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Abstract

Multi-step reasoning through Chain-of-001
Thought (CoT) prompting has been extensively002
explored, highlighting the abilities of Large003
Language Models (LLMs) to generate answers004
derived from step-by-step reasoning. These005
studies focus the attention on LLMs’ forward006
reasoning abilities manifested in a series of007
general premises leading to a final solution.008
In this paper, we take the reverse perspective009
by analyzing the backward reasoning abilities010
of LLMs, namely the inference that leads to011
the causal hypothesis. We conduct a study012
on Question Answering (QA) tasks, aimed at013
analyzing whether LLMs are able to reason014
about the conclusions and deliver the original015
question that leads to the final answer. We016
use three Multiple Choice Questions and six017
Math Word Problems QA tasks: (i) we observe018
a performance gap between standard and019
proposed approaches; hence (ii) we propose020
several methods to elicit the LLMs to generate021
the answer by considering the backward022
direction.023

1 Introduction024

Several techniques for in-context learning through025

prompting approaches (Brown et al., 2020; Min026

et al., 2022) enable pre-trained Large Language027

Models (LLMs) (Chowdhery et al., 2022; Touvron028

et al., 2023; OpenAI, 2023) to generalize well on029

out-domain tasks, demonstrating versatility in a va-030

riety of tasks such as sentence completion, multiple031

choices text comprehension, and mathematical rea-032

soning, by providing multi-step forward responses.033

Earlier works have extensively studied these prob-034

lems, adopting previous (Cobbe et al., 2021; Roy035

and Roth, 2015; Patel et al., 2022) and new (Gao036

et al., 2023; Zheng et al., 2023b) datasets to observe037

the performance of powerful LLMs comparatively.038

Recently, Wei et al. (2022) have proposed the039

Chain-of-Thought (CoT) prompt for LLMs, which040

generates necessary explicit intermediate steps to041

reach the final answer. Specifically, each exam- 042

ple in-context is complemented by several steps 043

described in natural language. In inference, the 044

verification question is added to the prompt and 045

fed to an LLM, mimicking the in-context examples 046

and delivering reasoning steps before the final re- 047

sult. Many works have recently been proposed to 048

improve its effectiveness (Yu et al., 2023; Wang 049

et al., 2023) and efficiency (Wu et al., 2023). Later, 050

Qiao et al. (2023); Zhou et al. (2023) proposed an 051

advancement through Self-Verification techniques. 052

Different outputs delivered to CoT are sampled 053

using temperature sampling (Ficler and Goldberg, 054

2017). Behind this passage, the one that receives 055

the most votes is selected as the final response. 056

Although these techniques show the reasoning abil- 057

ities of LLMs, they are based on observations of 058

generating forward, leaving unexplored the ability 059

to infer a rule given the consequences. 060

This leads to the target research questions, which 061

are the focus of this paper: 062

(RQ1) Can the well-known Question-answering 063

benchmarks be employed to observe the reasoning 064

abilities of LLMs with the purpose of studying the 065

effect in the backward direction? 066

(RQ2) Do the different complexities of forward 067

and backward reasoning observed in human minds 068

also reflected in LLMs?? 069

(RQ3) Could LLMs’ reasoning abilities be em- 070

powered by using the structure of the prompt and 071

the generated answers? 072

In this paper, we investigate whether LLMs 073

are able to deliver answers by performing back- 074

ward reasoning steps, which consist of develop- 075

ing hypotheses for a set of facts and deducing the 076

most probable cause or the most plausible explana- 077

tion. We propose to use Question-answering (QA) 078

tasks, in particular, six Math Word Problem (MPW) 079

and three Multiple Choice Question (MCQ), tra- 080

ditionally used to study forward generative abili- 081

ties. Hence, we propose two different approaches 082
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Figure 1: Overview of our proposed approaches.

(i.e., Blanking and Hiding) that revisit the stan-083

dard prompts in order to elicit the LLMs to con-084

sider the initial question. In particular, in our ap-085

proaches, we propose opposite versions of tasks by086

prompting the final answers as facts and eliciting087

the LLMs to reason about reconstructing the origi-088

nal question. We analyze whether different families089

of LLMs (GPT (OpenAI, 2023), Llama-2 (Touvron090

et al., 2023), Mistral (Jiang et al., 2023), and Orca2091

(Mitra et al., 2023)) are able to deduce the orig-092

inal questions by proposing different prompting093

approaches.094

Downstream of extensive analysis, we show a095

discrepancy regarding the performances obtained096

from forward and backward input-prompting.097

Therefore, we propose a series of approaches to098

stimulate LLMs to rephrase the problem by con-099

sidering different shapes and achieving noticeable100

improvements.101

Our contributions can be summarized as follows:102

• Formalization of backward reasoning prob-103

lem by proposing two different kinds of in-104

tervention in nine different benchmarks com-105

monly used to test forward generative abilities106

of LLMs (Yuan et al., 2023; Ling et al., 2023).107

• In-depth study of the divergences between108

forward reasoning obtained through standard109

prompting and backward reasoning obtained110

via our Hiding and Blanking approaches on111

different LLM families.112

• Performance improvement via prompt-based113

approaches that elicit LLMs to reason about114

the input structures for the input problems. 115

2 Problem Formulation 116

A reasoning-based question-answering (QA) task 117

is defined as a tuple Tf = (Q,O,A), where Q is 118

the question, that could contain context C, such 119

as the necessary background for answering a ques- 120

tion; O = (o1, o2, .., cn) are answer choices if Q 121

is a multiple choice (n) problem (C and O could 122

be optional depending from the task); and A is the 123

target answer. Given Q as input-prompt, Large Lan- 124

guage Models (LLMs) generate the answer (output) 125

that is a sequence of tokens Tout = (t1, t2, ..., tn). 126

The generated answer is correct if and only if the 127

(ti, .., tm) ⊆ T matches the ground truth A. Re- 128

cent works like Chain-of-Thought (CoT) (Wei et al., 129

2023) leverage prompt engineering in the context 130

C to elicit LLMs to generate the intermediate rea- 131

soning process in Tout, which benefits their perfor- 132

mance across diverse reasoning tasks. In this case, 133

Tout consists of a set of m intermediate reasoning 134

steps, which we denote as S = (s1, s2, ..., sm) . 135

Each step si can be represented by a subsequence 136

of the generated tokens si = (t1, t2, ...tn) ⊆ Tout. 137

The generated solution is correct if the predicted fi- 138

nal answer in si matches the ground truth A. Given 139

the forward generative nature, the premise of C and 140

Q, and the conclusion generated in the sequence T , 141

it is possible to describe this as a deductive process 142

(Huang and Chang, 2023; Ling et al., 2023). 143

In our work, we introduce Tb that is the opposite 144

of Tf . Starting from a QA task, given the answer 145

A as evidence, we want to infer the rule (or, in our 146
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Prompt: Multiple Choices Question Tf
Question: <Question>
Choices:
a) <Option1>
b)...
Answer:
+ Let’s think step by step (CoT Prompt)
generated answer A or ACoT

Prompt: Math Word Problem Tf
Question: <Question>
Answer:
+ Let’s think step by step (CoT Prompt)
generated answer A or ACoT

Table 1: Example of prompt for MCQs (left) and MWPs (right) Question Answering tasks.

