100%} and
perform experiment on our RISE mod-
els. The results are shown in Fig-
ure 5. The problem-solving perfor-
mance first increases, and then slightly decreases, and finally increases across the benchmark,
maintaining at a high level. Furthermore, the verification performance keeps scaling with more
training compute, indicating the robustness of scalability of our RISE method.
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Figure 6: Comparisons between online and offline
verification.

Online and Offline Verification We validate
the effectiveness of online verification by com-
paring it to a offline variant, where the verifica-
tion data are collected from a distant policy and
directly added to the training set. In practice,
we select the policy at step 96 (final step) of the
Zero-RL model and use its generated solutions
to construct offline verification set. In the exper-
iment, we keep the portion of verification data
and the training batch size same to eliminate
other influence factors, making the only chang-
ing variable the source of the verification data.
Figure 6 shows the results. While the problem-
solving performance of offline verification models are on par with the online ones, they have a
significant drop in terms of self-verification accuracy, which indicates the importance of online
verification designed in our RISE method.
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Figure 7: Verification frequency (left panel) and
its effectiveness in reasoning (right panel).

Enhanced Verification for Reasoning Be-
sides leveraging the self-verification ability ex-
ternally during the test-time as in § 5.3, such
ability is also internalized by the model to en-
hance its reasoning generation process. To anal-
ysis this effect from the quantitative perspec-
tive, we measure the Verification Frequency and
Self-Verified Reasoning Accuracy in model’s
problem-solving process. Inspired by [Yeo
et al., 2025], we use a set of verification key-
words to select the responses containing self-
verification behaviors, namely {“verify”, “ver-
ifying”, “recheck”, “validate”, “re-evaluate”}.

Figure 7 (left) presents the first result, where the
proportion of responses containing explicit verification phrases consistently rises after RISE training.
The increase is modest for the 1.5 B model (+0.05 absolute) but becomes more pronounced as model
scale grows (+1.09 for 3 B and +1.05 for 7 B). Since the decoding hyper-parameters are fixed, the
higher verification frequency arises from policy updates that jointly optimize for both solution and
verification rewards, an effect enabled by our first contribution, which integrates verification into a
unified RL training loop rather than treating it as a post-hoc heuristic. This mechanism allows models
to check their intermediate solutions before reaching the final conclusion in more cases.

Table 2: Examples of verification behaviors of different methods on Qwen2.5-7B: RISE can incur
more effectiveness self-verification in the reasoning.

Problem What is the least positive integer multiple of 30 that can be written with only the
digits 0 and 2?

Zero-RL To find the least positive integer multiple of 30 that can be written with only the
digits 0 and 2, we need to consider the properties of multiples of 30 . . . Since 222
is divisible by both 2 and 3, it is a multiple of 30. Let’s verify: 222 is even, so it
is divisible by 2. The sum of the digits of 222 is 2+2+2 = 6, which is divisible
by 3. Thus, 222 is indeed a multiple of 30. Therefore, the least positive integer
multiple of 30 that can be written with only the digits 0 and 2 is 222 .

RISE To find the least positive integer multiple of 30 that can be written with only
the digits 0 and 2, we need to . . . Therefore, the smallest number N is 2220. To
verify: 2220 ends in 0, so it is a multiple of 10. The sum of the digits of 2220 is
2 + 2+ 2+ 0 = 6, which is a multiple of 3. Since 2220 satisfies both conditions,
it is the least positive integer multiple of 30 that can be written with only the
digits 0 and 2. Thus, the final answer is 2220 .
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Simply asking the model to “verify” is not sufficient; the verification needs to be correct. In Figure 7
(right), we measure the accuracy of problems on which the model self-verifies. RISE yields clear
improvements over Zero-RL for self-verified reasoning accuracy at every scale: +3.3% (1.5 B), +1.7%
(3 B), and a striking +6.5% (7 B). These gains show that RISE’s online verifier reward shapes the
policy toward not only producing more verifications, but also ones that align with ground truth.

