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Abstract
Nested entities are prone to obtain similar rep-001
resentations in pre-trained language models,002
posing challenges for Named Entity Recog-003
nition (NER), especially in the few-shot set-004
ting where prototype shifts often occur due to005
distribution differences between the support006
and query sets. In this paper, we regard en-007
tity representation as the combination of proto-008
type and non-prototype representations. With009
a hypothesis that using the prototype repre-010
sentation specifically can help mitigate poten-011
tial prototype shifts, we propose a Prototype-012
Attention mechanism in the Contrastive Learn-013
ing framework (PACL) for the few-shot nested014
NER. PACL first generates prototype-enhanced015
span representations to mitigate the prototype016
shift by applying a prototype attention mech-017
anism. It then adopts a novel prototype-span018
contrastive loss to reduce prototype differences019
further and overcome the O-type’s non-unique020
prototype limitation by comparing prototype-021
enhanced span representations with prototypes022
and original semantic representations. Our ex-023
periments on three English, German, and Rus-024
sian nested NER datasets show that the PACL025
outperformed seven baseline models on the026
1-shot and 5-shot tasks in terms of F1 score.027
Further analyses indicate that our Prototype-028
Attention mechanism has high generality, en-029
hancing the performance of two baseline mod-030
els, and can serve as a valuable tool for NLP031
practitioners facing few-shot nested NER tasks.032

1 Introduction033

The few-shot Named Entity Recognition (NER)034

task has gained a lot of attention in recent years as035

it aims to address the limitations of traditional NER036

methods that rely on a large number of labeled train-037

ing instances, which can be both time-consuming038

and experience-dependent. This task deals with the039

NER problem using only a few labeled instances.040

Researchers have made significant progress on this041

task by applying deep learning models, includ-042

ing pre-trained-model-based (Florez and Mueller,043

Our data suggest that lipoxygenase metabolites activate 

ROI formation which then induce IL-2 expression via 

NF-kappa B activation.
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Figure 1: (a) Example of an instance with nested entities
from the GENIA dataset. (b) Illustration of prototype
shifts, where the prototypes differ due to the distribution
difference between the support and query sets.

2019; Hou et al., 2019; Yang et al., 2021; Wang 044

et al., 2022b), metric-learning-based (Snell et al., 045

2017; Hofer et al., 2018; Yang and Katiyar, 2020), 046

meta-learning-based (Li et al., 2020a; Sung et al., 047

2018), prompt-tuning-based (Ma et al., 2022; Hou 048

et al., 2022), and contrastive-learning-based (Das 049

et al., 2022) methods. 050

However, most existing few-shot NER research 051

has focused on flat entities that do not overlap 052

(Ming et al., 2022; Wang et al., 2022b). In real- 053

ity, many entities share the same words and form 054

nested entities that are part of another entity. This 055

is where the few-shot nested NER task comes in. 056

This task deals with nested entities that share words 057

and are part of another entity. For example, in the 058
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Figure 2: The Euclidean distance of prototype shift
between the prototypes in the support set and the query
set in the GENIA, GermEval, and NEREL datasets. K-
shot denotes the K number of labeled instances in the
support set for each type.

