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Abstract001

Video-driven audio synthesis aims to generate002
synchronized and contextually appropriate au-003
dio based on visual content, with applications004
in multimedia, virtual reality, and film produc-005
tion. Existing methods often rely solely on006
visual cues, leading to suboptimal audio gener-007
ation that lacks synchronization and semantic008
alignment. To address these challenges, we in-009
troduce a novel video-guided audio synthesis010
method, termed AvSyncDiff. Unlike traditional011
approaches, AvSyncDiff leverages both visual012
and textual inputs, along with an optional audio013
prompt, to achieve precise control over the au-014
dio generation, enhancing the quality and real-015
ism of the synthesized audio. Furthermore, we016
propose a Gaussian Mixture Diffusion Search017
(GMDS) algorithm, a test-time scaling strat-018
egy inspired by advancements in the text-to-019
image domain. GMDS employs a dual-scale020
sampling mechanism to adaptively explore the021
latent space, balancing local exploitation and022
global exploration through a combination of023
small and large step sizes. The experimental re-024
sults demonstrate that AvSyncDiff significantly025
outperforms state-of-the-art methods in both026
quantitative metrics and qualitative evaluations,027
showcasing its potential for diverse applica-028
tions in multimedia and beyond.029

1 Introduction030

Recent advancements in cross-modal learning have031

led to significant progress in audio generation.032

State-of-the-art models like AudioGen (Kreuk033

et al., 2022), Make-An-Audio (Huang et al., 2023),034

and AudioLDM (Liu et al., 2023a) have demon-035

strated remarkable capabilities in synthesizing au-036

dio from text descriptions. As text-to-video gen-037

eration (Khachatryan et al., 2023; Ge et al., 2023)038

continues to show promising applications, there is039

increasing interest in tackling the inverse problem:040

generating audio from video.041

Video-to-audio generation presents significantly042

greater challenges than text-to-audio generation,043

Figure 1: Our AvSyncDiff model supports multi-modal
conditioning, incorporating not only video but also text
and audio inputs.

primarily due to the following reasons: (1) Mul- 044

timodal Alignment Requirements: The generated 045

audio must synchronize with both the semantic con- 046

tent and temporal dynamics of the video. (2) Com- 047

plex Audio-Visual Relationships: The relationship 048

between visual and audio elements is inherently 049

complex, as audio can encompass various styles 050

and dynamic characteristics that evolve over time. 051

Video content alone often provides insufficient cues 052

to determine the desired audio style and emphasis 053

without additional guidance. 054

Several methods have been proposed for video- 055

to-audio generation. One approach uses diffusion- 056

based architectures (Zhang et al., 2024b) where 057

video frames are encoded using image encoders 058

like CLIP (Radford et al., 2021) to condition au- 059

dio generation. A distinct approach is Diff-Foley, 060

which employs contrastive learning between video 061

and audio to pre-train representations with audio- 062

aware features before generation. Another ap- 063

proach is to use text as an intermediate modality 064

to bridge the gap between video and audio (Wang 065

et al., 2024). These methods first convert the video 066

into textual descriptions and then leverage power- 067

ful text2audio models (Xie et al., 2024) to gener- 068

ate the corresponding audio. However, existing 069

video-to-audio generation methods face three key 070

challenges: First, high-quality video-audio paired 071

datasets remain scarce compared to image-text data. 072

While CLIP utilized 400 million image-text pairs 073
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and CLAP incorporated data totaling over 5000074