Prompt: Hiding Approach TbH
Fill in the blank value given the
following problem.
Context: t1, t2, . . . , x, . . . , tn−1, tn
Question: <final question>
Answer: A

+ Let’s think step by step (CoT Prompt)

Prompt: Blanking Approach TbB
Fill in the blank given the following
answer. Find the question that
generates it.
Context: t1, t2, . . . , tn−1, tn
Question: x
Answer: A or ACoT

+ Let’s think step by step (CoT Prompt)

Table 2: Example of prompt for Hiding Approach TbH and Blanking Approach TbH .

case, the question Q) that generated A. In partic-147

ular, as described in Section 3, we propose two148

different versions of Tb: in TbH = (QH , O,AH),149

the relaxed version, we contextualize the gener-150

ation of Q using QH , that is Q with a strategic151

hide part with a placeholder x and in a strict ver-152

sion TbB = (QB, O,AB) we do not use Q or its153

derivates. Hence, in the first version, the final goal154

is to find out the x omitted from the prompt, and155

in the second one, the goal is to generate QB , as in156

the abductive reasoning process (Huang and Chang,157

2023; Qiao et al., 2023).158

In this scenario, we prompt the LLMs, as shown159

in Figure 1, in order to elicit them to reconstruct160

or generate the rule using the final evidence that161

is exemplified respectively by the question Q and162

answer A.163

3 Method164

In order to observe the backward abilities of LLMs,165

we propose a prompting intervention based on us-166

ing the target answer A and the context provided167

by task C in order to deduce the original Q.168

Hence, behind defined problem Tb in Section 2,169

we describe the construction of TbB (Section 3.2)170

and TbH (Section 3.1).171

3.1 Hiding Approach172

In order to elicit LLMs to retrieve the original Q by173

reasoning in a backward way, we propose TbH =174

(QH , O,AH). In particular, we contextualize the 175

generation of Q using QH , i.e., Q with an hide 176

strategic part with a placeholder x. Consequently, 177

we replace the target answer AH with x. However, 178

the hiding approach differs according to the nature 179

of the question-answering task. 180

Math Word Problem The MWP tasks are char- 181

acterized by a tuple (Q,A) where numerical values 182

represent the strategic information. Following the 183

approaches from the previous work (Deb et al., 184

2023), we mask the numerical value in the prompt 185

with x (placeholder value). Hence, we produce the 186

input-prompts using QH and A. Where QH is very 187

close to Q, with the numerical value replaced by 188

an x (detailed in Appendix B.1). Then, we evalu- 189

ate the accuracy by performing a string matching 190

between the generated answer and x (x used as a 191

placeholder in the prompt). 192

Multiple Choices Question In the MCQ setting, 193

it is more challenging to determine which strategic 194

part to blank. The datasets introduced in Section 195

4.1 are characterized by tuples (Q,O,A). In each 196

Q, a strategic concept S is presented that is gen- 197

erally provided in the dataset but is not used for 198

the evaluation. We replace S ∈ Q with x deriving 199

Qx (detailed in Appendix B.1). We evaluate the 200

accuracy by performing a string matching between 201

the generated answer and x. 202
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Figure 2: Accuracies (%) on Math Word Problem and Multiple Choices Questions proposed in Section 4.1 using
Standard prompting approach (as shown in Table 8) and Hiding approach (Section 3.1).

