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ABSTRACT

Large Language Models achieve next-token prediction by transporting a vector-
ized piece of text (prompt) across an accompanying embedding space under the
action of successive transformer layers. The resulting high-dimensional trajec-
tories realize different contextualization, or ‘thinking’, steps, and fully determine
the output probability distribution. We aim to characterize the statistical properties
of ensembles of these ‘lines of thought.’ We observe that independent trajectories
cluster along a low-dimensional, non-Euclidean manifold, and that their path can
be well approximated by a stochastic equation with few parameters extracted from
data. We find it remarkable that the vast complexity of such large models can be
reduced to a much simpler form, and we reflect on implications.

1 INTRODUCTION

How does a large language model (LLM) think? In other words, how does it abstract the prompt
“Once upon a time, a facetious” to suggest adding, e.g., “transformer”, and, by repeating the op-
eration, continue on to generate a respectable fairy tale à la Perrault? What we know is by design.
A piece of text is mapped into a set of high-dimensional vectors, which are then transported across
their embedding (latent) space through successive transformer layers (Vaswani et al., 2017), each
allegedly distilling different syntactic, semantic, informational, contextual aspects of the input (Va-
leriani et al., 2023; Song & Zhong, 2024). The final position is then projected onto an embedded
vocabulary to create a probability distribution about what the next word should be. Why these vec-
tors land where they do eludes human comprehension due to the concomitant astronomical numbers
of arithmetic operations which, taken individually, do nothing, but collectively confer the emergent
ability of language.

Our inability to understand the inner workings of LLMs is problematic and, perhaps, worrisome.
While LLMs are useful to write college essays or assist with filing tax returns, they are also often
capricious, disobedient, and hallucinatory (Sharma et al., 2023; Zhang et al., 2023). That’s because,
unlike traditional ‘if-then’ algorithms, instructions have been only loosely, abstractly, encoded in the
structure of the LLM through machine learning, that is, without human intervention.

In return, language models, trained primarily on textual data to generate language, have demon-
strated curious abilities in many other domains (in-context learning), such as extrapolating time
series (Gruver et al., 2024; Liu et al., 2024), writing music (Zhou et al., 2024), or playing chess (Ru-
oss et al., 2024). Such emergent, but unpredicted, capabilities lead to questions about what other
abilities LLMs may possess. For these reasons, current research is attempting to break down internal
processes to make LLMs more interpretable.1 Recent studies have notably revealed some aspects of
the self-attention mechanism (Vig, 2019), patterns of neuron activation (Bricken et al., 2023; Tem-
pleton et al., 2024), signatures of ‘world models’2 (Gurnee & Tegmark, 2023; Marks & Tegmark,
2023), geometrical relationships between concepts (Jiang et al., 2024), or proposed mathematical
models of transformers (Geshkovski et al., 2024).

This work introduces an alternative approach inspired by physics, treating an LLM as a complex
dynamical system. We investigate which large-scale, ensemble properties can be inferred experi-
mentally without concern for the ‘microscopic’ details.3 Specifically, we are interested in the tra-

1And, eventually, more reliable and predictable.
2World models refers to evidence of (abstract) internal representations which allow LLMs an apparent

understanding of patterns, relationships, and other complex concepts.
3Such as: semantic or syntactic relationships, architecture specificities, etc.
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jectories, or ‘lines of thought’ (LoT), that embedded tokens realize in the latent space when passing
through successive transformer layers (Aubry et al., 2024). By splitting a large input text into N -
token sequences, we study LoT ensemble properties to shed light on the internal, average processes
that characterize transformer transport.

We find that, even though transformer layers perform 106 − 109 individual computations, the re-
sulting trajectories can be described with far fewer parameters. In particular, we first identify a
low-dimensional manifold that explains most of LoT transport (see Fig. 1). Then, we demonstrate
that trajectories can be well approximated by an average linear transformation, whose parameters
are extracted from ensemble properties, along with a random component with well characterized
statistics. Eventually, this allows us to describe trajectories as a kind of diffusive process, with a
linear drift and a modified stochastic component.

Main contributions.

1. We provide a framework to discover low-dimensional structures in an LLM’s latent space.

2. We find that token trajectories cluster on a non-Euclidean, low-dimensional manifold.

3. We introduce a stochastic model to describe trajectory ensembles with few parameters and
extend them to continuous paths.

(a) (b)

Figure 1: (a) Lines of thought (blue to red) for an ensemble of 1000 pseudo-sentences of 50 tokens
each, projected along the first 3 singular vectors after the last layer (t = 24). They appear to form
a tight bundle, with limited variability around a common average path. (b) Representation of the
low-dimensional, ribbon-shaped manifold in S (projected along 3 Cartesian coordinates). Positions
are plotted for t = 12 (green) to t = 24 (yellow).