The case in Table 2 illustrates this distinction. Zero-RL “verifies” 222 by merely restating divisibility
rules, overlooking the necessity of a trailing zero for multiples of 30. RISE, in contrast, recomputes
both the units-digit constraint and the digit-sum divisibility test, ultimately validating the answer of
2220. Such structured, multi-step verification reflects a genuinely internalized skill and explains the
quantitative trend that higher verification frequency correlates with higher reasoning accuracy.

6 Conclusion

In this work, we introduced RISE, a novel online reinforcement learning framework that integrates
problem-solving with explicit self-verification training for LLMs. By leveraging verifiable rewards
for both generation and verification tasks within a unified RL objective, RISE aims to overcome
superficial self-reflection and foster more robust reasoning capabilities. Our experiments, primarily
using PPO with Qwen2.5 models on diverse mathematical reasoning benchmarks, demonstrate that
RISE significantly improves problem-solving accuracy while concurrently developing strong self-
verification skills. Notably, RISE models learn to verify their own solutions more effectively than
off-the-shelf verifiers and further benefit from leveraging this capability at test time. Together, RISE
provides a promising direction for building more reliable and self-aware LLM reasoners, adaptable to
various policy-gradient algorithms and extendable to other domains with verifiable rewards.
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The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.
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results, ablation studies, and further analysis, are clearly outlined in the abstract and the
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: Due to space limit, we discuss the limitations of this work and future work in
detail in Appendix A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This is an empirical paper which does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experiment details are provided in Section 5.1, Appendix C, and Appendix D.
Prompt templates are provided in Appendix B.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and documentations are provided in the supplementary materials to
facilitate the reproduction of experiment results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experiment setting and details are provided in Section 5.1, Appendix C and D.
Prompt templates are provided in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Following common practice in the RL post-training literature, we do not report
error bars due to the high computational cost of running multiple trials. Additionally, we
follow established conventions by reporting the pass ratio, which inherently averages over
multiple generations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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Justification: We provide a detailed description of the experimental environment in Ap-
pendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have ensured that the research conducted in our paper complies with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper does not identify any immediate or direct societal risks or benefits,
as the proposed method primarily introduces a training framework for reasoning tasks such
as mathematics. We emphasize that future works building upon our method should be
developed and applied responsibly.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work in this paper does not involve such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: License details are provided in Appendix E. We have fully complied with the
licensing terms and usage policies for all data, code, and models used in our experiments.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: For the new assets introduced in this paper, detailed documentation is provided
alongside the assets in the supplementary materials.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM is used only for writing and does not impact the core methodology,
scientific rigorousness, or originality of the research in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitations

On experiments: First, after training the LLM to self-verify its outputs, it may act as a pseudo–rule-
based verifier to further guide RL training without relying on ground-truth labels. This opens the
possibility of self-improvement on unlabeled data, which we leave for future work as it lies beyond
the main scope of this study. Second, the training data is exclusively drawn from math reasoning
tasks. Given the observed generalization performance, we expect the effectiveness of RISE to persist
when trained on other domains with verifiable rewards. Third, the metrics adopted for evaluating
verification effectiveness have certain limitations, as they do not capture the necessity of the emerged
verification behaviors. In this work, we use final reasoning accuracy as an indicator of goodness,
while future work could develop more fine-grained criteria that better quantify the necessity such as
partial trajectory correctness or model uncertainty.

On algorithm: RISE trains the LLM as a generative verifier that produces natural language critiques,
which has shown benefits for both reasoning and test-time scaling. An alternative design is to co-train
a discriminative verifier with a separate classification head. While it remains unclear how RISE would
perform in that setting, we believe this does not affect our main contributions which demonstrate the
effectiveness of generative verification in improving problem-solving capabilities.

B Prompt Templates

Prompt Template

Below you are presented with a question and a tentative response. Your task is to evaluate
and assign a rating to the response based on the following clear criteria:

Rating Criteria:

1. Missing final answer enclosed in \\boxed{} at the end: assign \\boxed{-1}.
2. Correct response with the final answer enclosed in \\boxed{} at the end: assign \\boxed{1}.
3. Incorrect response with the final answer enclosed in \\boxed at the end: assign \\boxed{-
0.5}.

