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Abstract

We propose feature perturbation, a simple yet effective exploration strategy for
contextual bandits that injects randomness directly into feature inputs, instead of
randomizing unknown parameters or adding noise to rewards. Remarkably, this
algorithm achieves Õ(d

√
T ) worst-case regret bound for generalized linear contex-

tual bandits, while avoiding the Õ(d3/2
√
T ) regret typical of existing randomized

bandit algorithms. Because our algorithm eschews parameter sampling, it is both
computationally efficient and naturally extends to non-parametric or neural network
models. We verify these advantages through empirical evaluations, demonstrating
that feature perturbation not only surpasses existing methods but also unifies strong
practical performance with the near-optimal regret guarantees.

1 Introduction

Multi-armed bandits (MABs) provide the canonical model for sequential decision-making under
uncertainty: at each round a decision-making agent selects one of several arms to maximize cumu-
lative reward while balancing exploration and exploitation. However, classical MABs ignore side
information that often accompanies decisions in practice. Contextual bandits address this limitation
by allowing the agent to first observe contextual information and then choose an action tailored to
that context—e.g., features of users and/or items inform which arm to pull. This contextualized
formulation has become a pivotal framework in online learning and sequential decision-making, with
a rich literature on algorithms and guarantees [2, 7, 38, 9, 34].

A widely studied formulation of contextual bandits is the (generalized) linear contextual bandit,
where the expected reward is modeled by a linear function [2, 7, 38, 11, 1] or, more generally, by
a generalized linear model (GLM) [17, 39, 26, 37]. In both linear and GLM settings, deterministic
methods based on optimism in the face of uncertainty (OFU) [7, 38, 1, 39] and randomized approaches
such as Thompson Sampling (TS) [10, 6, 3] or Perturbed History Exploration (PHE) [31, 32, 35] have
been extensively studied. Notably, OFU-type algorithms achieve near-optimal regret of Õ(d

√
T ) in

linear contextual bandits (and likewise in GLM bandits [39]), yet often underperform compared to TS
and PHE in practice. In contrast, randomized exploration methods typically exhibit superior empirical
performance but suffer from sub-optimal theoretical guarantees: standard analyses confirm a regret
bound of Õ(d3/2

√
T ) [3, 6] in the frequentist (worst-case) setting.1 Crucially, this gap is not merely

an artifact of analysis: Hamidi and Bayati [21] show it reflects an inherent cost of randomization in
(generalized) linear Thompson sampling. This result highlights a fundamental mismatch between the

1LinTS [3, 6] achieves a regret of Õ(min(d3/2
√
T , d

√
T logK)). While Kveton et al. [31] originally

showed that LinPHE has a regret of Õ(d
√
T logK), where K is the number of arms, a recent work [35]

proves that LinPHE also satisfies Õ(d3/2
√
T ) regret. For further discussion on trading off factors of O(

√
d)

vs.O(
√
logK), see Agrawal and Goyal [6]. In this work, we consider even a large action space with K > ed,

so the Õ(d3/2
√
T ) regret of randomized (generalized) linear bandit algorithms is the main focus of discussion.
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existing randomized exploration and the tighter optimism mechanism in OFU-based approaches. This
dichotomy prompts a natural question: is it possible to close the gap between randomized exploration
and Õ(d

√
T ) worst-case regret? If one adheres strictly to randomly sampling the parameters (as

in TS) or perturbing the observed rewards (as in PHE), there appears a fundamental barrier [21]
preventing regret from achieving Õ(d

√
T ).

In this work, we propose a simple yet effective alternative: instead of sampling parameters or
perturbing rewards, we randomly perturb the observed features (or contexts). By shifting the focus of
exploration from parameter space to feature space, we circumvent the limitations that impose higher
regret on existing randomized algorithms. Remarkably, our analysis shows that this new approach
not only retains the empirical advantages of randomization but also achieves Õ(d

√
T ) worst-case

regret in (generalized) linear bandit settings, with no additional dependence on the number of arms.
Furthermore, our method avoids the computational overhead of sampling parameters, making it
attractive for a wide range of real-world applications.

Beyond theoretical efficiency, feature perturbation can seamlessly extend to more flexible or non-
parametric reward models, including neural networks. We demonstrate this empirically, showing that
feature-based randomization can drive effective exploration even when specific parametric model
assumptions may not hold. Hence, our proposed approach unifies strong theoretical guarantees with
practical efficacy in (generalized) linear contextual bandits, and extends practically to more complex
models. Our main contributions are summarized as follows:

• Feature perturbation for contextual bandits. We introduce a new class of algorithms for
randomized exploration, termed feature perturbation, which focuses on perturbing feature
inputs rather than parameters or rewards. This approach is straightforward to implement and
conceptually distinct from existing randomized exploration strategies.