3.2 Blanking Approach203

Furthermore, we propose a stricter version of204

the tasks. Starting from Tb we propose TbH =205

(QB, O,AB). We do not alter Q using the hiding206

approach, but blank entire Q, i.e., QB , reply with x.207

Consequently, the final target A, in our formulation208

AB , is the original Q blanked with x. Then, we209

construct the input prompt, as shown in Figure 1210

and in Table 2.211

However, it is not possible to apply the Blank-212

ing approach directly to all tasks, for example, on213

MWPs that have only a numerical A target, and it214

is impossible to generate Q (or AB) without having215

context. In order to solve this problem, we intro-216

duce A described in Section 3.3 for the Math Word217

Problem and the Multiple Choices Question tasks.218

Finally, we estimate the correctness of generated219

answers using BERTScore (Zhang et al., 2020) be-220

tween the blanked question Q and the generated221

answer Tout.222

3.3 Backward Answer223

Behind proposing the TbH approach for construct-224

ing altered prompts to evaluate the abilities of225

LLMs, we introduce a Blanking approach, TbB .226

However, LLMs need more context that targets A227

alone cannot supply. Therefore, we introduce A228

by constructing it by prompting the LLMs with 229

input-prompts (as in Figure 1, Table 1, and Table 230

2). Moreover, we use the multi-step reasoning abil- 231

ities by also proposing ACoT that is based on the 232

Chain-of-Thought prompt technique (Wei et al., 233

2023). Then, we use the generated answers, A and 234

ACoT , as a component to produce TbB as Figure 1 235

(all passages are detailed in Appendix B.2). 236

4 Experiments 237

In order to analyze the abductive reasoning abilities 238

of Large Language Models (LLMs), we propose 239

two backward reasoning approaches in Math Word 240

Problem (MWP) and Multiple Choices Question 241

(MCQ) tasks introduced in Section 4.1. Then, we 242

systematically prompt different LLMs as described 243

in Section 4.2 by evaluating the answers generated 244

using Section 4.3’s evaluation methods. 245

4.1 Data 246

We propose our experimental setup by adapting the 247

method proposed in Section 3 to two typologies of 248

Question-answering (QA) tasks: 249

QA Math Word Problem MPW tasks are char- 250

acterized by a question (a mathematical problem) in 251

natural language and a target answer, which in most 252

cases is a number. We select five different datasets 253

4



Strategy Model GSM8KH SVAMPH MultiArithH AQua-RATH AddSubH GAIAH

Hiding (0-shot) GPT-3.5 33.8±.4 36.3±.2 18.4±.1 69.4±.3 20.3±.1 16.5±.2

Hiding (5-shot) GPT-3.5 35.4±.3 38.4±.4 20.5±.3 70.6±.4 22.1±.3 18.6±.3

CoT (5-shot) GPT-3.5 34.5±.4 35.3±.4 19.5±.1 70.2±.3 19.4±.5 15.9±.1

Complex-CoT (0-shot) GPT-3.5 40.5±.1 39.9±.1 21.7±.2 73.7±.3 24.5±.6 21.2±.4

Complex-CoT (5-shot) GPT-3.5 43.5±.2 41.3±.2 26.4±.2 76.6±.3 24.8±.2 26.3±.4

Paraphrasing (2-shot)
GPT-3.5 50.2±.3 45.8±.4 36.8±.3 79.2±.4 26.7±.2 29.8±.2

Llama-2-70 29.3±.2 37.2±.3 25.6±.2 76.3±.1 29.2±.2 29.2±.1

Mixtral 28.9±.2 31.5±.1 30.1±.2 69.9±.1 29.0±.0 30.0±.1

Paraphrasing (5-shot)
GPT-3.5 56.7±.1 50.3±.1 41.9±.4 83.8±.2 32.1±.1 33.9±.4

Llama-2-70 34.1±.1 44.1±.2 31.7±.3 80.1±.1 33.1±.3 35.0±.3

Mixtral 33.9±.1 38.9±.2 33.3±.1 73.8±.4 33.7±.1 36.2±.5

Self-Refine (2-shot)
GPT-3.5 53.8±.2 49.1±.3 40.1±.4 80.1±.3 30.4±.2 30.1±.4

Llama-2-70 34.1±.4 40.1±.1 31.7±.3 78.2±.3 30.1±.3 33.2±.3

Mixtral 32.1±.2 36.1±.1 30.1±.5 72.5±.2 33.1±.6 32.1±.3

GPT-3.5 66.2±.3 58.8±.1 45.9±.3 82.6±.4 39.3±.1 32.9±.2

Paraphrasing Llama-2-70 33.9±.1 42.3±.1 35.9±.3 78.7±.1 36.5±.5 36.1±.1

+Self-Refine (2-shot) Mixtral 39.1±.5 44.3±.1 31.6±.4 75.1±.2 35.1±.5 31.3±.2

Table 3: Improvements in accuracy with various prompting strategies in the Hiding approach. In Table 9 the results
of other models.

with this type of structure: GSM8K (Cobbe et al.,254

2021), SVAMP (Patel et al., 2021), MultiArith (Roy255

and Roth, 2015), AddSub (Hosseini et al., 2014)256

AQuA (Ling et al., 2017), GAIA (Mialon et al.,257

2023).258

QA Multiple Choices Question MCQ tasks, un-259

like MWPs, have different structure. This type of260

task consists of a question, a context that is op-261

tional, and multiple choices. In our work, we select262

four resources: CommonSenseQA (Talmor et al.,263

2019) (CSQA) and OpenBookQA (Mihaylov et al.,264

2018) (OBQA) regarding commonsense reason-265

ing, Physical Interaction Question Answering (Seo266

et al., 2018) (PIQA) regarding physical reasoning.267

Finally, we systematically construct TbH and TbB268

(see Table 2), as described in Section 3 and detailed269

in Appendix B.270

4.2 Models271

In order to test the LLMs’ abilities, we select differ-272

ent models by attempting to get at least two models273

from the same families, but differing in the num-274

ber of parameters. In particular, we select: two275

GPT models (OpenAI, 2023) (GPT-4 and GPT-3.5-276

turbo), two Llama-2 models (Touvron et al., 2023)277

(Llama-2-70 and Llama-2-13), two Mistral mod-278

els (Jiang et al., 2023) (Mixtral and Mistral-7b)279

and finally two Orca2 models (Mitra et al., 2023)280

(Orca2-7b and Orca2-13b). For more details on the281

parameters, see Appendix A.282

4.3 Evaluation283

We evaluate the performance of the LLMs intro-284

duced in Section 4.1 on the tasks defined in Section285

4.2. The evaluation is conducted using the accu- 286

racy for the Hiding approach TbH and (F1-score) of 287

BERTScore (Zhang et al., 2020) for the Blanking 288

approach TbB . We use BERTScore because the gen- 289

eration of the entire question could be correct, even 290

if delivered with different terminology. In addition, 291

in Appendix X we discuss an additional analysis 292

performed with an LLM (GPT-4) as a judge. 293

5 Results & Discussion 294

Large Language Models (LLMs) are able to seek 295

hypotheses that best approximate the explanation 296

of a set of observations. In fact, LLMs generate 297

answers when they are elicited to consider the fact 298

that caused the final evidence. This statement can 299

be demonstrated by the results shown in Figure 3. 300

The proposed LLMs (Section 4.2) have inferred the 301

initial question that generated the final answers in 302

both Multiple Choices Questions and Math Word 303

Problem tasks in the Blanking approach (proposed 304

in Section 3.2). 305

However, although most LLMs perform well in 306

the Blanking approach, we observe a different phe- 307

nomenon in the Hiding approach. Figure 2 shows 308

the accuracies obtained following standard zero- 309

shot prompts and our Hiding Approach presented 310

in Section 3.1. Although the task is quite different, 311

there is a substantial gap between the performances. 312

The nature of the differences between the final re- 313

sults in the Blanking approach (Section 5.1) and 314

Hiding approach (Section 5.2) can be traced back 315

to the structure of the prompt. Therefore, in Sec- 316

tion 5.3 we propose techniques that improve the 317

performance of the Hiding approach. 318
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Figure 3: Performances (BERTScore F1) on Math Word Problem and Multiple Choices Questions proposed in
Section 4.1 using Standard prompting approach (as shown in Table 1) and Blanking approach proposed in Section
3.2

