
Leveraging Foundation Models to Improve
Lightweight Clients in Federated Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Federated Learning (FL) is a distributed training paradigm that enables clients1

scattered across the world to cooperatively learn a global model without divulging2

confidential data. However, FL faces a significant challenge in the form of heteroge-3

neous data distributions among clients, which leads to a reduction in performance4

and robustness. A recent approach to mitigating the impact of heterogeneous data5

distributions is through the use of foundation models, which offer better perfor-6

mance at the cost of larger computational overheads and slower inference speeds.7

We introduce foundation model distillation to assist in the federated training of8

lightweight client models and increase their performance under heterogeneous data9

settings while keeping inference costs low. Our results show improvement in the10

global model performance on a balanced testing set, which contains rarely observed11

samples, even under extreme non-IID client data distributions. We conduct a thor-12

ough evaluation of our framework with different foundation model backbones on13

CIFAR10, with varying degrees of heterogeneous data distributions ranging from14

class-specific data partitions across clients to dirichlet data sampling, parameterized15

by values between 0.01 and 1.0.16

1 Introduction17

Federated learning (FL) is a decentralized training paradigm in machine learning [McMahan et al.,18

2017] that trains one global model across multiple clients while preserving the privacy of client19

data. A typical FL framework consists of a central server coordinating global model training by20

periodically aggregating clients’ local models that are trained with locally-stored data. Similar to a21

variety of distributed learning approaches, one of the major challenges for FL is that locally-stored22

client data are heterogeneous, which can result from uneven distributions or unbalanced patterns [Li23

et al., 2020a]. This results in client-drift, commonly-seen accuracy drops, and non-convergence [Zhao24

et al., 2018, Karimireddy et al., 2020, Hsieh et al., 2020, Li et al., 2020a]. In addition, many FL25

clients in real-world deployments are edge devices which have strict limitations on inference speeds26

and compute. This, in turn, restricts clients to using small-scale models for inference.27

To maintain model performance under heterogeneous data distributions, foundation models [Bom-28

masani et al., 2021] present a potential solution. Their widely known benefits, such as their compre-29

hensive knowledge, transferable representations across a broad range of downstream tasks [Radford30

et al., 2021, Wang et al., 2022], and strong robustness to distribution shifts [Ma et al., 2021] make31

them a strong candidate to mitigate the effects of heterogeneous distributions. With this in mind,32

multiple recent methods explore fine-tuning foundation models under federated settings [Qu et al.,33

2022, Chen et al., 2022a, Guo et al., 2023a, Chen et al., 2022b, Su et al., 2022, Guo et al., 2023b].34

Among these, Chen et al. [2022b] have shown that under extreme non-IID conditions, federated35

fine-tuning of foundation models forces a performance worse than training on local data only. In36
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addition, these methods incur a relatively large increase in inference time and compute by directly37

using foundation models instead of small-scale alternatives like EfficientNet Tan and Le [2019] or38

MobileNet Sandler et al. [2018] for inference.39

In order to effectively leverage the performance of foundation models under non-IID data distri-40

butions while using small-scale backbones for faster inference, we propose an approach to distill41

knowledge from foundation models into the small-scale client models (proxy models). During42

training, foundation models are not directly fine-tuned, but rather are leveraged to update each client’s43

proxy model; then proxy model updates are shared with and aggregated by the server model. At44

inference, only the proxy models are used. Thus, the proxy models offer low latency inference while45

knowledge from the foundation models helps reduce the bias and diversify the knowledge of the46

proxy models, especially under heterogeneous local data distributions. In addition, our proposed47

method is agnostic to the number and size of foundation models available to each client. This offers48

the option of personalization for each client, which can select the appropriate foundation model(s)49

based on the amount of storage and compute available, as well as local data characteristics; this is50

particularly beneficial when some clients have much more/less data than others. We use the concept51

of personalization to highlight important directions for future work.52

Overall, our main contributions are as follows:53

• This is the first approach to leverage foundation models in FL via distillation to help improve54

the performance and robustness achievable in small-scale client models (e.g. relative increase55

