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Abstract

Video-driven audio synthesis aims to generate
synchronized and contextually appropriate au-
dio based on visual content, with applications
in multimedia, virtual reality, and film produc-
tion. Existing methods often rely solely on
visual cues, leading to suboptimal audio gener-
ation that lacks synchronization and semantic
alignment. To address these challenges, we in-
troduce a novel video-guided audio synthesis
method, termed AvSyncDiff. Unlike traditional
approaches, AvSyncDiff leverages both visual
and textual inputs, along with an optional audio
prompt, to achieve precise control over the au-
dio generation, enhancing the quality and real-
ism of the synthesized audio. Furthermore, we
propose a Gaussian Mixture Diffusion Search
(GMDS) algorithm, a test-time scaling strat-
egy inspired by advancements in the text-to-
image domain. GMDS employs a dual-scale
sampling mechanism to adaptively explore the
latent space, balancing local exploitation and
global exploration through a combination of
small and large step sizes. The experimental re-
sults demonstrate that AvSyncDiff significantly
outperforms state-of-the-art methods in both
quantitative metrics and qualitative evaluations,
showcasing its potential for diverse applica-
tions in multimedia and beyond.

1 Introduction

Recent advancements in cross-modal learning have
led to significant progress in audio generation.
State-of-the-art models like AudioGen (Kreuk
et al., 2022), Make-An-Audio (Huang et al., 2023),
and AudioLDM (Liu et al., 2023a) have demon-
strated remarkable capabilities in synthesizing au-
dio from text descriptions. As text-to-video gen-
eration (Khachatryan et al., 2023; Ge et al., 2023)
continues to show promising applications, there is
increasing interest in tackling the inverse problem:
generating audio from video.

Video-to-audio generation presents significantly
greater challenges than text-to-audio generation,
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Figure 1: Our AvSyncDiff model supports multi-modal
conditioning, incorporating not only video but also text
and audio inputs.

primarily due to the following reasons: (1) Mul-
timodal Alignment Requirements: The generated
audio must synchronize with both the semantic con-
tent and temporal dynamics of the video. (2) Com-
plex Audio-Visual Relationships: The relationship
between visual and audio elements is inherently
complex, as audio can encompass various styles
and dynamic characteristics that evolve over time.
Video content alone often provides insufficient cues
to determine the desired audio style and emphasis
without additional guidance.

Several methods have been proposed for video-
to-audio generation. One approach uses diffusion-
based architectures (Zhang et al., 2024b) where
video frames are encoded using image encoders
like CLIP (Radford et al., 2021) to condition au-
dio generation. A distinct approach is Diff-Foley,
which employs contrastive learning between video
and audio to pre-train representations with audio-
aware features before generation. Another ap-
proach is to use text as an intermediate modality
to bridge the gap between video and audio (Wang
et al., 2024). These methods first convert the video
into textual descriptions and then leverage power-
ful text2audio models (Xie et al., 2024) to gener-
ate the corresponding audio. However, existing
video-to-audio generation methods face three key
challenges: First, high-quality video-audio paired
datasets remain scarce compared to image-text data.
While CLIP utilized 400 million image-text pairs
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and CLAP incorporated data totaling over 5000
hours, video-audio datasets lack comparable scale
and diversity, limiting model generalization in com-
plex scenarios. Second, current approaches typi-
cally compress the input video into a single feature
representation, resulting in substantial information
loss. Videos contain rich temporal dynamics and
contextual changes that single representations can-
not adequately capture, leading to generated au-
dio lacking precise temporal alignment with visual
events. Finally, existing methods overlook the one-
to-many nature of the video-to-audio relationship.
For any video, multiple plausible audio outputs
could authentically accompany the visual content.
Current approaches implicitly assume a determinis-
tic mapping between modalities, failing to capture
the diverse space of possible audio interpretations.
Incorporating reference audio as an additional con-
ditioning signal would enable more precise nav-
igation of this solution space while maintaining
semantic coherence with the visual content.