Finally, if the prompt techniques proposed in319

Section 5.3 allow for improving the LLMs’ abil-320

ities in the Hiding approach, in Section 5.4 we321

reconsider the Blanking approach by proposing322

the Cross-Blanking Test that stresses the LLMs’323

abilities by breaking the data contamination phe-324

nomenon.325

5.1 Blanking Results326

LLMs are able to reason about the evidence deliv-327

ered in a multi-step way by reconstructing initial328

assumptions. As shown in Figure 3, the correctness329

of the Blanking approach (described in Section330

3.2) is, on average, high when the input-prompts331

are formed with ACoT , i.e., answers generated via332

CoT prompts (Wei et al., 2023). In order to have333

a term of comparison, we have reported the same334

evaluations, F1 BERTScore (Zhang et al., 2020),335

as well as the forward prompting approaches (de-336

scribed in Figure 1 and Table 2). Weak note for the337

Blanking approach that takes the answer A as evi-338

dence. Indeed, A alone is too context-poor to allow339

LLMs to reason about the prior blanked questions.340

Although the scores are, on average, high, motiva-341

tion could lie in the presence of critical parts of the342

question in the evidence we provide in the input343

prompts. Consequently, this could be mistaken as344

a data contamination problem. In order to observe345

whether LLMs are able to reason in the opposite346

direction, we propose Cross-Blanking experiment 347

in Section 5.4. Specifically, in this experiment, we 348

provide as ACoT the responses generated by other 349

LLMs to perform the Cross-Blank evaluation (see 350

Table 6). 351

5.2 Hiding Approach Results 352

LLMs fail to retrieve the hidden information in 353

prompts. Table 8 shows the accuracies of different 354

LLMs presented in Section 4.2. A clear differ- 355

ence can be seen between the standard prompts, 356

where the models are prompted with a problem 357

they should generate an answer, and the Hiding ap- 358

proach, where the models are asked to reconstruct 359

the hidden part of the question. However, a sig- 360

nificant difference can be observed because there 361

is a smaller average gap in the MCQ tasks than in 362

MWP (see Table 8 in the Appendix H). This phe- 363

nomenon leads us to study the input composition, 364

as we hypothesize that these average differences 365

can be traced back to the present content. In fact, 366

in the MCQ tasks, there is more context (e.g., the 367

various choices) than in MWP, where the answer is 368

entirely coincident. 369

5.3 Prompting Approaches 370

Manipulating the structure of the prompt leads 371

LLMs to better reasoning in a backward direction. 372

Table 3 shows the performance of the different tech- 373
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niques, in zero-shot and few-shot (In-context Learn-374