2 METHODS

This section describes our algorithm for generating and analyzing an ensemble of tokens trajectories
in the latent space of LLMs.

Language models. We rely primarily on the 355M-parameter (‘medium’) version of the GPT-
2 model (Radford et al., 2019). It presents the core architecture of ancestral (circa 2019) LLMs:
transformer-based, decoder-only.4 It consists of NL = 24 transformer layers5 operating in a latent
space S of dimension D = 1024. The vocabulary V contains NV = 50257 tokens. A layer

4Compared to current state-of-the-art models, GPT-2 medium is rather unsophisticated. Nevertheless, it
works. It produces cogent text that addresses the input prompt. Hence, we consider the model already contains
the essence of modern LLMs and leverage its agility and transparency for scientific insight.

5(LayerNorm +) Self-attention then (LayerNorm +) Feed-forward, with skip connections around both.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

normalization (Ba et al., 2016) is applied to the last latent space position before projection onto V
to form the logits. (This final normalization is not included in our trajectories.) We later extend our
analysis to the Llama 2 7B (Touvron et al., 2023), Mistral 7B v0.1 (Jiang et al., 2023), and small
Llama 3.2 models (1B and 3B) (MetaAI, 2024).

Input ensembles. We study statistical properties of trajectory ensembles obtained by passing a
set of input prompts through GPT-2. We generate inputs by tokenizing (Wolf et al., 2020) a large
text and then chopping it into ‘pseudo-sentences’, i.e., chunks of a fixed number of tokens Nk (see
Algorithm 1). Unless otherwise noted, Nk = 50. These non-overlapping chunks are consistent in
terms of token cardinality, and possess the structure of language, but have various meanings and
endings (see Appendix A.1). The main corpus in this study comes from Henry David Thoreau’s
Walden, obtained from the Gutenberg Project (Project Gutenberg, 2024).6 We typically use a set of
Ns ≃ 3000–14000 pseudo-sentences.

Trajectory collection. We form trajectories by collecting the successive vector outputs, within the
latent space, after each transformer layer (hidden_states). For conciseness, we identify layer
number with a notional ‘time’, t. Even though all embedded tokens of a prompt voyage across
the latent space, only the embedding corresponding to the last token form the logits (by projection
onto V) for next-token inference. Hence, here, we only consider the trajectory of this last (or ‘pilot’)
token. The trajectory Mk of sentence k’s pilot is the sequence of 24 successive time positions
{xk(1),xk(2), . . . ,xk(24)}, concatenated as a column matrix (Algorithm 1).

Algorithm 1 Trajectory generation in transformer-based model
1: Input: Large text: “It was the best of times, it was the worst of times, it was the age . . . ”
2: Tokenize text into token sequence: [1027, 374, 263, 1267, 287, 1662, 12, . . .]
3: Split token sequence into n-token pseudo-sentences:

s1 = [1027, 374, 263], s2 = [1267, 287, 1662], . . .

4: for each pseudo-sentence si do
5: Semantic embedding:

ES = [v(1027),v(374),v(263)] for s1

6: E0 = ES +EP {add positional embeddings P }
7: for t = 1 → 23 do
8: Et+1 = TransformerLayert(E

t) {update embeddings through transformer layer}
9: x(t+ 1) = E

(t+1)
:,end {extract last token representation}

10: M:,t+1 = x(t+ 1) {save trajectory array}
11: end for
12: end for
13: Output: Final embeddings x(t+ 1) for all pseudo-sentences

Latent space bases. The latent space is spanned by the Cartesian basis E = {ei}i=1...D (the
orthogonal set of one-hot unit vectors with a 1 in ith position, 0 elsewhere). Additionally, we will
often refer to the bases U(t) = {u(t)

i }i=1...D formed by the left-singular vectors of the singular
value decomposition (SVD) of the D×Ns matrix after layer t: M = UΣV ⊤, with M

(t)
:,k = xk(t).

Vectors ui are organized according to their corresponding singular values, σi, in descending order.
Note that because trajectory clusters evolve over time there are 24 distinct bases.

6The idea of using a literary piece to probe statistics of language was investigated by Markov back in
1913 (Markov, 2006).
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3 RESULTS

We present and characterize results pertaining to ensembles of trajectories as they travel within the
latent space S.

3.1 LINES OF THOUGHT CLUSTER ALONG SIMILAR PATHWAYS

We endeavor to visualize and characterize the trajectories of pilot tokens in the latent space S. The
high dimensionality makes it non-trivial. Which projections should we consider?

There is no reason a priori for the Cartesian axes, ei, to align with any meaningful directions, so we
seek relevant alternative bases informed by the data. Naturally, we consider the bases U(t) formed
by the singular vectors of pilots ensemble after each layer t.

