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Dual-Branch Fusion with Style Modulation for Cross-Domain
Few-Shot Semantic Segmentation
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ABSTRACT
Cross-Domain Few-Shot Semantic Segmentation (CD-FSS) aims to
achieve pixel-level segmentation of novel categories across various
domains by transferring knowledge from the source domain lever-
aging limited samples. The main challenge in CD-FSS is bridging
the inter-domain gap and addressing the scarcity of labeled samples
in the target domain to enhance both generalization and discrimi-
native abilities. Current methods usually resort to additional net-
works and complex strategy to embrace domain variability, which
inevitably increases the training costs. This paper proposes a Dual-
Branch Fusion with Style Modulation (DFSM) method to tackle this
issues. We specifically deploy a parameter-free Grouped Style Mod-
ulation (GSM) layer that captures and adjusts a wide spectrum of
potential feature distribution changes, thus improving the model’s
solution efficiency. Additionally, to overcome data limitations and
enhance adaptability in the target domain, we develope a Dual-
Branch Fusion (DBF) strategy which achieves accurate pixel-level
prediction results by combining predicted probability maps through
weighted fusion, thereby enhancing the discriminative ability of the
model. We evaluate the proposed method on multiple widely-used
benchmark datasets, including FSS-1000, ISIC, Chest X-Ray, and
Deepglobe, and demonstrate superior performance compared to
state-of-the-art methods in CD-FSS tasks.

CCS CONCEPTS
• Computing methodologies→ Image representations.

KEYWORDS
cross-domain, few-shot semantic segmentation, style modulation,
adaptive fusion

1 INTRODUCTION
Deep learning-powered semantic segmentation methods achieve
outstanding performance, which heavily relies on a substantial
amount of pixel-wise labeled data. However, this reliance can re-
strict their ability to learn effectively from a few samples in complex
scenarios and to generalize to new categories. Few-shot semantic
segmentation (FSS) is proposed to train a model with excellent ca-
pability for both generalization and adaptability when confronted
with previously unseen classes. The core of this task is to rapidly
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learn new concepts and effectively segment images from new cat-
egories using minimal annotated data. Despite the significant ad-
vancements in the FSS task, the current methods primarily focus
on the intra-domain scenario, where the training and testing data
belong to the same domain. However, this assumption often falls
short of real-world requirements, where the differences between
the training and testing data arise due to variations originating
from diverse sources or changes over time. As a result, the training
sets become outdated, which can significantly affect the perfor-
mance of the FSS task. CD-FSS has attracted interest as a solution
to circumvent these restrictions. It enables the utilization of data
from different domains and label spaces to be employed as source
and target data, respectively.

As shown in Figure 1, CD-FSS tasks involve training a model
on a source domain with abundant pixel-level annotated data like
PASCAL VOC [9] and applying it to a target domain with a com-
pletely different data distribution and categories, which has only
a limited number of labeled samples like a skin lesion dataset [6].
Therefore, the primary challenges are the disparities in data dis-
tribution between the source and target domains, as well as the
scarcity of labeled samples in the target domain. The former results
in limited inter-domain correlation, thereby reducing the effective-
ness of knowledge transfer. The latter leads to inadequate feature
extraction within the domain, which in turn weakens the learning
performance of class-specific semantic knowledge. As described,
our primary focus is on addressing two key issues: 1) How to min-
imize the visual differences between the training and testing do-
mains to improve the model’s generalizability; 2) How to predict
unknown categories in the face of limited samples, thus enhancing
the model’s discriminative ability.

Recently, many methods for CD-FSS tasks have been studied,
which can be divided into two main categories. The first category
of works [3, 14] is focused on the objective of training a model with
robust generalization on the source domain while lacking access
to target domain data. These methods enhance the model’s gener-
alizability by constructing complex parameter modules. However,
the substantial domain gap between the source and target domains
makes it difficult to achieve effective model transfer, leading to
unsatisfactory results. Therefore, to achieve better segmentation
outcomes, Lei et al. [17] introduce target domain data during the
fine-tuning stage to learn domain-specific features, i.e., domain
adaptation. Considering the limited labeled data in the target do-
main, we advocate for this direction.

In order to tackle the aforementioned problems, we propose
a novel CD-FSS approach named Dual-Branch Fusion with Style
Modulation (DFSM) to enhance the model’s generalizability and
improve its discriminative capabilities in the target domain. Spe-
cially, to handle the first challenge, we introduce a Grouped Style
Modulation (GSM) layer to generate diverse domain styles, thereby
enhancing the model’s generalization capabilities across different

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: In CD-FSS tasks, the training and testing sets come
from distinct domains, resulting in significant disparities in
their data distributions. Additionally, the label spaces of the
training and test sets do not intersect.

domains. Inspired by [13, 19], we significantly alter the domain
style by adjusting the statistical properties of deep network features,
specifically by transforming the mean and variance of features to
those of the target domain. However, during the training process,
the target domain remains unknown, making it challenging to iden-
tify an appropriate target domain style. Existing methods attempt
to simulate the target style by swapping styles of source domain
data or using learnable style parameters, but these approaches in-
crease the complexity of the model and extend the training duration.
To address these challenges, we adopt a parameter-free approach,
capturing the diversity of the source domain from an implicit se-
mantic enhancement perspective within the feature space, thus
broadening the coverage for unknown target domains. Based on
statistical analysis of source domain data, we construct latent style
estimates to capture the potential directions and magnitudes of
style changes between domains. In addition, we leverage chan-
nel grouping strategies to extend the spectrum of possible style
representations.