To address these limitations, we propose
a novel video-to-audio generation framework
called AvSyncDiff, which leverages multiple high-
level control signals, including text, video, and
audio. As illustrated in Figure 1, the AvSyncD-
iff model is built upon a U-Net diffusion-based
architecture and incorporates three additional in-
puts: text, video, and audio. Unlike conventional
approaches that rely on a single feature to repre-
sent the video input, AvSyncDiff innovatively par-
titions the video into two distinct components: a
video global feature, which encapsulates the over-
all context of the video, and fine-grained frame-
wise image features, which are derived from in-
dividual frames. This dual-feature representation
mitigates the risk of information loss across the
entire video and facilitates precise timing align-
ment at the frame level. Furthermore, in line with
prior research, AvSyncDiff can integrate text in-
put as an additional control modality, for example,
using “loudly" to control the volume or giving a
detailed description to assist generation. More sig-
nificantly, our model introduces the capability to
accept prompt audio input. This novel feature al-
lows for more nuanced and refined control over the
audio generation process, enabling the model to
produce audio that is more closely aligned with the
desired output characteristics.

Besides the model architecture design, we also
improve the performance at the inference stage
with a test-time scaling strategy inspired by ad-

vancements in the text-to-image domain (Ma et al.,
2025). Specifically, we propose a Gaussian Mix-
ture Diffusion Search (GMDS) algorithm, which
employs a dual-scale sampling mechanism to ex-
plore the latent space adaptively. This approach
balances local exploitation and global exploration
by combining small and large step sizes, ensuring
more efficient and effective optimization during
inference. We conduct experiments to demonstrate
the superiority of our method, and our contributions
can be summarized as follows:

* We identify that maintaining both global con-
text and temporal dynamics is crucial for
video-to-audio generation. Based on this in-
sight, we propose a simple yet effective solu-
tion that uses a complementary representation
of global video features and frame-wise image
features, significantly improving audio-video
synchronization quality.

* We introduce a multi-modal controlled frame-
work that integrates text, video, and audio
inputs, allowing for fine-grained control over
the generated audio. Including prompt audio
as a conditioning signal enables the model to
navigate the diverse space of possible audio
interpretations while maintaining semantic co-
herence with the visual content.

* We develop a test-time scaling method specif-
ically designed for video-to-audio generation,
which optimizes the model’s output quality
during inference. This method ensures high
fidelity and temporal alignment of the gener-
ated audio with the input video.

2 Related Work

2.1 Text-to-audio Generation

Text-to-audio generation has emerged as a promi-
nent research direction in recent years. Contempo-
rary approaches can be systematically categorized
into two predominant frameworks: transformer-
based autoregressive models and diffusion-based
architectures.

AudioGen (Kreuk et al., 2022) pioneered an au-
toregressive framework for audio synthesis, capa-
ble of generating acoustic content conditioned on
either textual descriptions or audio prompts. Ex-
panding this paradigm, MusicGen (Copet et al.,
2024) implements a sophisticated language model-
ing approach utilizing efficient token interleaving



strategies to enable high-fidelity music generation
from textual inputs.

Within the diffusion-based domain, Audi-
oLDM (Liu et al., 2023a) advances the field by
implementing contrastive language-audio pretrain-
ing (CLAP) embeddings as latent conditional vari-
ables within a VAE framework for audio synthesis.
Make-an-Audio (Huang et al., 2023) introduces an
innovative approach through a spectrogram autoen-
coder that predicts self-supervised representations
instead of direct waveforms, thereby facilitating en-
hanced compression efficiency and deeper seman-
tic interpretation. Through the integration of CLAP
embeddings (Wu et al., 2023) with high-fidelity
diffusion architectures, Make-an-Audio achieves
sophisticated language comprehension capabilities
alongside superior audio generation quality.

2.2 Video-to-audio Generation

Existing methods in video-to-audio generation aim
to learn joint representations of visual and audi-
tory modalities to produce audio synchronized with
visual content. SpecVQGAN (Iashin and Rahtu,
2021) presents an efficient framework for multi-
class, visually guided sound synthesis using a trans-
former decoder trained to sample from a codebook-
based prior. Diff-foley (Luo et al., 2024) employs
a latent diffusion model (LDM) for audio synthe-
sis, utilizing contrastive audio-visual pre-trained
(CAVP) features derived from a large-scale video
dataset. V2A-Mapper (Wang et al., 2024) lever-
ages pre-trained foundation models to bridge multi-
modal gaps, enabling the transfer of pre-trained
knowledge to better handle open-domain chal-
lenges. FoleyCrafter (Zhang et al., 2024b) uses an
IP-adapter (Ye et al., 2023) connection to capture
video semantics while employing an audio event
detection model to identify temporal information.