ing (ICL) (Brown et al., 2020; Shin et al., 2022)),375

that made final improvements over those discussed376

in Section 5.2. Hence, we discuss the different ap-377

proaches tested using GPT-3.5 and Llama-2-70 as378

base models.379

CoT vs Complex-CoT CoT approaches in both380

zero-shot and few-shot scenarios do not contribute381

to substantially increasing baseline performances382

by highlighting the limitation of the input structure383

(Table 3 and Table 9). Moreover, we observe the384

same tendency for Complex-CoT (Fu et al., 2023).385

We hypothesize that these are the consequences of386

the LLMs’ difficulty processing the input-prompt387

proposed in the Hiding approach (Section 3.1).388

Paraphrasing Rephrasing the prompt helps389

LLMs understand the problem to be addressed. We390

detected a noticeable increase in downstream per-391

formances of the Paraphrasing technique (perfor-392

mances in Table 3). The method is described in393

Appendix C.394

Self-Refine Although paraphrasing input395

prompts support LLMs in understanding the396

problem better, iteratively reconsidering the feed-397

back until a predetermined condition is reached398

(Self-Refine) has overpowered all approaches.399

We notice conspicuous improvements in our400

experiments adapting the original Self-Refine401

to our Hiding approach (detailed description in402

Appendix E) (see Table 3 and Table 9).403

5.4 Cross-Blanking Test404

LLMs are able to reconstruct the initial problem405

and perform the reasoning in a backward direction406

by understanding the answers delivered by other407

LLMs. This is shown in Table 4. In particular, we408

have revisited the Blanking Approach from a Cross-409

perspective. More in detail, we construct the input-410

prompts as described in Section 3.2, but, instead of411

providing ACoT generated by the evaluating LLM,412

we cross-reference the demonstrations (see Table413

6 in Appendix G). We reproduce the experiments414

using one mathematical and one multiple-choice415

question task. From the results in Table 4, it is416

possible to observe an in-family phenomenon. The417

models of the same family seem to achieve simi-418

lar performances, which is not observable in the419

out-family models. However, the models obtain420

sustainable performances.421

5.5 Metrics Error Analysis & Limitations 422

The results discussed in Sections 5.1 demonstrate 423

LLMs’ ability to provide answers while consider- 424

ing backward-facing problems. Following the vari- 425

ous techniques used to elicit generation in different 426

scenarios, we qualitatively analyze the results ob- 427

tained and the metrics behind them, highlighting 428

limitations and strengths. 429

BERTScore vs LLMs-judge In the Blanking 430

Task (Section 3.2), the evaluation metric used was 431

BERTScore. However, this metric may have limita- 432

tions, as there could be multiple valid questions for 433

a given context and response, and it is not clear if 434

BERTScore can distinguish between two semanti- 435

cally different questions with the same answer. For 436

this reason, in Table 11, we discuss using GPT-4 as 437

an evaluator judge, revealing that the results do not 438

differ dramatically. 439

The Numerical Limitation On the side of the 440

Hiding approach, we further consider the responses 441

generated by different LLMs in the MWP tasks. 442

Here, a potential limitation is associated with eval- 443

uating the generated placeholders. The placehold- 444

ers generated could be numerical values but not 445

in numeric format, rather nominal. To avoid this 446

phenomenon, we (i) include the keyword [num] in 447

the input prompts and (ii) implement a secondary 448

check using a conversion function discussed in the 449

Appendix. 450

Error Analysis Paraphrasing the prompt has its 451

benefits. As shown in Appendix C, the approach 452

proposed in Section 3.1 appears to work in the case 453

of a few-shot scenario reinforced with a self-refined 454

approach, while it seems to lead to misleading and 455

incorrect responses when the approaches are em- 456

ployed alone (see Table 3). 457

6 Related Work 458

Question Answering Problem Question- 459

answering tasks are generally characterized by a 460

natural language description that can be a question 461

in the case of Multiple Choice Questions (MCQ) 462

tasks or a mathematical problem in the case of 463

Math Word Problems (MWP) tasks (Lu et al., 464

2023). The description expresses the relations 465

between various entities or quantities followed by 466

a query for an unknown quantity in the case of 467

MWP, and a known quantity in the case of MCQ. 468

One must represent the relationship between 469

7



entities and quantities to respond to the query.470

The resolution of MWP, but especially that of471

MCQ, requires a semantic understanding of the472

natural language description. The initial works473

(Koncel-Kedziorski et al., 2015; Roy and Roth,474

2018) for solving these tasks propose to parse the475

description using statistical learning techniques to476

identify suitable models for generating answers.477

Behind the advent of sequence-to-sequence478

(Seq2Seq) models (Sutskever et al., 2014) for479

automatic translation, the approaches for solving480

MCQ and MWP tasks diverge. For MWP (Wang481

et al., 2017; Shen et al., 2021; Jie et al., 2022), they482

propose encoder-decoder frameworks to translate483

the natural language description of MWPs into484

equations directly. In MCQ (Multiple Choice485

Questions), many studies have proposed methods486

for retrieving answers from Knowledge bases487

(Banerjee et al., 2019) or generating the answer488

using prior knowledge (Abujabal et al., 2018).489

Large Language Models Recently, Large Lan-490

guage Models (LLMs) such as GPTs (Brown et al.,491

2020; OpenAI, 2023), Llamas (Touvron et al.,492

2023), PaLM (Chowdhery et al., 2022) have been493

achieving outstanding performance in both MWPs494

and MCQs tasks without the use of external knowl-495

edge bases or further analysis methods. These mod-496

els use the ability of context-based instances via a497

few-shot iteration and use prompting methods such498

as CoT (Wei et al., 2023), all without demanding499

any parameter modifications. Several approaches500

(Welleck et al., 2022; Madaan et al., 2023) that501

use LLMs involve verifying the response provided502

by the Language Model, either using the model503

itself or external verifiers like compilers or proof504

checkers. If the response is incorrect, the model505

is re-prompted, potentially with suggestions to im-506

prove its output. This querying process continues507

until the model generates the correct output. Differ-508

ent techniques, such as Progressive Hint Prompting509

(Zheng et al., 2023a), iteratively pass the model’s510

previous responses to itself as hints. Iterative query-511

ing techniques like those in (Weng et al., 2023) do512

not use a verifier; instead, they sample multiple513

hypotheses from the model and select the answer514

via majority voting.515

Reasoning Direction As described in the intro-516

duction to our paper, we focus on a precise case517

of abductive reasoning with a single answer. Ab-518

ductive reasoning (Qin et al., 2020; Thayaparan519

et al., 2021; Zhao et al., 2023) consists of inferring520

which of several explanations is the most plausible. 521

Previous work on abductive reasoning has mainly 522

focused on textual reasoning under constraints. In 523

arithmetic reasoning tasks, Weng et al. (2023) used 524

abductive reasoning to improve the accuracy of 525

forward reasoning. Our work, on the other hand, 526

addresses backward reasoning as an independent 527

problem. We are inspired by what Deb et al. (2023) 528

proposed and take it further by extending us to 529

more tasks and scaling the tests to different models 530

with softer and stricter formalization. Our primary 531

interest lies in analyzing the inherent complexities 532

of reasoning and creating more effective solutions 533

to deal with it. 534

7 Conclusion 535

This paper explores the abilities of Large Language 536

Models (LLMs) in forward and backward gener- 537

ative ways. We introduce two novel approaches, 538

namely Hiding and Blanking, to challenge LLMs to 539

infer the original question from the answers given. 540

Our experiments reveal interesting insights into the 541

LLMs’ abilities. While LLMs show proficiency 542

in forward reasoning, their performances in back- 543

ward reasoning vary significantly. The Hiding ap- 544

proach, which partially obscures the original ques- 545

tion, demonstrates that LLMs could, to some extent, 546

reconstruct missing elements. Moreover, the Blank- 547

ing approach, which presents a more challenging 548

scenario by completely removing the original ques- 549

tion, highlights the effective abilities. Our research 550

also delves into various prompting techniques to 551

empower the LLMs’ performance in these tasks to 552

elicit the LLM to understand and approach the prob- 553

lems better. Our study opens new avenues for un- 554

derstanding and improving the reasoning abilities 555

of LLMs. It also raises important questions about 556

the future directions of LLMs development, partic- 557

ularly in areas requiring complex, multi-directional 558

reasoning abilities. 559

8



Limitations560

In our work, we analyzed the abilities of Large Lan-561

guage Models (LLMs) in solving reverse question-562

answering and math word problems. Specifically,563

starting from the original settings where a question564

is provided and the LLM is required to generate565

an answer, we examined the reverse task. This566

analysis reveals the strengths and weaknesses of567

LLMs in generating reverse reasoning. Potentially,568

reverse reasoning could be useful when faced with569

evidence and one wishes to trace back to the phe-570

nomenon that caused them by reasoning backward.571

In this work, we used the BERTScore and the572

judgment-based assessment of GPT-4 as judgment573

metrics. In future work, we will study the effect of574

additional metrics in order to improve the evalua-575

tive aspect.576

Ethics Statement577

In our work, ethical topics were not addressed.578

The data comes from open-source benchmarks,579

and statistics on language differences in commonly580

used pre-training data were obtained from official581

sources without touching on gender, sex, or race582

differences.583
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A Model and Hyperparameters 937

As introduced in Section 4.2, we used: 938

• two models from the GPT family (OpenAI, 939

2023): GPT-4 and GPT-3.5-turbo (GPT-3.5) 940

used via API. 941

• two models from the Llama-2 family (Tou- 942

vron et al., 2023): Llama-2-70b and Llama- 943

2-13b using versions of the quantized to 4-bit 944

models using GPTQ (TheBloke, a,b). 945

• two models of the Orca2 family (Mitra et al., 946

2023): Orca2-7b (TheBloke, e) and Orca2- 947

13b (TheBloke, d). 948

• two models of the MistralAI family: Mistral- 949

7b and Mixtral using official version on huff- 950

ingface (MistralAI) versions of the quantized 951

to 4-bit models using GPTQ (TheBloke, c). 952

We use closed-source API or the 4-bit GPTQ 953

quantized version of the model on two 48GB 954

NVIDIA RTXA600 GPUs for all experiments per- 955

formed only in inference. All experiments use a 956

generation temperature of [0, 0.5] for (mostly) de- 957

terministic outputs, with a maximum token length 958

of 256. The other parameters are left unchanged 959

as recommended by the official resources. We will 960

release the code and the dataset upon acceptance 961

of the paper. 962

B Dataset Construction 963

We use six different Math Word Problem datasets: 964

GSM8K (Cobbe et al., 2021), SVAMP (Patel et al., 965

2021), MultiArith (Roy and Roth, 2015), AddSub 966

(Hosseini et al., 2014), AQuA (Ling et al., 2017), 967

MathQA (Amini et al., 2019). We describe the gen- 968

eration methodology of the final composition of 969

TbH in Section B.1 and TbB in Section B.2. Down- 970

stream of the generation methodologies, we filtered 971

the original datasets by removing the examples we 972

could not parse optimally (see Table 10). 973

B.1 Generation for Hiding Approach 974

Math Word Problems As introduced in Section 975

3.1, in TbH = (QH , AH) (in MWP there are not 976

O), we construct QH from Q. For each question 977

of Dataset: 978

{(Qi, Ai)}ni=1|Qi ∈ Σ∗, Ai ∈ R} 979

We propose a method to create Dataset′k: 980

{(Q′
i, Ai, (H

0
i , . . . ,H

k
i ))}ni=1|Q′

i ∈ Σ∗, Hj
i ∈ R} 981
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Generator Task Evaluator