Using these bases aligned with the data’s intrinsic directions, we observe in Fig. 1a that trajectories
tend to cluster together, instead of producing an isotropic and homogeneous filling of S. Indeed,
LoTs for different, independent pseudo-sentences follow a common path (forming bundles), aug-
mented by individual variability. Specifically, there exist directions with significant displacement
relative to the spread (mean over standard deviation); and positions at different times form distinct
clusters, as shown in Fig. A1.

3.2 LINES OF THOUGHT FOLLOW A LOW-DIMENSIONAL MANIFOLD

We remark in Fig. 2a that the intrinsic bases U(t) rotate only slightly across successive timepoints t.
Besides, Fig. 2b shows that the corresponding singular values decay quickly over several orders of
magnitude. Both suggest that LoTs may be described by a low-dimensional curved subspace.

But how many dimensions are relevant? Singular values relate to ensemble variance along their
corresponding directions. Since the embedding space is high-dimensional, however, the curse of
dimensionality looms, hence the significance of Euclidean distances crumbles. To circumvent this
limitation, we consider a more practical metric: how close to the original output distribution on the
vocabulary does a reduction in dimensionality get us?

To investigate this question, we express token positions x(t) in the singular vector basis U(t):

x(t) =

K∑
i=1

a
(t)
i u

(t)
i ,

where the u
(t)
i ’s are organized by descending order of their corresponding singular values. By

default K = D, and the true output distribution pV is obtained. Now, we examine what happens
when, instead of passing the full basis set, we truncate it, after each layer, to keep only the first K <
D principal components. We compare the resulting output distribution, pV

K to the true distribution
pV using KL divergence DKL(p

V
K∥pV). In Fig. 2c, we see that DKL decreases very slowly with

decreasing K, up to about K0 = 256. At that point, DKL is only about 10% of its uncorrelated
baseline value, implying that most of the true distribution is recovered when keeping only about
K0 = 256, or 25%, of the principal components. In other words, for the purpose of next-token
prediction, LoTs are quasi-256-dimensional.

If these principal directions remained constant at each layer, this would imply that 75% of the latent
space could be discarded with no consequence. This seems unrealistic. In fact, the principal direc-
tions rotate slightly over time, as displayed in Fig. 2a. Eventually, between t = 1 and t = 24, the
full Cartesian basis E is necessary to express the first singular directions. Thus, we conclude that
lines of thoughts evolve on a low-dimensional curved manifold of about 256 dimensions, that is
contained within the full latent space (Fig. 1b).

3.3 LINEAR APPROXIMATION OF TRAJECTORIES

Examination of the singular vectors and values at each time step indicates that LoT bundles rotate
and stretch smoothly after passing through each layer (Fig. 2). This suggests that token trajectories
could be approximated by the linear transformations described by the ensemble, and extrapolated
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Figure 2: (a) Angle between the first 4 singular vectors at (t1, t2), arccos(u
(t1)
i · u(t2)

i ), for i =
{1, 2, 3, 4} (top-left, top-right, bottom-left, bottom-right, respectively). (b) Singular values for t =
1, . . . , 24 (blue to red). Clusters stretch more and more after each layer. The leading singular values,
σ1(t), have been omitted for clarity. (c) Average (over all trajectories) KL divergence between
reduced dimensionality trajectories output and true output distributions, as the dimensionality K
is increased. The red dashes line shows the average KL divergence for output distributions from
unrelated inputs (baseline for dissimilar distributions).

accordingly, from an initial time t to a later time t+ τ . Evidently, it is improbable that a transformer
layer could be replaced by a mere linear transformation. We rather hypothesize that, in addition
to this deterministic average path, a token’s location after layer t + τ will depart from its linear
approximation from t by an unknown component w(t, τ).7 We propose the following model:

x(t+ τ) = R(t+ τ)Λ(t, τ)R(t)⊤x(t) +w(t, τ), (1)

where x(t) is the pilot token’s position in the Cartesian basis, and R,Λ are rotation (orthonor-
mal) and stretch (diagonal) matrices, respectively. Eq. (1) formalizes the idea that, to approximate
x(t + τ), given x(t), we first project x in the ensemble intrinsic basis at t (R⊤x), then stretch the
coordinates by the amount given by Λ, and finally rotate according to how much the singular direc-
tions have rotated between t and t + τ , R(t + τ) (see also Fig. A2 in Appendix B). Consequently,
we can express these matrices as a function of the set of singular vectors (U ) and values (Σ):

R(t) = U(t), Λ(t, τ) = diag(σi(t+ τ)/σi(t)) = Σ(t+ τ)Σ−1(t).

Fig. 3 shows the close agreement, at the ensemble level, between the true and extrapolated positions.
This is confirmed by the observation that the two sets are not separable with a trained linear clas-
sifier, including at large τ (see Appendix). Eq. (1) is merely a linear approximation as it is similar
to assuming that LoT clusters deform like an elastic solid, where each point maintains the same
vicinity, as illustrated in Fig. A2. The actual coordinates ought to include an additional random
component w(t, τ), which a priori depends on both t and τ .