3 Method

3.1 Text-Video Condition

Text condition We build upon Tango-2 (Ma-
jumder et al., 2024), a strong pre-trained text-to-
audio diffusion model, as our backbone architec-
ture. For the text input processing, we follow the
original pipeline of Tango-2. Specifically, we em-
ploy the pre-trained FLAN-TS5 text encoder (Chung
et al., 2024) to extract text embeddings, which are
kept frozen during training.

Given that the original captions in the VG-
GSound dataset are relatively simple and limited in

semantic richness, we enhance them using Qwen2-
Audio (Chu et al., 2023). As illustrated in Fig-
ure 2(c), we designed a system prompt and fed
both the audio and its corresponding original cap-
tion to Qwen2-Audio, obtaining a more descriptive
and semantically enriched version of the prompt.

Then, we further introduce diversity into the
prompts by generating perturbed versions using the
DeepSeek-V3 language model. For each rewritten
prompt, we generate three variations. To ensure se-
mantic consistency, we include specific instructions
in the input prompt to guarantee that the perturbed
texts (¢’) remain conceptually or semantically close
to the original (¢). This approach not only enriches
the textual content but also effectively expands the
training data, leading to improved generalization
and robustness of the model.

Video condition Accurate video representation
is essential for capturing the semantic and tempo-
ral content of dynamic scenes. While previous
methods like FoleyCrafter (Zhang et al., 2024b)
rely on CLIP-based image encoders to extract aver-
aged frame features, such approaches lack explicit
modeling of motion and temporal structure due to
CLIP’s static-image pre-training.

To extract global video features, we utilize the
video encoder from the contrastive video-language
pre-training framework InternVid (Wang et al.,
2023). InternVid is built upon CLIP, and it un-
dergoes continued pre-training of CLIP encoder
on a large-scale dataset of video-text pairs, which
enables it to better understand temporal relation-
ships and motion dynamics across video frames.
For the video sequence {vy,vs,...,uN}, We use
the visual encoder of InternVid to obtain a global
feature vector f, € R?, where d is the feature di-
mension. Then, f, is passed through a projection
layer followed by a LayerNorm to match the di-
mensionality required by our diffusion model. As
shown in Figure 2(a), to effectively incorporate
this video information into the diffusion process,
we adopt a decoupled cross-attention mechanism
inspired by the IP-Adapter(Ye et al., 2023). Specif-
ically, given the query features Z from the U-Net,
text features f;, and global video features f,, the
decoupled cross-attention is formulated as:

QKT QK"
v Y

where d’ is the dimensionality of the diffusion
model’s latent space.,) = Z W, is the shared query

Zsem = Softmaz(

YV+Softmax(
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Figure 2: Figure (a) illustrates the architecture of our AvSyncDiff model. Figure (b) depicts the audio features
extracted by the Encodec model. Figure(c) shows the pipeline of our text generation.

transformation, K = fiW,,V = f,W, are the
key and value projections for text features, and
K' = f,W/, V' = f,W/ are the key and value
projections for global video features.

Image frame conditon While the global video
features capture high-level semantic content and
temporal dynamics, fine-grained frame-level de-
tails are crucial for maintaining precise temporal
alignment between the generated audio and visual
events. Therefore, we propose a complementary
frame-level processing stream that operates parallel
to global feature extraction.

