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Abstract
Code-switching (CS) is still a critical challenge001
in Natural Language Processing (NLP), due002
to the limited availability of large-scale, di-003
verse CS datasets for robust training and eval-004
uation. Despite recent advances, the true ca-005
pabilities and limitations of LLMs in handling006
CS remain underexplored. In this work, we007
investigate the extent to which LLMs can be008
used in a framework for CS text generation, fo-009
cusing on the English-Spanish language pair.010
Our proposed methodology consists of back-011
translating natural CS sentences into monolin-012
gual English, and using the resulting parallel013
corpus to fine-tune LLMs to turn monolingual014
sentences into CS. We thoroughly analyse the015
models’ performance through a study on hu-016
man preferences, a qualitative error analysis, an017
evaluation with popular reference-based met-018
rics and LLM-based judgment. Results show019
that fine-tuning can be a key step to ensure020
that current LLMs consistently generate fluent021
code-switched text and that our methodology022
generates high-quality outputs, expanding re-023
search opportunities in CS communication. We024
find that traditional metrics do not correlate025
with human judgement when assessing the qual-026
ity of the generated CS data but LLM-based027
judgment aligns more closely with human pref-028
erences. We release our code and generated029
dataset under a CC-BY-NC-SA license.1030

1 Introduction031

Code-Switching (CS) consists of mixing two or032

more languages within a single utterance and is033

a common phenomenon in multilingual settings034

(Tucker, 2001). Although it is mainly present in035

spoken interactions, it can also be found in written036

interactions on-line (Appel and Muysken, 2005;037

Sarkisov, 2021), where it appears jointly with other038

features of informal speech. Example 1 shows039

an utterance where the speaker switches between040

English and Spanish.041

1URL to be announced upon acceptance.

(1) Why make everybody sentarse atrás pa’ que 042

everybody has to move pa’ que se salga. 043

Why make everybody sit at the back so that 044

everybody has to move so that she may get 045

out.2 046

(Poplack, 1980) 047

Despite the prevalence of code-switching, most 048

research in Natural Language Processing (NLP) 049

assumes monolingualism as a standard for human 050

communication. However, this implicit decision 051

means that state-of-the-art models are not able to 052

properly interpret or generate CS data. Even ad- 053

vances in multilingual language modelling (Lin 054

et al., 2022; Chowdhery et al., 2023) have not 055

led to significant improvements, and performance 056

on CS data is still poor compared to performance 057

on monolingual data (Aguilar et al., 2020; Winata 058

et al., 2021). This occurs because there is little CS 059

text available in the multilingual pretraining data. 060

Similarly, there are no parallel datasets available 061

to learn to generate CS in a supervised fashion, as 062

one would expect for tasks such as machine transla- 063

tion. Finally, existing methodology for evaluating 064

automatically generated CS text, which has specific 065

needs different from other text generation tasks, are 066

still not good enough and fail to capture nuances 067

of CS text (Srivastava and Singh, 2021). It is there- 068

fore crucial to develop methodologies to enable 069

models to generate natural CS text and simulta- 070

neously implement robust evaluation frameworks 071

that can assess how well NLP systems handle CS 072

across multiple tasks. We argue that both of these 073

goals require models that can conditionally gener- 074

ate CS from monolingual text. Consequently, our 075

research focuses on the development of a method- 076

ology to fine-tune and evaluate LLMs on the task 077

of CS generation, following three main research 078

questions: 079

2In all examples of CS featured in this paper, Spanish
parts are shown in italics, in both the original instance and its
translation.
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RQ1: What are the comparative strengths and080