Is it possible to express w in probabilistic terms? We consider the empirical residuals

δx(t, τ) = x(t+ τ)− x̃(t, τ)

between true positions x and linear approximations x̃(t, τ) = R(t + τ)Λ(t, τ)R(t)⊤x(t). We
investigate the distributions and correlations of δx(t, τ) across layer combinations (t, t+ τ).

From the data, Fig. 4 shows that, for all (t, t + τ) ∈ {1, . . . , 23} × {t + 1, . . . , 24}, the ensemble
of δx(t, τ) has the following characteristics: 1) it is Gaussian, 2) with zero mean, 3) and variance
scaling as exp(t+ τ). In addition, Fig. A3 shows that the distribution is isotropic, with no evidence
of spatial cross-correlations . Hence, we propose:

wi(t, τ) ∼ N (0, αeλ(t+τ)), (2)

7We emphasize that prompt trajectories are completely deterministic; the stochastic component introduced
in the model accounts for the fact that we perform a linear extrapolation based only on a token’s position at
a certain time, which unsurprisingly deviates from the true position obtained from processing the full prompt
with transformer layers.
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Figure 3: Extrapolated token positions x̃(k) (blue) from t = {12, 14, 16, 18} to t + τ = {t +
1, . . . , 21}, compared to their true positions x(k) (gray), projected in the (u

(t)
2 ,u

(t)
3 ) planes.

i.e., each coordinate wi of w is a Gaussian random variable with mean zero and variance αeλ(t+τ).
Linear fitting of the logarithm of the variance yields α ≃ 0.64 and λ ≃ 0.18. Even though this
formulation ignores some variability across times and dimensions, it is a useful minimal modelling
form to describe the ensemble dynamics with as few parameters as possible.

3.4 LANGEVIN DYNAMICS FOR CONTINUOUS TIME TRAJECTORIES

Just like the true positions x(t), matrices R and Λ are known (empirically) only for integers values
of t.8 Can we extend Eq. (1) to a continuous time parameter t ∈ [1, 24]? Indeed, it is possible to
interpolate R and Λ between their known values (Absil et al., 2008). Specifically, R(t) remains
orthogonal and rotates from its endpoints; singular values can be interpolated by a spline function.

In return, this allows us to interpolate trajectories between transformer layers.9 Thus, we extend
Eq. (1) to a continuous time variable t, and write in infinitesimal terms the Langevin equation for
the dynamics:

dx(t) =
[
Ṙ(t)R(t)⊤ +R(t)Ṡ(t)R(t)⊤

]
x(t) dt+

√
αλ exp(λt) dw(t), (3)

where Ṡ = diag (σ̇i/σi) and dw(t) is a differential of a Wiener process (Pavliotis, 2014). We defer
the mathematical derivation to Appendix A.2. This equation artificially extends LoTs to continuous
paths across S . It provides a stochastic approximation to any token’s trajectory, at all times t.

8That is, after each layer.
9These interpolated positions do not hold any interpretive value, but may be insightful for mathematical

purposes.
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Figure 4: Statistics of δx(t, τ): mean µ, variance σ2, excess kurtosis κ. Brackets ⟨. . . ⟩ denote
average over directions ei (see Fig. A4 for details). (a) For all (t, t+ τ), µ ≃ 0 (that is, µ/σ ≪ 1).
(b) log(σ2) increases linearly in time, only depends on t+τ . (c) The excess kurtosis (kurtosis minus
3) remains close to 0, indicating Gaussianity (except in early layers).

3.5 FOKKER-PLANCK FORMULATION

Eq. (3) is a stochastic differential equation (SDE) describing individual trajectories with a random
component. Since the noise distribution is well characterized (see Eq. (2)), we can write an equiva-
lent formulation for the deterministic evolution of the probability density P (x, t) of tokens x over
time (Pavliotis, 2014). The Fokker-Planck equation10 associated to Eq. (3) reads:

∂P (x, t)

∂t
= −∇x ·

[(
ṘR⊤ +RṠR⊤

)
xP (x, t)

]
+

1

2
αλeλt ∇2

xP (x, t). (4)

This equation captures trajectory ensemble dynamics in a much simpler form, and with far fewer
parameters, than the computation actually performed by the transformer stack on the fully embedded
prompt. The price paid for this simplification is a probabilistic, rather than deterministic, path for
LoTs. We now test our model and assess the extent and limitations of our results.

4 TESTING AND VALIDATION

4.1 SIMULATIONS OF THE STOCHASTIC MODEL

We test our continuous-time model described above. Due to the high dimensionality of the space,
numerical integration of the Fokker-Planck equation, Eq. (4), is computationally prohibitive. In-
stead, we simulate an ensemble of trajectories based on the Langevin formulation, Eq. (3). The
technical details are provided in Appendix A.3.