### Question Begin ###
{Question}
### Question End ###

### Response Begin ###
{Response}
### Response End ###

Briefly summarize your analysis, then clearly state your final rating value enclosed in
\\boxed{} at the end.

Figure 8: Verification prompt used in the experiment.

Prompt Template

<|im_start|>system
Please reason step by step, and put your final answer within \\boxed{}.<|im_end|>
<|im_start|>user
{Input}<|im_end|>
<|im_start|>assistant

Figure 9: Prompt template used in the training and evaluation.
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Prompt Template

<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
{Input} Please reason step by step, and put your final answer within \\boxed{}.<|im_end|>
<|im_start|>assistant

Figure 10: Prompt template used for Qwen base model evaluation.

C Training Details

During RL training, we set the actor’s clipping ratio to 0.2 and disable the KL penalty loss. The critic
uses a clipping range of 0.5. The learning rates are fixed at 5 × 10−7 for the actor and 9 × 10−6

for the critic. The KL divergence coefficient is set to 1 × 10−2. We limit the maximum response
length to 3000 tokens, which already results in a negligible clip ratio. The full dataset is trained for
12 epochs. This configuration is shared across both the Zero-RL and RISE models.

For the SFT baseline models, we use a batch size of 32 and apply a cosine learning rate scheduler
with a learning rate of 2× 10−5 and a warm-up ratio of 1× 10−3. The dataset is trained for 3 epochs.

D Evaluation Details

D.1 Verification Evaluation with Other Verifiers

To evaluate the verification accuracy of RISE and GPT-4o (prompted as a verifier), we extract the
final verification score from each response and normalize it to either +1 (predicted correct) or 0
(predicted incorrect). The normalization is defined as:

snormalized =

{
1, s = 1

0, otherwise

which aligns with the criteria used by the rule-based outcome verifier. For the Math-Shepherd model,
which outputs a continuous score in the range [0, 1] (with 0 indicating the solution/step is predicted
to be incorrect and 1 indicating correct), we apply a threshold of 0.5 for normalization:

snormalized =

{
1, s > 0.5

0, otherwise

After normalization, we compute verification accuracy by directly comparing the predicted scores
against those returned by the outcome verifier.

D.2 Weighted Majority Voting with Self-Verification

In § 5.3, we explore the combination of self-consistency and self-verification in test time following
[Wang et al., 2024]. In practice, we initially classify solutions into distinct groups according to their
final answers. Following that, we extract and normalize the self-verification scores and normalize
them as +1 (correct) and 0 (incorrect) as in D.1. Since our score are binary and could lead to an
unexpected zero sum, we integrate Laplace smoothing for computing the mean score for the answer.
Formally, the final selected answer based on N candidate solutions is:

amaj@N+self-verify = argmaxa

N∑
i=1

I(ai = a)︸ ︷︷ ︸
frequency

·
α+

∑N
i=1 S(p, si)

N + αd︸ ︷︷ ︸
smoothed mean score

. (6)

where S(p, Si) is the score of the i-th solution assigned by the self-verification. In practice, we set
α = 2 and d = 2 empirically, suggesting a prior belief of a 0.5 average score.
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E Licenses

Datasets and Benchmarks. The training dataset is derived from MATH (MIT License). We evaluate
on five benchmarks: MATH 500 (MIT License), AIME 2024 (CC0: Public Domain), AMC 2023
(Apache License 2.0), Minerva Math (license not found), and Olympiad Bench (MIT License).

Framework. RL training is based on verl v0.2 (Apache-2.0 license), and SFT training is based on
trl [von Werra et al., 2020] v0.14.0 (Apache-2.0 license). Evaluation is performed using vllm frame-
work [Kwon et al., 2023] v0.7.2 (Apache-2.0 License) and the script is based on OpenMathInstruct-
2 [Toshniwal et al., 2024].

Models. We train our models based on the Qwen2.5 series. Specifically, Qwen2.5-1.5B3 and
Qwen2.5-7B4 are released under the Apache License 2.0, while Qwen2.5-3B5 is released under a
custom Qwen Research license. We also compare against Math-Shepherd6 model (license not found),
and GPT-4o (accessed via OpenAI API, governed by OpenAI Terms of Use7).