limitations of fine-tuned versus non-fine-tuned081

LLMs in generating fluent and natural code-082

switched text?083

RQ2: How can we leverage LLMs to create high-084

quality pseudo-parallel data for fine-tuning LLMs085

in CS text generation?086

RQ3: Do automatic metrics for Natural Lan-087

guage Generation (NLG) or LLM judges correlate088

well with human judgement for the task of CS gen-089

eration?090

Based on these research questions, we propose091

a novel approach to generate CS from monolin-092

gual text using LLMs and apply it to the English-093

Spanish pair. We create a new parallel English–CS094

corpus, EN-CS, by leveraging natural CS data095

and using LLMs to perform back-translation from096

CS into English, resulting in high-quality pseudo-097

parallel pairs, suitable for training and evaluating098

models on CS generation (RQ2). We provide a099

comprehensive comparison of CS generation us-100

ing LLMs in both zero-shot and fine-tuned settings,101

and we compare their performance against that of a102

dedicated machine translation (MT) model (RQ1).103

Finally, we evaluate our methodology both qual-104

itatively, with a study on human preferences and105

a manual error analysis, and quantitatively, using106

automatic NLG metrics and LLM as a judge, which107

allows us to study the correlation between human108

and automatic evaluation for this task (RQ3).109

2 Related Work110

Perspectives in linguistics. CS naturally occurs111

in communities where two or more languages are112

in contact, making it a subject of interest to fields113

like sociolinguistics and psycholinguistics. From a114

social perspective, it can be affected by speakers’115

attitudes towards the languages and the CS phe-116

nomenon itself. In this respect, it is related to no-117

tions of prestige and identity (Heredia et al., 2025).118

For example, in bilingual communities where a lan-119

guage is minoritized, CS can be seen as an intrusion120

of the majority language (Dewaele and Wei, 2014).121

However, for migrant communities, it may be a way122

to preserve their mother tongue and as an “emblem123

of ethnic identity” (Poplack, 1980). Its importance124

in different social contexts highlights the need to125

consider CS in NLP research, as it plays a crucial126

role in linguistic interactions and, consequently, the127

development of language technologies.128

Datasets & benchmarks for CS. Most code- 129

switched data stems from social media, while other 130

popular data sources include recordings and tran- 131

scriptions (Winata et al., 2023). Shared tasks using 132

such CS data have been organized for the tasks 133

of Language Identification (Solorio et al., 2014; 134

Molina et al., 2016) and Sentiment Analysis (Patwa 135

et al., 2020). Similarly, two benchmarks exist to 136

evaluate model performance on CS text, covering 137

different language pairs and tasks: LINCE (Aguilar 138

et al., 2020), which covers tasks such as Part Of 139

Speech tagging or Sentiment Analysis; and GLUE- 140

CoS (Khanuja et al., 2020), which focuses on NLU 141

tasks for Hindi-English. Unfortunately, GLUECoS 142

cannot be currently used without access to the X 143

API. 144

CS generation. CS generation has seldom been 145

tackled in previous research. Approaches include 146

linguistically informed techniques to find plausible 147

switching points (Pratapa et al., 2018; Gupta et al., 148

2020; Gregorius and Okadome, 2022; Hsu et al., 149

2023), data augmentation (Tarunesh et al., 2021) 150

and, more recently, prompting LLMs for CS gen- 151

eration (Yong et al., 2023). While CS generation 152

is often evaluated by human annotators (Tarunesh 153

et al., 2021; Gregorius and Okadome, 2022), there 154

remains a need for robust automatic evaluation 155

methodologies to assess the naturalness and flu- 156

ency of the generated texts, with some recent stud- 157

ies already exploring approaches like Judge-LLMs 158

(Kuwanto et al., 2024). 159

3 Parallel Data Creation 160

In this work we present a novel approach to gener- 161

ate code-switched text from monolingual sentences. 162

As a first step, we create a synthetic parallel corpus 163

from an initial set of English-Spanish CS sentences 164

from the LINCE benchmark (Aguilar et al., 2020) 165

with their English monolingual equivalents, gen- 166

erated by the Command R model (Cohere For AI, 167

2024). We exploit the fact that LLMs struggle to 168

generate CS text given a monolingual sentence (c.f. 169

Section 5), but are able to more reliably convert 170

a CS sentence to its corresponding monolingual 171

version, especially when the target language is En- 172

glish. After having created this pseudo-parallel 173

corpus, we use it to fine-tune LLMs on the task of 174

conditional code-switching generation, presented 175

in Section 4. 176
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3.1 The LINCE benchmark177

We use LINCE as a starting point, a popular bench-178

mark that has been widely used to evaluate CS179

systems (Aguilar et al., 2020), which is available180

in 6 language pairs. All sentences in LINCE are181

tokenized, and each token is annotated with a lan-182

guage tag as well as other categories depending183

on the task. In our work we focus on the English-184

Spanish pair and filter all sentences in the data that185

do not contain CS, similarly discarding all the task-186

specific annotations. Example 2 shows a random187

instance from LINCE.188

(2) estaba aquí three feet away .
spa spa eng eng eng eng&spa

189

LINCE comprises around 95, 000 train, 20, 000190

development, and 33, 000 test instances for the191

English-Spanish pair. We deduplicate the instances192

among splits, and filter and pre-process the in-193

stances to ensure that they are suitable for our task194

by removing links, replacing usernames with the195

placeholder <user>, and detokenizing all instances196

with the script provided as part of the Moses toolkit197

(Koehn et al., 2007). After this preprocessing, we198

obtain a more natural version of the LINCE data. A199

preliminary analysis reveals that many sentences in200

LINCE are monolingual or contain a single word in201

one language that often correspond to a borrowing,202

as shown in Example 3. In order to ensure that203

all of our sentences actually contain CS, we filter204

sentences that do not have at least two words in205

each language.206

(3) I need a shot of tequila or a glass of scotch207

to keep me warm right now.208

After these pre-processing and filtering steps, we209

end up with 12, 933 train, 2, 461 development and210

5, 353 test instances. The comparison between the211

original size of LINCE and the final number of212

sentences selected for our experiments after pre-213

processing is shown in Table 1.214

3.2 EN-CS215

The next step in our method requires creating a216

pseudo-parallel English-CS dataset by translating217

the natural code-switched instances into monolin-218

gual text. As there are no available machine trans-219

lation systems to convert from English-Spanish CS220

text to English monolingual text, we instead make221

use of prompt engineering, using the Command R222

Train Dev Test

Original 94,728 19,574 33,361
Pre-processed 12,933 2,461 5,353
EN-CS 10,703 791 1,040

Table 1: Size of original LINCE (EN-ES) compared to
the automatically filtered instances and the final set of
parallel instances, dubbed EN-CS.