• Tight regret bounds. To the best of our knowledge, our work is the first randomized
algorithm for generalized linear contextual bandits that achieves: (i) a regret bound of
Õ(d
√
T ), matching the best-known guarantees of deterministic (OFU-based) methods;

and simultaneously (ii) benefiting from an instance-dependent constant κ. Notably, our
algorithm’s regret does not increase (even logarithmically) with the number of arms.

• Empirical validation. Through extensive experiments on both synthetic and real-world
data, we show that feature perturbation not only performs competitively against existing
randomized methods but also generalizes beyond parametric models (e.g., deep neural
networks), demonstrating robustness even when linear assumptions do not hold.

2 Related works

Contextual bandits have been extensively investigated under various modeling assumptions. In the
linear bandit setting, deterministic methods based on OFU [1, 7] achieve near-optimal Õ(d

√
T )

regret, but often exhibit conservative exploration in practice. By contrast, randomized algorithms
such as TS [3, 6, 10] and PHE [31, 32] typically show better empirical performance yet suffer from a
higher Õ(d3/2

√
T ) regret bound. Notably, Hamidi and Bayati [21] demonstrated that the extra

√
d

inflation in TS-type algorithms is unavoidable in worst-case scenarios: eliminating this factor would
lead to a linear dependence on T . Consequently, parameter-based randomization cannot, in general,
achieve Õ(d

√
T ) regret without further modifications.

Generalized linear bandits (GLB; [17, 39]) extend linear bandits to settings where rewards follow
a nonlinear link function. UCB- and TS-based approaches [3, 17, 32, 46] have also been applied
here, displaying the same contrast between deterministic and randomized exploration. While UCB-
type methods reach Õ(d

√
T ) regret, they tend to over-explore in practice; randomized strategies

mitigate this over-exploration but retain an additional
√
d penalty in the worst case. Like their linear

counterparts, these methods rely on sampling the unknown parameter or perturbing rewards rather
than altering the feature representation.

By contrast, our work introduces a new class of feature-perturbation (FP) algorithms designed
to circumvent the dimensional penalty inherent in standard randomized approaches. Instead of
randomizing parameters or rewards, we propose to perturb the features directly. This perspective not
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only preserves the empirical robustness associated with randomized strategies but also achieves a
tight regret bound in both linear and generalized linear settings—thereby reconciling the theoretical
and practical advantages of contextual bandit exploration.

3 Preliminaries

Notations. For vectors x, y ∈ Rd, let ∥x∥ denote the 2-norm and ∥x∥A =
√
x⊤Ax the weighted

norm for a positive definite matrix A ∈ Rd×d. The inner product is x⊤y = ⟨x, y⟩, and the weighted
version is x⊤Ay = ⟨x, y⟩A. The notation Õ hides logarithmic factors in big-O notation, retaining
instance-dependent constants. For a real-valued function f , we write ḟ and f̈ to denote its first and
second derivatives. The set {1, . . . ,K} is abbreviated as [K].

Generalized linear contextual bandit. A generalized linear model (GLM; [41]) describes a
response r ∈ R drawn from an exponential-family distribution with mean µ(x⊤θ∗), where x ∈ Rd is
a feature vector and θ∗ ∈ Rd is an unknown parameter. Given differentiable functions g and h, and a
base measure ν, the conditional density of r given x takes the form:

dp(r | x; θ∗) = exp
(
rx⊤θ∗ − g(x⊤θ∗) + h(r)

)
dν, (1)

where the derivative of g defines the link function µ.2 Let Ht−1 := σ({(xτ , rτ )}t−1
τ=1) denote the

filtration up to round t− 1. We define Pt(·) := P(· | Ht−1) and Et [·] := E [· | Ht−1]. The negative
log-likelihood and the maximum likelihood estimate (MLE) at round t are then given by:

Lt(θ) =

t−1∑
τ=1

(
g(x⊤

τ θ)− rτx
⊤
τ θ
)
, θ̂t := argmin

θ∈Θ
Lt(θ).

In the generalized linear contextual bandit (GLB) setting, the agent observes a context υt ∈ C and
a corresponding set of feature vectors Xt ⊂ Rd representing each allowable arm a ∈ A(υt) at
each round. Upon selecting xt ∈ Xt, the agent receives a stochastic reward rt ∼ p(· | xt; θ

∗).
The learner aims to minimize the regret: R(T ) =

∑T
t=1

(
µ(x⊤

t∗θ
∗)− µ(x⊤

t θ
∗)
)
, where xt∗ :=

argmaxx∈Xt
µ(x⊤θ∗) is the optimal arm at round t, which depends on the context ct.

