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Abstract

Finding tight linear bounds for activation functions in neural networks is an essen-
tial part of several state of the art neural network robustness certification tools. An
activation function is an arbitrary, nonlinear, scalar function f : Rd → R. In the
existing work on robustness certification, such bounds have been computed using
human ingenuity for a handful of the most popular activation functions. While
a number of heuristics have been proposed for bounding arbitrary functions, no
analysis of the tightness optimality for general scalar functions has been offered yet,
to the best of our knowledge. We fill this gap by formulating a concise optimality
criterion for tightness of the approximation which allows us to build optimal bounds
for any function convex in the region of interest R. For a more general class of
functions Lipschitz-continuous in R we propose a sampling-based approach (SOL)
which, given an instance of the bounding problem, efficiently computes the tightest
linear bounds within a given ε > 0 threshold. We leverage an adaptive sampling
technique to iteratively build a set of sample points suitable for representing the
target activation function. While the theoretical worst case time complexity of
our approach is O(ε−2d), it typically only takes O(logβ 1

ε ) time for some β ≥ 1
and is thus sufficiently fast in practice. We provide empirical evidence of SOL’s
practicality by incorporating it into a robustness certifier and observing that it
produces similar or higher certification rates while taking as low as quarter of the
time compared to the other methods.

1 Introduction

Neural networks (NNs) have become the pervasive machine learning model for various tasks including
classification, function approximation, and generative modeling. In a typical classification task using
supervised learning, the NN is given as input a high-dimensional data object (such as an image or a
large piece of text) and its corresponding class label (from a finite set of labels). The NN classifier
is deemed robust if for reasonable perturbations to a given input, the predicted label for the input
does not change. It has been previously shown that NNs are susceptible to adversarial perturbations
in inputs. These approaches take advantage of the non-robustness of a trained NN; for example, in
image classification, by injecting a small amount of noise imperceptible to a human, the predicted
label for an input image can be changed. In safety-critical applications where object detection and
classification may be used as input for decision-making (e.g., in an autonomous mobile robot), such
misclassifications can have safety implications. Similarly, when used in a function approximation
task (e.g., for regression), it is important that small changes to the NN input do not lead to large
changes in the predicted output. Checking the robustness of neural networks has thus emerged as an
important problem in recent years [28, 3, 9, 1, 13, 23].

A number of different approaches have been developed for certifying the robustness of the neural
networks with popular architectures. The majority of these approaches fall into one of three overar-
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ching categories: the algorithms using approximate calculations in order to speed the certification
time up [25, 5, 33, 23, 13], the algorithms using exact calculations via some sort of constraint solver
[10, 11, 29] and the algorithms taking advantage of both techniques [26, 24, 30, 32]. The most
practical approaches which can handle the largest neural networks are usually built on top of the
approximate techniques and rely heavily on being able to find tight linear bounds of non-linear scalar
functions.

A lot of research has been dedicated to increasing the quality of linear bounds of the most popular
activation functions such as ReLU[19], sigmoid, hyperbolic tangent and others[32, 25, 34, 36, 23, 13].
But not much has been done in the direction of efficiently bounding arbitrary functions. This led to
the current situation where a number of well-performing novel activation functions like GeLU[8, 21]
and Swish[22] and the neural networks containing them are effectively uncertifiable due to their
linear bounding not being supported by the robustness certifiers.

To this end we introduce a novel approach for efficient optimal linear bounding of general scalar
functions. The considered optimality is with respect to the conventional measure of tightness – the
volume of the discrepancy region between the function and the linear bound. At the core of our
approach is a simple idea of leveraging the Lipschitz continuity of the activation function in order
to build a near-optimal bound using appropriately constructed sample of points from the region of
interest. The major contributions of the presented paper are the following

• we analyze the problem of optimal linear bounding of scalar functions and derive a simple
optimality criterion which allows us to optimally bound arbitrary functions convex or
concave in the region of interest;

• we propose a novel optimal linear bounding approach called SOL which unlike any other
known method efficiently produces linear bounds which are arbitrarily close to optimum for
the general class of functions Lipschitz-continuous in the region of interest;

• we show that using SOL for the robustness certification is viable by benchmarking its
performance on a synthetic dataset of bounding problems and by comparing it to the known
alternatives on real neural network certification tasks.