hours, video-audio datasets lack comparable scale075

and diversity, limiting model generalization in com-076

plex scenarios. Second, current approaches typi-077

cally compress the input video into a single feature078

representation, resulting in substantial information079

loss. Videos contain rich temporal dynamics and080

contextual changes that single representations can-081

not adequately capture, leading to generated au-082

dio lacking precise temporal alignment with visual083

events. Finally, existing methods overlook the one-084

to-many nature of the video-to-audio relationship.085

For any video, multiple plausible audio outputs086

could authentically accompany the visual content.087

Current approaches implicitly assume a determinis-088

tic mapping between modalities, failing to capture089

the diverse space of possible audio interpretations.090

Incorporating reference audio as an additional con-091

ditioning signal would enable more precise nav-092

igation of this solution space while maintaining093

semantic coherence with the visual content.094

To address these limitations, we propose095

a novel video-to-audio generation framework096

called AvSyncDiff, which leverages multiple high-097

level control signals, including text, video, and098

audio. As illustrated in Figure 1, the AvSyncD-099

iff model is built upon a U-Net diffusion-based100

architecture and incorporates three additional in-101

puts: text, video, and audio. Unlike conventional102

approaches that rely on a single feature to repre-103

sent the video input, AvSyncDiff innovatively par-104

titions the video into two distinct components: a105

video global feature, which encapsulates the over-106

all context of the video, and fine-grained frame-107

wise image features, which are derived from in-108

dividual frames. This dual-feature representation109

mitigates the risk of information loss across the110

entire video and facilitates precise timing align-111

ment at the frame level. Furthermore, in line with112

prior research, AvSyncDiff can integrate text in-113

put as an additional control modality, for example,114

using “loudly" to control the volume or giving a115

detailed description to assist generation. More sig-116

nificantly, our model introduces the capability to117

accept prompt audio input. This novel feature al-118

lows for more nuanced and refined control over the119

audio generation process, enabling the model to120

produce audio that is more closely aligned with the121

desired output characteristics.122

Besides the model architecture design, we also123

improve the performance at the inference stage124

with a test-time scaling strategy inspired by ad-125

vancements in the text-to-image domain (Ma et al., 126

2025). Specifically, we propose a Gaussian Mix- 127

ture Diffusion Search (GMDS) algorithm, which 128

employs a dual-scale sampling mechanism to ex- 129

plore the latent space adaptively. This approach 130

balances local exploitation and global exploration 131

by combining small and large step sizes, ensuring 132

more efficient and effective optimization during 133

inference. We conduct experiments to demonstrate 134

the superiority of our method, and our contributions 135

can be summarized as follows: 136

• We identify that maintaining both global con- 137

text and temporal dynamics is crucial for 138

video-to-audio generation. Based on this in- 139

sight, we propose a simple yet effective solu- 140

tion that uses a complementary representation 141

of global video features and frame-wise image 142

features, significantly improving audio-video 143

synchronization quality. 144

• We introduce a multi-modal controlled frame- 145

work that integrates text, video, and audio 146

inputs, allowing for fine-grained control over 147

the generated audio. Including prompt audio 148

as a conditioning signal enables the model to 149

navigate the diverse space of possible audio 150

interpretations while maintaining semantic co- 151

herence with the visual content. 152

• We develop a test-time scaling method specif- 153

ically designed for video-to-audio generation, 154

which optimizes the model’s output quality 155

during inference. This method ensures high 156

fidelity and temporal alignment of the gener- 157

ated audio with the input video. 158

2 Related Work 159

2.1 Text-to-audio Generation 160

Text-to-audio generation has emerged as a promi- 161

nent research direction in recent years. Contempo- 162

rary approaches can be systematically categorized 163

into two predominant frameworks: transformer- 164

based autoregressive models and diffusion-based 165

architectures. 166

AudioGen (Kreuk et al., 2022) pioneered an au- 167

toregressive framework for audio synthesis, capa- 168

ble of generating acoustic content conditioned on 169

either textual descriptions or audio prompts. Ex- 170

panding this paradigm, MusicGen (Copet et al., 171

2024) implements a sophisticated language model- 172

ing approach utilizing efficient token interleaving 173
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strategies to enable high-fidelity music generation174