GENIA dataset (Kim et al., 2003), about 53.9%059

of entities are nested. Figure 1 (a) illustrates an060

instance, that is, a protein molecule entity "lipoxy-061

genase" is nested within a protein family or group062

entity "lipoxygenase metabolites". Due to the over-063

lapped part, nested entities are more likely to obtain064

similar representations, increasing the difficulty of065

distinguishing them, especially in the few-shot set-066

ting where prototype shifts often occur.067

The prototype shift in NER refers to changes068

in the prototypes between the few-shot labeled069

data set (support set) and unlabeled data (query070

set), as exemplified in Figure 1 (b), where a proto-071

type is a representative instance of a specific entity072

type. The very few labeled data in the support073

set could hardly represent the whole distribution,074

resulting in prototype shifts. Figure 2 shows the075

statistics of prototype shifts in terms of Euclidean076

distance between the support set and the query077

set in three nested datasets (GENIA (Kim et al.,078

2003), GermEval (Benikova et al., 2014), NEREL079

(Loukachevitch et al., 2021)). We can find that080

the prototype shift reveals a consistent pattern of081

increasing Euclidean distance between prototypes082

as the number of labeled data in the support set083

decreases. When employing the prototypes derived084

from the support set for delineating the decision085

boundaries in the query set, a high frequency of086

classification errors would be introduced due to pro-087

totype shifts. Despite having distinguished nested088

entities within the support set, they may become089

interspersed within the query set.090

This paper addresses the prototype shift in the091

few-shot nested NER task. Unlike the example-092

extrapolation-based data augmentation methods093

(DeVries and Taylor, 2017; Wei, 2021) to enhance094

the entity representation, we regard entity repre- 095

sentation as the combination of prototype and non- 096

prototype representations. Entities of the same type 097

should share the same prototype representation. 098

And the non-prototype representation determines 099

the dispersion of the entity distribution. If we could 100

focus more on the prototype representation when 101

learning the entity representation, entities would 102

gather closer around the prototype, and the proto- 103

type shift could be reduced. Therefore, we design 104

a prototype-attention mechanism to enhance the 105

prototype representation. Besides, words of the O- 106

type have miscellaneous semantics and cannot be 107

represented by a unique prototype. Therefore, we 108

further design a novel prototype-span contrastive 109

loss. It compares prototype-enhanced span repre- 110

sentations with original semantic representations 111

to guarantee the O-type’s representations are not 112

enhanced by entity prototypes. It also compares 113

prototype-enhanced span representations with pro- 114

totypes to reduce prototype differences further. 115

Our main contributions are as follows: 116

• We identify the prototype shift challenge 117

in the few-shot learning, particularly in the 118

few-shot nested NER task, and propose 119

a Prototype-Attention Contrastive Learning 120

(PACL) framework to tackle it. 121

• We devise a unique Prototype-Attention mech- 122

anism to generate the prototype-enhanced rep- 123

resentation for each span to mitigate the proto- 124

type shift between the support and query sets. 125

This mechanism exhibits a high level of gen- 126

erality in enhancing the performance of two 127

baseline models. 128

• We design a novel prototype-span contrastive 129

loss by comparing prototype-enhanced span 130

representations with prototypes and original 131

semantic representations to reduce prototype 132

differences further and overcome the O-type’s 133

non-unique prototype limitation. 134

• We conduct experiments on three nested NER 135

datasets from three different languages. The 136

results show improvements in PACL over ex- 137

isting nested NER and few-shot NER base- 138

lines in terms of F1 score. 139

2 Problem Definition 140

Following the mainstream solutions, we formulate 141

the few-shot nested NER task as a span-based en- 142
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Figure 3: Illustration of our PACL framework and learning procedures. During the training procedure on the source
domain, PACL calculates prototypes based on labeled spans of the support set and then utilizes prototype-attention to
obtain prototype-enhanced representations for the query set. After that, PACL applies the prototype-span contrastive
loss to optimize the representations. During the fine-tuning procedure on the target domain, PACL generates
prototype-enhanced representations for the support set to fine-tune the model. Finally, PACL makes inferences on
the query set of the target domain based on the nearest neighbor strategy.

tity classification problem. That is, given an in-143

put sentence x ∈ X with l tokens, denoted by144

x = {w1, . . . , wl}, we generate an entity span145

set containing all possible spans, and each span146

spq is a span of tokens starting from the pth to-147

ken and ending at the qth token in x, denoted by148

spq = {wp, . . . , wq} (1 ⩽ p ⩽ q ⩽ l). Then, we149

learn a classification model to map each span into150

an entity label in the label set EX . If we set the151

task as a K-shot task, then the number of span la-152

bels for each entity type used for training is limited153

to K. Besides, we also apply the meta-learning154

framework. The formal descriptions are as follows.155

Let D = {X ,Y} denote a dataset with X and Y156

as the sentence set and the corresponding label set,157

respectively. Dspt = {X spt,Yspt} and Dqry =158

{X qry,Yqry} are disjoint sets sampled from D for159

model training and testing, respectively. They are160

also known as the support set and the query set.161

Suppose Di = {Xi,Yi} and Dj = {Xj ,Yj} are162

the source and target domain datasets, respectively.163

The few-shot nested NER task first samples several164

subtasks {Dspt
i ,Dqry

i } from Di = {Xi,Yi}, where165

Dspt
i = {X spt

i ,Yspt
i }, Dqry

i = {X qry
i ,Yqry

i }. It166

then trains a model on these subtasks. After that,167

it makes adaptations on Dj , i.e., it fine-tunes the168

model on Dspt
j = {X spt

j ,Yspt
j } and then predicts169

the span labels for Dqry
j = {X qry

j }. For the K-170

shot setting, each entity category in X spt
i and X spt

j171

contains K entities. 172

3 Methodology 173

This section introduces our PACL framework and 174

then provides details of the prototype-attention 175

mechanism, the prototype-span contrastive loss, 176

and target domain adaption procedures. 177

3.1 PACL Framework 178

As previously mentioned, the data Di in domain 179

i encompasses scenarios where there is a data 180

distribution shift between the support set Dspt
i 181

and the query set Dqry
i . We denote the average 182

distribution shift of entity categories as EDi = 183
1
n

∑n
k=1(c

spt
k − cqryk ). csptk and cqryk denote pro- 184

totype vector for category k in support and query 185

set, respectively. To mitigate the distribution shift, 186

it is necessary to identify a function f that brings 187

the prototype of the query set closer to the support 188

set: EDi =
1
n

∑n
k=1(c

spt
k − f(cqryk )). 189

Figure 3 illustrates our Prototype-Attention Con- 190

trastive Learning (PACL) framework as the func- 191

tion f and learning procedures. 192

PACL first applies a Pre-trained Language 193

Model (PLM) to obtain the semantic representation 194

for each span. It then calculates prototypes on the 195

support set and utilizes a novel prototype-attention 196

mechanism to achieve prototype-enhanced repre- 197

sentations. After that, PACL optimizes representa- 198

tions by a prototype-span contrastive loss. 199
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During the training procedure on the source200