2 Related work

To the best of our knowledge, there are only two approaches presented in the literature capable
of producing linear bounds for arbitrary scalar functions. The first one is implemented inside the
AutoLiRPA[35] framework for the robustness certification. The second is the LinSyn[20] approach.

AutoLiRPA supports bounding several general binary operations: addition, subtraction, multiplication
and division. It is also capable of bounding compositions of these operations, which thus allows it to
bound an arbitrary function decomposable into a sequence of some elementary operations. While
this class of functions is indeed quite general and contains all the novel activation functions, the
decompositional nature of the approach inevitably leads to producing bounds which are significantly
suboptimal.

The authors of LinSyn, on the other hand, use an idea reminiscent of what we propose in this paper:
they take a uniform sample of points from the region of interest, find the tightest bound for this
finite set of points and then repeatedly adjust the obtained bound until its soundness is successfully
certified by an SMT solver[4]. Unlike SOL, however, their approach does not provide any optimality
guarantees for the generated bounds and heavily relies on the use of the SMT solver, which might
limit the method’s running time performance.

We provide an empirical robustness certification performance comparison between these two ap-
proaches and SOL in section 5.3 of this paper.

3 Optimal linear bounding

In this section we give a formal definition of the optimal linear bounding problem and derive the
optimality criterion. We then use this criterion to give a recipe for the optimal linear bounding of
functions which are convex or concave in the region of interest.
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Figure 1: Linear bounding example. Figure 2: Optimal bounding criterion.

Without the loss of generality from now on we are only going to discuss the optimal upper bounding.
The lower bounding problem can easily be reduced to the former by negating the function and then
negating the values of the bound.

Definition (Optimal linear bounding problem). Given a function f : R → R defined in a convex
bounded region R ⊂ Rd, we aim to find such linear function g(x) = a⊤x+ b, that

1. g(x) upper-bounds the original function: g(x) ≥ f(x) for every x ∈ R;

2. the volume Y [g(x)] =
∫
x∈R
|f(x)−g(x)|dx of the discrepancy region between the function

graphs is as small as possible: gopt(x) = argming(x)=a⊤x+b Y [g(x)].

The value of the discrepancy volume defined above is the conventionally accepted measure of
tightness of the linear bound and is known to correlate well with the performance of robustness
certification [36, 25, 13]. The notion is illustrated in the figure 1. We are going to call any linear
function satisfying the two conditions an "optimal bound". Upon a detailed examination it can be
noted that the discrepancy volume may be expressed in a more convenient form.

Proposition 1. For any function g(x) upper-bounding the target function f(x) the equality
Y [g(x)] = g(xc) · V + C holds, where V =

∫
x∈R

dx is the volume of R, xc = 1
V

∫
x∈R

xdx

is the region’s center of mass and C is a constant independent of the function g(x).

Proof. Indeed, for any upper bound g(x) the integrand in the definition of Y [g(x)] can be simplified∫
x∈R

|f(x)− g(x)|dx =

∫
x∈R

(g(x)− f(x)) dx =

∫
x∈R

g(x)dx+ C,

where C = −
∫
x∈R

f(x)dx does not depend on g(x). The straightforward integration∫
x∈R

g(x)dx =

∫
x∈R

(a⊤x+ b)dx = a⊤xcV + bV = g(xc) · V

then yields the desired expression.

Since R is convex, xc always lies in R. Then, g(x) being an upper bound for the target function gives
us a lower bound on the discrepancy volume Y [g(x)] = V ·g(xc)+C ≥ V ·f(xc)+C. For a concave
target function f(x) this inequality concludes the problem of optimal linear bounding. Indeed, for a
concave target function there always exists such an upper bound g∗(xc) that g∗(xc) = f(xc). This
upper bound is then optimal due to the inequality.

Now, let convR f(x) be the upper convex hull of the function f(x) in the region R – a function of x
representing the upper boundary of the convex hull of f ’s graph as is illustrated in figure 2 by the
dashed line. The following then holds for arbitrary, possibly non-concave, functions f(x).

Proposition 2. A linear function g(x) upper-bounds the target function f(x) in the region R iff it
upper-bounds the convex hull convR f(x) of the target function in the region R.
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Proof. If g(x) does not upper-bound the target function f(x), then it does not upper-bound its convex
hull either since convR f(x) ≥ f(x) for every x ∈ R. Conversely, if g(x) does not upper-bound the
convex hull there is at least one point x0 such that f(x0) > g(x0). Otherwise the whole convex hull
would lie below the linear function.