To address the second challenge, we devise a Dual-Branch Fu-
sion (DBF) strategy to enhance the model’s discriminatory ability
and domain adaptability through efficient utilization of available
data and knowledge transfer. On the one hand, considering the
limitation of sample quantity in the target domain, we employ
data augmentation techniques to expand the sample space, thus
increasing the diversity and robustness of model fine-tuning. By
treating augmented support samples as pseudo-support samples
and original support samples as pseudo-query samples, we provide
additional training signals for fine-tuning, further improving the
model’s performance in the target domain. On the other hand, to
enhance the model’s discriminative power in specific domains, we
propose not merely updating the parameters of the pre-trained
model to adapt to the new domain but instead construct a dual-
branch model to augment decision support information, delivering
precise pixel-level predictions. By adaptively integrating predicted
probability maps via weighted fusion, our model not only resolves
the issue of scarce samples in the target domain but also enhances
the model’s ability to discriminate.

The primary contributions can be described as follows:

• We propose a Dual-Branch Fusion with Style Modulation
(DFSM) method for CD-FSS that effectively bridges the do-
main gap, thereby improving both generalization and dis-
crimination in specific domains.

• We introduce a parameter-free Grouped Style Modulation
(GSM) layer to generate diverse domain styles aimed at en-
hancing the model’s generalizability. Our latent style estima-
tion effectively captures the appropriate range of potential
feature distribution variations.

• We develope a Dual-Branch Fusion (DBF) strategy to elevate
the model’s discriminative power and domain adaptability in
the target domain by expanding the sample space and adap-
tively integrating predicted probability maps via weighted
fusion.

• We conducte extensive experiments on four widely used
benchmark datasets. The results indicate that our method
significantly improves upon the baseline models and outper-
forms the state-of-the-art CD-FSS algorithm.

2 RELATEDWORK
2.1 Cross-domain Semantic Segmentation
The current researchs on cross-domain semantic segmentation can
be categorized into two groups: domain adaptation (DA) and do-
main generalization (DG). In the context of domain adaptation tasks,
a model that has been trained effectively on the source domain must
undergo fine-tuning using test data prior to its deployment in the
target domain. A variety of [5, 15, 26, 33] concentrate on adversarial
alignment between the source and target domains, unsupervised
learning using pseudo-labels in the target domain, as well as com-
bining adversarial adaptation with self-training or pixel-level adap-
tation. Unlike domain adaptation, in the training phase of domain
generalization tasks, the model lacks access to data from the target
domain. Existing domain generalization methods [8, 21, 24, 34] can
be categorized into domain invariance and feature decoupling based
on representation learning. The former achieves its goal through in-
variant risk minimization, kernel-based approaches, explicit feature
alignment, and domain adversarial learning. The latter decomposes
features into domain-shared and specific-domain components to
facilitate better generalization capability of the model.

2.2 Few-shot Segmentation
The metric mechanism plays a vital role in the study of few-shot
semantic segmentation, based on the meta-learning paradigm. Pre-
vious research can be classified into two main categories: prototype-
based approaches and parameterized-based methods, regardless of
whether the metric approach involves trainable parameters or not.
Prototype-based methods [4, 18, 22] extract representative features
or prototypes from a limited set of training samples and classify new
samples to be segmented by calculating their distance relationships
with the prototypes of each category, achieving precise pixel-level
segmentation. Parameterized-based methods [16, 23, 25, 32] typi-
cally consist of encoders, feature processors, and decoders. During
training, such methods dynamically adjust the network’s parameter
structure to learn the similarities between samples adaptively. How-
ever, these methods solely focus on learning performance within
analogous data settings. In practical applications, they often face
inconsistent data distributions across various domains. Finite data
resources constrain these methods, making it difficult to effectively
enhance generalization capabilities in new domains.
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Figure 2: Illustration of the proposed method. It consists of two phases: 1)Training phase. We incorporate a GSM after each
layer of the feature extractor to generate diverse feature representations, enhancing the model’s generalizability. It is worth
noting that GSM does not introduce any learnable parameters, thereby reducing the computational complexity of the model.
2)Fine-tuning and inference phase. We establish a dual-stream branch to learn effective feature representations with each
branch is fine-tuned independently. Subsequently, during the inference stage, we perform a weighted fusion of the predictions
from the dual streams.