F Computing Resources

All experiments were conducted on machines with AMD EPYC 9K84 96-core CPUs and 8 NVIDIA
H20 GPUs. Our code is primarily based on Python 3.12.2 and PyTorch 2.5.1. RL training took
approximately 1 day for Qwen-1.5B and Qwen-3B, and 2 days for Qwen-7B. The SFT baseline
training required about 2 hours per model, and evaluation took roughly 1 hour per model. In total, the
experiments consumed approximately 700 GPU hours. Including preliminary and failed runs, the
overall project required more compute.

G Detailed Experiment Results

G.1 Detailed Comparison with off-the-shelf verifiers

In § 5.4, we report the average verification accuracy across the five benchmarks. Here, we present the
detailed verification accuracy comparison between RISE models, Math-Shepherd, and GPT-4o on
each evaluation benchmark.
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Figure 11: Detailed comparisons of verification accuracy between RISE-1.5B and other verifiers.

3https://huggingface.co/Qwen/Qwen2.5-1.5B
4https://huggingface.co/Qwen/Qwen2.5-7B
5https://huggingface.co/Qwen/Qwen2.5-3B
6https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm
7https://openai.com/policies/row-terms-of-use/
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Figure 12: Detailed comparisons of verification accuracy between RISE-3B and other verifiers.
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Figure 13: Detailed comparisons of verification accuracy between RISE-7B and other verifiers.

G.2 Verification Cost

Table 3: Average reasoning and verification token
usage across RISE models.

Model Reason. Veri. Ratio (V/R)
RISE-1.5B 676 13 0.02
RISE-3B 686 94 0.14
RISE-7B 693 52 0.08

To assess the verification cost, we compute the
average verification token usage across the five
evaluated benchmarks, as summarized in Ta-
ble 3. In general, the cost of solution verification
is lightweight compared to the problem-solving
process, with ratios ranging from 0.02 to 0.14.
The verification responses optionally highlight
the critical issues and provide the final score suc-
cinctly. This property allows us to incorporate
the verification outputs from RISE models at test time (e.g., through weighted majority voting)
without introducing significant computational overhead, thereby maintaining fairness in comparison
to baseline budgets and preserving the robustness of RISE under realistic evaluation settings. We also
provide the results with adjusted sampling budgets in Table 4 for reference, where RISE continues to
improve upon vanilla majority voting and outperforms the Zero-RL baselines in most cases.
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Table 4: Test-time scaling (maj@k) performance under adjusted sampling budgets. Zero-RL and
RISE results are measured under baseline budget; SV denotes Self-verify.

Model RISE + SV Budget Baseline Budget Zero-RL RISE RISE + SV
k = 4

Qwen2.5-1.5B 4.08 sols 4 sols 26.5 28.3 28.5
Qwen2.5-3B 4.52 sols 5 sols 37.3 38.6 38.5
Qwen2.5-7B 4.32 sols 4 sols 45.6 46.7 48.6
k = 8

Qwen2.5-1.5B 8.16 sols 8 sols 29.1 31.4 31.7
Qwen2.5-3B 9.12 sols 9 sols 39.1 39.2 40.7
Qwen2.5-7B 8.64 sols 9 sols 49.1 48.2 49.8

G.3 Detailed Analysis for Enhanced Verification

In Figure 7, we report the average verification frequency and accuracy of self-verified solutions on
the five benchmarks. Here, we present the fine-grained results between RISE models and Zero-RL
baseline on each evaluation benchmark.

Table 5: Performance comparison between RISE models and Zero-RL models on verification
frequency and effectiveness for the generation.