of 9.22% for EfficientNetB0, 8.69% for ResNet18 and 24.60% for MobileNetV2).56

• Within the space of low latency models, we provide a federated learning solution robust57

to various heterogeneous client data. Our approach outperforms prior art across a variety58

of client data distributions, from IID to various parametrized dirichlet distributions and59

class-specific partitions.60

• We explore the impact of leveraging representations from fine-tuned foundation models61

on local data versus pre-trained foundation models. Our results show that under IID data62

distributions, an initial step of fine-tuning foundation models offers no benefit over 0-shot63

foundation models, and significantly hinders accuracy as data heterogeneity increases,64

suggesting that directly fine-tuning foundation models leads to biased representations.65

• Our framework is also the first to allow clients the flexibility in choosing their locally-stored66

foundation models (personalization) according to the scale of compute and data available.67

We study the impact of variable foundation model backbones and highlight the importance68

of combining disparate feature representations correctly.69

2 Related Work70

Federated Learning with Heterogenous Client Data Federated learning is a distributed machine71

learning scheme which enables multiple clients to train a shared model while keeping their data72

private. Typically a central server federates the training procedure by periodically aggregating73

model updates from clients [McMahan et al., 2017]. Frequently, client data can have non-identical74

distributions which causes naive aggregation methods to not be able to guarantee global model75

convergence to a local minimum [Zhao et al., 2018, Li et al., 2020b, Hsieh et al., 2020, Li et al.,76

2020a]. To tackle this challenge, FL-algorithms such as FedProx [Li et al., 2020a] add a proximal77

term to the local training objective to protect models in each client from over-fitting to the local data78

distribution; other approaches such as regularization [T Dinh et al., 2020], model mixture [Deng et al.,79

2020, Mansour et al., 2020, Hanzely and Richtárik, 2020], clustering clients [Sattler et al., 2020, Cho80

et al., 2021], multi-task learning [Smith et al., 2017], and meta-learning [Fallah et al., 2020] have81

been introduced to stabilize the trained models. In this work, we tackle the issue of heterogeneous82

data distributions by distilling knowledge from foundation models to proxy models, to help mitigate83

this issue without the need for additional data.84

Foundation Models in FL The past few years have witnessed the rapid development of foundation85

models with the integration of language [Radford et al., 2018, Devlin et al., 2018, Radford et al.,86

2021], vision [Bao et al., 2021], and audio modalities [Tang et al., 2023] across many tasks. In FL,87

foundation models have been used to improve the robustness of clients to distribution shifts and88

heterogeneous data distributions [Qu et al., 2022] or the overall performance of the system [Chen89
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et al., 2022b, Guo et al., 2023a, Zhao et al., 2023, Lu et al., 2023, Guo et al., 2023b]. However,90

existing works do not fully address the increase in computational overhead nor inference time that91

follow the use of foundation models. In addition, even compressed foundation models [Sanh et al.,92

2019, Wu et al., 2023] do not fully match the latency requirements of clients, which hinders their93

deployment in real-world settings. Therefore, we propose the use of small-scale proxy models and94

distillation to leverage the performance of foundation models while keeping inference costs low.95

Distillation Knowledge distillation is a teaching technique that transfers valuable insights and96

generalization capabilities from a trained teacher model to a student model [Hinton et al., 2015,97

Anil et al., 2018, Zhang et al., 2018, 2021]. Within the domain of FL, Lin et al. [2020] explore98

adaptable aggregation methods with ensemble distillation at the server, while Sattler et al. [2021]99

use an auxiliary dataset to weight and ensemble local models from each client. FedDistill [Seo100

et al., 2022] extracts statistics related to the logit-vector from different client models and shares them101

with the remaining clients to help with distillation. Zhu et al. [2021] present a data-free knowledge102

distillation approach by training a generative model at the server, using information from clients.103

They proceed to use the generative model to create synthetic data which is used to train client models.104