GPT-4 GPT-3.5 Llama-2-70 Llama-2-13b Mixtral Mistral-7b

GPT-4 GSM8K 94.3±.1 92.5±.3 84.4±.6 83.3±.3 78.2±.2 76.3±.2

CSQA 88.6±.5 87.4±.4 75.6±.1 74.5±.2 67.9±.3 66.3±.2

GPT-3.5 GSM8K 90.9±.2 85.4±.5 72.3±.2 69.4±.4 67.3±.3 65.2±.2

CSQA 81.9±.3 82.5±.3 71.9±.1 68.5±.3 64.7±.2 63.6±.3

Llama-2-70 GSM8K 76.1±.3 75.6±.5 78.6±.3 78.5±.2 62.9±.4 60.9±.1

CSQA 65.3±.3 65.8±.5 75.4±.3 74.3±.2 61.9±.2 59.4±.2

Llama-2-13 GSM8K 81.4±.3 80.6±.2 75.3±.4 73.4±.2 60.9±.1 59.2±.4

CSQA 82.2±.3 81.9±.3 70.9±.3 67.7±.1 59.1±.5 58.2±.2

Mixtral GSM8K 83.8±.3 81.6±.5 68.3±.2 65.8±.3 79.8±.1 77.9±.3

CSQA 74.8±.2 72.3±.3 65.3±.4 63.2±.3 82.2±.3 81.3±.2

Mistral-7b GSM8K 78.7±.3 77.9±.3 67.5±.3 66.6±.1 73.9±.4 72.1±.1

CSQA 69.4±.4 67.8±.1 62.3±.2 61.8±.4 76.4±.4 72.7±.3

Table 4: Performances Cross-Blanking test. In this test, we elicit the models to generate the Blanked question
(Section 3.2) using the A delivered from other LLMs. "Generator" refers to the model that generates the A.
"Evaluator" refers to the model that is prompted to generate the initial question (example shown in Appendix G).

To convert Q in QH and extract the numerical982

subparts H0
i , . . . , B

k
i , we split QH into its con-983

stituent tokens. Hence, we consider all numeric984

tokens as tokens that encode a number. Numeric985

tokens may be alphanumeric, such as 150 or 2.23,986

or alphabetic, such as three, twice, or half. Us-987

ing this heuristic for numeric tokens, we ignore988

the first numeric token and extract the following989

k tokens sequentially. We skip that question-and-990

answer pair if we cannot extract k tokens. It is991

worth noting that for the datasets we use, k = 1,992

we only consider the problem of backwardly infer-993

ring one missing number in the question, given the994

answer. To simplify the process and better adapt it995

to the subsequent Blanking approach as well, when996

possible, we differentiate the main question of the997

problem (structurally defined by the "?" character998

that ends the sentence or sub-sentence) by splitting999

the Question and the Concept as shown in Figure1000

1.1001

Multiple Choice Question As introduced in Sec-1002

tion 3.1, MCQ tasks do not always have eas-1003

ily maskable symbols, such as numerical values.1004

Here, our contribution is different. Given TbH =1005

(QH , AH), we construct QH from Q. For each1006

question of Dataset:1007

{(Qi, Ai)}ni=1|Qi ∈ Σ∗, Ai ∈ C}1008

where C represents the set of choice options in1009

MCQs. We propose a method to create Dataset′k:1010

{(Q′
i, Ai, (P

0
i , . . . , P

k
i ))}ni=1|Q′

i ∈ Σ∗, P j
i ∈ Σ∗}1011

To convert Q in QH and extract the noun sub- 1012

parts P 0
i , . . . , P

k
i , we split QH into its constituent 1013

tokens and perform part-of-speech (POS) tagging. 1014

We specifically identify nouns, which may be sub- 1015

jects or objects, as our primary tokens of interest. 1016

These tokens are processed and tagged using a POS 1017

tagging algorithm. We sequentially extract the first 1018

k identified noun tokens for each question. We skip 1019

that question-and-answer pair if we cannot extract 1020

k noun tokens. Again, we use k = 1, meaning we 1021

focus on the challenge of inferring a single missing 1022

noun in the question, given the answer. 1023

B.2 Generation for Blanking Approach 1024

As introduced in the section 3.1, in TbB = 1025

(AB, O,QB), we replicate Q with x as shown in 1026

Table 2. However, to contextualize the generation, 1027

we substitute the A with A or ACoT for the target 1028

generated via the CoT prompt. We propose this 1029

approach for both task types. 1030

C Paraphrasing Prompting 1031

To test if prompting approaches could infer the final 1032

answer, our initial strategy concerns transforming 1033

the problem through paraphrasing, as also proposed 1034

by (Deb et al., 2023). This method simplifies the 1035

complex reasoning challenge into a more suitable 1036

forward reasoning task. As a result, we apply the 1037

LLM to this more manageable, rephrased forward 1038

reasoning problem rather than grappling with the 1039

more arduous backward reasoning task. 1040
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In the case of a TbH = (AH , O,QH), we prompt1041