domain, PACL utilizes a bunch of subtasks201

{Dspt
i ,Dqry

i } to train the model. It generates202

prototype-enhanced representations for the query203

set to obtain the adjustment ability for prototype204

shift. During the fine-tuning procedure on the tar-205

get domain, PACL utilizes Dspt
j = {X spt

j ,Yspt
j }206

to fine-tune the model by generating prototype-207

enhanced representations for the support set. Fi-208

nally, it predicts the labels for Dqry
j = {X qry

j } by209

the nearest neighbor strategy.210

3.2 Prototype-Attention Mechanism211

To mitigate the prototype shift, we propose212

a prototype-attention mechanism to generate213

prototype-enhanced representations for the query214

set based on prototypes obtained from the support215

set during training on the source domain. This ap-216

proach improves the span representations in the217

query set by incorporating more prototype informa-218

tion, which aligns the prototypes of the query set219

with those of the support set. The detailed proce-220

dures are presented below.221

We first incorporate a Pre-trained Language222

Model (PLM) to obtain original span semantic rep-223

resentations. That is, for the sentence x with l224

tokens, we get all word embeddings, concatenate225

the start and the end token embeddings of each226

span, and use a non-linear function to get the span227

semantic representation s:228

[h1,h2, . . . ,hl] = PLM([w1,w2, . . . ,wl]) (1)229

230
s = ReLU(hp ⊕ hq) (2)231

Where ⊕ denotes the concatenation operator.232

Prototype based methods predict the probabili-233

ties of each s as Equation 3234

P (ŷk) =
exp(−d(s, ck))∑

k∈K exp(−d(s, ck))
(3)235

Where ck is the prototype of entity type k and236

calculated via mean-pooling of each span repre-237

sentation in type k. And d(·) is the normalized238

cosine-similarity. The final predicted label for the239

span s is given by240

ŷ = argmaxk∈{1,2,3...}P (ŷk) (4)241

To mitigate prototype shift for entity spans in the242

support set and the query set, we gain the prototype-243

enhanced representation ŝqry in the query set by244

calculating the attention score between the origi- 245

nal span representation sqry and prototypes C = 246

[c1, c2, . . .] in the support set: 247

ŝqry = softmax

(
sqry C⊤
√
dC

)
C + sqry (5) 248

where dC is the dimension of prototypes. We also 249

include sqry in the attention representation to ob- 250

tain ŝqry, excluding the O-type spans which cannot 251

be represented by prototypes in C. This will be fur- 252

ther optimized in the next section with prototype- 253

span contrastive loss. 254

3.3 Prototype-Span Contrastive Loss 255

The traditional contrastive loss increases span simi- 256

larities of the same entity type and decreases span 257

similarities between different entity types. This pa- 258

per aims to address the prototype shift. Therefore, 259

we want to increase the similarity between spans 260

in the query set and the corresponding prototype in 261

the support set to let the model obtain the ability 262

to mitigate the prototype shift. Besides, the O-type 263

span has miscellaneous semantics and could not be 264

represented by a unique prototype (Fritzler et al., 265

2019). We also want prototype-enhanced repre- 266

sentations of O-type entities close to their original 267

semantic representations. Therefore, we design the 268

following prototype-span contrastive loss based on 269

the circle loss (Sun et al., 2020). 270

For each span representation ŝqry in the query 271

set, the loss Lŝqry is calculated by: 272

Lŝqry = log(1 + sim(ŝqry, c+) ∗ sim(ŝqry, c−))
(6) 273

Where c+ is the corresponding prototype in the 274

support set with the same type as ŝqry, and c− 275

denotes prototypes in the support set with different 276

types from ŝqry. The similarity function sim is 277

calculated by: 278

sim(ŝqry, c+) = e−τ ∗ ϕ(ŝqry , c+) (7) 279

280

sim(ŝqry, c−) =
∑

c−i ∈c−
eτ ∗ ϕ(ŝqryi , c−i ) (8) 281

Where ϕ(.) denotes the cosine similarity, τ is the 282

temperature (Wang and Liu, 2021). 283

When calculating sim(ŝqry, c+) for the O-type, 284

we calculate the cosine similarity between the orig- 285

inal span representation sqry and the prototype- 286

enhanced representation ŝqry : 287

ϕ(ŝqryi , co) = λ ∗ ϕ(ŝqryi , sqry) (9) 288
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Where λ is a learnable hyperparameter. We cal-289