from textual inputs.175

Within the diffusion-based domain, Audi-176

oLDM (Liu et al., 2023a) advances the field by177

implementing contrastive language-audio pretrain-178

ing (CLAP) embeddings as latent conditional vari-179

ables within a VAE framework for audio synthesis.180

Make-an-Audio (Huang et al., 2023) introduces an181

innovative approach through a spectrogram autoen-182

coder that predicts self-supervised representations183

instead of direct waveforms, thereby facilitating en-184

hanced compression efficiency and deeper seman-185

tic interpretation. Through the integration of CLAP186

embeddings (Wu et al., 2023) with high-fidelity187

diffusion architectures, Make-an-Audio achieves188

sophisticated language comprehension capabilities189

alongside superior audio generation quality.190

2.2 Video-to-audio Generation191

Existing methods in video-to-audio generation aim192

to learn joint representations of visual and audi-193

tory modalities to produce audio synchronized with194

visual content. SpecVQGAN (Iashin and Rahtu,195

2021) presents an efficient framework for multi-196

class, visually guided sound synthesis using a trans-197

former decoder trained to sample from a codebook-198

based prior. Diff-foley (Luo et al., 2024) employs199

a latent diffusion model (LDM) for audio synthe-200

sis, utilizing contrastive audio-visual pre-trained201

(CAVP) features derived from a large-scale video202

dataset. V2A-Mapper (Wang et al., 2024) lever-203

ages pre-trained foundation models to bridge multi-204

modal gaps, enabling the transfer of pre-trained205

knowledge to better handle open-domain chal-206

lenges. FoleyCrafter (Zhang et al., 2024b) uses an207

IP-adapter (Ye et al., 2023) connection to capture208

video semantics while employing an audio event209

detection model to identify temporal information.210

3 Method211

3.1 Text-Video Condition212

Text condition We build upon Tango-2 (Ma-213

jumder et al., 2024), a strong pre-trained text-to-214

audio diffusion model, as our backbone architec-215

ture. For the text input processing, we follow the216

original pipeline of Tango-2. Specifically, we em-217

ploy the pre-trained FLAN-T5 text encoder (Chung218

et al., 2024) to extract text embeddings, which are219

kept frozen during training.220

Given that the original captions in the VG-221

GSound dataset are relatively simple and limited in222

semantic richness, we enhance them using Qwen2- 223

Audio (Chu et al., 2023). As illustrated in Fig- 224

ure 2(c), we designed a system prompt and fed 225

both the audio and its corresponding original cap- 226

tion to Qwen2-Audio, obtaining a more descriptive 227

and semantically enriched version of the prompt. 228

Then, we further introduce diversity into the 229

prompts by generating perturbed versions using the 230

DeepSeek-V3 language model. For each rewritten 231

prompt, we generate three variations. To ensure se- 232

mantic consistency, we include specific instructions 233

in the input prompt to guarantee that the perturbed 234

texts (c′) remain conceptually or semantically close 235

to the original (c). This approach not only enriches 236

the textual content but also effectively expands the 237

training data, leading to improved generalization 238

and robustness of the model. 239

Video condition Accurate video representation 240

is essential for capturing the semantic and tempo- 241

ral content of dynamic scenes. While previous 242

methods like FoleyCrafter (Zhang et al., 2024b) 243

rely on CLIP-based image encoders to extract aver- 244

aged frame features, such approaches lack explicit 245

modeling of motion and temporal structure due to 246

CLIP’s static-image pre-training. 247

To extract global video features, we utilize the 248

video encoder from the contrastive video-language 249

pre-training framework InternVid (Wang et al., 250

2023). InternVid is built upon CLIP, and it un- 251

dergoes continued pre-training of CLIP encoder 252