This proposition allows us to reduce the problem of bounding an arbitrary function f(x) to bounding
a concave function convR f(x). This reduction combined with the reasoning suggested for the
concave target functions above gives us the following concise optimality criterion for the linear
upper-bounding problem.
Theorem 1. A linear upper bound g(x) of a function f(x) is optimal iff g(xc) = convR f(xc).

Figure 2 illustrates the criterion showing a portion of convR f(xc) distinct from f(x) with a dashed
line. Theorem 1 immediately provides us with two efficient optimal bounding algorithms for concave
and convex functions.

For concave and differentiable f(x) the convex hull convR f(x) coincides with the function itself.
Finding an optimal upper bound is then simply a matter of finding a hyperplane tangent to f(x) at the
center of mass xc. This only takes O(d) operations if we have the access to the function’s gradient.

For convex f(x) and R being a polytope one can show that only the values f(xi) of the function
in the vertices xi of R matter. The problem of upper-bounding then essentially becomes discrete
– a linear program with d variables and |{xi}| constraints. In the typical case of a cubic R this
means having O(2d) constraints which can still be viable for reasonably high-dimensional functions.
The process of solving this kind of linear programs efficiently is discussed in details and analyzed
experimentally in sections 4.1 and 5.1 of this paper.

The two algorithms combined form a complete optimal upper- and lower-bounding suite to be used
with arbitrary convex or concave differentiable activation functions. Optimal bounding of both
sides of the function can be done exactly in this case with no need for approximations. Among
the suitable popular activation functions are: softplus[37], ELU[2] and SELU[12] with appropriate
choices of parameters. The approach can easily be generalized to piecewise-differentiable convex
or concave functions as well. This extends the applicability to such functions as ReLU[19], leaky
ReLU[16], SELU with a wider set of suitable parameters and the max pooling function (although not
an activation function, also frequently used in neural networks).

4 SOL

In order to solve the problem of optimal linear bounding for the functions which are neither convex nor
concave in R we introduce the SOL approach: Sampling-based Optimal Linear bounding algorithm.
In contrast to the approaches discussed above where an exactly optimal solution could be found in
finite time, here we only aim at synthesizing an upper bound within a certain required tolerance
target ε of the optimum in terms of the discrepancy volume. In return, we get an algorithm which
efficiently upper-bounds a very general class of activation functions – functions Lipschitz-continuous
in R. Some of the popular non-convex and non-concave Lipschitz-continuous activation functions
are: Sigmoid, Tanh, GeLU [8], Swish [22], Log Log[6], Mish [18], ELU and SeLU with α > 1.

The key idea of SOL is to perform multiple iterations alternating between constructing an appropriate
sample of points S ⊂ R and solving the discrete version of the optimal bounding problem for
the constructed sample until properly adjusted solution of the discrete problem meets the required
accuracy target. During these iterations the generated sample progressively adapts to the target
function increasing its density near the points where the optimal bound "touches" the function which
allows for higher accuracy. Figure 3 illustrates the adaptive nature of these iterations by showing
sample S in the first 3 iterations of a SOL run.

4.1 Discrete problem

We define the discrete linear upper-bounding problem mentioned above in the following way.
Definition (Discrete optimal linear bounding problem). Given a set of points S = {(xi, yi)}, where
xi ∈ Rd and yi ∈ R, and a center point xc ∈ Rd, we aim to find such linear function g(x) = a⊤x+b,
that
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1. g(x) upper-bounds the sample points: g(xi) ≥ yi for every (xi, yi) ∈ S;

2. the value of the bound at xc is as small as possible: gopt(x) = argming(x)=a⊤x+b g(xc).

Solving an instance of this problem with appropriately set xc can be seen as relaxing an instance
of the continuous optimal bounding problem to only contain a finite subset of the constraints while
maintaining the original objective.

Clearly, the discrete problem is an instance of the linear programming (LP) optimization problem. It
can be solved quite efficiently with one of many known approaches. We benchmark several popular
general-purpose LP solvers as well as our implementation of two specific algorithms in the section
5.1 of this paper. It is worth noting that when the number of variables is bounded one can solve an
LP in time linear in the number of constraints[17]. For our particular application it means that an
instance of the discrete optimal linear bounding can be solved in O(|S|) for a fixed d, which makes it
as easy asymptotically as simply drawing the sample.