2.3 Cross-domain Few-shot Semantic
Segmentation.

Compared with cross-domain semantic segmentation and FSS, the
training set and testing set in CD-FSS exhibit differences in data
distribution and no label distribution overlap. To alleviate inter-
domain discrepancies, Wang et al. [28] develope a meta-memory
that collects statistical characteristics of instances from the source
domain, thereby reducing the domain gap between the source and
target domains. They also adopt contrastive learning to regulate the
relationships among prototypes of different novel categories. Lei et
al. [17] propose a model called PATNet, which utilizes a pyramid
module to convert the features acquired from the source domain
into features that are invariant across different domains. However,
mapping features across domains may only sometimes be accurate,
which can result in misaligning well-aligned support-query pairs
in the original space when transferred to the new space. To address
this issue, Huang et al. [14] propose the RestNet based on PAT-
Net, which utilizes residual connections to bridge the gap between
the original space and the latent space. However, these methods
require additional parameters. Our approach learns diversified do-
main styles through a parameter-free GSM layer to reduce model
complexity.

3 METHOD
3.1 Preliminaries
In the Cross-Domain Few-Shot Semantic Segmentation task, there
exists a source domain 𝐷𝑠 = (𝑋𝑠 , 𝑌𝑠 ) and a target domain 𝐷𝑡 =

(𝑋𝑡 , 𝑌𝑡 ), where 𝑋,𝑌 denote the data distributions and label spaces
respectively. There is a significant domain shift between the source

and target domains, and their label spaces have no intersection,
i.e., 𝑋𝑠 ∩ 𝑋𝑡 = ∅, 𝑌𝑠 ∩ 𝑌𝑡 = ∅. The CD-FSS task leverages a pre-
trained model from the source domain to divide new class samples
in the target domain. The training set 𝐷𝑡𝑟𝑎𝑖𝑛 and test set 𝐷𝑡𝑒𝑠𝑡 are
respectively composed of 𝐷𝑠 = (𝑋𝑠 , 𝑌𝑠 ) and 𝐷𝑡 = (𝑋𝑡 , 𝑌𝑡 ). The
same episode mechanism used in few-shot semantic segmenta-
tion is adopted throughout the training and evaluation process,
meaning that each training or testing scenario instantiates a spe-
cific instance of a segmentation learning task of 𝐶 −𝑤𝑎𝑦, 𝐾 − 𝑠ℎ𝑜𝑡 .
Specifically, both training and evaluation involve multiple scenar-
ios, each of which consists of a support set 𝑆𝑖 = {(𝐼𝑐,𝑘𝑠 , 𝑀

𝑐,𝑘
𝑠 )}𝐾

𝑘=1
and a query set 𝑄𝑖 = {(𝐼𝑐,𝑘𝑞 , 𝑀

𝑐,𝑘
𝑞 )}𝐾

𝑘=1, where the support set con-
tains 𝐾 support images for evaluating 𝐶 semantic categories, i.e.,
𝑐 ∈ 𝐶𝑖 , | 𝐶𝑖 |= 𝐶 , with 𝐼 , 𝑀 representing an image and a mask
respectively.

To prepare for training the CD-FSS model, start by selecting 𝐶
classes at random from the corresponding dataset. Then, pick 𝐾
samples for each selected class to create a support set. Additionally,
choose 𝑁𝑞𝑢𝑒𝑟𝑦 samples from each class to form a query set. It
is crucial to guarantee that there is no intersection between the
support and query sets within the same situation. The CD-FSS
model is trained on the training set 𝐷𝑡𝑟𝑎𝑖𝑛 of the source domain
during the training process. The model is not allowed to access any
data from the target domain at this stage. Finally, the well-trained
model is evaluated on the test set 𝐷𝑡𝑒𝑠𝑡 of the target domain in
testing phase.

3.2 Architecture Overview
Design of the framework. The overall framework of the proposed
method is illustrated in Figure 2, using a feature extractor with the
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first three layers of ResNet-50 [12] as the backbone network to gen-
erate the initial visual feature for each sample. To explore potential
domain styles, a group style modulation layer is strategically posi-
tioned after each layer. We then use the decoder from SSPNet [10]
that refines and fuses prototypes from support and query samples
to make accurate predictions on the query sample.

Two-stage Methods As shown in Figure 2, our method consists
of two learning stages. In the first stage, the model is trained on
the source domain. In the second stage, the model is fine-tuned
on the target domain. Specially, the model parameters obtained
during the training phase will serve as the initial parameters for the
dual-branch model during the fine-tuning stage. Our objective is to
fine-tune the dual branches independently to adapt to the specific
domain’s style, and then fuse the predictions of both branches
during the inference stage.