on a large-scale dataset of video-text pairs, which 253

enables it to better understand temporal relation- 254

ships and motion dynamics across video frames. 255

For the video sequence {v1, v2, ..., vN}, we use 256

the visual encoder of InternVid to obtain a global 257

feature vector fg ∈ Rd, where d is the feature di- 258

mension. Then, fg is passed through a projection 259

layer followed by a LayerNorm to match the di- 260

mensionality required by our diffusion model. As 261

shown in Figure 2(a), to effectively incorporate 262

this video information into the diffusion process, 263

we adopt a decoupled cross-attention mechanism 264

inspired by the IP-Adapter(Ye et al., 2023). Specif- 265

ically, given the query features Z from the U-Net, 266

text features ft, and global video features fg, the 267

decoupled cross-attention is formulated as: 268

Zsem = Softmax(
QK⊤
√
d′

)V+Softmax(
Q(K ′)⊤√

d′
)V ′

(1) 269

where d′ is the dimensionality of the diffusion 270

model’s latent space.,Q = ZWq is the shared query 271
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Figure 2: Figure (a) illustrates the architecture of our AvSyncDiff model. Figure (b) depicts the audio features
extracted by the Encodec model. Figure(c) shows the pipeline of our text generation.

transformation, K = ftWk, V = ftWv are the272

key and value projections for text features, and273

K ′ = fgW
′
k, V

′ = fgW
′
v are the key and value274

projections for global video features.275

Image frame conditon While the global video276

features capture high-level semantic content and277

temporal dynamics, fine-grained frame-level de-278

tails are crucial for maintaining precise temporal279

alignment between the generated audio and visual280

events. Therefore, we propose a complementary281

frame-level processing stream that operates parallel282

to global feature extraction.283

As illustrated in Figure 2(a), we uniformly sam-284

ple N frames {v1, v2, . . . , vN} and process each285

frame through the CLIP visual encoder to obtain286

frame-wise embeddings ei ∈ Rd. To effectively287

integrate these frame-level features into the dif-288

fusion model, we first transform them through a289

projection layer with RMSNorm(Zhang and Sen-290

nrich, 2019) to match the required dimensional-291

ity. These adapted frame-wise embeddings H =292

{h1, h2, . . . , hN} are then integrated into the dif-293

fusion process through a dedicated cross-attention294

layer called frame-attention in the U-Net architec-295

ture. Importantly, we incorporate Rotary Position296

Embeddings (RoPE)(Su et al., 2024) on key and297

query vector to the frame-wise cross-attention layer298

(frame-attention) to encode the temporal ordering299

of frames, enabling the model to better understand 300

and utilize sequential relationships. Formally, we 301

have 302

Zfine = Softmax

(
RoPE(Q)RoPE(Kf )

⊤
√
d′

)
Vf

(2) 303

where Q = ZWq is the query transformation, 304

Kf = HWkf , Vf = HWvf are the key and value 305

projections for fine-grained visual features, and 306

Wq,Wkf ,Wvf are learnable projection matrices. 307

3.2 Prompt Audio condition 308

To guide the audio generation process, we use a 309

pre-trained EnCodec model (Défossez et al., 2022) 310

to extract acoustic-aware embeddings from the 311

prompt audio. These embeddings capture the es- 312

sential acoustic characteristics of the input audio, 313

providing a strong conditioning signal for the gen- 314

eration process. 315

As illustrated in Figure 2(b), EnCodec employs 316

a Residual Vector Quantization (RVQ) mechanism 317

to quantize the output of the encoder. To integrate 318

this embedding into the diffusion model, we add a 319

cross-attention layer called audio-attention in the U- 320

Net architecture. The audio-attention is formulated 321

as: 322

Zaudio = Softmax

(
QK⊤

a√
d′

)
Va (3) 323
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where Q = ZWq is the query transformation,324