The results presented in Fig. 5 show that the simulated ensembles closely reproduce the ground
truth of true trajectory distributions. We must note that Eqs. (3) and (4) are not path-independent;
therefore, their solution depend on the value of R(t), S(t) at all time t. Since there is no ‘true’
value for the matrices in-between layers, the output of numerical integration naturally depends on
the interpolation scheme. Hence, discrepancies are to be expected.

4.2 NULL TESTING

We now examine trajectory patterns for non-language inputs and untrained models.

4.2.1 GIBBERISH

We generate non-language (‘gibberish’) pseudo-sentences by assembling N -token sequences of ran-
dom tokens in the vocabulary, and pass them as input to GPT-2. The resulting trajectories also cluster

10Also known as Kolmogorov forward equation.
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Figure 5: Simulated distributions for t = 12, t + τ = {12, 13, 14, 15, 16}, projected on the
(u1,u2) plane (top row) and the (u3,u4) plane (bottom row). Distributions have been approximated
from ensemble trajectories, 10 trajectories for each initial point. Background lines indicate true
distributions, thin lines on top indicate simulations.

around a path similar to that of language. However, the two ensembles, language and gibberish, are
linearly separable at all layers (see Fig. A5 in Appendix B.6), indicating that they travel on two
distinct, yet adjacent, manifolds.

4.2.2 UNTRAINED & ABLATED MODELS

We compare previous observations with the null baseline of an untrained model.

First, we collect trajectories of the Walden ensemble passing through a reinitialized version of GPT-
2 (the weights have been reset to a random seed). We observe that while LoTs get transported
away from their starting point, the trajectories follow straight, quasi-parallel paths, maintaining their
vicinity (see Fig. A5). Furthermore, the model of Eqs. (1) and (2) does not hold; Fig. A6 shows
that the variance of δx does not follow the exp(t + τ) scaling, and the distributions are far from
Gaussian.

Next, we consider an ablated model, where only layers 13 to 24 have been reinitialized. When
reaching the untrained layers, the trajectories stop and merely diffuse about their t = 12 location
(Fig. A5).

In conclusion, upon training, the weights evolve to constitute a specific type of transport in the latent
space.

4.3 RESULTS WITH OTHER MODELS

We repeat the same approach with a set of larger and more recent LLMs. We collect the trajectories
of the Walden ensemble in their respective latent spaces.

Llama 2 7B. We first investigate the Llama 2 7B model (Touvron et al., 2023).11 Remarkably,
the pattern of GPT-2 repeats. Token positions at t + τ can be extrapolated from t by rotation and
stretch using the singular vectors and values of the ensemble. The residuals are distributed as those
of GPT-2, with wi(t, τ) ∼ N (0, αeλ(t+τ)), see Fig. A7. The values for the parameters α and λ,
however, differ from those of GPT-2 (here, α ≃ −5.4, λ ≃ 0.27).

11Decoder-only, 32 layers, 4096 dimensions; released July 2023 by Meta AI.
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Mistral 7B. Trajectories across the Mistral 7B (v0.1) model (Jiang et al., 2023)12 also follow the
same pattern (Fig. A8). We note, however, that Eq. (4) only holds up until layer 31. It seems as
though the last layer is misaligned with the rest of the trajectories, as linear extrapolation produces
an error that is much larger than expected.

Llama 3.2. The last layer anomaly is also apparent for Llama 3.2 1B13, both in the mean and
variance of δx(t, 16) (see Fig. A9). However, the rest of the trajectories follows Eq. (1). The same
pattern is observed for Llama 3.2 3B14 in Fig. A10.

It is noteworthy that these three recent models feature the same anomaly at the last layer. The reason
is not immediately evident, and perhaps worth investigating further. In addition, we remark that all
models also show deviations from predicted statistics across the very first layers (top-left corners).
We conjecture that these anomalies might be an effect of re-alignment or fine-tuning, as the first and
last layers are the most exposed to perturbations which might not propagate deep into the stack.

5 CONCLUSION

Summary. This work began with the prospect of visualizing token trajectories in their embedding
space S. The space is not only high-dimensional, but also isotropic: all coordinates are a priori
equivalent.15 Hence, we sought directions and subspaces of particular significance in shaping token
trajectories16, some kind of ‘eigenvectors’ of the transformer stack.

Instead of spreading chaotically, lines of thought travel along a low-dimensional manifold. We used
this pathway to extrapolate token trajectories from a known position at t to a later time, based on the
geometry of the ensemble. Individual trajectories deviate from this average path by a random amount
with well-defined statistics. Consequently, we could interpolate token dynamics to a continuous time
in the form of a stochastic differential equation, Eq. (3). The same ensemble behavior holds for
various transformer-based pre-trained LLMs, but collapses for untrained (reinitialized) ones.