the language model to generate a different prompt1042

P . This rephrased prompt integrates the forward1043

answer AH into the original question QH , altering1044

the goal from discovering the answer AH to deter-1045

mining the value of the blank. We then direct the1046

language model to address this rephrased problem1047

P , bypassing the initial problem.1048

The results, as illustrated in Table 3 and Table 9,1049

reveal that changing the problem and changing the1050

problem by posing the value of x and instructing1051

the LLM to ascertain the value of x, as illustrated in1052

Table 7, yields better results than classic prompting1053

strategies.1054

D Self-Refine1055

Moreover, we utilize the Self-Refine framework1056

proposed by Madaan et al. (2023). This approach1057

is also employed in Self-Verification prompting by1058

(Weng et al., 2023). This iterative prompting tech-1059

nique alternates between refinement and feedback1060

until a predefined condition is met. We have modi-1061

fied the technique to perform backward reasoning1062

on our tasks as done in (Deb et al., 2023).1063

E Paraphrased Self-Refine Prompting1064

To test whether prompting approaches can infer1065

the final answer, our initial strategy involves trans-1066

forming the problem through paraphrasing. This1067

method simplifies the complex challenge of abduc-1068

tive reasoning into a simpler deductive reasoning1069

task. Consequently, we apply the LLM to this more1070

manageable and reformulated reasoning problem1071

instead of tackling the more arduous abductive rea-1072

soning task.1073

Hence, we propose a further experiment by in-1074

cluding paraphrase and self-consistency to obtain1075

higher accuracy (Table 3 and Table 9).1076

F GPT-4 as a Judge1077

In Section X, we used BERTScore to evaluate the1078

performances achieved by different models in the1079

Blanking task introduced in Section Y. In this addi-1080

tional experiment, we replicate the Cross-Blanking1081

test using GPT-4 as the judge, which, given the1082

original question and the question generated by the1083

LLM under test, will produce a positive or negative1084

judgment that we will define as accuracy.1085

In Table X, where we have reported the accu-1086

racies obtained, we can observe no sensible dif-1087

ferences compared to Table Y. Therefore, even1088

though the two metrics are not directly comparable, 1089

BERTScore approximates the accuracy of a GPT-4 1090

evaluator well. 1091
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G Prompting Approaches

Prompt: MCQ Tf to M1

Question: <Question>
Choices:
a) <Option1>
b)...
Answer:
+ Let’s think step by step (CoT Prompt)
generated answer M1 (A′ or A′

CoT )

Prompt: MCQ Tf to M2

Question: <Question>
Choices:
a) <Option1>
b)...
Answer:
+ Let’s think step by step (CoT Prompt)
generated answer M2 (A′′ or A′′

CoT )

Table 5: Example of input-prompt for Cross-Blanking Task.

Prompt: Cross-Blanking Approach on M1

Fill in the blank given the following
answer find the question that generates
it.
Context: t1, t2, . . . , tn−1, tn
Question: x
Answer: A′′ or A′′

CoT

Prompt: Cross-Blanking Approach on M2

Fill in the blank given the following
answer find the question that generates
it.
Context: t1, t2, . . . , tn−1, tn
Question: x
Answer: A′ or A′

CoT

Table 6: Example of Cross-Blanking Task where we provide to M1 the A′′
CoT generated from M2 , and vice versa.

Paraphrase Prompting

Question: A grove has 15 trees. Today, grove workers will add x trees. What will be
the total number of trees after this addition? Answer: 21
Paraphrased: A grove has 15 trees. Grove workers added x trees today. The total
becomes 21 trees. Calculate the value of x.
Answer: Originally, there are 15 trees. After planting, the total is 21 trees.
Therefore, x = 21 - 15 = 6 trees. The solution is 6.
Question: he parking lot currently holds 3 cars. If x additional cars arrive, what
is the total number of cars in the parking lot? Answer: 5
Paraphrased: There are 3 cars in the parking lot initially, and x additional cars
arrive, making a total of 5 cars. Determine x.
Answer: Initially, there are 3 cars. After x cars arrive, 3 + x = 5, hence x = 5 - 3
= 2. The solution is 2.
Question: <Question>
Answer: <Answer>
Paraphrasis:

Table 7: Paraphrasis prompting.
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H Detailed Results
Dataset Approach GPT-4 GPT-3.5 Llama-2-70 Llama-2-13 Mixtral Minstral-7 Orca2-13 Orca2-7

Math Word Problem

GSM8k Standard 92.8 ±.2 62.4 ±.1 56.8 ±.3 39.5 ±.2 60.8 ±.4 54.2 ±.2 53.4 ±.4 50.2 ±.1

Hiding 51.6 ±.2 33.8±.4 16.8±.3 5.5±.3 21.4±.3 7.4±.3 6.3±.4 5.8±.1

SVAMP Standard 92.5±.4 79.1±.3 70.3±.2 67.2±.2 71.5±.2 68.7±.1 69.9±.2 64.7±.4

Hiding 44.2±.3 36.3±.2 23.7±.3 20.8±.2 24.2±.2 22.1±.1 20.4±.2 18.1±.3

MultiArith Standard 96.3±.4 93.0±.4 89.2±.2 87.3±.1 90.2±.2 88.2±.3 85.8±.2 83.1±.2

Hiding 55.6±.3 18.4±.1 17.3±.3 15.7±.4 19.3±.2 15.9±.1 12.8±.2 10.6±.3

AddSub Standard 92.8±.3 89.5±.2 82.5±.2 75.6±.4 83.6±.2 78.5±.1 77.3±.2 74.5±.3

Hiding 70.3±.3 69.4±.3 68.2±.2 59.2±.2 65.6±.2 62.1±.1 60.7±.2 59.8±.4

AQuA-RAT Standard 62.2±.3 56.5±.2 49.8±.4 47.1±.4 54.4±.2 47.7±.1 43.2±.2 41.6±.2

Hiding 26.7±.2 20.3±.1 19.5±.2 15.2±.3 20.3±.2 18.2±.4 12.4±.2 9.2±.3

GAIA Standard 23.4±.2 21.3±.2 18.8±.4 16.1±.2 19.3±.3 15.5±.2 14.6±.1 9.2±.1

Hiding 17.6±.4 16.5±.2 14.8±.3 11.3±.2 14.3±.4 12.2±.1 10.4±.2 8.2±.4

Multiple Choices Question

CSQA Standard 86.6±.1 80.2±.2 73.8±.4 65.5±.2 81.3±.3 69.2±.2 70.6±.3 69.4±.2

Hiding 61.6±.2 58.5±.1 56.4±.4 52.6±.4 59.6±.2 55.9±.3 45.6±.2 42.3±.2

OBQA Standard 86.4±.2 82.3±.2 65.6±.2 60.4±.1 83.5±.2 62.7±.4 65.8±.2 61.4±.3

Hiding 58.6±.3 54.9±.1 54.6±.4 51.3±.2 55.3±.2 53.2±.4 42.1±.2 40.5±.3

PIQA Standard 88.4±.2 84.3±.1 82.6±.2 66.4±.4 83.5±.3 67.3±.2 68.8±.3 61.6±.2

Hiding 57.3±.4 55.6±.4 53.9±.3 47.7±.2 54.3±.1 52.2±.1 50.1±.2 48.5±.4

Table 8: Accuracies (%) on dataset proposed in Section 4.1 using Standard and Hiding approaches.