Ka = aWka , Va = aWva are the key and325

value projections for the audio embedding, and326

Wq,Wka ,Wva are learnable projection matrices.327

By incorporating the prompt audio embedding,328

our model can generate audio that aligns with both329

the visual content and the acoustic characteristics330

of the prompt, enhancing the overall quality and331

realism of the output.332

3.3 Test-time Scaling333

To enhance the inference performance of our video-334

to-audio diffusion model, we propose a Gaussian335

Mixture Diffusion Search (GMDS) strategy. This336

approach introduces a dual-scale sampling mech-337

anism that adaptively explores the latent space by338

combining both small and large step sizes, thereby339

balancing local exploitation and global exploration.340

The GMDS algorithm maintains a population341

of candidate solutions that evolve over multiple342

iterations. Initially, the population P0 is sampled343

from a standard normal distribution. At each it-344

eration, for every candidate in the population, we345

generate two potential updates using different dif-346

fusion scales: a conservative step with parameter347

βs for local exploitation and a more aggressive step348

with parameter βlfor global exploration (βl > βs).349

Specifically, given a candidate solution, we gener-350

ate two new candidates:351

xs = βsx+
√
1− β2

s · η (4)352

353

xl = βlx+
√
1− β2

l · η (5)354

where η is sampled from N (0, 1).355

To evaluate the quality of the generated audio,356

we employ a zero-shot evaluation approach. Specif-357

ically, we utilize the CLIP score (Wu et al., 2022)358

to measure the audio-visual correspondence and359

the CLAP score to assess the audio-text alignment.360

These metrics provide a comprehensive evaluation361

of the generated audio in terms of both visual and362

textual relevance. We show the algorithm in the 1363

3.4 Training Method364

During the training process, we keep all feature365

extractors frozen, including the text encoder, CLIP366

image encoder, InternVid video encoder, and En-367

codec. We only train the projection layers, which368

are designed to align the dimensions of different369

modalities, as well as the additional cross-attention370

mechanisms integrated into each U-Net diffusion371

Algorithm 1 Gaussian Mixture Diffusion Search
Require: D,T,N, βs, βl,F
Ensure: best_solution, best_score

1: Initialize population P0 ∼ N (0, 1)D with N
samples

2: Find initial x∗ ← argmaxx∈P0 F(x)
3: best_score← F(x∗), best_solution← x∗

4: for t← 1 to T do
5: for i← 1 to N do
6: Sample noise vector η ∼ N (0, 1)D

7: Generate candidates: xs ← βsPt−1[i] +√
1− β2

s · η
xl ← βlPt−1[i] +

√
1− β2

l · η
8: Select x← argmax{F(xs),F(xl)}
9: Update population: Pt[i]← x

10: if F(x) > best_score then
11: best_score← F(x)
12: best_solution← x
13: end if
14: end for
15: end for=0

block. The training objective is based on the stan- 372

dard diffusion loss, which ensures that the model 373

learns to generate high-quality audio by progres- 374

sively denoising the latent representations. 375

4 Experiments 376

4.1 Experiment Setup 377

Dataset To train our proposed AvSyncdiff, we 378

utilize VGGSound (Chen et al., 2020) dataset, ad- 379

hering to its original train/test splits. For evaluation, 380

we assess our method using both the VGGSound 381

and AVSync15 (Zhang et al., 2024a) datasets. 382

Implementation Details Given the scarcity of 383

large-scale audio-visual paired data, we build our 384

video-to-audio generation framework upon a strong 385

text-to-audio diffusion model, Tango-2 (Majumder 386

et al., 2024). Inspired by vision-language mod- 387

els such as LLaVA (Liu et al., 2023b), we adapt 388

the pre-trained language model through modality 389

projection and alignment. We use OpenCLIP ViT- 390

H/14 (Cherti et al., 2023) for image encoding and 391

ViCLIP-L-14 (Wang et al., 2023) for video encod- 392

ing. For audio encoding, we utilize the Encodec 393

24 kHz model with a bandwidth of 6 kbps. The 394

training process uses the AdamW optimizer with a 395

constant learning rate of 1× 10−4, a batch size of 396

128 visual-audio embedding pairs, and a dropout 397
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rate of 0.1 for classifier-free guidance.398