Cho et al. [2021] propose a co-distillation-based personalized FL method to allow cross-architecture105

training. In our approach, we study the impact of knowledge distillation Hinton et al. [2015] on106

the performance of small-scale client models without the use of excessive data, augmentations or107

model sharing so as to maintain privacy. We hope to provide guidance with respect to how foundation108

models can be effectively used in FL.109

3 Distilling Foundation Models in Federated Learning110

3.1 Federate Learning: Setup111

Our core FL scheme follows FedAvg [McMahan et al., 2017], which consists of a central server and112

multiple clients, indexed as i = 1, 2, ..., N . Each client-i has its local private dataset Di. We denote113

the local loss function of interest for the i-th client as L(Di; θ), where θ ∈ Rd are the parameters of114

the trainable client model. The overall optimization problem considered at the server is denoted as,115

min
θ∈Rd

L(θ) :=
N∑
i=1

piL(Di; θ). (1)

Here, pi is a re-weighting factor conditioned as pi ≥ 0 and
∑

i pi = 1. Typically, pi is assigned as116

pi =
|Di|∑

j∈St
|Dj | where St denotes the set of clients communicating with the server at round t. With117

this setup in mind, the FL framework repeats the following steps until a desired end condition is118

achieved: 1) The server broadcasts the current global model to selected clients; 2) Each client resets119

its local model with the received model, performs local training based on its data, and sends the120

updated weights/gradients to the server; 3) The central server updates the global model by aggregating121

the received weights/gradients.122

3.2 Fed-LPFM123

Setup Unique to our framework, we consider the scenario where each client has access to local124

pre-trained foundation models. Similar to each client’s training dataset, these foundation models125

are only accessible by the client and not other entities in FL. We assume that in the FL system each126

client contains two sets of local models: (a) a set Mi of pre-trained foundation models (private):127

M1
i ,M2

i , . . . ,M
Mi
i , and (b) one trainable small-scale proxy model parameterized by θi. Since the128

foundation models are private, only the proxy models are circulated among the clients and server129

to facilitate the exchange of knowledge across the system. Our goal is to minimize the objective in130

Eq. 1, where the θ to be optimized represents the parameters of the small-scale proxy model while131

the foundation models are left unmodified.132

Local Training In our algorithm, the client uses its locally stored data along with the knowledge133

from its private foundation models to supervise local training. For this purpose we use the following134

loss function,135

L(Di; θ) = λLCE(Di; θ) + (1− λ)LDistill(Di; θ,M1
i , . . . ,M

Mi
i ). (2)
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Algorithm 1 Fed-LPFM

1: Input: Dataset Di, frozen and private pre-trained foundation models:M1
i ,M2

i , . . . ,M
Mi
i and

proxy model θ0 for each client i ∈ [N ].
2:
3: Server:
4: for Round t = 0, 1, 2, . . . , T − 1 do
5: Send θt to connected clients St ⊂ [N ]. Let Pt =

∑
i∈St
|Di|.

6: for Client i ∈ St in parallel do
7: θit ← LocalUpdate(θt, i)
8: Send the updated model θit to the central server
9: end for

10: Server-end aggregation: θt+1 =
∑

i∈St

|Di|
Pt

θit
11: end for
12: return: θT
13:
14: LocalUpdate(θt, i)
15: θit = θt
16: for epoch q = 0, 1, . . . , Q− 1: θit,q+1 = θit,q − η∇̃L(θit,q;Mi

1, . . . ,Mi
Mi

;Di)

17: return: θit = θit,Q

Here, the first term is the local cross entropy loss, denoted as136

LCE(Di; θ) = E(x,y)∼Di
ℓCE(h(x; θ), y), (3)

where h(·) denotes the outcome of a forward pass through the proxy model. The second term LDistill137

is used to distill the knowledge between the proxy model and the pre-trained foundation models.138

Typically, the Kullback Leibler (KL) Divergence loss is used for this purpose.139

LDistill(Di; θ,M1
i , . . . ,M

Mi
i ) =

Mi∑
m=1

E(x,y)∼Di
ℓKL[h(x; θ)||Mm

i (x)] (4)