3.3 Grouped Style Modulation
Effective simulation of diverse style information within the training
domain is crucial to enhance generalization capability. In this work,
we propose a Grouped Style Modulation (GSM) to predict potential
style variations between domains, thereby enhancing the model’s
robustness across different testing tasks. Existing methods often
generate diverse styles through deep learning modules or random
strategies, increasing computational costs with parameter-based
learning and potentially producing meaningless styles that degrade
segmentation performance. Inspired by previous works [13, 19],
we introduce a GSM that capture potential style estimates from
small batches of data, providing each feature channel with an appro-
priate and meaningful range of variation. This approach does not
compromise model training but enables the simulation of different
potential shifts.

Statistics Calculation. The statistics of features, such as mean
and standard deviation, can represent the style of an image. There-
fore, our initial step involves acquiring the feature statistics from
both support and query samples. For each iteration, the intermedi-
ate feature 𝐹 𝑙 ∈ R𝐵×𝐶×𝐻×𝑊 is extracted by the feature extractor for
each sample from current batch of training data B = {(𝐼𝑠 , 𝐼𝑞)}𝐵𝑖=1,
where 𝐼𝑠 ∈ R3×𝐻𝑠×𝑊𝑠 and 𝐼𝑞 ∈ R3×𝐻𝑞×𝑊𝑞 represent support set
and query set respectively. Then we compute the channel-wise
feature statistic including mean 𝜇 (·) and standard deviation 𝜎 (·) of
given feature via:

𝜇 (𝐹 𝑙 ) = 1
𝐻𝑊

𝐻∑︁
ℎ=1

𝑊∑︁
𝑤=1

𝐹 𝑙 (1)

𝜎 (𝐹 𝑙 ) =

√√√
1

𝐻𝑊

𝐻∑︁
ℎ=1

𝑊∑︁
𝑤=1

(𝐹 𝑙 − 𝜇 (𝐹 ))2 + 𝜖 (2)

where 𝐵,𝐶, 𝐻,𝑊 represent batch size, channel, height and weigth
of 𝐹 𝑙 , respectively. 𝜖 is set to 1e-6. By applying equation 10 and
equation 2 to B, we can obtain the mean U𝑙 ∈ R𝐵×𝐶 and standard
deviation S𝑙 ∈ R𝐵×𝐶 of all 𝐵 samples in the 𝑙-th intermediate layer.
Subsequently, we obtain a representation of the domain style by
calculating the average of all feature statistics (U𝑙 and S𝑙 ) within
the batch, namely, the domain mean 𝑢𝑙 and standard deviation 𝑠𝑙 .

Original Feature Statistics

Batch Feature 

Statistics

Latent Style 

Estimation Random

Sampling

Feature
Modulated

feature

Figure 3: Illustration of the StyleModulation approachwhich
modulates domain styles without introducing additional pa-
rameters.

Latent Style Estimation. Assuming that the distribution of
the target feature statistics follows a multivariate Gaussian dis-
tribution, the center of this distribution can be considered as the
original feature statistics for each feature, while the standard devi-
ation describes the range of different potential offsets. To obtain an
appropriate and meaningful range of variation, we characterizes
latent style estimation from a semantic enhancement perspective.
There exist multiple distinct semantic directions within the deep
feature space, and by translating features along specific directions
and magnitudes, semantic transformations of the features can be
realized. The variance among features encapsulates inherent seman-
tic information. Consequently, we utilizes the variance of feature
statistics across all batches of samples to construct latent style
estimation. ∑︁𝑙

𝜇
=

√√√
1
𝐵

𝐵∑︁
𝑏=1

(U𝑙
𝑏
− 𝑢𝑙 )2 (3)

∑︁𝑙

𝜎
=

√√√
1
𝐵

𝐵∑︁
𝑏=1

(S𝑙
𝑏
− 𝑠𝑙 )2 (4)

where,
∑𝑙
𝜇 ,
∑𝑙
𝜎 represent latent style estimation of domain mean

and variance. It is worth noting that the magnitude of latent style
estimation plays a critical role in representing potential feature
semantic information, providing potential transformations that
may occur within style embeddings.

Grouped Style Modulation. Once latent style estimations are
obtained, corresponding multivariate Gaussian distributions can
be constructed to synthesize new domain statistics, i.e., mean 𝜇𝑡 ∼
𝑁 (𝜇𝑙 ,∑𝑙𝜇 ) and variance 𝜎𝑡 ∼ 𝑁 (𝜎𝑙 ,∑𝑙𝜎 ), as shown in Figure 3.
We sample from the Gaussian distribution and select semantic
transformation directions in a random manner for enhancement.