Metrics To evaluate the performance, we employ399

a comprehensive set of metrics that assess various400

aspects of the generated audio, including: Mean401

KL Divergence (MKL)(Iashin and Rahtu, 2021) to402

measure the sample-level similarity between the403

generated audio and the ground truth; CLIP Simi-404

larity to evaluate the semantic coherence between405

the input video and the generated audio embed-406

dings, using Wav2CLIP(Wu et al., 2022) as the407

audio encoder and CLIP as the video encoder, as408

done in previous works (Wang et al., 2024; Zhang409

et al., 2024b); Frechet Distance (FD)(Heusel et al.,410

2017) and Frechet Audio Distance (FAD)(Kilgour411

et al., 2018) with VGGish(Hershey et al., 2017) to412

assess the fidelity and distribution similarity of the413

generated audio; CLAP Similarity to evaluate the414

cross-modal alignment between text and generated415

audio; and Onset Acc (onset detection accuracy)416

and Onset AP (onset detection average precision)417

(Xie et al., 2024) to evaluate the generated audios,418

using the onset ground truth from the datasets.419

Baseline For comparison, we use current state-420

of-the-art method SpecVQGAN (Iashin and421

Rahtu, 2021), Diff-Foley (Luo et al., 2024),422

V2A-Mapper (Wang et al., 2024), Seeing-423

and-hearing (Xing et al., 2024) and Foley-424

crafter (Zhang et al., 2024b). SpecVQGAN gen-425

erates audio tokens autoregressively from video426

tokens, while Diff-Foley applies contrastive learn-427

ing to achieve synchronized audio synthesis via its428

CAVP encoders. V2A-Mapper aligns image repre-429

sentations with audio embeddings in CLAP space,430

facilitating video-based audio generation through a431

pre-trained model. Seeing-and-hearing uses Image-432

Bind (Girdhar et al., 2023) as a connector between433

visual and audio domains. FoleyCrafter introduces434

both semantic and temporal adapters to enhance435

video2audio generation.436

4.2 Qualitative Evaluation437

Audio quality and cross-modal alignment We438

evaluate the proposed AvSyncDiff method on both439

the V2A (Video-to-Audio) and TV2A (Text-Video-440

to-Audio) tasks, as shown in Table 1. To ensure a441

fair comparison, we do not include results using442

audio prompts, as most baseline methods do not443

leverage such information. For GMDS, we set the444

number of candidates to be 6 in our test.445

Our experimental results demonstrate that446

AvSyncDiff achieves strong performance on all447

evaluation metrics. When using video embeddings 448

from a pre-trained video encoder and fine-grained 449

frame-level features, our model generates more re- 450

alistic and temporally coherent audio, especially 451

under the challenging V2A and TV2A settings. 452

Compared to existing methods, AvSyncDiff con- 453

sistently outperforms them in terms of both audio 454

quality ( MKL and FD) and cross-modal alignment 455

(CLIP and CLAP), indicating better semantic and 456

temporal synchronization with input video. 457

We further evaluate the effectiveness of our 458

Gaussian Mixture Diffusion Search (GMDS) strat- 459

egy by comparing results with and without it during 460

inference. As shown in Table 1, applying GMDS 461

significantly improves generation quality, highlight- 462

ing its importance in enhancing the diffusion sam- 463

pling process. 464

Time alignment To evaluate temporal synchro- 465

nization, we conduct experiments on the AVSync15 466

dataset. This dataset is constructed from high- 467

quality videos sourced from VGGSound, which 468

have been carefully filtered and segmented to retain 469

only the most precise video-audio pairs while dis- 470

carding irrelevant or inactive segments. As shown 471

in Table 2, our method achieves state-of-the-art per- 472

formance in temporal synchronization, demonstrat- 473

ing its effectiveness in aligning audio with visual. 474

4.3 Quantitative Evaluation 475

Visualization Results We demonstrate the effec- 476

tiveness of AvSyncDiff by comparing it with the 477