model (Cohere For AI, 2024), one of the strongest 223

publicly available models at the time. 224

We perform an initial set of experiments to deter- 225

mine the optimal prompt to generate monolingual 226

English versions of the code-switched data. Ideally, 227

we aim for a prompt that generates translations that 228

maintain the meaning of the original sentences, are 229

fluent and natural, whose grammar is correct, and 230

that do not contain any Spanish words or phrases. 231

After extensive testing (see Appendix A), we use 232

the following prompt in a 5-shot setting: Now con- 233

vert this code-switched phrase to English. Leave 234

the parts in English as they are, focus on translat- 235

ing the parts in Spanish. Finally, we filter output 236

instances that contain profanity that was not present 237

in the source texts or irrelevant information, such 238

as “Of course, here’s your translation:”. 239

In order to create a valid gold standard test set, 240

we perform a manual post-edition of the the mono- 241

lingual test translations for 1, 040 instances of the 242

LINCE test set. The post-edition was carried out 243

by three proficient speakers of English and Span- 244

ish, who were provided with specific guidelines as 245

shown in Appendix B. 246

Table 1 shows the final size of the parallel cor- 247

pus, which we dub EN-CS, after post-processing 248

and post-edition, and Table 2 shows examples of 249

silver and gold instances. The final version of our 250

dataset therefore contains 10, 703 train and 791 de- 251

velopment instances with automatically translated 252

English sentences matched to their original CS sen- 253

tences, and 1, 040 gold instances with post-edited 254

English translations. 255

3.2.1 Quality assessment 256

We evaluate the quality of the automatic transla- 257

tions (train/dev) by measuring two dimensions: 258

the overall fluency of the sentences and adequacy 259

of the translations in respect to the source texts. 260

Two fluent English-speaking annotators evaluate 261

the same 100 random instances using a 5-point Lik- 262

ert scale (Callison-Burch et al., 2007) and obtain 263
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Original English

Silver
you just have to tell me que como te va. You just have to tell me how it’s going.

osea i know we wanna party pero tampoco no aya asta dallas like i know we want to party but not all the way to dallas

Gold
hasta venir a plaza se siente like home. even coming to the square feels like home.

me siento tan pendejo right now. i feel so stupid right now.

Table 2: Examples of the EN-CS parallel corpus. Left: original code-switched instances, right: generated (silver) or
post-edited (gold) English instances.

4.6 (fluency) and 4.5 (adequacy) points on average,264

which show the quality of the generated transla-265

tions. A quadratic Cohen’s κ of 0.57 indicates266

moderate agreement, likely due to lower Likert267

scores (1, 2, and 3) being rarely selected by the268

annotators, which is a known problem for κ (Xu269

and Lorber, 2014; Barnes et al., 2025). In fact, the270

raw agreement between annotators is substantially271

higher: 0.71 for fluency and 0.65 for adequacy. See272

Appendix C for further details.273

To estimate the quality of the post-edition pro-274

cess, we compare the post-editions of two anno-275

tators on 100 additional random instances. The276

results show that 75% of the sentences remain un-277

changed, as they are already adequate. There is a278

87.87% similarity between the post-editions of the279

two annotators, as measured by Levenshtein dis-280

tance, demonstrating a high degree of consistency281

and quality in the post-edition process.282

4 CS generation experiments283

With EN-CS as our starting point, we frame CS gen-284

eration as a machine translation task, with English285

as the source and CS as the target language, where286

parts of the source sentence have to be translated287

to Spanish. In our experiments, we fine-tune four288

small-sized generative models, namely, Llama3 8B,289

Llama3 Instruct 8B (Dubey et al., 2024), Mistral290

7B and Mistral Instruct 7B (Jiang et al., 2023).291

To fine-tune the models, we use the causal lan-292

guage modelling objective, but with appropriate293

input formats for the base and instruct models. For294

base models we use templates (Zhu et al., 2024)295

in the form of “<X>=<Y>”, where <X> and <Y>296

are placeholders for the input English sentence and297

generated CS, respectively. At inference, the sec-298

ond code-switched part is left empty for the model299

to fill. For instruction-tuned models, we provide a300

system prompt with the instruction, a query by the301

user in English, and an answer from the assistant302

with the code-switched target. At inference time,303

the answer is left blank (See Table 7 in Appendix D304

for example prompts). 305

All models are trained using Quantized Low- 306

Rank Adaptation (QLoRA) (Dettmers et al., 2023) 307

with standard parameters: the model is loaded in 4 308

bit with NF4 quantization data type and bf16 com- 309

putational data type. The LoRA rank and scaling 310

factor are set to 16 and the dropout to 0.05. We 311

apply the LoRA update matrices to the attention 312

blocks and do not train bias parameters. Regard- 313

ing the hyperparameters, we only tune the learning 314

rate (1e-4, 5e-4, 1e-3 and 5e-3) and training epoch 315

∈ [1 . . . 10], choosing the parameters that give the 316

lowest cross-entropy loss on the development set 317

for each model. We use the transformers package 318

(Wolf et al., 2020) for all training experiments. 319

Early experiments indicated that fine-tuned mod- 320

els usually produce the desired output up to a punc- 321

tuation mark and then either begin to translate the 322

sentence again or hallucinate more content. We 323

therefore truncate the output up to a punctuation 324

mark where the length is closest to that of the orig- 325

inal sentence (Bawden and Yvon, 2023). 326

As baselines, we include few-shot exper- 327

iments by directly prompting GPT-4o and 328

Llama3.3 70B Instruct to generate CS text using a 329

5-shot approach (see Table 7 in the Appendix). We 330

refer to these systems in the experiments as GPT- 331

4ofs and Llama3.3-70Bfs, respectively. We also 332

include a strong dedicated MT baseline, developed 333

by fine-tuning the NLLB (team et al., 2022) model 334

(nllb-200-distilled-600M) using EN-CS. 335

The model was trained with standard settings. 3 336

Table 3 shows an example of the outputs of the 337

different models, compared to the original code- 338

switched sentence, and the English monolingual 339

sentence that they received as input. 340

3A batch size of 32, learning rate of 1× 10−4, using con-
stant learning rate schedule with 1,000 warmup steps, a gradi-
ent clipping threshold of 1.0, and a weight decay of 1× 10−3.
Training was conducted for 50,000 steps. For evaluation, we
selected the checkpoint that achieved the highest BLEU score
on the development set.