The parameter λ controls the proportion of knowledge distilled from foundation model in comparison140

to ground-truth labels.141

Aggregation scheme After local training, the server synchronizes with the available clients and142

aggregates the locally updated proxy models. The local models are aggregated with the following143

re-weighting scheme,144

θt+1 =
∑
i∈St

|Di|∑
j∈St
|Dj |

θit, (5)

where t denotes the communication round. After the aggregation is complete, the server broadcasts145

the updated model to clients and the entire process is repeated until a desired end condition is met.146

Algorithm 1 provides a step-by-step explanation of our FL scheme.147

4 Experiments148

4.1 Experiments Setup149

Data Settings We evaluate our algorithm on the CIFAR-10 dataset with 10 clients across seven data150

partitions at various levels of heterogeneity, including both IID and non-IID. For the non-IID data151

partitions we use (1) Dirichlet distribution, denoted as Dir(α) with α = 1.0, 0.5, 0.1, 0.05, 0.01;152

(2) Class Split, where each client’s data is sampled from 2 of the 10 classes. We evaluate all153

algorithms over the balanced CIFAR-10 test set and report average accuracy over three trials to154

mitigate randomness of the runs.155

Network Architectures For the choice of foundation models, we employ CLIP Radford et al.156

[2021] with backbones ViT-Base/32 (default) and RN50, while we use MobileNet-v2, EfficientNetB0,157

and ResNet18 as our proxy models. In each of the proxy models, we replace the batch normalization158

layers with group normalization (8 groups) and train it from random initialization.159

4



(a) MobileNetV2 (b) EfficientNetB0 (c) ResNet18

Figure 1: Performance comparisons against existing works across a variety of data settings and proxy
model backbones. Fed-LPFM consistently outperforms prior art, by a large margin, under extremely
heterogeneous data distributions. Larger area covered indicates a stronger FL approach.

Training Setup and Hyper-parameters Throughout all algorithms and experiments, we use an160

SGD optimizer for training. We train the proxy models for 600 epochs using a learning rate of 0.01,161

weight decay of 5e-4, and a step learning rate scheduler with a scale factor of 0.1 at epoch 200. In162

ablation studies where we additionally consider directly fine-tuning foundation models, we train for163

200 epochs with a learning rate of 2e-3, weight decay of 5e-4, and a cosine learning rate scheduler164

with 1 epoch of warmup. For comparisons against the SOTA algorithms we train the proxy models165

up to 500 epochs in FedAvg and FedProx, and 600 epochs in FML.166

4.2 Main results167

SOTA Algorithm Comparison We compare our approach against FedAvg [McMahan et al., 2017],168

FedProx [Li et al., 2020b], and FML [Shen et al., 2020], under multiple data heterogeneity partitions.169

We visualize our results in Fig. 1, where each data partition is represented as a vertex on the polar170

plot and accuracy is plotted along the radius. From Fig. 1, we observe that Fed-LPFM robustly171

outperforms prior work across a variety of data distributions. In particular, our algorithm improves172

over FedProx (the best among prior art) by a wide margin, especially under the most extreme173

heterogeneous distributions (class split and dirichlet sampling with α = 0.01, 0.05). In addition, we174

highlight that using MobileNet as the backbone for both the private and proxy models, mimicing the175

setup in FML, performs poorly. We hypothesize that fine-tuning on the local data begins to bias the176

representations learned across both models, thus lending to significantly worsening performances as177

the data heterogeneity increases.178

Proxy Model To establish the applicability of our approach to a variety of proxy model backbones,179

we evaluate across EfficienetNetB0, ResNet18, and MobileNetV2. We report and visualize the results180

in Figs. 1b and 1c. We observe that our approach outperforms FedAvg and FedProx across the entire181

selection of proxy models under various data heterogeneity settings, especially the severe non-IID182

cases. In addition, we also observe that the improvement in performance from FedProx diminishes183

across both ResNet and EfficienNet, when compared to MobileNet. FedAvg and FedProx perform184

similar to one another.185

Fine-Tuned vs. 0-shot Our Fed-LPFM method uses pre-trained foundation models with no186

available fine-tuning. To explore the impact of prior knowledge and how it affects distillation, we187

compare our 0-shot approach with first fine-tuning each client’s foundation model(s) on local data188