culate the cosine similarity between the prototype-290

enhanced representation ŝqry and its corresponding291

prototype in the support set for other entity types.292

3.4 Target Domain Adaption293

After training the model on the source domain, we294

make adaptions to the target domain, including fine-295

tuning the model on the support set and making296

inferences on the query set.297

During the fine-tuning procedure, our PACL first298

generates prototype-enhanced representations ŝspt299

for spans in the support set by calculating the atten-300

tion score between the original span representation301

sspt and the prototypes C in the support set. After302

that, PACL fine-tunes the model by utilizing the303

prototype-span contrastive loss with the input of304

ŝspt and C. Different from using ŝqry as the input305

in the training procedure, we utilize ŝspt in the fine-306

tuning procedure since the labels of the query set307

are unknown.308

During the inference procedure, our PACL ob-309

tains prototype-enhanced representations ŝqry for310

spans in the query set according to prototypes C311

in the support set. It further applies the nearest312

neighbor inference for each span according to the313

maximum similarity with prototypes or its original314

span representation (O-type).315

4 Experiments316

In this section, we evaluate PACL in few-shot317

nested NER. After introducing datasets and base-318

line models, we outline the setup, present results,319

and analyze them thoroughly.320

4.1 Datasets321

To evaluate our proposed PACL framework’s per-322

formance and generality across languages, we ex-323

periment with the Indo-European language family.324

English is chosen as the source language, and three325

target languages are selected based on their linguis-326

tic proximity to English: English itself, German,327

and Russian, as obtaining datasets for these lan-328

guages is feasible.329

Dataset language Types Sentences Entities/Nest entities

GENIA English 36 18.5k 55.7k / 30.0k
GermEval German 12 18.4k 41.1k / 6.1k
NEREL Russian 29 8.9k 56.1k / 18.7k

FewNERD English 66 188.2k 491.7k / -

Table 1: Datasets used in experiments

As shown in Table 1, the target nested NER 330

datasets are GENIA1 in English (Kim et al., 2003), 331

GermEval2 in German (Benikova et al., 2014), and 332

NEREL3 in Russian (Loukachevitch et al., 2021). 333

We use a flat NER dataset, FewNERD 4 in English 334

(Ding et al., 2021), as the source domain dataset 335

to train the model. All these datasets are publicly 336

available under the licenses of CC-BY 3.0 for GE- 337

NIA, CC-BY 4.0 for GermEval, CC-BY 2.5 for 338

NEREL, and CC-BY-SA 4.0 for FewNERD. We 339

have manually checked to guarantee these datasets 340

are without offensive content and identifiers. 341

For training in the source domain, We ran- 342

domly sampled 10,500 5-way 5-shot subtasks from 343

the FewNERD inter-domain subset, among which 344

10,000 subtasks are used for training and 500 sub- 345

tasks are used for validation. We validated the 346

model every 1000 subtasks. When fine-tuning in 347

the target domain, we sampled 32-way, 12-way, 348

and 29-way support sets under 1-shot and 5-shot 349

settings from GENIA, GermEval test subset, and 350

NEREL test subset, respectively. We dropped four 351

entity types in GENIA due to their number of en- 352

tities being less than 50. After fine-tuning, we 353

made inferences on the left instances in GENIA, 354

GermEval test subset, and NEREL test subset. 355

4.2 Baselines 356

We compare our proposed PACL with seven base- 357

lines which can be categorized into three groups: 358

1) Rich-resource nested NER methods including 359

NER-DP (Yu et al., 2020) and TIdentifier (Shen 360

et al., 2021); 2) Metric-based few-shot NER meth- 361

ods including ProtoNet (Snell et al., 2017), NNShot 362

(Yang and Katiyar, 2020), ESD (Wang et al., 363

2022c), and SpanProto (Wang et al., 2022a); 3) 364

Contrastive-learning-based few-shot NER method 365

CONTaiNER (Das et al., 2021). Appendix A de- 366

tails these baseline models. 367

4.3 Experimental Settings 368

We implemented PACL by Huggingface Trans- 369

former 4.21.1 and PyTorch 1.12.1. The model is 370

initialized randomly and optimized by AdamW 371

(Loshchilov and Hutter, 2017). We train and 372

fine-tune the model with the learning rate 5e- 373

5. For the text encoder, we use the pre-trained 374

1http://www.geniaproject.org/genia-corpus
2https://sites.google.com/site/

germeval2014ner/data
3https://github.com/nerel-ds/NEREL
4https://ningding97.github.io/fewnerd/
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Model/Framework GENIA (32-way) GermEval (12-way) NEREL (29-way) Average
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

NER-DP 15.26±2.78 31.89±4.01 7.12±2.61 24.89±3.92 15.86±5.77 42.25±2.42 12.75 33.01
TIdentifier 9.73±5.36 23.90±4.48 12.26 ±8.13 41.11±4.86 30.06±7.44 53.29±5.56 17.35 39.43

CONTaiNER 16.76±6.00 17.60±6.61 29.18±7.05 37.05±1.01 26.61±1.75 44.37±1.27 24.18 33.00
ProtoNet 21.83±3.39 37.18±1.81 33.20±9.00 47.95±4.06 38.70±4.62 50.22±1.28 31.24 45.12
NNShot 25.72±4.75 33.77±2.57 28.58±6.76 41.26±2.50 38.58±1.30 46.54±1.93 30.96 40.52

ESD 19.96±3.93 25.31±3.17 34.00±8.75 34.75±6.03 28.56±5.18 47.68±2.20 27.51 35.91
SpanProto 31.39±2.86 43.14±1.37 34.12±6.64 51.11±5.89 44.20±3.55 56.16±2.15 36.57 50.14

PACL 37.92±1.97 49.58±1.82 53.51±7.70 65.87±1.80 51.76±2.85 65.12 ±1.97 47.73 60.19

Table 2: F1 performance on GENIA, GermEval, and NEREL datasets with 1-shot and 5-shot settings (%).