𝜇𝑡 = 𝜇
𝑙 + 𝜖𝜇

𝑙∑︁
𝜇

(5)

𝜎𝑡 = 𝜎
𝑙 + 𝜖𝜎

𝑙∑︁
𝜎

(6)

where 𝜖𝜇 and 𝜖𝜎 follows the standard normal distribution N(0, 1).
Then we utilize affine transformations to transform the style

(𝜇, 𝜎) of the intermediate layer features 𝐹 𝑙 in the model into a novel
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style (𝜇𝑡 , 𝜎𝑡 ) that is randomly sampled:

𝐹 𝑙 = 𝜎𝑡
𝐹 𝑙 − 𝜇𝑙

𝜎𝑙
+ 𝜇𝑡 (7)

In practical applications, we group the features of this batch
by the channel dimension and perform affine transformations on
each group separately. This module can be integrated at various
positions within the network. By setting hyperparameters 𝑝 to con-
trol the probability of applying the model, it enhances the model’s
ability to learn stable features and robustness, thereby improving
its generalization capability. Note that this module only operates
during training and fine-tuning and can be discarded during testing.
It is worth noting that this module does not introduce any learn-
able parameters, which to some extent reduces the computational
complexity of the model. By introducing GSM, we can capture the
variability of feature distributions, aiding the model in learning
a more diverse range of domain styles. Compared to traditional
methods, this strategy, which does not require additional complex
calculations, not only improves the model’s generalization but also
reduces the difficulty and computational cost of model training.

3.4 Dual-Branch Fusion.
To further enhance the model’s discriminative ability in specific
domains, we employ a dual-branch fusion strategy to fine-tune the
model, aiming to ensure that it adapts to the data distribution of
the target domain.

Dual-Branch Joint Modeling. In the target domain, support
samples and query samples representing the same category may
exhibit different appearances. The limited number of support sam-
ples restricts the model’s ability to learn about the current category,
thereby reducing its predictive performance on the query samples.
Introducing a Group Style Modulation (GSM) layer during the fine-
tuning phase can enhance the model’s generalizability. However,
due to the limitations of few samples in CD-FSS, the model may
produce ambiguous predictions in some complex areas, leading to
reduced discriminative power. Under limited data conditions, we
employ an auxiliary model to augment decision support informa-
tion, thereby enhancing the model’s discriminatory ability.

Therefore, during the fine-tuning and testing phase, we design
two parallel branches to enhance the model’s discriminative ability
for the current task. Specifically, the first branch consists of two
components: a feature extractor and a decoder formed by a proto-
typical network. Similar to the training phase, we use ResNet-50
as the feature extractor and add a GSM layer after each residual
block. The second branch is based on the first but with the GSM
layer removed.

Weighted Fusion. As shown in Figure 4, the branch with GSM
captures excessive class-irrelevant information, the branch with-
out GSM loses some class-relevant information, while the fusion
method achieves accurate pixel-level prediction results. In this
work, we further utilize the predictive differences between the two
branches as an uncertainty estimation. Specifically, during the in-
ference stage, after obtaining predicted probability maps from both
branches for a query sample, we adopt a weighted fusion approach
to integrate the prediction results. Formally, for a given query sam-
ple 𝐹𝑞 ∈ R𝐵×𝐶×𝐻×𝑊 and the predicted mask 𝑀𝑞 ∈ R𝐵×2×𝐻×𝑊 ,
we first perform mask average pooling to obtain the foreground

Support GSM w/o GSM Fusion GroundTruth

Figure 4: Illustration of the visual prediction results on query
samples using branches with GSM, branches without GSM,
and the method that uses dual-branch fusion.

prototype 𝐹𝑃𝑞 ∈ R𝐵×𝐶 and background prototype 𝐵𝑃𝑞 ∈ R𝐵×𝐶 .
Subsequently, cosine similarity is used to compute the similarity
between the foreground and background.

𝑆 (𝐹𝑃𝑞, 𝐵𝑃𝑞) =
1
𝐵𝐶

∑︁
𝑏,𝑐

𝑐𝑜𝑠 (𝐹𝑃𝑞, 𝐵𝑃𝑞) (8)

By applying Equation 8 to the prediction results from the two
branches, we obtain two similarity scores 𝑆1, 𝑆2. Finally, the weight
of the first branch can be obtained by:

𝛼 =
1

1 + 𝑒−
𝑆1+𝑆2

2
(9)

The fusion of the two branches enhances the overall model’s ability
to distinguish between different categories within the same domain.

Weights sharing. In the fine-tuning and inference stages of
each scenario, the two branches share the parameters of the trained
model as initial parameters. Additionally, except for the last residual
block which requires parameter updates during fine-tuning, the two
branches share the same weights. On one hand, sharing weights
can reduce the computational complexity during the fine-tuning
phase. On the other hand, the knowledge learned by the model
in the source domain can be equally transferred to both branches,
guiding them to learn quickly.

3.5 Network Training and Finetune
We employ a two-stage training approach, where the GSM is used
during the training phase to simulate potential domain styles,
thereby enhancing the model’s adaptability to the target domain.
In the fine-tuning phase, data from the target domain is introduced
for domain-specific adaptation, allowing the model to conform to
the feature distribution of the target domain more accurately.