4.2 Soundness conditions

Relaxing the constraints of an optimization problem generally leads to a solution which is not feasible
with respect to the original constraints. In case of SOL we hope to reason about the soundness of the
bound in a continuous region based on the values of the target function in a finite set of points. One
way to enable such reasoning is to limit the analysis to functions conforming to a certain smoothness
criterion.

If the target function is "smooth enough" then given a subregion U ⊆ R, a point x∗ within it and
slope a of the solution to the discrete problem gS(x) there exists a certain threshold ∆(U,a, f) > 0
such that a big enough gap gS(x

∗)− f(x∗) > ∆ implies gS(x) > f(x) for every x ∈ U . Having
such a threshold allows us to obtain a sound upper bound in U by appropriately shifting gS(x) up if
needed. We analyze two different classes of target functions and show how the value of the threshold
∆ depends on the parameters of the region and the smoothness of the target function.

4.2.1 f is Lipschitz continuous in R

Let L1 > 0 be an upper bound on the Lipschitz constant of the function f , meaning that

|f(x1)− f(x2)| ≤ L1|x1 − x2|

for x1,x2 ∈ R. Let g(x) = a⊤x + b be the solution of the discrete problem associated with a
particular sample of points S ⊂ R containing x∗. It can be shown that |a| ≤ L1 ·G, where G is a
geometric factor determined by the shape of the region R and the structure of the initial sample S.
Importantly, in one-dimensional case (e.g., all traditional activation functions) the factor G is exactly
1 for any region and any reasonable sample S. For an arbitrary point x ∈ U the following inequalities
then hold

g(x)− f(x) ≥ g(x∗)− f(x∗)− |a||x− x∗| − L1|x− x∗| ≥ g(x∗)− f(x∗)− (1 +G)L1δ,

where δ = supx∈U |x∗ − x| is the "width" of the region. Hence, as long as

g(x∗)− f(x∗) ≥ ∆ = (1 +G)L1δ

the bound is sound for the whole subregion U .

The connection between |a| and L1 originates from the following inequality which is based on g(x)
being a discrete upper bound for the L1-continuous function f(x)

|a| ≤ L1

(
inf

{xi},v
sup
x∈S,i

v · x− xi

|x− xi|

)−1

= G(R,S)L1,

where the infimum is taken over all finite subsets {xi} ⊂ R such that the center xc lies in the
subset’s convex hull and all unitary vectors v. The factor G(R,S) depends on the geometry of the
target region R and on the structure and the density of the sample S. Note that this factor decreases
monotonically when we add new points to the sample, reaching a certain limit G(R) when S = R.
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Algorithm 1 Adaptive SOL

δ ← δ0
{Ui} ← uniform partition into cubes of size δ
xc ← center of mass of R
K ← ∅
do
{Ui} ← SPLITCUBES({Ui},K)
a, b← SOLVEDISCRETE({(xi, f(xi))},xc)
{∆i} ← GETGAPTHRESHODLS({Ui}, {xi},a, b)
K ←

{
i|∆i − (gS(xi)− f(xi)) >

ε
V

}
while K ̸= ∅
b = b+ ε

V
return a, b

4.2.2 ∇f is Lipschitz continuous in R

Let L2 > 0 be an upper bound on the Lipschitz constant of the gradient ∇f of the target function.
Given a bounded R this immediately implies the Lipschitzness of the target function f itself. Let L1

be an upper bound on the Lipschitz constant of f .

The functions f(x) of this type behave "approximately linearly" near the sample point x∗. If we
denote the linearized version of f(x) as fl(x) = f(x∗) + ∇f(x∗) · (x − x∗), the inequality
|f(x)− fl(x)| ≤ 1

2L2|x− x∗|2 holds for an arbitrary point x.

As a consequence, the following inequality holds for the discrete bound g(x)

g(x)− f(x) ≥ g(x∗)− f(x∗)− |∇f(x∗)−∇g(x∗)|δ + 1

2
L2δ

2.

Combined with the previous condition which is still applicable in this setting the inequality gives us
the following expression for the gap threshold

∆ = min((1 +G)L1δ, |∇f(x∗)−∇g(x∗)|δ + 1

2
L2δ

2)

Intuitively, the introduction of this additional condition matters the most near the "touching points"
between the function and the optimal linear bound. Around these points the gradients in the expression
are going to be close to each other, so the second term in the minimization will allow for a significantly
smaller gaps than those of the first term.