This approach aims to extract important features of language model internal computation. Unlike
much of prior research on interpretability, it is agnostic to the syntactic and semantic aspects of
inputs and outputs. We also proposed geometrical interpretations of ensemble properties which
avoid relying on euclidean metrics, as they become meaningless in high-dimensional spaces.

Limitations. This method is limited to open-source models, as it requires extracting hidden states;
fine-tuned, heavily re-aligned models might exhibit different patterns. In addition, it would be com-
pelling to connect the latent space with the space of output distributions, for example by investigating
the relative arrangement of final positions with respect to embedded vocabulary. However, this is
complicated by the last layer normalization which typically precedes projection onto the vocabulary.
This normalization has computational benefits, but its mathematical handling is cumbersome: it is
highly non-linear as it involves the mean and standard deviation of the input vector.

Implications. Just like molecules in a gas or birds in a flock, the complex system formed by
billions of artificial neurons in interaction exhibits some simple, macroscopic properties. It can be
described by ensemble statistics with a well defined random component. Previously, Aubry et al.
(2024) had also uncovered specific dynamical features, notably token alignment, in transformer
stacks of a wide variety of trained models.

Patterns are explanatory. Our concern here has been primarily to discover some of the mechanisms
implicitly encoded in the weights of trained language models. Yet, there are also concrete and
potentially practical implications to our findings.

For interpretability, finding low-dimensional structures is consequential. It is one of the most effi-
cient ways to break down the inherent complexity of large models into more elementary constituents.

12Decoder-only, 32 layers, 4096 dimensions; released September 2023 by Mistral AI.
13Decoder-only, 16 layers, 2048 dimensions; released September 2024 by Meta AI.
14Decoder-only, 28 layers, 3072 dimensions; released September 2024 by Meta AI.
15Unlike other types of datasets where different dimensions might have well-defined meaning, for example:

temperature, pressure, wind speed, etc.
16And hence defining next-token distribution outputs
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Our dynamical system approach reveals a surprising dimensionality reduction of token embeddings.
It suggests, notably, that the true “meaning” of embeddings is contained within individual variability
(possibly orthogonal to the average pathway collectively followed by all LoTs). This is also merely
a first-order approximation, which could be extended to more complete and precise equations, where
the “noise term” becomes smaller and smaller. Eventually, we anticipate the possibility for hybrid
architectures where the deterministic part of trajectories is delegated to a small system of equations,
while the variable part, where meaning is encoded, is handled by a neural network; potentially with
many fewer weights.

Our theoretical model in Eqs. (3) and (4) not only reveals low-dimensionality, but also extends token
trajectories to continuous paths. In the past, the Neural Ordinary Differential Equation paradigm
by Chen et al. (2019) showed that converting a discrete neural network into a continuous dynamical
system had many advantages. Notably, it offers opportunities for compression and stability, while
pointing towards efficient hybrid architectures. Our paper demonstrates that transformers can also
been seen through the lens of dynamical systems, with a similar continuous extension as seen in
neural ODEs.

Finally, the new methodology that we introduced is portable and widely applicable. Incidentally, it
can also serve as a diagnostic method to highlight intrinsic differences between transformer layers.
Fig. A8 to Fig. A10, for example, show significant deviations in the last layer (and to a lesser
extent in the early ones). This suggests that these layers achieve a different kind of processing
than intermediate layers, possibly following fine-tuning and/or re-alignment. It’s not immediately
obvious to us how these “anomalies” could be detected through a different approach.
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Appendix

A ADDITIONAL METHODS AND DERIVATIONS

A.1 PSEUDO-SENTENCES

Random sample of 10-token pseudo-sentences (non-consecutive) extracted from Walden. Similar
chunks, but of 50 tokens, were passed through GPT2 to form trajectories.

| not been made by my townsmen concerning my mode
| to pardon me if I undertake to answer some of
| writer, first or last, a simple and sincere
| would fain say something, not so much concerning
| Brahmins sitting exposed to four fires and looking
| more incredible and astonishing than the scenes which I daily
| and farming tools; for these are more easily acquired
|. How many a poor immortal soul have I met
| into the soil for compost. By a seeming fate
| as Raleigh rhymes it in his sonorous way
|il, are too clumsy and tremble too much
| the bloom on fruits, can be preserved only by

A.2 LANGEVIN EQUATION DERIVATION

Starting from
x(t+ τ) = R(t+ τ)Λ(t, τ)R(t)x(t) +w(t, τ),

with Λ(t, τ) = Σ(t + τ)Σ−1(t), and assuming now that t, τ are variables in R, as τ goes to 0 we
can approximate:

R(t+ τ) ≈ R(t) + τṘ(t)

and
Σ(t+ τ) ≈ Σ(t) + τ ˙Σ(t),

leading to:
Λ(t, τ) ≈

(
Σ(t) + τΣ̇(t)

)
Σ−1(t) = I + τΣ−1(t)Σ̇(t).