4

https://huggingface.co/Undi95/Meta-Llama-3-8B-hf
https://huggingface.co/Undi95/Meta-Llama-3-8B-Instruct-hf
https://huggingface.co/mistralai/Mistral-7B-v0.3
https://huggingface.co/mistralai/Mistral-7B-v0.3
https://huggingface.co/mistralai/Mistral-7B-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct


Model Generated Output

Original (Gold) damm todos se casaron and we still single lol forever alone
English (Source) damn everyone got married and we’re still single lol forever alone

Llama3 damn todos se fueron a casarse y nosotras estamos solitarias lol forever alone
Llama3 Instruct damm every1 got married and we’re still single lol alonso solit@o foreverrrr lolololo
Mistral damm everyone got married y ni somos esa lol ofrever alone
Mistral Instruct dude todo el mundo se casó y nosotros hemos quedado solteros lol
Llama3.3-70Bfs damn todo el mundo se casó y nosotros seguimos solteros lol forever alone
GPT-4ofs damn todos se casaron y nosotros seguimos solteros lol forever alone
NLLB damn everyone got marry and its still single lol forever alone

Table 3: Example from the test set and the generated outputs of the different models.

5 Qualitative evaluation341

As a first step to assess the quality of the outputs342

produced by the different models, we perform a343

manual qualitative analysis of the results in two344

parts: a pairwise tournament-based human evalua-345

tion, and an in-depth analysis of the most common346

errors made by the models and their distribution.347

5.1 Preference based evaluation348

We perform a tournament-based evaluation that al-349

lows us to determine the ranking of models in terms350

of human preference. A total of 880 instances are351

matched against each other, corresponding to the352

outputs of the seven models for 110 English source353

sentences, as well as the gold standard reference.354

The evaluation is conducted pairwise, requiring an-355

notators to choose the best out of two sentences or356

declare a tie. When choosing the best sentence, an-357

notators do not know the original English sentence,358

nor which model produced what output. This pro-359

cess results in 110 ·
(8
2

)
= 3, 080 comparisons, and360

was carried out by 14 annotators, with each annota-361

tor performing at most 300 random comparisons.362

Annotators are provided with a series of criteria363

to choose between the instances, based on the error364

analysis described in the next section. They must365

take into account three main criteria, which must366

be applied in the following order: a) the presence367

and naturalness of the CS; b) the content and flu-368

ency of the sentences; and c) the orthographical369

errors of the instances (correct punctuation, pres-370

ence of typos, etc.). Annotators are furthermore371

asked to avoid declaring ties, unless completely372

necessary (e.g., in a case where both sentences are373

completely monolingual and therefore equally in-374

Human GPT
Model Score Rank Score Rank
Gold Standard 525.0 484.5

Llama3 423.0 374.0 4

Llama3 Instruct 393.0 367.5 5
NLLB 391.0 4 304.0 8
Mistral 368.0 5 334.5 6

GPT-4ofs 366.5 6 478.0

Llama3.3-70Bfs 307.0 7 428.0
Mistral Instruct 306.5 8 309.5 7

Table 4: Ranking of models according to human pref-
erence (c.f. Section 5.1) and using GPT as a judge (c.f.
Section 6.2).

correct) to compel them to develop a preference. 375

The complete annotation guidelines are available in 376

Appendix E. Inter-annotator agreement on a subset 377

of 100 sentence pairs shows substantial agreement 378

(κ = 0.74). 379

We calculate a global score for each model, as 380

follows: every time a model is voted, it gets 1 point, 381

and the loser gets 0 points; in case of ties, both 382

models get 0.5 points each. Table 4 shows the 383

global scores, as well as the ranking of human pref- 384

erences according to said score (second and third 385

columns). We find that the gold standard reference 386

obtains the highest score, as expected, and that 387

fine-tuned Llama3 ranks the highest among the au- 388

tomatic methods. Instruction-tuned models obtain 389

worse scores compared to their base model coun- 390

terparts, with a similar difference for both Llama3 391

and Mistral family of models. The NLLB model 392

ranks higher than the Mistral models, but lower 393

than the fine-tuned Llama3 models, showing their 394

potential to rival dedicated models in generation 395

tasks. According to these preferences, fine-tuning 396
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LLMs for CS generation can be critical to ensure397

better results, since the larger models with few-shot398

prompting rank only above Mistral Instruct, with399

GPT-4ofs outranking Llama3.3-10Bfs.400

5.2 Error analysis401

In order to further explore differences between402

model performance, we analyse the most common403

errors made by the CS generation models, both404

quantitatively and qualitatively. We extend the405

machine translation error typology presented in406

Popović (2018) to CS generation error analysis. To407

do so, we randomly select a set of 100 outputs from408

all models and conduct a detailed examination of409

the types of errors present in them. This thorough410

analysis allows us to identify recurring patterns and411

propose a refined error typology specifically for au-412

tomatic CS generation. This initial error analysis413

yields 18 total error categories, which we simplify414

and group into three main error types: a) CS er-415

rors, b) Translation Errors, and c) Format errors.416

The full error typology, along with detailed descrip-417

tions for each error type, is provided in Appendix418

F, while here we explain the three error categories:419

CS Errors: Errors of sentences that are either420

completely monolingual or switch between421

languages in an unnatural manner, e.g., by422

repeating the same word in English and Span-423

ish. In Example 4, Llama3 Instruct preserves424

the original meaning, but the sentence is fully425

monolingual.426

(4)

Source After all these things when
we’re done.