BERTbase_multilingual model since the languages375

of target domain datasets are different. The hidden376

layer of the non-linear function f in equation 2 for377

getting span semantic representations is set to 512,378

and the initial value of the learnable hyperparam-379

eter λ for the O-type is set to 0.5. We set random380

seeds ranging from 0 to 10 to get ten results for381

each setting and report the average and standard382

deviation values to evaluate all models. We run all383

the experiments on a single NVIDIA A10 GPU.384

4.4 Experimental Results385

To evaluate the effectiveness of our PACL, we com-386

pare it against state-of-the-art baseline models in-387

troduced in 4.2. Table 2 shows their average F1388

results on GENIA, GermEval, and NEREL NER389

datasets with 1-shot and 5-shot settings over 10390

times repeated experiments.391

Our PACL achieves superior results compared392

to other models on 1-shot and 5-shot settings on393

the GENIA dataset, with F1 scores of 37.92%394

and 49.58%, respectively, outperforming the best-395

performing baseline model, SpanProto, which396

scored 31.39% and 43.14%, respectively.397

Our PACL also demonstrates superior perfor-398

mance on the GermEval dataset, scoring 53.51%399

on 1-shot and 65.87% on 5-shot, compared to the400

best-performing baseline model SpanProto on 1-401

shot with 34.12% and on 5-shot with 51.11%.402

Finally, on the NEREL dataset, our PACL again403

outperforms the other models, scoring 51.76% on404

1-shot and 65.12% on 5-shot, compared to the best-405

performing baseline model SpanProto on 1-shot406

SpanProto with 44.20% and on 5-shot TIdentifier407

with 56.16%.408

Overall, these results demonstrate the effective-409

ness of our proposed PACL framework compared410

to the state-of-the-art baseline models.411

4.5 Experimental Analysis 412

This section presents ablation studies, results on 413

nested and flat entities separately in test datasets, 414

and the generality of the prototype-attention mech- 415

anism. 416

4.5.1 Ablation Study 417

PACL w/o PA

GENIA
1-shot 37.92±1.97 34.71±1.82

5-shot 49.58±1.82 48.30±2.37

GermEval
1-shot 53.51±7.70 49.74±7.61

5-shot 65.87±1.80 62.29±2.86

NEREL
1-shot 51.76±2.85 48.10±3.69

5-shot 65.12±1.97 64.25±1.21

Table 3: Ablation study of F1 performance on three
datasets (%). “w/o PA” means removing the Prototype-
Attention mechanism.

To evaluate the contribution of the designed 418

Prototype-Attention (PA) mechanism to the over- 419

all performance of PACL, we conduct the ablation 420

study by removing PA from the PACL. The results 421

in Table 3 suggest that the PA mechanism positively 422

impacts the F1 score for the GENIA, GermEval, 423

and NEREL datasets. To be specific, the PA mech- 424

anism improves the F1 score by 3.21%, 3.77%, 425

and 3.66% on the GENIA, GermEval, and NEREL 426

datasets with the 1-shot setting, respectively. It also 427

leads to 1.28%, 3.58%, and 0.87% increases on the 428

GENIA, GermEval, and NEREL datasets with the 429

5-shot setting, respectively. 430

Overall, the results of this ablation study demon- 431

strate that the PA mechanism enhances perfor- 432

mance on various datasets with a particularly pro- 433

nounced impact in 1-shot settings, as 1-shot set- 434

tings exhibits larger prototype shifts than 5-shot 435

settings. Appendix B shows how our PACL miti- 436

gates the prototype shift. 437

Note we did not explore the influence of the 438

prototype-span contrastive loss by replacing it with 439
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a classical contrastive loss. This is because the clas-440