(linear probing and prompt tuning). Fig. 2a illustrates how the 0-shot CLIP case outperforms the189

fine-tuned CLIP models. Our conjecture of this behavior is that fine-tuning the foundation model on190

local data results in a more personalized and biased knowledge representation which decreases the191

performance on a balanced test set. In addition, the more the data distribution is heterogeneous, the192

more knowledge encoded locally is personalized and biased. However, under more homogeneous193

settings there is a significant boost in the performance of clients when leveraging knowledge from194

both 0-shot and fine-tuned foundation models. We believe that the improvement shown when distilling195

from 0-shot models is largely due to the impact of strong diversity in its feature embeddings when196
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(a) Fine-tuning vs. 0-shot (b) Personalizing 0-shot Models

(c) Linear Probing (d) Prompt Tuning (e) 0-shot

Figure 2: (2a) Fine-tuning foundation models on local data forces significantly worse performances
under non-IID conditions. (2b) Maintaining consistent foundation model backbones improves the
synergy in information shared across clients. (Bottom) When compared to fine-tuned models, 0-shot
models offer more diverse feature embeddings that reduce the bias of proxy models towards local
data distributions.

compared to fine-tuned foundation models. We use tSNE plots to observe the spread of the encoded197

knowledge representations from foundation models. From Fig. 2, we can see that features from198

0-shot foundation models cover a wider area when compared to fine-tuned models.199

Personalizing Foundation Models By keeping foundation model(s) private, Fed-LPFM allows200

each client to personalize them. From Fig. 2b, we see that maintaining consistent backbones across the201

foundation models yields the highest improvement in performances while having a random sampling202

of backbones, between ViT-B/32 and RN50, forces a drop in performance. We believe this behavior203

stems from following a naive strategy in combining the information presented by multiple proxy204

models. The root of this behavior can be attributed to differences in knowledge/understanding of205

foundation models with disparate backbones. Instead, utilizing our approach along with personalized206

FL ([T Dinh et al., 2020, Fallah et al., 2020, Li et al., 2021, Ghosh et al., 2020, Cho et al., 2021], etc.)207

could potentially boost the overall performance.208

5 Conclusions209

Overall, we establish Fed-LPFM as an approach to leverage foundation models and help improve210

the performance and robustness achievable in small-scale models under the FL setting. Distillation211

from pre-trained foundation models, as opposed to fine-tuned foundation models, provides the212

diversity in feature representations required to reduce the bias towards local distributions and thus,213

improve performance of clients across a variety of heterogeneous data distributions. The use of214

logit-level distillation allows clients the flexibility to choose their local foundation models according215

to their individual constraints. In doing so, we establish an important direction of future work;216

find an approach that, in a synergistic way, combines the information from disparate knowledge217

representations towards improved model performance.218
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A Appendix340

The experimental results used to plot Figures in the main paper are shown in tabular form below.341

Our algorithm (i.e., Fed-LPFM) consistently outperform other algorithms. We observed that Fed-342

LPFMshows the largest improvement in the class split and Dirichlet distribution (α = 0.01 and 0.05),343

which are the most heterogeneous data distributions among different clients. For example, in the344

class split, Fed-LPFM has a 21.6% increase compared with Fedavg (82.29% vs 67.67%).345

Data Settings FedAvg FedProx FML Fed-LPFM (MobileNetV2)

Class Split 67.67± 1.88 65.97± 5.07 19.29± 0.28 82.29± 1.12
Dir(0.01) 58.49± 15.72 69.92± 2.07 17.50± 1.22 72.88± 9.11
Dir(0.05) 80.48± 1.07 80.48± 1.07 24.75± 3.15 84.05± 0.99
Dir(0.1) 84.78± 1.65 84.78± 1.65 33.13± 2.58 87.73± 1.48
Dir(0.5) 90.05± 0.21 90.05± 0.21 60.77± 3.98 91.72± 0.31
Dir(1.0) 90.86± 0.13 90.86± 0.13 72.84± 1.56 92.87± 0.17

IID 91.48± 0.31 91.61± 0.34 86.49± 0.17 93.26± 0.17

Table 1: The values of Figure 1(a) are shown in the current table.