state-of-the-art method FoleyCrafter through qual- 478

itative results. For both methods, we set the text 479

prompt to None to simulate the scenario where no 480

additional text guidance is provided. 481

Figure 3 presents audio-visual results from the 482

AVSync-15 dataset. We extract frames at reg- 483

ular intervals and generate corresponding mel- 484

spectrograms that span the full duration between 485

adjacent frames. Unlike other methods that only 486

show partial spectrograms, we visualize the com- 487

plete time-frequency structure for a more compre- 488

hensive comparison. 489

In the gunshot video, FoleyCrafter generates 490

gunshots that are intermittent and misaligned with 491

the single firing event in the video. Additionally, 492

the low- and high-frequency components are sepa- 493

rated, leading to an unnatural sound. Our method 494

produces sharper and temporally aligned gunshots, 495

concentrated in the mid and high-frequency ranges, 496

resulting in a more realistic auditory match. 497
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Method Task MKL ↓ CLIP ↑ FD ↓ FAD ↓ CLAP ↑

V2A Results

SpecVQGAN V2A 3.40 5.876 32.01 5.79 -
Diff-Foley V2A 3.32 9.172 29.03 6.23 20.5
V2A-Mapper V2A 2.85 9.720 24.16 1.34 24.5
FoleyCrafter V2A 2.56 10.70 19.67 2.78 25.3
AvSyncDiff (Ours) V2A 2.38 11.52 11.24 2.14 26.8
AvSyncDiff (GMDS) V2A 2.33 12.98 10.13 1.95 30.3

TV2A Results

FoleyCrafter TV2A 2.28 14.80 19.16 2.59 26.0
AvSyncDiff (Ours) TV2A 1.96 12.71 10.24 2.17 26.0
AvSyncDiff (GMDS) TV2A 1.89 12.54 9.85 2.07 31.20

Table 1: Comparison of results on VGGSound dataset. The results show that our method can achieve better results
with less data. The number underlined indicates the second best result.

Figure 3: Visualiation results on Avsync15 dataset.

Method Onset ACC ↑ Onset AP ↑

SpecVQGAN 26.74 63.18
Diff-Foley 21.18 66.55
Seeing and Hearing 20.95 60.33
FoleyCrafter 28.48 68.14
AvSyncDiff (Ours) 30.72 69.28

Table 2: Comparison of results on AVSync15 dataset.

In the frog croaking video, FoleyCrafter gen-498

erates two constant-frequency sounds throughout499

the clip, failing to capture the natural frequency500

shift seen in the original spectrum. In contrast,501

AvSyncDiff successfully reproduces the dynamic502

progression from low to high frequency, while503

maintaining accurate temporal alignment with the504

visual content.505

4.4 Audio Transfer506

To evaluate the effectiveness of our audio condition507

block, we conducted a human evaluation focusing508

on two aspects: (i) Overall Quality (OVL) (Liu509

et al., 2023a), and (ii) Relevance to the Input 510

Audio (REL) (Liu et al., 2023a). 511

For the evaluation, we selected two samples per 512

category from the AVSync15 test set. For each 513

sample, we collected three distinct 10-second au- 514

dio clips from the internet as input prompts and 515

randomly selected one during generation. The text 516

inputs were also randomly sampled from multiple 517

GPT-4-generated variations to enhance diversity 518

and generalization. 519

Evaluators rated each generated audio clip on 520

a scale from 1 to 5 based on the two criteria. We 521

then computed average scores for each dimension 522

and used them to compare model performance. We 523

tested configurations using the first 1, 2, 4, and 524

8 layers of the Encodec codebook. Results are 525

summarized in Table 3. 526

In terms of relevance to the input audio (REL), 527

the Encodec-4 configuration achieved the highest 528

score of 3.73, indicating superior alignment with 529

the input prompts in both style and content. When 530

considering the overall average (AVG) across both 531

metrics, the Encodec-1 configuration performed 532
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Method Encodec-1 Encodec-2 Encodec-4 Encodec-8

OVL↑ 3.83 3.60 3.47 3.65
REL↑ 3.53 3.67 3.73 3.65
AVG 3.68 3.64 3.60 3.65

Table 3: Comparison of results. We use user study
scores to show the performance.