Output after all these things when we’re
finished

427

428
Translation errors: Critical errors that either429

change the original meaning of the sentence430

or introduce mistakes in fluency or grammar,431

for example, using the wrong tense or word432

order. Example 5 shows an instance where433

Mistral Instruct outputs a seemingly natural434

code-switched sentence, but the phrase “they435

got hurt” is not adequately translated and the436

meaning of the sentence is not preserved.437

(5)

Source I wasn’t happy because they got
hurt.

Output no estuve happy porque me
dieron mal

438

439

Llama3 Llama3
Instruct

Mistral Mistral
Instruct

Llama3.3
70Bfs

GPT-4ofs NLLB
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Figure 1: Error distribution by model, obtained by count-
ing the number of instances that present errors of each
type.

Format errors: Errors in form that do not 440

make the sentences unintelligible nor change 441

their meaning, such as repetitions of a word 442

or phrase or incorrect punctuation. Example 443

6, by the model Llama3, accurately preserves 444

the original meaning and introduces CS, but 445

removes the username and adds a smiley face. 446

(6)
Source <user> old mexican remedies
Output old school remedios mexicanos :)

447

448We classify 700 additional instances (100 in- 449

stances per model, obtained from the same source 450

sentences) into these kind of errors, and show the 451

results in Figure 1. 452

GPT-4ofs makes the fewest errors overall (50), 453

closely followed by NLLB (56). However, 90% 454

of GPT’s errors (45) and 45% on NLLB’s (25) 455

are CS related, indicating that while these systems 456

preserve the meaning of sentences and generate 457

few formatting errors, they often produce entirely 458

monolingual outputs, which is a critical error. In 459

comparison, CS-related mistakes are the least com- 460

mon in fine-tuned LLMs, accounting for less than 461

15% of the overall error count. This analysis show 462

that fine-tuned LLMs have effectively learned to 463

switch between languages naturally, though they 464

may still be prone to other less critical types of 465

errors. 466

Among the fine-tuned LLMs, Llama models 467

present 19 fewer errors on average than the Mis- 468

tral family. Base models of both families struggle 469

mainly with format errors, which make up 50.68% 470

of their errors on average, whereas instruction- 471

tuned models present more meaning-related issues, 472

53, 45%. This suggests that the linguistic knowl- 473

edge of the models degrade when tuned on instruc- 474
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Model BLEU BERTScore chrF

Llama3 8B 34.49 81.64 53.17
Llama3 8B Instruct 33.42 81.77 52.01
Mistral 31.65 80.93 50.56
Mistral Instruct 25.98 78.66 44.58
Llama3.3-70Bfs 22.41 79.77 44.57
GPT-4ofs 32.25 83.09 50.48
NLLB 35.56 84.11 54.74
Identity 33.34 82.31 45.51

Table 5: Results of reference-based metrics the EN-
CS test set. Best results in bold, second best results
underlined.

tions, a phenomenon that has been observed on475

other related areas (Fu et al., 2024).476

6 Automatic Evaluation477

Previous research highlights the challenges of au-478

tomatically evaluating code-switching (CS) gen-479

eration, with many existing metrics showing low480

correlation with human judgments (Srivastava481

and Singh, 2021; Kuwanto et al., 2024). On482

the other hand, recent studies show that using483

LLMs as evaluators or judges can offer a promis-484

ing alternative to evaluate generation tasks, as485

they show a higher alignment with human ratings486

(Chiang and Lee, 2023; Wang et al., 2023). In this487

section, we present the results of an automatic eval-488

uation with reference-based NLG metrics (BLEU,489

BERTScore, chrF) and GPT-4o as a judge, as well490

as their correlation with human preferences.491

6.1 Reference-based metrics492

We report the results of BLEU (Papineni et al.,493

2002), BERTScore (Zhang et al., 2020), and chrF494

(Popović, 2015), implemented with the evaluate495

library. All three are task-agnostic quality metrics496

that give results between 0-1, based on character-497

level F-score, n-gram precision and semantic sim-498

ilarity using contextual embeddings4 respectively.499

We compute the metrics for all systems, and in-500

clude an Identity system that simply returns the501

provided input as the output.502

The results of the evaluation can be seen in Table503

5. The best model is NLLB, with the highest scores504

for the three metrics. It is closely followed by505

GPT-4ofs, with the second highest BERTScore, and506

fine-tuned Llama3, with the second highest BLEU507

and chrF. They are closely followed by Llama3508

4BERTscore has been calculated using the embeddings
from the model Bert Base Multilingual Cased.