sical contrastive loss performs similarity measure-441

ment between span and span. In PACL, the span442

representations for the query set are enhanced by443

the PA mechanism while the span representations444

for the support set are not enhanced. Comparing445

these two different types of span representations is446

inappropriate. Therefore, we just study the effec-447

tiveness of the PA mechanism.448

4.5.2 Nested-Flat Separate Results449

In order to more comprehensively demonstrate the450

efficacy of the outcomes pertaining to nested enti-451

ties across these datasets, we undertook a process452

of splitting and filtering exclusively for nested enti-453

ties. Our proposed PACL framework outperforms454

all other models in both 1-shot and 5-shot settings455

on all three datasets. For the nested-only part of456

three test datasets, PACL achieves an F1 score of457

35.06% in 1-shot and 45.93% in 5-shot on GE-458

NIA, 32.82% in 1-shot and 48.52% in 5-shot on459

GermEval, and 36.70% in 1-shot and 50.89% in 5-460

shot on NEREL. The other baseline models achieve461

lower F1 scores compared to PACL. For the nested462

part of the query set, our proposed PACL frame-463

work could achieve a 6.57% and 9.57% increase464

in terms of F1 score in 1-shot and 5-shot settings,465

respectively. And For the flat part of the query set,466

our proposed PACL framework could achieve a467

9.37% and 8.97% increase in terms of F1 score in468

1-shot and 5-shot settings, respectively. The more469

specific results are presented in Appendix C.470

4.5.3 Generality of Prototype-Attention471

Mechanism472

As the Prototype-Attention (PA) mechanism ad-473

dresses the fundamental property of the prototype474

shift phenomenon, we believe it has a high level475

of generality and can enhance the performance of476

various models.477

SpanProto SpanProto w PA

GENIA 1-shot 31.39±2.86 33.07±4.47
5-shot 43.14±1.37 44.60±1.99

GermEval 1-shot 34.12±6.64 44.03±9.26
5-shot 51.11±5.89 54.90±1.99

NEREL 1-shot 44.20±3.55 49.04±3.03
5-shot 56.16±2.15 64.17±1.5

Table 4: F1 performance before and after integrating
the Prototype-Attention (PA) mechanism to SpanProto
on three datasets (%).

To assess the generality of the PA mechanism,478

we conduct experiments by integrating it into the479

ESD ESD w PA

GENIA 1-shot 19.96±3.93 25.08±4.32
5-shot 25.31±3.17 35.90±3.94

GermEval 1-shot 34.00±8.75 36.08±6.89
5-shot 34.75±6.03 41.95±7.53

NEREL 1-shot 28.56±5.18 41.38±4.93
5-shot 47.68±2.20 56.03±2.47

Table 5: F1 performance before and after integrating
the Prototype-Attention (PA) mechanism to ESD on
three datasets (%).

SpanProto and ESD models and comparing the per- 480

formance before and after integration. As shown in 481

Table 4 and Table 5, the experiment results demon- 482

strate that integrating the PA mechanism into Span- 483

Proto and ESD notably improves the F1 score on 484

GENIA, GermEval, and NEREL datasets in both 485

1-shot and 5-shot settings. 486

These findings suggest that the PA mechanism 487

has high generality and can serve as a valuable tool 488

for NLP practitioners looking to improve their mod- 489

els’ performance in few-shot nested NER tasks. 490

5 Related Work 491

This section discusses related works on rich- 492

resource nested NER, few-shot NER, and distri- 493

bution shifts. 494

5.1 Rich-resource Nested NER 495

Nested NER aims to recognize entities with nested 496

structures. Most of the current methods for nested 497

NER are established on rich-resource datasets. 498

These methods could be categorized into span- 499

based, hypergraph-based, and layered-based (Wan 500

et al., 2022). 501

Span-based methods treat sequences of tokens 502

as spans and then label all possible spans by classi- 503

fication models (Shen et al., 2021; Li et al., 2020b; 504

Tan et al., 2021). Hypergraph-based methods an- 505

alyze the dependence of words in a sentence and 506

then construct a dependency tree (Yu et al., 2020) 507

or other structures (Wang and Lu, 2018; Katiyar 508

and Cardie, 2018) to help identify nested entities. 509

And layered-based methods capture the depth of 510

entity nesting and apply multi-level sequence label- 511

ing strategies to recognize nested entities (Wang 512

et al., 2021; Shibuya and Hovy, 2020). 513

These methods may be stuck in overfitting due 514

to sophisticated models and the limited number of 515

instances for training in the few-shot setting. 516
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5.2 Few-shot NER517