Method MKL ↓ CLIP ↑ FID ↓

AvSyncDiff(CLIP) 2.540 11.83 41.53
AvSyncDiff (Ours) 1.732 12.58 33.46

Table 4: We evaluated the performance using both CLIP
average features and InternVid features for the given
video. The InternVid features can produce better perfor-
mance.

best with an average score of 3.68, making it the533

most balanced and effective.534

4.5 Ablation Study535

Effect of video condition We replace the Intern-536

Vid video encoder with the CLIP image encoder537

and use the same average pooling method as Foley-538

Crafter. We fine-tune the projection layer and our539

trained frame-attention on the VGGSound dataset540

and report the results on the AVSync-15 dataset in541

Table 4. Compared to average pooling image em-542

beddings, video embeddings from InternVid yield543

a noticeable performance improvement. Specifi-544

cally, an increase of 0.75 in CLIP score is observed545

when using Internvid. For MKL and FID scores,546

we achieve +0.808 and +8.07, respectively.547

Effect of image frame condition To investigate548

the effectiveness of our image frame condition, we549

conduct an ablation study by nullifying its contri-550

bution through zero-vector initialization. Due to551

the residual architecture of the diffusion model,552

this modification effectively eliminates the frame-553

attention layer while maintaining network stability.554

We evaluate this variant on the AVSync-15 dataset,555

with results presented in Table 5.556

When the frame-attention mechanism is neutral-557

ized, we observe substantial degradation across all558

metrics. Specifically, our frame-attention achieves559

a 1.8 improvement in MKL score, indicating a560

significant enhancement in audio-visual synchro-561

nization quality. The CLIP score demonstrates a562

notable improvement of 2.84 points, suggesting563

stronger semantic coherence between the visual564

and audio modalities. Furthermore, we achieve an565

Method MKL ↓ CLIP ↑ FD ↓

AvSyncDiff(Zero) 3.532 9.74 45.37
AvSyncDiff (Ours) 1.732 12.58 33.46

Table 5: Comparison of results. We use zero feature
vectors and the fine-grained visual features.

improvement of 11.91 points in FD metric, reflect- 566

ing enhanced audio generation quality and natural- 567

ness. 568

5 Conclusion 569

In this paper, we present AvSyncDiff, a novel 570

diffusion-based framework for video-to-audio syn- 571

thesis that generates realistic audio content synchro- 572

nized with visual input. Our approach uniquely 573

integrates three modalities—video, audio, and 574

text—into a unified architecture to ensure both 575

semantic alignment and acoustic consistency in 576

the generated output. Our framework leverages 577

the InternVid video encoder with a decoupled 578

cross-attention mechanism to extract comprehen- 579

sive global video features, achieving semantic 580

alignment between visual and audio content. The 581

direct incorporation of frame-level conditions into 582

the U-Net architecture enables precise temporal 583

alignment without requiring additional training 584

data. Furthermore, the introduction of prompt 585

audio conditions provides fine-grained control 586

over audio characteristics. Additionally, we intro- 587

duce GMDS(Gaussian Mixture Diffusion Search) 588

a novel inference-time optimization algorithm that 589

enhances generation quality through test-time scal- 590

ing. Through comprehensive experimental eval- 591

uation, we demonstrate that AvSyncDiff consis- 592

tently outperforms existing approaches in gener- 593

ating high-quality, temporally synchronized audio 594

content that aligns with input videos. 595

6 Limitation 596

While AvSyncDiff demonstrates significant ad- 597

vancements in video-to-audio synthesis, there are 598

several areas for future improvement. One poten- 599

tial avenue for enhancing performance is the incor- 600

poration of higher-quality and larger audio-visual 601

datasets. The largest available dataset, VGGSound, 602

contains fewer than 200,000 samples, with each 603

video limited to just 10 seconds in length. This 604

constraint restricts our model’s ability to generalize 605

to longer videos and capture temporal dynamics. 606
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