4.3 The algorithm

Now we have all the parts necessary to define the SOL algorithm as well as its simplified version.

At all times during the runtime of the algorithm we are going to maintain the partition of the original
region into a collection of cubes Ui =

{
x ∈ Rd

∣∣∣∧d
j=1 x

j
i − li ≤ xj ≤ xj

i + li

}
with side lengths

of 2li such that R ⊆
⋃

i Ui. The sample S = {xi} we are going to use for the formulation of the
discrete problem at a particular iteration is going to consist of the center points of these cubes.

Given the solution gS(x) of the discrete problem we are going to calculate the gap thresholds ∆i

associated with all (Ui,xi) pairs according to one of the soundness conditions. The shift of value
η = maxi [∆i − (gS(xi)− f(xi))] can then be applied to the discrete bound to obtain a bound
sound in the entire target region R: g∗S(x) = gS(x) + η.

Importantly, since gS(x) is a solution of the relaxed problem its discrepancy is a lower bound for the
optimal discrepancy. On the other hand, g∗S(x) is a feasible bound for the continuous optimization
problem, hence its discrepancy is an upper bound for the optimal discrepancy. Combining these
two observations with the proposition 1 we can conclude that g∗S(x) is within η · V of the optimum
discrepancy volume-wise. The value of the shift can be directly controlled by varying the density of the
cubes in the partition since η ≤ maxi ∆i ≤ (1+G)L1 maxi δi, where δi = supx∈Ui

|xi−x| = li
√
d

is the size of cube Ui.
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This observation inspires the uniform version of SOL. It only performs a single iteration with a
uniform partition of R into equally-sized cubes of size δ ≤ ε

(1+G)L1V
, where ε is the desired accuracy

target. While being attractively simple this version turns out to be too slow in practice. Indeed, in
a typical case we would only need such a high density of sample near the touching points of the
optimal upper bound. Having sampled the whole region with a uniform density we end up with an
intractably big discrete problem.

The solution to this issue is to start with a sparse regular lattice of cubes as a partition and gradually
change it according to the values of ∆i obtained after solving a discrete problem. Specifically, we
would want to increase the density of cubes in such subregions Ui that

∆i − (gS(xi)− f(xi)) >
ε

V
, (1)

as these regions require too big of a shift in order to guarantee the soundness. In order to locally
increase the density we split the target cube Ui into 2d evenly spread cubes of half the size of the
original. An example of the split procedure can be seen in figure 3. This modification concludes the
adaptive version of the SOL algorithm – algorithm 1.

4.4 On the complexity of SOL

Note that the cubes of size δ ≤ δc =
ε

(1+G)L1V
cannot violate the inequality (1) and, consequently,

are never split. The maximum total number of points in S achievable until the accuracy target is
met is then defined by the critical cell size δc as Ntot = O( V

δdc
) = O(ε−d), where we only track the

complexity’s dependence on ε. Given that each iteration increases the sample size by at least 1 and
solving the discrete problem as well as updating S can be done in O(|S|), we can bound the worst
case complexity of SOL by O(N2

tot) = O(ε−2d).

While this runtime bound may seem excessively conservative, there exist linear bounding problem
instances on which SOL is going to take similar O(ε−γ) amount of time for certain values of γ. One
particular example is bounding a linear function, where SOL would have to split all cubes down to
the size of δc or δ′c =

√
2ε

L2V
depending on which soundness criterion is used. This example would

give us the lower complexity bounds of Ω(ε−d) and Ω(ε−
d
2 ) respectively just for the final iteration

of SOL alone.

The situation is quite different, however, for many practical instances of the linear bounding problem.
In a typical scenario the optimal bound gopt(x) only "touches" the target function f(x) in d separate
points and f(x) has nondegenerate Hessian in each of them. The high sample density of δ−d

c or
(δ′c)

−d is then only necessary in the vicinity of these touching points. Taking the continuous limit
one can show that verifying an ε-optimal linear bound in this case only requires O(log 1

ε ) points in
the sample S when using the L2 soundness condition. This logarithmic estimate of the number of
points required for the verification is the primary reason we introduce the L2 condition. Provided
that the adaptive sampling procedure "finds" the optimal sample "fast enough" by splitting the cells
in appropriate regions, one can hope to achieve the total running time of O(logβ 1

ε ) for some β ≥ 1
in arbitrary dimensionality d. We show that this is indeed the case in practice in section 5.2 where
we measure the running time of SOL in a synthetic dataset of bounding problems involving popular
activation functions.