Method Verification Frequency

MATH AIME AMC Minerva Olympiad Avg.
Qwen2.5-1.5B-Zero-RL 6.45 6.67 7.81 2.25 15.59 7.75
RISE-1.5B 7.10 8.75 5.31 2.53 15.31 7.80
Qwen2.5-3B-Zero-RL 4.90 8.33 14.29 2.99 8.72 7.85
RISE-3B 4.63 9.17 18.18 3.08 9.67 8.94
Qwen2.5-7B-Zero-RL 5.30 5.00 7.19 1.56 8.19 5.45
RISE-7B 6.08 7.92 8.13 1.79 8.57 6.50

Self-Verified Reasoning Accuracy

Qwen2.5-1.5B-Zero-RL 37.21 0.00 24.00 24.49 15.59 20.26
RISE-1.5B 38.73 4.76 35.29 23.64 15.31 23.55
Qwen2.5-3B-Zero-RL 45.92 0.00 14.29 20.00 19.96 20.03
RISE-3B 43.78 4.55 18.18 22.39 19.54 21.69
Qwen2.5-7B-Zero-RL 62.74 0.00 8.70 35.29 26.70 26.68
RISE-7B 65.43 5.26 38.46 28.21 28.73 33.22

Table 6: Reflection Keywords Rate between RISE models and Zero-RL models.

Method Verification Frequency in Generation

MATH AIME AMC Minerva Olympiad Avg.
Qwen2.5-1.5B-Zero-RL 0.16 0.40 0.26 0.16 0.29 0.25
RISE-1.5B 0.19 0.45 0.29 0.16 0.32 0.28
Qwen2.5-3B-Zero-RL 0.14 0.40 0.24 0.11 0.27 0.23
RISE-3B 0.16 0.45 0.20 0.13 0.29 0.25
Qwen2.5-7B-Zero-RL 0.13 0.38 0.23 0.08 0.23 0.21
RISE-7B 0.14 0.50 0.29 0.10 0.27 0.26

G.4 Reflection Keywords Analysis

Following Yeo et al. [2025], we track the self-reflection keywords {“wait”, “however”, “alterna-
tively”, “retry”, “recheck”} to quantitatively measure the general reflection behaviors beyond the
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self-verification among the model problem-solving responses. In practice, we sum the total word
counts for the keyword set and normalize it by the dataset size.

The results in Table 6 show that our RISE model constantly have a higher level of reflection-related
behaviors than the Zero-RL models, indicating the positive effect of self-verification training.

H Generalization Results

H.1 Generalization on Qwen3 Models

Table 7: Performance comparison of RISE and baseline methods for Qwen3 models.

Reasoning Self-Verification
Model MATH AIME AMC Mine. Olym. Avg. MATH AIME AMC Mine. Olym. Avg.
Qwen3-4B-Base
Base 39.4 6.3 24.1 12.6 17.8 20.0 60.9 72.6 61.9 59.4 63.8 63.7
Zero-RL 73.7 13.3 45.9 29.5 37.2 39.9 73.7 39.9 52.9 37.9 47.8 50.4
RISE 77.8 12.9 52.8 43.4 40.6 45.5 87.4 79.6 70.9 50.8 68.0 71.3
Qwen3-8B-Base
Base 42.5 8.3 28.4 15.4 18.4 22.6 67.0 65.5 64.4 62.9 62.0 64.4
Zero-RL 77.6 13.8 58.1 37.7 41.6 45.7 79.7 54.1 68.8 46.9 56.9 61.3
RISE 83.0 21.3 59.4 48.4 44.4 51.3 91.8 85.4 87.4 53.4 72.2 78.1

To further demonstrate the effectiveness of RISE, we conduct a new set of experiments on the latest
Qwen3 models (Apache 2.0 License). As the mathematical reasoning capability of Qwen3 has been
shown to be substantially higher than that of Qwen2.5 [Yang et al., 2025], we construct a more
challenging training set to better match their ability. Specifically, we downsample the DeepMath-
103K [He et al., 2025] dataset (MIT License) by difficulty level to obtain a 10K subset. Using this
data, we train both Qwen3-4B-Base and Qwen3-8B-Base models with the Zero-RL (vanilla PPO)
baseline and our RISE, under identical configurations except for the inclusion of the verification
objective. For RISE models, we set the verification batch size to 128 by default, consistent with
the Qwen2.5 experiments. After training, we follow the same evaluation protocols as in the main
experiment to assess model performance on both problem-solving and solution verification tasks.
The results, summarized in Table 7, show that RISE achieves substantial improvements in reasoning
accuracy over the Zero-RL baseline, with average gains of +5.6% and +5.6% for the 4B and 8B
models, respectively. Verification accuracy also improves markedly (+20.9% for the 4B model
and +16.8% for the 8B model). Together with our main experiments on Qwen2.5, these results
demonstrate the generalizability and effectiveness of RISE across different model scales and families.