Training. During the training, the fused prototype obtained via
a self-matching strategy yields the corresponding prediction results
𝑀
𝑞
𝑜𝑢𝑡 . To facilitate training, new predictions𝑀𝑠

𝑠𝑢𝑝𝑝 and𝑀𝑞

𝑠𝑒𝑙 𝑓
are

derived by predicting the support samples with the support pro-
totype and the query samples with the self-matching prototype,
respectively. Subsequently, the cross-entropy loss between the pre-
diction results and the ground truth is calculated. Ultimately, we
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Table 1: The MIoU results for 1-way 1-shot and 5-shot setups in CD-FSS tasks, obtained from few-shot segmentation methods.
These methods are all trained on PASCAL VOC.

Method FSS-1000 ISIC Chest X-ray Deepglobe Average

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

PGNet [30] 62.42 62.74 21.86 21.25 33.95 27.96 10.73 12.36 32.24 31.08
PANet [27] 69.15 71.68 25.29 33.99 57.75 69.31 36.55 45.43 47.19 55.1
CANet [31] 70.67 72.03 25.16 28.22 28.35 28.62 22.32 23.07 36.63 37.99
RPMMs [29] 65.12 67.06 18.02 20.04 30.11 30.82 12.99 13.47 31.56 32.85
PFENet [25] 70.87 70.52 23.5 23.83 27.22 27.57 16.88 18.01 34.62 34.98
RePRI [1] 70.96 74.23 23.27 26.23 65.08 65.48 25.03 27.41 46.09 48.34
HSNet [23] 77.53 80.99 31.2 35.1 51.88 54.36 29.65 35.08 47.57 51.38
PATNet [17] 78.59 81.23 41.16 53.58 66.61 70.2 37.89 42.97 56.06 61.99
SSPNet [10] 79.43 80.32 36.07 47.20 73.70 74.91 40.19 50.54 57.35 63.24
PMNet [3] 84.6 86.3 51.2 54.5 70.4 74.0 37.10 41.60 60.83 64.1

Ours 85.44 90.24 57.02 64.77 91.49 92.90 40.99 52.69 68.74 75.15

obtain a weighted loss function:

𝐿𝑡𝑜𝑡𝑎𝑙 =𝛼1𝐵𝐶𝐸 (𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑀
𝑞
𝑜𝑢𝑡 , 𝑀

𝑞
𝑔𝑡 ))+

𝛼2𝐵𝐶𝐸 (𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑀𝑠
𝑠𝑢𝑝𝑝 , 𝑀

𝑠
𝑔𝑡 ))+

𝛼3𝐵𝐶𝐸 (𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑀𝑞

𝑠𝑒𝑙 𝑓
, 𝑀

𝑞
𝑔𝑡 ))

(10)

where 𝛼1, 𝛼2 and 𝛼3 are the balance weights.
Finetune. In each episode, we randomly select different query

images while constructing augmented samples for the remaining
support set, treating it as a pseudo-support set and the original
support set as a pseudo-query set. The parameters of the training
model are loaded simultaneously for the two branches, and the
fine-tuning processes are independent of each other. After training
each episode, the support set is immediately used to predict the
query set. It is important to note that training gradients at this stage
does not involve updates.

4 EXPERIMENT
4.1 Experimental Setup
Datasets. Following previous research, we train our model using
the PASCAL [9] dataset as the source domain and evaluate it on tar-
get domains including FSS-1000 [20], Deepglobe [7], ISIC2018 [6],
and Chest X-ray [2]. The PASCAL dataset is composed of PASCAL
VOC 2012 [9] with annotations from the SDS dataset [11]. FSS-
1000 [20] consists of 1000 categories split into training, validation,
and test sets with 520, 240, and 240 categories, respectively. Each cat-
egory contains ten images. For evaluation, we selected 2400 support-
query pairs from the test set. Deepglobe [7] features satellite images
annotated at the pixel level across seven categories. To reduce in-
dividual image sizes and expand the test image pool, each image
is split into six sections. By removing single-class and unknown
area images, we have 5666 images for evaluation. ISIC2018 [6] is
comprised of skin lesion images, with each image precisely contain-
ing one primary lesion. The dataset includes a total of 2596 images.
Chest X-ray [2] contains X-ray images for tuberculosis analysis,
collected from 58 cases with tuberculosis manifestations and 80
normal cases, totaling 566 images.

Algorithm 1 Fine-tuning and Inference under 1-shot setting

Require: Branch1Model 𝑀1
𝜃1
, Branch2Model 𝑀2

𝜃2
, pretrained

model 𝑓𝜃
Require: Test episode 𝑇 = (𝑆,𝑄)
1: Initialize𝑀1

𝜃1
and𝑀2

𝜃2
with 𝑓𝜃

2: while not done do
3: Generate pseudo-samples 𝑆𝑝𝑠𝑒𝑢𝑑𝑜 of support sample 𝑆
4: Set support-query pair 𝑇 𝑓 = (𝑆𝑝𝑠𝑒𝑢𝑑𝑜 , 𝑆)
5: Fine-tune the model and update the model parameters𝑀1