As illustrated in Figure 2(a), we uniformly sam-
ple N frames {v1,vs,...,vn} and process each
frame through the CLIP visual encoder to obtain
frame-wise embeddings ¢; € R?. To effectively
integrate these frame-level features into the dif-
fusion model, we first transform them through a
projection layer with RMSNorm(Zhang and Sen-
nrich, 2019) to match the required dimensional-
ity. These adapted frame-wise embeddings H =
{h1, hga,...,hy} are then integrated into the dif-
fusion process through a dedicated cross-attention
layer called frame-attention in the U-Net architec-
ture. Importantly, we incorporate Rotary Position
Embeddings (RoPE)(Su et al., 2024) on key and
query vector to the frame-wise cross-attention layer
(frame-attention) to encode the temporal ordering

of frames, enabling the model to better understand
and utilize sequential relationships. Formally, we
have

Vi

RoPE(Q)RoPE(K;)"
Ztine = Softmax oPE(Q)RoPE(Ky)
vd
2
where Q = ZW, is the query transformation,

Ky = HWy,,Vy = HW,, are the key and value
projections for fine-grained visual features, and
Wy, Wi ” W, ; are learnable projection matrices.

3.2 Prompt Audio condition

To guide the audio generation process, we use a
pre-trained EnCodec model (Défossez et al., 2022)
to extract acoustic-aware embeddings from the
prompt audio. These embeddings capture the es-
sential acoustic characteristics of the input audio,
providing a strong conditioning signal for the gen-
eration process.

As illustrated in Figure 2(b), EnCodec employs
a Residual Vector Quantization (RVQ) mechanism
to quantize the output of the encoder. To integrate
this embedding into the diffusion model, we add a
cross-attention layer called audio-attention in the U-
Net architecture. The audio-attention is formulated
as:

K
a Va

Q
v )t 9

Zaudio = Softmazx



where Q = ZW, is the query transformation,
K, = aWy,,V, = aW,, are the key and
value projections for the audio embedding, and
Wy, Wi, , Wy, are learnable projection matrices.

By incorporating the prompt audio embedding,
our model can generate audio that aligns with both
the visual content and the acoustic characteristics
of the prompt, enhancing the overall quality and
realism of the output.

3.3 Test-time Scaling

To enhance the inference performance of our video-
to-audio diffusion model, we propose a Gaussian
Mixture Diffusion Search (GMDS) strategy. This
approach introduces a dual-scale sampling mech-
anism that adaptively explores the latent space by
combining both small and large step sizes, thereby
balancing local exploitation and global exploration.

The GMDS algorithm maintains a population
of candidate solutions that evolve over multiple
iterations. Initially, the population P is sampled
from a standard normal distribution. At each it-
eration, for every candidate in the population, we
generate two potential updates using different dif-
fusion scales: a conservative step with parameter
B for local exploitation and a more aggressive step
with parameter (3;for global exploration (8; > ;).
Specifically, given a candidate solution, we gener-
ate two new candidates:

Ts = Bsx+1/1— P27 4)
x =B +\/1-5n &)

where 7 is sampled from N (0, 1).

To evaluate the quality of the generated audio,
we employ a zero-shot evaluation approach. Specif-
ically, we utilize the CLIP score (Wu et al., 2022)
to measure the audio-visual correspondence and
the CLAP score to assess the audio-text alignment.
These metrics provide a comprehensive evaluation
of the generated audio in terms of both visual and
textual relevance. We show the algorithm in the 1

3.4 Training Method

During the training process, we keep all feature
extractors frozen, including the text encoder, CLIP
image encoder, InternVid video encoder, and En-
codec. We only train the projection layers, which
are designed to align the dimensions of different
modalities, as well as the additional cross-attention
mechanisms integrated into each U-Net diffusion

Algorithm 1 Gaussian Mixture Diffusion Search
Require: D, T, N, 5, 81, F
Ensure: best_solution, best_score
1: Initialize population Py ~ N(0,1)” with N
samples

2: Find initial 2* < arg max,ep, F(z)

3: best_score <— F(z*), best_solution < z*

4: fort < 1to7T do

5. fori<«< 1to N do

6: Sample noise vector  ~ N(0,1)P

7 Generate candidates: xg « [BsP—1[i] +
V1=08:m
X < BiPalil +4/1— B2

8: Select x < arg max{F(z), F(x;)}

: Update population: P[] < z

10: if 7(x) > best_score then

11: best_score < F(z)

12 best_solution < z

13: end if

14:  end for

15: end for=0

block. The training objective is based on the stan-
dard diffusion loss, which ensures that the model
learns to generate high-quality audio by progres-
sively denoising the latent representations.