Strategy Model GSM8KH SVAMPH MultiArithH AQua-RATH AddSubH GAIAH

Hiding (0-shot)
GPT-3.5 33.8±.4 36.3±.2 18.4±.1 69.4±.3 20.3±.1 16.5±.2

Llama-2-70 16.8±.3 23.7±.3 17.3±.2 68.2±.2 19.5±.3 14.8±.2

Mixtral 21.4±.3 24.2±.2 19.3±.3 65.6±.2 20.3±.1 14.3±.4

Hiding (5-shot)
GPT-3.5 35.4±.3 38.4±.4 20.5±.3 70.6±.4 22.1±.3 18.6±.3

Llama-2-70 20.3±.4 24.3±.3 18.9±.2 70.3±.3 20.6±.3 16.5±.2

Mixtral 22.5±.2 25.6±.2 20.5±.2 66.6±.4 23.0±.1 16.3±.3

CoT (5-shot)
GPT-3.5 34.5±.4 35.3±.4 19.5±.1 70.2±.3 19.4±.5 15.9±.1

Llama-2-70 15.9±.1 24.2±.3 14.6±.3 68.4±.2 18.2±.1 15.1±.3

Mixtral 20.8±.3 22.1±.3 20.2±.3 64.9±.1 21.4±.3 15.1±.3

Complex-CoT (0-shot)
GPT-3.5 40.5±.1 39.9±.1 21.7±.2 73.7±.3 24.5±.6 21.2±.4

Llama-2-70 20.9±.2 28.4±.1 16.9±.3 69.8±.4 22.3±.2 20.1±.4

Mixtral 21.2±.3 23.1±.3 20.6±.1 65.0±.2 24.1±.1 18.2±.1

Complex-CoT (5-shot)
GPT-3.5 43.5±.2 41.3±.2 26.4±.2 76.6±.3 24.8±.2 26.3±.4

Llama-2-70 22.4±.3 30.5±.1 17.2±.2 70.2±.1 22.3±.2 23.0±.2

Mixtral 22.3±.1 24.5±.4 22.6±.1 65.8±.3 24.6±.1 20.2±.2

Paraphrasing (2-shot)
GPT-3.5 50.2±.3 45.8±.4 36.8±.3 79.2±.4 26.7±.2 29.8±.2

Llama-2-70 29.3±.2 37.2±.3 25.6±.2 76.3±.1 29.2±.2 29.2±.1

Mixtral 28.9±.2 31.5±.1 30.1±.2 69.9±.1 29.0±.0 30.0±.1

Paraphrasing (5-shot)
GPT-3.5 56.7±.1 50.3±.1 41.9±.4 83.8±.2 32.1±.1 33.9±.4

Llama-2-70 34.1±.1 44.1±.2 31.7±.3 80.1±.1 33.1±.3 35.0±.3

Mixtral 33.9±.1 38.9±.2 33.3±.1 73.8±.4 33.7±.1 36.2±.5

Self-Refine (2-shot)
GPT-3.5 53.8±.2 49.1±.3 40.1±.4 80.1±.3 30.4±.2 30.1±.4

Llama-2-70 34.1±.4 40.1±.1 31.7±.3 78.2±.3 30.1±.3 33.2±.3

Mixtral 32.1±.2 36.1±.1 30.1±.5 72.5±.2 33.1±.6 32.1±.3

GPT-3.5 66.2±.3 58.8±.1 45.9±.3 82.6±.4 39.3±.1 32.9±.2

Paraphrasing Llama-2-70 33.9±.1 42.3±.1 35.9±.3 78.7±.1 36.5±.5 36.1±.1

+Self-Refine (2-shot) Mixtral 39.1±.5 44.3±.1 31.6±.4 75.1±.2 35.1±.5 31.3±.2

(Deb et al., 2023)
custom Prompt "CW" GPT-3.5 41.8 49.7 51.1 - - -
Ensemble GPT-3.5 65.3 66.7 92.6 - - -

Table 9: Improvements in accuracy with various prompting strategies in the Hiding approach.
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Name URL total examples used examples
GSM8k https://huggingface.co/datasets/gsm8k 1320 1270
AddSub https://huggingface.co/datasets/allenai/lila/viewer/addsub 109 105
MultiArith https://huggingface.co/datasets/ChilleD/MultiArith 420 350
AQuA-RAT https://huggingface.co/datasets/aqua_rat 360 316
SVAMP https://huggingface.co/datasets/MU-NLPC/Calc-svamp 1000 1000
GAIA https://huggingface.co/datasets/gaia-benchmark/GAIA 466 195
CSQA https://huggingface.co/datasets/commonsense_qa 1100 1100
OBQA https://huggingface.co/datasets/openbookqa 500 500
PIQA https://huggingface.co/datasets/piqa 3000 2000

Table 10: We report the sources where we download the datasets used in our work. For each dataset containing
many instances, we randomly composed a subset.

Generator Task Evaluator

GPT-4 GPT-3.5 Llama-2-70 Llama-2-13b Mixtral Mistral-7b

GPT-4 GSM8K 95.3 94.3 87.2 84.5 81.6 79.8
CSQA 92.3 89.5 79.7 78.9 71.3 69.6

GPT-3.5 GSM8K 92.1 89.2 75.6 72.3 70.6 69.8
CSQA 82.3 84.1 73.3 70.2 69.7 69.3

Llama-2-70 GSM8K 77.6 78.7 81.3 80.5 66.7 62.1
CSQA 66.4 67.2 78.4 76.3 62.9 62.3

Llama-2-13 GSM8K 83.2 81.7 76.8 76.4 63.1 61.3
CSQA 83.4 82.6 72.3 69.1 61.3 60.4

Mixtral GSM8K 84.3 85.6 71.4 67.9 82.3 79.3
CSQA 76.3 74.5 66.2 66.9 83.4 85.3

Mistral-7b GSM8K 79.4 80.1 69.5 68.6 75.5 73.5
CSQA 71.3 69.6 66.4 64.3 77.9 76.8

Table 11: Performances Cross-Blanking test using GPT-4 as a judge. In this test, we elicit the models to generate
the Blanked question (Section 3.2) using the A delivered from other LLMs. "Generator" refers to the model that
generates the A. "Evaluator" refers to the model that is prompted to generate the initial question (example shown in
Appendix G). Unlike Table 4, we use GPT-4 as the judge (accuracy) instead of the previously used BERTScore in
this experiment.
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