Hence:

R(t+ τ)Λ(t, τ)R(t)⊤ ≈
(
R(t) + τṘ(t)

)(
I + τΣ̇(t)Σ−1(t)

)
R(t)⊤

≈ I + τ
(
Ṙ(t)R(t)⊤ +R(t)Ṡ(t)R(t)⊤

)
,

given that RR⊤ = I and with S(t) = diag (lnσi(t)) and thus Ṡ(t) = diag(σ̇i/σi).

The variance of the noise term is given by:

var = α exp(λ(t+ τ)) ≈ α exp(λt)(1 + λτ).

The increment of variance over time τ is:

δ[var] = αλ exp(λt)τ.

This means the noise term can be expressed as:

w(t, τ) =
√

αλ exp(λt)τ · η⃗,
where η⃗ is a vector of standard Gaussian random variables.

Putting everything together:

x(t+ τ)− x(t) = τ
(
Ṙ(t)R(t)⊤ +R(t)Ṡ(t)R(t)⊤

)
x(t) +

√
αλ exp(λt)τ η(t).
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And finally:

dx(t) =
(
Ṙ(t)R(t)⊤ +R(t)Ṡ(t)R(t)⊤

)
x(t)dt+

√
αλ exp(λt) dw(t),

with dw(t) a Wiener process.

A.3 NUMERICAL INTEGRATION

Numerical integration of Eq. (3) requires to interpolate the singular vectors and values, and their
derivatives, at non-integer times.

Interpolation of (scalar) singular values is straightforward. We use a polynomial interpola-
tion scheme for each value, and compute the corresponding polynomial derivative. This yields
σ̇i(t)/σi(t) for every coordinate i at any time t ∈ [1, 24], and hence Ṡ(t).

Interpolating sets of orthogonal vectors presents significant challenges. A rigorous approach in-
volves performing the interpolation within the compact Stiefel manifold, followed by a reprojection
onto the horizontal space Praveen et al. (2023). However, this method is computationally expen-
sive and can introduce discontinuities, which are problematic for numerical integration. To address
these issues, we used an approximation based on the matrix logarithm, which simplifies the process
while maintaining an acceptable level of accuracy. To interpolate between U1 and U2 at t1, t2, we
compute the relative rotation matrix R = U⊤

1 U2 and interpolate using

U(t) = U1 expM(α lnM R). (5)

where α = (t − t1)/(t2 − t1) and with lnM, expM denoting the matrix logarithm and exponential,
respectively.17 This also yields the derivative U̇(t) = [U lnM R] /(t2 − t1). Indeed:

U̇ = U1 ·
d

dt
exp (α(t) lnR) = U1α̇ lnR expα(t) lnR = α̇U lnR.

B SUPPLEMENTARY FIGURES AND SCHEMATICS

B.1 TRAJECTORY CLUSTERING

In Fig. A1, we show evidence of trajectory clustering in the latent space. In particular, all pilot tokens
get transported away from the origin (or their starting point) by a comparable amount, resulting in
narrow distributions along the first singular direction. Another signature of clustering is the fact
that token positions at different times form distinct clusters, as showed by low-dimensional t-SNE
representation (van der Maaten & Hinton, 2008).

B.2 TRAJECTORY EXTRAPOLATION

In Fig. A2, we provide a schematic to explain the reasoning behind Eq. (1). If the cluster rotated
and stretched like a solid, the position of a point x′ at t′ could be inferred exactly from it position
x at t, using the formula outlined. However, unsurprisingly, the token ensemble does not maintain
its topology and the points move around the clusters, requiring the stochastic term w injected in
Eq. (1).

B.3 SEPARABILITY OF TRUE AND EXTRAPOLATED POSITIONS

To characterize the similarity between the ensemble of true positions at t + τ , x(t + τ), from the
positions extrapolated from t, x̃(t, τ) = R(t + τ)Λ(t, τ)R(t)⊤x(t), we evaluate how much the
two sets can be separated with a linear classifier. We train a Support Vector Machine Model with a
linear kernel for each set of extrapolations {x̃(t, τ)} (70/30 train/test). We then apply the classifier
to predict whether points in the test set are true or extrapolated. In Table 1, we report results for
the panels corresponding to Fig. 3. The accuracy of the classifier lies in the 50%-60% range, barely
above random guessing (50%).

17expM(A) =
∑

Ak/k! and lnM is the inverse function: lnM [expM(A)] = I .