Instruct and Mistral. The Identity system scores 509

nearly as well as the top-performing models. The 510

strong results from the Identity baseline and few- 511

shot models, which often produce monolinugal out- 512

puts, suggest that reference-based metrics assign 513

high scores to models that match only the English 514

part of the reference. This reflects the nature of 515

the task and dataset, and highlights the limitations 516

and artifacts of using reference-based metrics to 517

evaluate code-switched generation. 518

6.2 GPT as a judge 519

As a complementary automatic assessment of the 520

outputs of our models, we have implemented a 521

zero-shot pair-wise evaluation using GPT-4o as a 522

judge, mimicking the settings of the human eval- 523

uation. Details about the implementation are in- 524

cluded in Appendix G. Results are shown in the 525

third and fourth columns of Table 4. GPT shows 526

a strong preference for few-shot models, whereas 527

these models are ranked third- and second-to-last 528

by humans. Based on the error analysis (c.f Sec- 529

tion 5.2), few-shot models tend to make many CS- 530

related mistakes, although they are the most flu- 531

ent. Thus, this disagreement may be caused by the 532

humans adhering to the guidelines and taking the 533

presence of CS as the main criterion, whereas GPT 534

is making decisions based on the style and fluency 535

of the answers. Regarding fine-tuned LLMs, they 536

all share the same relative ranking in both evalua- 537

tions. Finally, NLLB is ranked last by GPT, while 538

it is the fourth best model overall as ranked by hu- 539

mans. Further research is needed to explain this 540

behaviour, but there may be some stylistic features 541

of the NLLB model’s outputs that are affecting 542

GPT’s preferences. 543

6.3 Correlation With Human Evaluation 544

The reference-based metrics used in Section 6.1 545

are known to have weak correlations with human 546

judgment in NLG tasks (Sai et al., 2022), whereas 547

JudgeLLM-based evaluations seem promis- 548

ing (Chiang and Lee, 2023; Wang et al., 2023). In 549

this section, we compare reference-based metrics 550

and GPT scores with the preference-based scores 551

obtained in Section 5.1. 552

We calculate Pearson’s (ρ) correlation coefficient 553

at instance-level, using the 700 instances employed 554

for the error classification and human evaluation 555

(the output of 7 models for 100 source sentences).5 556

5We do not consider the reference CS sentences when
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Figure 2: Heatmap of the correlations between human
scores and reference-based metrics and scores given by
GPT, calculated using the Pearson Correlation Coeffi-
cient. The correlations are calculated for all instances,
as well as for different subsets of instances, according
to the type of errors they exhibit.

Each data point corresponds to the CS output of557

one particular model for an English source sen-558

tence, and we compute the correlation using two559

values: the score obtained by the model for this560

instance in the human preference-based evaluation561

of Section 5.1, and the score it attains if we apply562

the same strategy using the values of the reference-563

based metrics to determine the winner, or, in case564

of JudgeLLM, the scores given by GPT.565

The correlation coefficients are shown in Figure566

2. The top part of the figure shows the correlation567

using all the instances, whereas the bottom part568

only considers those instances that showed some569

type of error, according to the error analysis de-570

scribed in Section 5.2.571

If we consider all the instances, the maximum ρ572

correlation value with reference-based metrics is573

0.22, which indicates a low alignment with human574

scores. The metric with highest correlation is chrF,575

in line with previous research (Popović, 2015).576

GPT-4ofs shows a ρ of 0.53, which is stronger than577

reference-based metrics, but still too weak to be578

regarded as a reliable measure for assessing CS579

generation.580

If we instead consider instances with errors from581

the human evaluation, there is again a higher cor-582

relation between human scores and GPT’s judge-583

ments, with a margin of at least 0.28 points. In-584

stances with CS errors show the lowest overall cor-585

relation. This likely derives from the fact that hu-586

calculating the correlations.