Under different proxy model backbones, similar results can be observed. For both EfficientNet and346

ResNet case, we observed that Fed-LPFM outperforms other methods cross all data heterogeneity347

settings.

Data Settings FedAvg FedProx Fed-LPFM (EfficientNetB0)

Class Split 69.81± 2.64 69.81± 2.64 78.70± 2.28
Dir(0.01) 69.56± 2.20 69.56± 2.20 75.98± 1.29
Dir(0.05) 79.53± 0.95 79.53± 0.95 83.12± 0.76
Dir(0.1) 83.67± 1.23 83.67± 1.23 87.24± 1.46
Dir(0.5) 90.21± 0.08 90.21± 0.08 91.80± 0.30
Dir(1.0) 91.41± 0.35 91.41± 0.35 92.17± 0.09

IID 92.22± 0.17 92.22± 0.17 92.84± 0.04

Table 2: The values of Figure 1(b) are shown in the current table.

348

Data Settings FedAvg FedProx Fed-LPFM(ResNet18)

Class Split 67.56± 4.66 65.99± 6.41 82.50± 2.00
Dir(0.01) 73.06± 2.10 72.13± 1.38 79.41± 0.95
Dir(0.05) 82.22± 0.79 82.40± 0.46 86.42± 1.33
Dir(0.1) 85.74± 1.38 85.23± 0.89 88.59± 1.54
Dir(0.5) 90.41± 0.30 90.095± 0.54 93.30± 0.10
Dir(1.0) 91.13± 0.13 90.82± 0.25 93.92± 0.14

IID 91.94± 0.22 91.45± 0.17 94.00± 0.20

Table 3: The values of Figure 1(c) are shown in the current table.

As supporting materials for Fig. 2a, we report the numerical results for testing fine-tuned CLIP349

(linear probing and prompt tuning) and zero-shot CLIP cross different data heterogeneity levels. We350

observed that zero-shot CLIP offers best and more robust performances when compared to fine-tuned351

methods.352

As supporting materials for Fig. 2b, we report the results of using CLIP: ResNet50 and CLIP:ViT-353

B/32 as well as random sampling of them, with uniform prior, as foundation models. It shows that354

random selection of pre-trained models offers worst performances when compared to the other two.355
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Data Settings Linear Probing Prompt Tuning 0-shot (Ours)

Class Split 45.63± 9.48 51.85± 4.58 82.29± 1.12
Dir(0.01) 44.76± 3.56 35.86± 6.03 72.88± 9.11
Dir(0.05) 73.07± 0.86 68.39± 1.65 84.05± 0.99
Dir(0.1) 82.54± 3.21 77.35± 3.75 87.73± 1.48
Dir(0.5) 91.08± 0.24 89.01± 0.12 91.72± 0.31
Dir(1.0) 92.53± 0.48 90.32± 0.33 92.87± 0.17

IID 92.56± 0.17 91.85± 0.23 93.26± 0.17

Table 4: The values of Figure 2(a) are shown in the current table.

Data Settings CLIP: RN50 CLIP: ViT-B/32 Random Selection

Class Split 80.46± 4.08 82.29± 1.12 62.75± 3.24
Dir(0.01) 66.17± 1.19 72.88± 9.11 64.02± 3.52
Dir(0.05) 84.42± 0.41 84.05± 0.99 71.33± 1.52
Dir(0.1) 87.90± 1.58 87.73± 1.48 76.05± 3.53
Dir(0.5) 92.04± 0.25 91.72± 0.31 84.82± 0.45
Dir(1.0) 93.00± 0.10 92.87± 0.17 83.99± 0.99

IID 93.63± 0.30 93.26± 0.17 85.01± 0.47

Table 5: The values of Figure 2(b) are shown in the current table.
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