4 Experiments

4.1 Experiment Setup

Dataset To train our proposed AvSyncdiff, we
utilize VGGSound (Chen et al., 2020) dataset, ad-
hering to its original train/test splits. For evaluation,
we assess our method using both the VGGSound
and AVSync15 (Zhang et al., 2024a) datasets.

Implementation Details Given the scarcity of
large-scale audio-visual paired data, we build our
video-to-audio generation framework upon a strong
text-to-audio diffusion model, Tango-2 (Majumder
et al., 2024). Inspired by vision-language mod-
els such as LLaVA (Liu et al., 2023b), we adapt
the pre-trained language model through modality
projection and alignment. We use OpenCLIP ViT-
H/14 (Cherti et al., 2023) for image encoding and
ViCLIP-L-14 (Wang et al., 2023) for video encod-
ing. For audio encoding, we utilize the Encodec
24 kHz model with a bandwidth of 6 kbps. The
training process uses the AdamW optimizer with a
constant learning rate of 1 x 10™4, a batch size of
128 visual-audio embedding pairs, and a dropout



rate of 0.1 for classifier-free guidance.

Metrics To evaluate the performance, we employ
a comprehensive set of metrics that assess various
aspects of the generated audio, including: Mean
KL Divergence (MKL)(Iashin and Rahtu, 2021) to
measure the sample-level similarity between the
generated audio and the ground truth; CLIP Simi-
larity to evaluate the semantic coherence between
the input video and the generated audio embed-
dings, using Wav2CLIP(Wu et al., 2022) as the
audio encoder and CLIP as the video encoder, as
done in previous works (Wang et al., 2024; Zhang
et al., 2024b); Frechet Distance (FD)(Heusel et al.,
2017) and Frechet Audio Distance (FAD)(Kilgour
et al., 2018) with VGGish(Hershey et al., 2017) to
assess the fidelity and distribution similarity of the
generated audio; CLAP Similarity to evaluate the
cross-modal alignment between text and generated
audio; and Onset Acc (onset detection accuracy)
and Onset AP (onset detection average precision)
(Xie et al., 2024) to evaluate the generated audios,
using the onset ground truth from the datasets.

Baseline For comparison, we use current state-
of-the-art method SpecVQGAN (Iashin and
Rahtu, 2021), Diff-Foley (Luo et al., 2024),
V2A-Mapper (Wang et al, 2024), Seeing-
and-hearing (Xing et al., 2024) and Foley-
crafter (Zhang et al., 2024b). SpecVQGAN gen-
erates audio tokens autoregressively from video
tokens, while Diff-Foley applies contrastive learn-
ing to achieve synchronized audio synthesis via its
CAVP encoders. V2A-Mapper aligns image repre-
sentations with audio embeddings in CLAP space,
facilitating video-based audio generation through a
pre-trained model. Seeing-and-hearing uses Image-
Bind (Girdhar et al., 2023) as a connector between
visual and audio domains. FoleyCrafter introduces
both semantic and temporal adapters to enhance
video2audio generation.

4.2 Qualitative Evaluation

Audio quality and cross-modal alignment We
evaluate the proposed AvSyncDiff method on both
the V2A (Video-to-Audio) and TV2A (Text-Video-
to-Audio) tasks, as shown in Table 1. To ensure a
fair comparison, we do not include results using
audio prompts, as most baseline methods do not
leverage such information. For GMDS, we set the
number of candidates to be 6 in our test.

Our experimental results demonstrate that
AvSyncDiff achieves strong performance on all

evaluation metrics. When using video embeddings
from a pre-trained video encoder and fine-grained
frame-level features, our model generates more re-
alistic and temporally coherent audio, especially
under the challenging V2A and TV2A settings.

Compared to existing methods, AvSyncDiff con-
sistently outperforms them in terms of both audio
quality ( MKL and FD) and cross-modal alignment
(CLIP and CLAP), indicating better semantic and
temporal synchronization with input video.