Few-shot NER requires recognizing entities with518

the support of very few labeled instances (Hofer519

et al., 2018; Fritzler et al., 2019). Due to limited520

information contained in the support set, methods521

for few-shot NER mainly resort to a rich-resource522

source domain to help train models, resulting in523

transfer-learning and meta-learning frameworks.524

Transfer-learning-based methods train models525

on a source domain and then transfer models or526

features to the few-labeled target domain (Yang527

et al., 2021; Liu et al., 2021). Meta-learning-based528

methods train models on adequate subtasks to make529

the model acquire the learning ability on few-shot530

tasks (de Lichy et al., 2021; Li et al., 2020a). Com-531

paratively speaking, meta-learning-based methods532

are more widely used in few-shot NER due to their533

easy adaption to new tasks.534

Within the meta-learning framework, various535

kinds of models are designed. For example, metric-536

based methods, including ProtoNet (Snell et al.,537

2017), NNShot (Yang and Katiyar, 2020), and538

SpanProto (Wang et al., 2022a), measure distances539

between prototypes in the support set and instances540

in the query set. Optimization-based methods, such541

as MAML (Finn et al., 2017) and FEWNER (Li542

et al., 2020a), train the model by a special optimizer.543

Model-based methods, such as SNAIL (Mishra544

et al., 2017) and CNPs (Garnelo et al., 2018), learn545

the hidden representation of instances on the sup-546

port set and the query set to make inferences in an547

end-to-end manner. Contrastive-learning methods,548

such as CONTaiNER (Das et al., 2022), aims to549

maximize similarities of the same type and mini-550

mize similarities between different types.551

These few-shot NER methods mostly focus on552

flat entities. Few works have discussed the few-553

shot nested NER setting. Wang converted sequence554

labeling to span-level matching for the few-shot flat555

NER and showed their method could handle nested556

entities (Wang et al., 2022b). However, it is not557

designed for the few-shot nested NER specifically.558

5.3 Distribution Shifts559

Distribution shift is a problem of training and test-560

ing data following two different distributions. It561

affects the generalization ability of supervised deep-562

learning models as the fundamental that these mod-563

els could work is that training and testing data come564

from the same distribution. Inspired by real-world565

challenges, Wiles et al. summarized three distri-566

bution shifts: spurious correlation, low-data drift, 567

and unseen data shift (Wiles et al., 2022). There 568

have been some researches aiming to address dis- 569

tribution shifts in computer vision and general nat- 570

ural language processing tasks (Fang et al., 2020; 571

Tu et al., 2022). To the best of our knowledge, 572

researchers seldom discuss the distribution shift 573

problem in the few-shot NER task. In this paper, 574

we aim to tackle the few-shot nested NER task. 575

Therefore, we rethink the distribution shift prob- 576

lem from the perspective of entity representation 577

distribution and identify the prototype shift since it 578

directly affects entity classification. 579

6 Conclusion 580

This paper first identifies the phenomenon of pro- 581

totype shift that arises when there is a difference 582

in prototypes between the support and query sets. 583

Within the context of few-shot learning tasks, pro- 584

totype shift is prone to occur since the few labeled 585

instances in the support set could hardly represent 586

the query set. To mitigate this issue in the few- 587

shot nested NER task, we propose the Prototype- 588

Attention Contrastive Learning (PACL) framework 589

combining a prototype-attention mechanism and 590

a prototype-span contrastive loss to enhance pro- 591

totype representations. The experiments on three 592

English, German, and Russian nested NER datasets 593

demonstrated that PACL outperformed baseline 594

models on the 1-shot and 5-shot settings. Future 595

studies could explore the generality of PACL to 596

other few-shot learning tasks. 597

7 Limitations 598

This paper still has several limitations. The first one 599

is about the prototype shift adjustment. It is hard to 600

completely address the prototype shift, while our 601

PACL makes this attempt and achieves inspiring 602

improvement. The second one is about other distri- 603

bution shifts. Prototype shift is just one kind of dis- 604

tribution shift. Other distribution shifts also need 605

to be identified and addressed to improve the accu- 606

racy of the few-shot nested NER task. The third 607

one is about the language used for training. The 608

results validate the performance of PACL across 609

different languages, while the three languages used 610

in this paper belong to the Indo-European family. 611

This may introduce language bias to this language 612

family and cause potential risk. 613
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A Detail of Baselines848

Detailed information on baseline models is intro-849

duced in this section. We compare our PACL with850

the following seven baseline models:851

• NER-DP (Yu et al., 2020) is a rich-resource-852

based nested NER method. It applies a bi-853

affine model to score pairs of start and end854

tokens for each span to establish dependency855

parsing for identifying nested entities.856

• TIdentifier (Shen et al., 2021) is also a rich-857

resource-based nested NER method. It applies858

a Two-stage Identifier (TIdentifier), including859

a seed span generation module for locating860

entities and a span proposal module for classi-861

fying entities.862

• CONTaiNER (Das et al., 2021) is a863

contrastive-learning-based few-shot NER864

method. It first obtains entities’ Gaussian-865

distributed embeddings and then optimizes866

a generalized objective of differentiating be-867

tween entity types by a contrastive loss func-868

tion. We adapt it to handle nested entities with869

the entity span formulation.870

• ProtoNet (Snell et al., 2017) is a metric-871

learning-based few-shot NER method. It ap-872

plies prototypical networks to learn a metric873

space for obtaining prototype representations.874

We also adapt it to handle nested entities with875

the entity span formulation.876

• NNShot (Yang and Katiyar, 2020) is also a877

metric-learning-based few-shot NER method.878

It applies structured decoding and nearest-879

neighbor learning to identify entities. We uti-880

lize the entity span formulation to make it881

handle nested entities.882

• ESD (Wang et al., 2022c) is a metric-learning-883

based few-shot NER method. It formulates884

the task as a span-level matching problem. To885

identify entities, it performs span-level pro- 886

cedures, including enhanced span represen- 887

tation, class prototype aggregation, and span 888

conflict resolution. 889

• SpanProto (Wang et al., 2022a) is a metric- 890

learning-based few-shot NER method. It also 891

applies entity spans to formulate the problem. 892

For identifying entities, it first utilizes a span 893

extractor to recognize candidate entity spans 894

and then applies a mention classifier to deter- 895

mine entity types. 896

B Prototype Shift Mitigation by PACL 897
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Figure 4: Illustration of the change of the prototype
similarity during training.