𝜃1

using 𝑇 𝑓 = (𝑆𝑝𝑠𝑒𝑢𝑑𝑜 , 𝑆)
6: end while
7: while not done do
8: Generate pseudo-samples 𝑆𝑝𝑠𝑒𝑢𝑑𝑜 of support sample 𝑆
9: Set support-query pair 𝑇 𝑓 = (𝑆𝑝𝑠𝑒𝑢𝑑𝑜 , 𝑆)
10: Fine-tune the model and update the model parameters𝑀2

𝜃2

using 𝑇 𝑓 = (𝑆𝑝𝑠𝑒𝑢𝑑𝑜 , 𝑆)
11: end while
12: Test the fine-tuned model using query sample 𝑄 , 𝑃1 =

𝑀1
𝜃1
(𝑄),𝑃2 = 𝑀2

𝜃2
(𝑄)

13: Compute the prediction results 𝑃 with weighted fusion

Evaluation metrics. Existing methods for few-shot semantic
segmentation primarily utilize the Mean Intersection over Union
(mIoU) as evaluation metrics. The mIoU represents the average IoU
across all categories, taking into account different object classes.
Higher values of these evaluation metrics indicate better segmenta-
tion performance.

Implementation Details In this study, we adopt the same ex-
perimental setup as PATNet [17]. All samples from the PASCAL-5𝑖
dataset are combined to form the training set, and only one round of
experimentation is conducted during the training phase. In the test-
ing phase, to ensure a fair performance comparison with existing
methods, we utilize the prevalent evaluation methods currently in
use. We will assess all different types of test datasets using the same
model, namely, the model trained on the PASCAL-5𝑖 dataset.We em-
ploy a pre-trained ResNet-50 on ImageNet as our feature extractor,
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utilizing features generated by conv4x. Following the methodology
of previous work [17], during the training and fine-tuning phases,
we set the spatial dimensions of both support and query images
at 400×400. During training, we comprehensively train the model
using an SGD optimizer with an initial learning rate of 1e-3, where
all parameters of the feature extractor are updated.

4.2 Comparison Results
Quantitative Results. The algorithm proposed in this paper has
been thoroughly compared with the current state-of-the-art meth-
ods for cross-domain few-shot semantic segmentation. Specific
experimental results are presented in Table 1. All methods are
trained on the PASCAL dataset and tested on the FSS, ISIC, Chest
X-ray, and Deepglobe datasets, respectively. Bold indicates the best
performance among all methods. The results demonstrate that our
method achieves the best performance in three out of the four
datasets and lead in average metrics. Compared to the second best
method PMENet [3], our approach improved accuracy by 7.91% and
11.05% under the 1-shot and 5-shot settings, respectively. These
exceptional cross-domain accuracies indicate that our method can
effectively generalize to unknown testing domains. As the number
of support images increased from one to five, the model perfor-
mance showed a robust improvement trend. Particularly on the
Deepglobe and ISIC datasets, our method exhibited significantly
more progress with the additional supervisory information, with
performance gains reaching as high as 11.7% and 7.75%, respectively.
These results thoroughly validate the efficient learning capability
and outstanding generalization performance of our approach.

Qualitative Results. Figure 5 illustrates the visualized predic-
tion outcomes of our method on the four datasets (sequentially
from top to bottom: FSS, ISIC, Chest X-ray, and Deepglobe datasets).
It is noteworthy that, prior to making predictions on the test set,
the model had not been exposed to the same categories within the
training dataset. The qualitative results implie that with merely
1/5th of a support sample providing categorical target information,
the model is still capable of identifying and accurately segment-
ing the complete foreground object in query images. For instance,
the second row of Figure 5 displays the prediction results on skin
lesion images. Despite the training data originating from natural
images, which significantly differ in style from skin lesion images,
the approach employed in this study still manages to closely predict
the segmentation boundaries of the primary lesions in the query
images.

4.3 Ablation Studies
We conducted a series of ablation experiments on the modules
proposed in our model. The 1-shot and 5-shot metrics mentioned
in the table below represent average values. Specifically, to ensure
fairness, evaluations are performed using five different random
seeds for each test dataset, and the average of these five trials is
taken as the result for that dataset.

Effectiveness of SpecificModules. Table 2 shows the impact of
different modules on enhancing model performance. We adaptively
improve the few-shot semantic segmentation method SSPNet [10],
enabling it to effectively handle cross-domain few-shot semantic
segmentation tasks. The enhanced SSPNet is then used as a baseline

Support Ours
Ground-

  Truth Support Ours
Ground-

  Truth

Figure 5: Prediction results of ourmodel on the 1-shot setting
for CD-FSS task. From top to bottom, each row represents
FSS-1000, ISIC, Chest X-Ray, and Deepglobe datasets.

Table 2: Effectiveness of Specific Modules. FI represents the
fine-tuning results using a model with GSM, and DBF indi-
cates the fine-tuning results after employing a dual-branch
fusion strategy.