We further evaluate the effectiveness of our
Gaussian Mixture Diffusion Search (GMDS) strat-
egy by comparing results with and without it during
inference. As shown in Table 1, applying GMDS
significantly improves generation quality, highlight-
ing its importance in enhancing the diffusion sam-
pling process.

Time alignment To evaluate temporal synchro-
nization, we conduct experiments on the AVSync15
dataset. This dataset is constructed from high-
quality videos sourced from VGGSound, which
have been carefully filtered and segmented to retain
only the most precise video-audio pairs while dis-
carding irrelevant or inactive segments. As shown
in Table 2, our method achieves state-of-the-art per-
formance in temporal synchronization, demonstrat-
ing its effectiveness in aligning audio with visual.

4.3 Quantitative Evaluation

Visualization Results We demonstrate the effec-
tiveness of AvSyncDiff by comparing it with the
state-of-the-art method FoleyCrafter through qual-
itative results. For both methods, we set the text
prompt to None to simulate the scenario where no
additional text guidance is provided.

Figure 3 presents audio-visual results from the
AVSync-15 dataset. We extract frames at reg-
ular intervals and generate corresponding mel-
spectrograms that span the full duration between
adjacent frames. Unlike other methods that only
show partial spectrograms, we visualize the com-
plete time-frequency structure for a more compre-
hensive comparison.

In the gunshot video, FoleyCrafter generates
gunshots that are intermittent and misaligned with
the single firing event in the video. Additionally,
the low- and high-frequency components are sepa-
rated, leading to an unnatural sound. Our method
produces sharper and temporally aligned gunshots,
concentrated in the mid and high-frequency ranges,
resulting in a more realistic auditory match.



Method Task MKL| CLIPT FDJ] FAD|] CLAP?Y
V2A Results
SpecVQGAN V2A 3.40 5876 3201 5.79 -
Diff-Foley V2A 3.32 9.172 29.03 6.23 20.5
V2A-Mapper V2A 2.85 9.720 24.16 1.34 24.5
FoleyCrafter V2A 2.56 10.70  19.67 2.78 25.3
AvSyncDiff (Ours) V2A 2.38 11.52 11.24 2.14 26.8
AvSyncDiff (GMDS) V2A 2.33 1298 10.13 1.95 30.3
TV2A Results
FoleyCrafter TV2A 228 14.80 19.16 2.59 26.0
AvSyncDiff (Ours) TV2A 1.96 1271 1024 2.17 26.0
AvSyncDiff (GMDS) TV2A 1.89 12.54  9.85 2.07 31.20

Table 1: Comparison of results on VGGSound dataset. The results show that our method can achieve better results
with less data. The number underlined indicates the second best result.

gunshot
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Figure 3: Visualiation results on Avsyncl5 dataset.

Method Onset ACCT Onset AP 1
SpecVQGAN 26.74 63.18
Diff-Foley 21.18 66.55
Seeing and Hearing 20.95 60.33
FoleyCrafter 28.48 68.14
AvSyncDiff (Ours) 30.72 69.28

Table 2: Comparison of results on AVSyncl5 dataset.

In the frog croaking video, FoleyCrafter gen-
erates two constant-frequency sounds throughout
the clip, failing to capture the natural frequency
shift seen in the original spectrum. In contrast,
AvSyncDiff successfully reproduces the dynamic
progression from low to high frequency, while
maintaining accurate temporal alignment with the
visual content.

4.4 Audio Transfer

To evaluate the effectiveness of our audio condition
block, we conducted a human evaluation focusing
on two aspects: (i) Overall Quality (OVL) (Liu

et al., 2023a), and (ii) Relevance to the Input
Audio (REL) (Liu et al., 2023a).

For the evaluation, we selected two samples per
category from the AVSyncl5 test set. For each
sample, we collected three distinct 10-second au-
dio clips from the internet as input prompts and
randomly selected one during generation. The text
inputs were also randomly sampled from multiple
GPT-4-generated variations to enhance diversity
and generalization.

Evaluators rated each generated audio clip on
a scale from 1 to 5 based on the two criteria. We
then computed average scores for each dimension
and used them to compare model performance. We
tested configurations using the first 1, 2, 4, and
8 layers of the Encodec codebook. Results are
summarized in Table 3.