man evaluators never prefer an instance without CS 587

as instructed in the guidelines, but reference-based 588

and JudgeLLM-based metrics are not sensitive to 589

these nuances, and may assign high scores to in- 590

stances regardless of whether they contain CS or 591

not. 592

All in all, these results confirm that several of 593

the most commonly used reference-based metrics 594

for NLG have a weak correlation with human judg- 595

ments when evaluating CS generation. This un- 596

derscores the need to research more specialized 597

evaluation methods designed specifically to cap- 598

ture the nuances of this task that correlate with 599

human judgement. 600

7 Conclusion 601

In this work, we have presented a methodology to 602

leverage LLMs in the generation of code-switched 603

text from monolingual instances, specifically for 604

the English-Spanish language pair. 605

Our framework consists of back-translating nat- 606

ural code-switched instances (EN-ES) into mono- 607

lingual English sentences, and using the resulting 608

parallel corpus, dubbed EN-CS, to fine-tune autore- 609

gressive models to translate monolingual sentences 610

into CS. This has the advantage of ensuring that 611

the target sentences contain completely natural CS, 612

which has the potential to improve the naturalness 613

of CS generation. 614

We experiment with fine-tuning base and 615

instruction-tuned LLMs on our dataset using 616

LoRA. For baselines, we include few-shot LLMs 617

(Llama3.3-70B and GPT-4o) and a pretrained 618

NLLB translation system that we also finetune us- 619

ing our dataset. The results indicate that fine-tuned 620

LLMs show higher ranking in a human preference- 621

based evaluation and fewer critical errors than the 622

other baselines, performing better even than propri- 623

etary models such as GPT-4o. 624

We also perform a meta-evaluation of reference- 625

based NLG metrics commonly used for CS eval- 626

uation, as well as an LLM judge (GPT-4o). Our 627

analyses show low correlation between human and 628

reference-based evaluations, while the LLM judge 629

achieves moderate correlations. However, particu- 630

larly in cases with CS errors, no metric is adequate 631

for assessing CS generation. We therefore advo- 632

cate for more research in specialized evaluation 633

methods. 634
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Limitations635

Our research focuses on testing the capabilities636

of LLMs for CS generation, a field of interest in637

the research of many applications, yet still in need638

of more research. While our findings highlight639

promising potential, we also identify key areas for640

refinement and improvement, as well as promising641

lines for future research in this domain.642

We only perform an in-domain evaluation where643

the train, validation and test sets had the same ori-644

gin. Additionally, we would like to test the effi-645

ciency of our models in an out-of-domain setting,646

since one of the use-cases of a CS generation model647

is to create parallel corpora to evaluate the abilities648

of models to perform different tasks when there is649

CS.650

We want to acknowledge the fact that our ap-651

proach is dependent on having an initial set of code-652

switched sentences, which may not be available for653

all pairs of languages, especially in a low-resource654

scenario. We believe that it would be interesting to655

explore the possibility of a cross-lingual approach656

using our methodology, with English and/or Span-657

ish as pivot languages, that could be useful for658

transfer knowledge into other less-resourced lan-659

guage pairs.660

Finally, as we have pointed out, we are aware661

of the problems of the automatic metrics that we662

have used to evaluate the outputs of our models,663

that do not capture the nuances of our task. In664

the future, we would like to investigate how to665

improve this evaluation by designing new methods666

to automatically evaluate CS generation, focusing667

on a more linguistic approach able to capture the668

linguistic and social intricacies of CS.669
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instructions explained in different ways, including969

more or less information.970

For the few-shot strategies, the prompt includes971

the following template at the beginning, alongside972

a set of manually selected examples that are repre-973

sentative of some phenomena we want to cover in974

our prompt:975

Here are {n} examples of a code-switched text976

that has been converted to {lang}:977

Testing the different prompts, we are able to978

choose the one whose outputs are closest to our979

needs, taking into consideration the trade-off be-980

tween including too little and too much level of981

specificity in the instructions to the models.982

Regarding the few-shot strategies, we find out983

that giving some examples to the models results in984

outputs that are more aligned with the expected out-985

put, which is logical, since this allows the models986

to more faithfully replicate the examples provided.987

The more examples given, the more the model is988

able to comply to leaving the punctuation marks as989

they are and not standardizing the spelling, but also990

it tends to add more colloquial terms and alternate991

spellings.992

B Post-edition Guidelines993

The original sentence should contain CS and be994

translatable. The main reasons to remove an in-995

stance altogether are:996

• If the sentence is very clearly monolingual997

and the CS has been detected incorrectly (eg,998

the case of interlingual homographs such as999

has).1000

• When the sentence is bilingual for metalin-1001

guistic reasons, because it makes the transla-1002

tion tricky and hard to understand, and in most1003

cases it’s not even CS.1004

• The part that is in the other language is a1005

named entity, such as a title, a name, . . .1006

• If the code-switched part is not translatable or1007

very hard to translate, probably because it’s a1008

borrowing. Ambiguous and a little bit up to1009

the annotator.1010

• If the tweet is saying the same thing in both1011

languages (making it monolingual doesn’t1012

make sense).1013

• Some instances are tweets that are part of a 1014

conversation or thread and taken out of con- 1015

text are very hard to understand/intelligible. 1016

• Some tweets are not translatable because of 1017

wordplay that doesn’t transfer to monolingual 1018

speech. 1019

The result should be a monolingual sentence that 1020

has roughly the same meaning as the original sen- 1021

tence. The main reasons to edit a translation are: 1022

• If the meaning changes or the model has hallu- 1023

cinated extra information that wasn’t present 1024

in the original sentence. 1025

• If there are still some words in the Spanish. 1026

• Attempts to translate named entities. 1027

• Remove “meta comments” from the model 1028

about the task. 1029

It is not necessary to correct things like: 1030

• Punctuation marks. 1031

• Different spellings of the same word. 1032

• Words of phrases that the model has changed 1033

for synonyms. 1034

C Inter-annotator agreement 1035

Figure 3 shows the distribution of the scores given 1036

by to annotators on the fluency and adequacy of the 1037

instances translated by Command R. Although the 1038

inter-annotator agreement shows moderate agree- 1039

ment (κ = 0.57), the distributions between the 1040

annotators are very similar to each other. 1041

D Fine-tuning / Few-shot prompting 1042

In Table 7, we can see the prompt used for a)fine- 1043

tuning of base models; b) fine-tuning of instruction- 1044

tuned models; and c) 5-shot prompting. For both 1045

fine-tuning settings, at inference time the second 1046

part of the prompt that contains the target CS sen- 1047

tence is left blank for the model to complete. 1048

E Pairwise Annotation Guidelines 1049

The main objective of this task is two evaluate a pair 1050

of sentences that should contain code-switching 1051

between English and Spanish. It should be noted 1052

that models have been trained with texts extracted 1053

from social media and informal conversations, so 1054
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Convert this code-switched phrase to English.

Convert this code-switched phrase to English without correcting the original spelling, focus on
translating the parts in Spanish.

Convert this code-switched phrase to English. Leave the parts in Spanish as they are, focus on
translating the parts in Spanish.
Convert this code-switched phrase to English. Directly output the translation and don’t correct the
original spelling, focus on translating the parts in Spanish.

Table 6: Different prompts that have been used to convert the code-switched instances into English, with different
levels of specificity. Final prompt in bold.