5 Evaluation

In this section we study the performance of SOL empirically by measuring its runtime and the quality
of the linear bounds on a synthetic dataset containing randomly generated instances of the bounding
problem. We also show the practical applicability of SOL by incorporating it into AutoLiRPA and
measuring its robustness certification performance on several image classification neural network
architectures.

5.1 Benchmarking discrete problem solvers

Each run of SOL may involve dozens of invocations of the discrete problem solver. There are
numerous different LP solvers that can be used for handling the discrete problem. Their performance
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Figure 3: Adaptive sampling.
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Figure 4: Runtime of LP solvers.

Algorithm 2 1D bisect algorithm

u← max{yi}
l← min{yi}
a← 0
while u− l > ε do

m← l+u
2

lmax ← max
{

m−yi

xc−xi

∣∣∣xi < xc

}
rmax ← max

{
yi−m
xi−xc

∣∣∣xi > xc

}
if rmax ≤ lmax then

u← m
a← lmax+rmax

2
else

l← m
end if

end while
return a, u

is known to vary drastically between the different algorithms used at their core and the distributions
of problems targeted. We benchmark 4 approaches on a synthetic dataset of the discrete problem
instances to find the one most suitable for our applications.

The dataset was generated by sampling 2000 discrete problem instances for each of the following
activation functions: GeLU, Log Log, Swish. We use these three activation functions as they have
become quite popular in recent years[8, 21, 22, 27] but don’t have optimal linear bounds handcrafted
for them specifically. Each problem instance has the region’s R = [l, r] boundaries sampled uniformly
from the [−2, 2] interval and contains 500 points sampled uniformly from the region. This number of
points was chosen for the experiments as corresponding to the typical final sample size of SOL in
application to the robustness certification. Although the uniform distribution of points might not give
an accurate representation of the samples encountered by SOL, the difference between the running
times of the solvers is pronounced enough to ignore this inaccuracy.

The approaches we investigate include two well-known optimization libraries capable of solving LP:
Gurobi[7] and SciPy[31]. The other two approaches are our implementation of Megiddo’s linear-time
algorithm[17] and a specific bisection procedure which takes advantage of the linear ordering of
the sample points in the one-dimensional case. The idea behind the bisection procedure is that a
particular g(xc) = h guess on the objective value can be validated in linear time by checking whether
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Figure 5: SOL benchmarking results.

(xc, h) lies inside the convex hull of the sample or not. A pseudocode implementing the procedure is
shown in the algorithm 2. Note that this procedure is only applicable for d = 1.

The benchmarking results are shown in the figure 4. The plot shows the dependence of solver’s average
runtime across all the problems in the dataset on the targeted optimality tolerance ε. Interestingly,
both general LP solvers show slower performance than the alternatives, which highlights the specific
nature of linear programs encountered by SOL. Both of their running times seem almost independent
of the optimality tolerance required. One possible reason would be the presence of significant
overhead of setting up sophisticated optimization routines.

The results of the Megiddo’s algorithm show expectedly saturating runtime dependence on ε since it’s
supposed to find the exact solution in O(|S|) time. The only dependence on ε is due to the presence
of an early stopping upon reaching the target accuracy. The bisection approach shows the best results
with a significant margin along the entire bandwidth of ε values. Although its dependence on ε is
asymptotically worse than that of the Megiddo’s algorithm – O(log 1

ε ) vs O(1) – the constant factor
of the latter appears to be too high for it to outperform the bisection procedure at practical values of
optimality tolerance. Taking into consideration this result, we use the bisect algorithm as the discrete
problem solver in all of the remaining evaluations.

5.2 Benchmarking SOL

In order to study the average runtime and the bounding performance of SOL on the linear bounding
problem instances encountered in practice we generate another synthetic dataset. This time we
sample 1000 instances of the problem for each of the same three functions. The region bounds for
the problems are sampled uniformly from the [−3, 3] interval.

We compare the SOL’s performance on this benchmark to the performance of LinSyn[20] as their
approach also aims to build bounds close to the optimal ones. It does not, however, give any guaranties
on the optimality gap and does not have parameters controlling the accuracy target. Its metrics are
thus independent of the optimality target ε.