This paper aims to mitigate prototype shifts, and 898

section 1 has already validated the existence of the 899

prototype shift phenomenon. This section exam- 900

ines how the prototype shift changes by applying 901

our PACL. 902

We utilize the cosine similarity to denote the pro- 903

totype differences between the support and query 904

sets to measure the prototype shift. Figure 4 illus- 905

trates the change of the prototype similarity with 906

the increase of iteration numbers during training. 907

We could find a consistently increasing trend in 908

prototype similarity, which means the prototype 909

shift is consistently decreasing. This validates the 910

effectiveness of our PACL in mitigating prototype 911

shifts. 912

C Results on Nested/Flat-Only Entities 913

We split the query set of each dataset into two sub- 914

sets: one only contains nested entities and the other 915

one only contains flat entities. We then evaluate 916

11
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Model/Framework GENIA (32-way) GermEval (12-way) NEREL (29-way) Average
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

NER-DP 13.94±3.96 28.16±2.43 5.84±3.11 8.12±4.30 4.83±2.71 19.87±3.92 8.20 18.72
TIdentifier 9.19±5.36 25.15±5.50 9.22±6.56 27.79±3.54 20.13±7.28 39.93±5.63 12.85 30.96

CONTaiNER 16.19±3.65 12.52±8.11 15.84±4.70 15.21±4.92 20.71±3.94 30.03±2.04 17.58 19.25
ProtoNet 18.99±3.29 32.53±2.24 21.62±5.85 33.66±3.23 26.19±7.67 40.93±2.36 22.27 35.71
NNShot 24.84±5.55 30.71±2.60 27.36±6.95 28.30±7.47 28.69±8.42 42.92±5.17 26.96 33.98

ESD 18.08±2.99 22.9±2.13 19.86±5.62 22.33±5.00 24.23±5.29 30.85±8.26 20.72 25.36
SpanProto 30.24±2.77 40.50±2.04 24.11±7.57 34.06±3.43 30.51±5.86 42.07±1.29 28.29 38.88

PACL 35.06±3.52 45.93±1.93 32.82±9.39 48.52±1.90 36.70±4.88 50.89±2.99 34.86 48.45

Table 6: nested F1 performance on GENIA, GermEval, and NEREL datasets with 1-shot and 5-shot settings (%).

Model/Framework GENIA (32-way) GermEval (12-way) NEREL (29-way) Average
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

NER-DP 12.73±3.94 26.87±3.13 6.74±3.65 15.61±6.14 9.21±3.82 34.03±3.74 9.56 25.50
TIdentifier 14.07±8.48 26.81±3.54 12.53±8.44 42.19±5.15 32.45±7.88 55.18±6.20 19.68 41.39

CONTaiNER 16.10±2.31 12.12±7.83 25.44±8.77 27.70±9.05 35.71±2.87 45.08±2.67 25.75 28.30
ProtoNet 19.42±3.86 34.21±2.05 35.79±8.07 50.45±3.35 39.81±6.39 56.62±2.91 31.67 47.09
NNShot 22.61±5.06 29.73±2.94 50.42±6.92 44.23±14.07 44.97±5.68 57.57±6.01 39.33 43.84

ESD 17.27±4.41 21.64±3.38 31.46±8.46 35.43±6.42 38.40±4.08 43.42±9.94 29.04 33.50
SpanProto 29.16±3.35 40.73±1.49 38.97±9.63 53.66±3.75 47.51±3.08 59.15±1.75 38.55 51.18

PACL 35.96±2.16 46.62±2.16 55.77±7.73 67.63±2.05 54.38±2.85 66.19±2.06 48.70 60.15

Table 7: flat F1 performance on GENIA, GermEval, and NEREL datasets with 1-shot and 5-shot settings (%).

the model over 10 times repeated experiments. Ta-917

ble 6 and table 7 show the average F1 results of918

nested-only and flat-only entities on GENIA, Ger-919

mEval, and NEREL NER datasets with 1-shot and920

5-shot settings. In the nested part of the query set,921

our proposed PACL framework achieves a 6.57%922

and 9.57% increase in terms of F1 score in the 1-923

shot and 5-shot settings, respectively. Similarly, in924

the flat part of the query set, our proposed PACL925

framework achieves a 9.37% and 8.97% increase in926

terms of F1 score in the 1-shot and 5-shot settings,927

respectively.928

Compared to the baseline models, our proposed929

PACL model achieves the best results not only in930

the 1-shot and 5-shot experimental settings but also931

in both the nested and flat settings. This indicates932

that our proposed model can effectively classify933

nested entities compared to other baseline models.934

12