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300 350 400

x(t) " u1(t)

0

0.02

0.04

0.06

0.08

0.1

0.12

pd
f

t=1
t=4
t=8
t=12
t=16
t=20
t=24

-60 -40 -20 0 20 40 60 80

t-SNE Dimension 1

-60

-40

-20

0

20

40

60

t-
S

N
E

 D
im

en
si

on
 2

Figure A1: (Left) Distributions along the first singular vector at different times. (Right) Low-
dimensional (t-SNE) visualization of the clustering of tokens, notably across different times. Same
color legend.
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Figure A2: Extrapolation between t and t′. The extrapolated location x′ corresponds to the rotated
and stretched position of x. Given that u⃗ = Re⃗, u⃗′ = R′e⃗ and R−1 = R⊤, we have e⃗ = R⊤u⃗ =
R′⊤u⃗′ and thus u⃗′ = R′R⊤u⃗.
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Table 1: Accuracy of linear classifier to separate x(t+ τ) and x̃(t, τ), in percent.

t = 12 t = 14 t = 16 t = 18
t+ τ = 13 48
t+ τ = 15 51 49
t+ τ = 17 56 53 47
t+ τ = 19 54 56 55 46
t+ τ = 21 56 60 61 55

B.4 NOISE STATISTICS

Fig. A3 provides additional details pertaining to the distribution of residuals δx. Since they are
many dimensions and time points, it gives only representative snapshots. It intends to substantiate
the results that:

• the δx are Gaussian (Fig. A3A);
• the variance is exponential in (t+ τ), with no dependency on t (Fig. A3B);
• all components δxi of δx have the same distribution (Fig. A3C), i.e., isotropy;
• there are no spatial cross-correlations, i.e. ⟨δxiδxj⟩ = δij (Dirac function) (Fig. A3D).
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Figure A3: Statistics of δx. (A) Empirical PDF of δx42(10, t + τ), with t + τ = 12, 14, 16. The
curves appear Gaussian. (B) Variance of δxi for i = 1 . . . 8, for t = 4, 8, 12, 16 and t + τ >
t. (C) Empirical PDF of δxi(12, 14) for i = 1 . . . 1024. The curves are similar for almost all
coordinates. (D) Cross correlations of δxi and δxj .

B.5 DETAILS ON NOISE AGGREGATED STATISTICS (FIG. 4)

Fig. A4 explains how the noise plots such as Fig. 4 are created. We use ensemble averages ⟨. . . ⟩ of
the absolute values for |µi|, |κi| since we are interested in the average distances from 0.

B.6 NULL TESTING

Fig. A5 shows the trajectories of language vs gibberish, as well as the linear separability of the two
ensemble. It also shows trajectories for an untrained GPT-2 shell, and a model with only the last 12
layers reinitialized.

B.7 RESULTS WITH OTHER MODELS
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Figure A4: Schematic to explain the noise figures such as Fig. 4. Each square represents a summary
statistics. Specifically, the square at (t, t+ τ) represents the distribution of {δx(k)(t, t+ τ)}k, with
k indexing individual tokens. The δx along each coordinate i form a distribution, from which one
can extract the corresponding µi, σi, κi (mean, variance, kurtosis). These 1D moments are then
averaged along all coordinates i (⟨µi⟩i, etc.), forming the value displayed in the square.
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Figure A5: (Top-left) Trajectories of non-language (red) vs language (black), plotted in the same
axes (10-token pseudo-sentences). (Top-right) Accuracy of linear separability between language
and non-language for each layer. Obtained by training a Perceptron (train/test: 0.7/0.3; 14000
trajectories). (Bottom-left) Trajectories in the untrained GPT-2 model. They are transported in
straight lines. (Bottom-right) Trajectories in the mixed model. After being transported by trained
layers 1-12, the trajectories stop. Layers 13-24 with random weights do not transport tokens any
further.
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Figure A6: GPT-2 UNTRAINED. The averaged excess kurtoses ⟨|κ|⟩ fall in the 1–1.5 range,
indicating strong non-gaussianity. The variance does not scale solely with t+ τ .
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Figure A7: LLAMA 2 7B: noise statistics, δx(t, t+ τ) = x(t+ τ)− x̃(t, τ), averaged ⟨· · · ⟩ over
all Cartesian dimensions, for 1000 trajectories (50-token chunks). (a) Mean over standard deviation.
(b) Logarithm of variance. (c) Excess kurtosis (0 means Gaussian).
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Figure A8: MISTRAL 7B V0.1. The last layer (32) appears to have an anomalously large variance.

hj7=<ji

2 6 10 14

t + =

1

5

9

13

t

0 0.1 0.2 0.3 0.4

hlog(<2)i

2 6 10 14

t + =

-2.5 -2 -1.5 -1 -0.5 0 0.5

hj5ji

2 6 10 14

t + =

0 0.1 0.2 0.3 0.4 0.5 0.6

(a) (b) (c)

Figure A9: LLAMA 3.2 1B. This small model all present an out-of-distribution last layer.
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Figure A10: LLAMA 3.2 3B. The last layer anomaly is also present.
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