Base model
I want to not work and make money. = quiero no trabajar
and make money

Instruction-tuned model

system prompt: "You are a bilingual speaker of English
and Spanish. Translate the following English sentence
into code-switched text between both languages:"

user: "I want to not work and make money."

assistant: "quiero no trabajar and make money"

Few-shot prompting

system prompt: "You are a bilingual speaker of English
and Spanish. Translate the following English sentence
into code-switched text between both languages. Do not
add any comments or explanations:"

user: Source example n

assistant: Target example n

user: "I want to not work and make money."

assistant: ...

Table 7: Examples and format of prompts used for fine-
tuning base and instruction-tuned models and for few-
shot prompting

the outputs of the models are expected to present1055

traits of informality, such as common typos, that1056

at first should not be considered errors, because1057

they are within the expected behaviour of the mod-1058

els. The criteria to choose between both sentences1059

is to be applied in the following order:1060

1. Code-switching1061

1.1. Presence of code-switching: For a sen-1062

tence to be a suitable candidate it must1063

have tokens in both languages. A com-1064

pletely monolingual sentence will always1065

be wrong.1066

1.2. Naturalness of the code-switching: A1067

switch between both languages can be1068

unnatural. There are different linguistic1069

constraints. For example, a switch is only1070

possible at a point in a sentence where 1071

it does not violate the syntactic rules of 1072

either language. 1073

2. Content and fluency 1074

2.1. Content: Sentences must have meaning 1075

as a whole, they have to be understand- 1076

able, without extra content disconnected 1077

from the rest of the message or abrupt 1078

interruptions. 1079

2.2. Agreement: Sentences must have the 1080

right gender and number agreement. 1081

2.3. Conjugation: Verbs have to be correctly 1082

conjugated. 1083

3. Form: Additional errors that can be used in 1084

case none of the above are applicable. 1085

3.1. Repetitions of the same word or phrase. 1086

3.2. Misspelled words / uncommon typos 1087

3.3. Wrong punctuation marks 1088

3.4. Extra characters 1089

Ties are only contemplated in two situations: 1090

• Two sentences that are equally wrong, that is 1091

to say, they are both either completely mono- 1092

lingual or unintelligible. 1093

• Two sentences that are exactly the same and 1094

thus no criteria can be used to break the tie. 1095

In case no criteria is applicable to a pair, we ask 1096

the annotators to choose their preferred sentence, 1097

using their own judgement o additional criteria they 1098

might observe in the specific pair of sentences. 1099

F Error Typology 1100

1. CS errors 1101

1.1. No CS - the sentence is entirely mono- 1102

lingual. 1103
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Figure 3: Distribution of Adequacy and Fluency scores per annotator.

1.2. Unnatural CS - the sentence contains1104

unnatural CS, either due to unnatural1105

switching points, or unnatural register.1106

1.3. Repetition in both languages - the sen-1107

tence contains the same information re-1108

peated in both languages, rather than CS.1109

2. Translation errors1110

2.1. Made-up words - the words in the out-1111

put look like English or Spanish but do1112

no actually exist.1113

2.2. Wrong translation - the translation of1114

a word or phrase is incorrect.1115

2.3. Wrong conjugation - a verb is translated1116

with the right lexeme but a seemingly1117

made-up conjugation.1118

2.4. Wrong agreement - there is a mistake1119

in agreement in gender or number.1120

2.5. Wrong meaning - a word or phrase has1121

been translated into a sense that does not1122

fit into the context.1123

2.6. Wrong order - the words are right but1124

they are written in the wrong order.1125

2.7. Wrong tense - the verbal tense is not1126

consistent through the sentence.1127

2.8. Unintelligible - it is not possible to un- 1128

derstand the sentence in English nor in 1129

Spanish. 1130

2.9. Instruction misunderstanding - the 1131

task has been misunderstood, e.g., the 1132

model makes a "comment" about the con- 1133

tent of the output or explains a word. 1134

3. Format errors 1135

3.1. Extra words - the sentence contains 1136

seemingly random extra words that do 1137

not affect its meaning. 1138

3.2. Extra characters - the sentence contains 1139

more non-word characters than the origi- 1140

nal, e.g., ‘???’ instead of ‘??’. 1141

3.3. Hallucinations - the sentence contains 1142

new words or phrases not derived from 1143

the original text. 1144

3.4. Start over - the sentence is finalized, but 1145

the model begins a second translation of 1146

the same sentence. 1147

3.5. Duplications - some words or phrases of 1148

the sentence are duplicated. 1149
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developer: "You are a helpful bilingual sys-
tem that knows how to code-switch between
English and Spanish and how to distinguish
natural sentences. Your only job is to judge
sentences and output a verdict A, B or T."
user:"Which one of the next two automati-
cally generated sentences with code-switching
is more natural? The most important criterion
is that the sentences must have code-switching
to even be considered eligible. Two sentences
can be tied if they are equally wrong.
A: {s1}
B: {s2}
Answer(A/B/T):"

Table 8: Prompt used for GPT to act as a judge.

G Implementation of GPT as judge1150

For the implementation of GPT as judge, the devel-1151

oper and user prompts in Table 8 have been used1152

to prompt GPT-4o. To calculate the scores, we first1153

check the answers the directly contain the desired1154

format, "A", "B or "T", which are the most com-1155

mon. For the rest of the outputs that did not follow1156

this format, it is possible to extract the labels using1157

simple regular expressions. Then, the scores are1158

calculated just like the human score: every time a1159

model is voted, it gets 1 point, and the loser gets 01160

points; in case of ties, both models get 0.5 points1161

each.1162
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