H.2 Generalization on Diverse Tasks

Table 8: Performance of RISE and baseline models on diverse tasks.

Model MMLU-Pro GPQA HumanEval Veri. Acc. (Avg)
Qwen2.5-1.5B-Zero-RL 19.7 20.0 39.9 21.4
RISE-1.5B 21.3 23.0 44.7 67.7
Qwen2.5-7B-Zero-RL 46.3 27.8 63.7 49.5
RISE-7B 47.4 28.3 64.1 62.1

To evaluate the cross-domain generalization of RISE beyond mathematical reasoning, we further
conduct a zero-shot transfer study on RISE models. Concretely, we directly test the math-tuned
models on diverse tasks, including general knowledge (MMLU-Pro), science (GPQA-Diamond), and
code generation (HumanEval). The results in Table 8 show that RISE-1.5B and RISE-7B consistently
outperform their Zero-RL baselines in both reasoning and verification accuracy across these out-of-
distribution domains. These findings indicate that the self-verification ability learned by RISE is
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robust and transferable, providing benefits even in tasks unseen during training. Future work could
try applying RISE to broader domains where verifiable reward signals are available.

H.3 Comparison to Separate Training of Reasoning and Verification

Table 9: Reasoning and verification accuracy for
Qwen2.5-3B Finetuned Models.

Model Reason. Veri.
Base 14.1 25.3
Zero-RL (Solver)
+ Zero-RL (Verifier) 32.5 78.3
RISE 33.5 74.3

While our main focus is to improve the rea-
soning capability of a single LLM rather than
building a multi-agent system with specialized
components, we provide pilot results on sepa-
rately fine-tuned solver–verifier models using
the medium-sized Qwen2.5-3B. Specifically, we
use the same MATH-Hard dataset and finetune
an additional verifier model on the Zero-RL
model’s (i.e., solver) solutions, formatted as ver-
ification problems. As shown in Table 9, the
results averaged over five benchmarks indicate that RISE achieves higher overall reasoning perfor-
mance, despite being slightly less verification-accurate than the separately trained verifier. Unlike this
separate training scheme, RISE improves model performance holistically and scales more efficiently,
requiring significantly less training and inference cost.

H.4 Verification on External Solution Set

Table 10: Verification performance of RISE mod-
els and other verifiers on the external solution set.

Verifier Model Verification Accuracy
RISE-1.5B 67.9
RISE-3B 74.4
RISE-7B 70.7
GPT-4o 57.8
Math-Shepherd 58.9

Although we mainly use the verification ability
of RISE models for self-improvement purposes,
we construct a test set with external solutions
to address potential concerns about verification
generalizability. Specifically, we use GPT-4o’s
solutions on the five evaluated benchmarks and
ask the models to verify their correctness. The
results are shown in Table 10, which indicate
that RISE models still maintain a high level of
verification accuracy on the external solutions.
This suggests that the verifier learned by RISE
generalizes well beyond its own generation style and has acquired a robust notion of correctness.

I Cases Study

Case Study

### Analysis:
The response provided contains several errors and incorrect calculations. Here’s a step-by-
step breakdown of the issues:
1. **Triangle Type Identification**: The response incorrectly identifies the triangle as a right
triangle based on the Pythagorean theorem, but it does not correctly apply the theorem to
confirm the right angle.
2. **Angle Bisector Theorem Application**: The Angle Bisector Theorem is applied
incorrectly, leading to an incorrect ratio for BD and DC.
3. **Length Calculation of AD**: The length of the angle bisector AD is calculated
incorrectly using the formula for the length of the angle bisector in a right triangle.
4. **Power of a Point Theorem**: The application of the Power of a Point theorem is
incorrect, leading to an incorrect value for AP .

### Final Rating:
\\boxed{-0.5}

Figure 14: Example verification returned by RISE-7B on AIME 24.
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