Figures 5a and 5b show the average runtime and the average optimality gap respectively as functions
of the optimality target ε. The optimality gap is estimated by taking the most accurate linear bound
produced by SOL and shifting in down appropriately to obtain a tight underestimate of the optimal
value of objective. Notably, there appears to be a wide range of accuracy targets ε ∈ [10−7, 10−3]
where SOL gives better average bounds while taking less time then LinSyn. For example, at ε = 10−5

the SOL bounds are 10 times tighter than these of LinSyn while the runtime is 3 time shorter.

While figure 5a already hints on the form of the asymptotic dependency of the running time t on
the accuracy target ε, we make the analysis clearer by investigating the relation between log t and
log log ε instead. This dependence shown in figure 5c turns out to be quite close to linear with the
slope of a ≈ 2.0 estimated by the linear regression. The linear relation with this slope corresponds to
the complexity of O(log2 1

ε ) and agrees with our hypothesis on the typical running time of SOL.
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Table 1: Certification performance comparison. The upper number is the fraction of properties
certified, the lower is the estimate of the running time (with std ≤ 3%). Neural network architectures
are denoted by the activation function used and their respective depths.

Approach
Dataset

MNIST [15] CIFAR [14]
GeLU 4l Log Log 4l Swish 4l GeLU 5l Log Log 5l Swish 5l

AutoLiRPA [35] 0.01
230s

0.0
23s

0.34
9s

0.0
700s

0.59
50s

0.03
35s

LinSyn [20] 0.72
430s

0.23
450s

0.76
410s

0.31
580s

0.69
360s

0.35
550s

SOL (ε = 10−3) 0.73
100s

0.23
96s

0.76
100s

0.31
150s

0.69
87s

0.37
150s

SOL (ε = 10−5) 0.73
140s

0.24
140s

0.76
130s

0.31
190s

0.69
95s

0.37
170s

SOL (ε = 10−7) 0.73
310s

0.24
300s

0.76
290s

0.31
400s

0.69
160s

0.37
340s

5.3 Robustness certification performance

Finally, we study the performance of SOL as a part of a robustness certification pipeline by using
SOL as an activation function bounding subroutine in the AutoLiRPA[35] framework. We follow the
protocol introduced in LinSyn and compare the robustness certification performance of our approach
against that of LinSyn and that of AutoLiRPA with their default decompositional linear bounding
approach. In these experiments we attempt the robustness certification of 6 image classification
neural networks with convolutional architectures. Three of them were trained on MNIST[15] while
the other three – on CIFAR[14].

Each certification task consists of proving that any l∞-bounded perturbation of a particular correctly-
classified input image retains the same label prediction as the image itself. For each neural network
we randomly sample 100 images from the test part of the dataset, filter out the misclassified ones
and attempt to certify the remaining images. We use perturbation magnitude of 8/255 for networks
trained on MNIST and 1/255 for CIFAR networks as is common in the literature. We have also
conducted experiments with larger perturbations of 2/255 and 4/255 for the CIFAR models, but found
the performance too weak for a proper analysis. Qualitatively the results for these larger perturbations
were similar to the presented results.

The results are shown in table 1. Both LinSyn and SOL show much higher certification rates compared
to AutoLiRPA since they aim at producing tight linear bounds while the default bounding procedure
of AutoLiRPA systematically ends up with loose bounds.

The SOL variants show similar or slightly higher certification rates than LinSyn while taking as low
as a quarter of the time. Lowering the accuracy target down from 10−5 noticeably increases the
runtime of SOL without any improvement to the success rate of the certification. Notably, although
not depicted in the table, the average sizes of the final bounds on the logit outputs of the networks
only improve by a fraction of 1% upon changing ε from 10−3 to 10−7 which is negligible compared
to the improvement of x2-x5 from switching from AutoLiRPA to either LinSyn or SOL.

6 Conclusion

In this paper we have introduced SOL – a sampling-based approach for finding linear bounds
arbitrarily close to optimum in terms of tightness for Lipschitz-continuous functions. We have shown
experimentally that despite having rather pessimistic theoretical running time guarantees, it is quite
fast in practice. As a part of a neural network robustness certification framework it increases the
certification rates and takes significantly smaller time compared to the alternative approaches.
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