Baseline GSM FI DBF 1-shot 5-shot

✓ 57.35 63.24
✓ ✓ 60.26 64.98
✓ ✓ ✓ 66.08 71.81
✓ ✓ ✓ ✓ 68.74 75.15

model for training and evaluation, with the results displayed in the
first row of the Table 2. Upon incorporating the GSM, the model’s
performance increased by 2.91%. This improvement is due to the
model’s ability to learn more diverse information during the feature
extraction phase, thereby boosting its generalization capabilities
across various unknown testing scenarios. Additionally, leveraging
a fine-tuning strategy allows the model to update parameters ac-
cording to the visual style of the test domain before the inference
stage, thus guiding the inference process for query samples more
accurately. This strategy result in a performance increase of 5.82%,
confirming the significance of fine-tuning for overall performance
enhancement. Furthermore, by computing the weighted output of
the dual-branch module, the model is able to achieve a gain of 2.66%.
With all modules combined, the method proposed in this study ele-
vates the baseline by 11.39%. These module ablation experiments
compellingly demonstrate that the improvements proposed in this
research contribute to enhancing the model’s generalization ability
and category discrimination accuracy on unknown testing domains,
effectively boosting the model’s overall performance.

Effectiveness of Grouped Style Modulation Layer. In Ta-
ble 2, we clearly observe that the introduction of the GSM leads to
significant improvements in model performance under both 1-shot
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Table 3: Effectiveness of Grouped Style Modulation Layer.
Ori denotes not adopting a grouping strategy.

Group FSS ISIC Chest X-Ray Deepglobe Mean

Ori 78.05 40.16 77.26 41.41 59.22
8 77.98 42.06 75.73 41.01 59.20
16 78.20 41.50 79.32 42.01 60.26
32 78.19 41.44 78.56 41.12 59.83

Table 4: Effectiveness of Dual-Branch Fusion.

Method FSS ISIC Chest X-Ray Deepglobe Mean

GSM 83.45 52.22 89.58 39.05 66.08
w/o GSM 82.23 51.31 91.31 40.86 66.43
Mean 85.7 56.34 91.39 41.28 68.68
WF 85.44 57.02 91.49 40.99 68.74

and 5-shot settings. In this work, we achieve local style modulation
by grouping channels, thereby enhancing the diversity of features.
To unveil the impact of channel group size, we conduct ablation
studies on the size of the grouped channels. As demonstrated in the
table 3, the model achieves the best results when the channel size is
16. Additionally, compared to the model without channel grouping,
there is a performance improvement of 1.04%, which underscores
the effectiveness of this method.

Moreover, we systematically investigate the potential impact
of noise ratio on model performance, where a higher noise ratio
corresponds to the generation of a richer variety of domain styles.
The results displayed in Figure 6 reveal a trend: as the noise ratio
incrementally increases, the model’s overall performance shows
an upward trajectory. Furthermore, we utilize t-SNE to visualize
the feature distribution differences between datasets, as shown in
Figure 7. The pink dots are features extracted from the training
domain dataset PASCAL, while the orange dots represent features
extracted from the test domain dataset Deepglobe, using the feature
extractor. The left image depicts the feature distribution between
the two datasets under the baselinemodel. It is evident that there is a
significant domain discrepancy between the two datasets. However,
after employing the GSM proposed in this study, the distribution
between the two datasets shiftes from a clustered aggregation to
a radial, point-like spread, significantly reducing the distribution
gap, as shown in the right image. This illustrates the effectiveness
of the GSM.

Effectiveness of Dual-Branch Fusion. To verify the effec-
tiveness of DBWF, wo conduct some comparative experiments
as shown in Table 4. In the experiment named w/o GSM, we re-
move the operation of GSM. We discover that each branch exhibits
distinct performance advantages on different datasets. Therefore,
we further consider combining the two aforementioned methods.
The method called Mean integrates the two methods equally and
achieves a performance gain, which demonstrates the necessity of
complementarity in prediction results. Moreover, utilizing weighted
fusion can help the model achieve better outcomes.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
p
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Figure 6: Effectiveness of noise ratio in the GSM

Baseline Grouped Style Modulation Layer

Figure 7: Visualization results of features on t-SNE

5 CONCLUSIONS
In this work, we introduce a cross-domain few-shot semantic seg-
mentation network based on Dual-Branch Fusion with Style Mod-
ulation. By constructing latent style estimations to characterize
the distribution range of feature statistics, we explore the potential
semantic directions and strengths of features and employ affine
transformations to synthesize new feature statistics for domain
style enhancement. This approach facilitates the model’s learning of
diverse domain styles, thereby improving its generalizability. More-
over, to further optimize the prediction masks of query samples,
during the testing phase, we employ a dual-branch fusion technique
to fine-tune the model. The goal is to enhance the model’s ability
to adapt to the data distribution of the target domain. Extensive
experiments were conducted on the FSS-1000, ISIC, Chest X-ray,
and Deepglobe datasets. The results demonstrate that the proposed
method is highly competitive in cross-domain few-shot semantic
segmentation tasks.
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