In terms of relevance to the input audio (REL),
the Encodec-4 configuration achieved the highest
score of 3.73, indicating superior alignment with
the input prompts in both style and content. When
considering the overall average (AVG) across both
metrics, the Encodec-1 configuration performed



Method Encodec-1 Encodec-2 Encodec-4 Encodec-8

OVL? 3.83 3.60 3.47 3.65
REL?t 3.53 3.67 3.73 3.65
AVG 3.68 3.64 3.60 3.65

Method MKL| CLIPt FD]
AvSyncDiff(Zero) ~ 3.532  9.74 4537
AvSyncDiff (Ours) 1732 12.58  33.46

Table 3: Comparison of results. We use user study
scores to show the performance.

Method MKL| CLIP1 FID]
AvSyncDiff(CLIP)  2.540  11.83  41.53
AvSyncDiff (Ours) 1732 12.58  33.46

Table 4: We evaluated the performance using both CLIP
average features and InternVid features for the given
video. The InternVid features can produce better perfor-
mance.

best with an average score of 3.68, making it the
most balanced and effective.

4.5 Ablation Study

Effect of video condition We replace the Intern-
Vid video encoder with the CLIP image encoder
and use the same average pooling method as Foley-
Crafter. We fine-tune the projection layer and our
trained frame-attention on the VGGSound dataset
and report the results on the AVSync-15 dataset in
Table 4. Compared to average pooling image em-
beddings, video embeddings from InternVid yield
a noticeable performance improvement. Specifi-
cally, an increase of 0.75 in CLIP score is observed
when using Internvid. For MKL and FID scores,
we achieve +0.808 and +8.07, respectively.

Effect of image frame condition To investigate
the effectiveness of our image frame condition, we
conduct an ablation study by nullifying its contri-
bution through zero-vector initialization. Due to
the residual architecture of the diffusion model,
this modification effectively eliminates the frame-
attention layer while maintaining network stability.
We evaluate this variant on the AVSync-15 dataset,
with results presented in Table 5.

When the frame-attention mechanism is neutral-
ized, we observe substantial degradation across all
metrics. Specifically, our frame-attention achieves
a 1.8 improvement in MKL score, indicating a
significant enhancement in audio-visual synchro-
nization quality. The CLIP score demonstrates a
notable improvement of 2.84 points, suggesting
stronger semantic coherence between the visual
and audio modalities. Furthermore, we achieve an

Table 5: Comparison of results. We use zero feature
vectors and the fine-grained visual features.

improvement of 11.91 points in FD metric, reflect-
ing enhanced audio generation quality and natural-
ness.

5 Conclusion

In this paper, we present AvSyncDiff, a novel
diffusion-based framework for video-to-audio syn-
thesis that generates realistic audio content synchro-
nized with visual input. Our approach uniquely
integrates three modalities—video, audio, and
text—into a unified architecture to ensure both
semantic alignment and acoustic consistency in
the generated output. Our framework leverages
the InternVid video encoder with a decoupled
cross-attention mechanism to extract comprehen-
sive global video features, achieving semantic
alignment between visual and audio content. The
direct incorporation of frame-level conditions into
the U-Net architecture enables precise temporal
alignment without requiring additional training
data. Furthermore, the introduction of prompt
audio conditions provides fine-grained control
over audio characteristics. Additionally, we intro-
duce GMDS(Gaussian Mixture Diffusion Search)
a novel inference-time optimization algorithm that
enhances generation quality through test-time scal-
ing. Through comprehensive experimental eval-
uation, we demonstrate that AvSyncDiff consis-
tently outperforms existing approaches in gener-
ating high-quality, temporally synchronized audio
content that aligns with input videos.

6 Limitation

While AvSyncDiff demonstrates significant ad-
vancements in video-to-audio synthesis, there are
several areas for future improvement. One poten-
tial avenue for enhancing performance is the incor-
poration of higher-quality and larger audio-visual
datasets. The largest available dataset, VGGSound,
contains fewer than 200,000 samples, with each
video limited to just 10 seconds in length. This
constraint restricts our model’s ability to generalize
to longer videos and capture temporal dynamics.
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