4 Algorithm: GLM-FP

Algorithm 1 GLM-FP: Feature Perturbation in Generalized Linear Bandits

1: Input: Regularization parameter λ > 0, tuning parameter {ct}
2: for t = 1, 2, . . . , T do
3: Compute θ̂t = argminθ∈Rd Lt(θ; {xτ , rτ}t−1

τ=1)

4: Sample ζt ∼ N (0, I)

5: Compute x̃ti = xti + ct ·
∥xti∥Ĥ

−1
t

∥θ̂t∥
· ζt for all i

6: Choose it = argmaxi∈[|Xt|] µ(x̃
⊤
ti θ̂t) and observe reward rt ▷ Let xt := xt,it

7: end for

At each step t, given the filtrationHt−1, the algorithm computes the MLE θ̂t (line 3). Since MLE lacks
a closed-form solution, we employ Sequential Quadratic Programming (SQP; [14]) or Iteratively
Reweighted Least Squares (IRLS; [47]). Instead of perturbing rewards or parameters, the algorithm
injects controlled randomness into feature vectors using a perturbing distribution D. By default,
we use a multivariate normal distribution (line 4), but any distribution satisfying concentration and
anti-concentration properties can be employed, as analyzed in Section 5.2.

A fundamental property of the GLB is that the strictly increasing link function simplifies the problem
structure, making it resemble linear bandits. While prior works [3, 39, 46] adopt near-identical

2We normalize the reward model so that Var[rt | xt] = µ̇(x⊤
t θ

∗). Scaling the variance by σ2 (by inserting
σ2 in the denominator of the exponential term of Eq. (1)) accordingly yields a σ-inflated regret bound.
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methods to linear bandits—typically using the vanilla Gram matrix Vt = λI +
∑t−1

τ=1 xτx
⊤
τ —our

approach takes a more refined direction. To precisely control the perturbation magnitude for each
feature representation, our approach utilizes a weighted Gram matrix, Ĥt := λI +∇2Lt(θ̂t).

This adaptive structure, modulated by a tunable parameter ct, enables a more targeted perturbation
strategy. Using the resulting scaling factors, the algorithm perturbs each feature vector to construct a
set of perturbed vectors, {x̃ti} for reachable arms at round t (line 5). Importantly, the perturbation
noise ζt is shared across all arms, coupling each feature vector with the same random variable.
This design eliminates the explicit dependence on K in the regret bound, thereby yielding stronger
theoretical guarantees and improved empirical performance. Finally, the algorithm selects the arm
that maximizes µ(x̃⊤

ti θ̂t) and updates its history upon observing the reward rt (lines 6).

4.1 Extension to general function class

The algorithm extends naturally to more flexible function classes, as described in Algorithm C.1.
Under the realizability assumption (i.e., f∗∈F), the estimate f̂t∈F is obtained via a least squares
oracle on the historyHt−1 [19, 45, 49]. Given the structural of the bandit reward model, a sampling
distribution is then defined for each arm and used to construct a set of perturbed contexts {x̃ti}. The
algorithm selects the arm that maximizes f̂t(x̃ti), thereby balancing exploration and exploitation.

The proposed GLM-FP algorithm is an instance of this framework, characterized by two specific
design choices: (i) a Gaussian sampling distribution D(xti,Σti) ≜ N (xti,Σti) centered at xti

with elliptical covariance scaling with the uncertainty in the direction of xti and normalized by the
estimated parameter norm; and (ii) a coupled perturbation scheme, where a single shared random
vector ζt perturbs all arms simultaneously, in contrast to perturbing each arm independently.

4.2 Intuition behind the algorithm

In contextual bandit problems, randomized algorithms can be broadly categorized into two types:
those that introduce randomness into the underlying model and those that inject randomness directly
into the estimated expected rewards. The former category includes methods such as PHE [31] and
TS [3, 6], which compute perturbed model parameters to induce exploration. However, as noted
by Hamidi and Bayati [21], this approach can be suboptimal even in linear settings. The latter
category includes algorithms such as RandUCB [46], where the model is trained deterministically
and randomness is introduced by adding stochastic bonuses to the estimated rewards of each arm.
While effective in inducing exploration, such reward perturbation can violate the inductive bias of the
function class, since the resulting scores for arms may not be realized simultaneously by any single
model f ∈ F—even in simple linear cases.

To address these limitations, we propose an alternative strategy that retains the estimated model f̂
from past data and introduces randomness through input perturbations at decision time. Exploring
directly in the feature space preserves the structural assumptions of the function class and remains
effective even in overparameterized settings where p ≫ d, such as neural bandits. It also aligns
naturally with real-world scenarios in which contextual features contain inherent noise [8, 28, 29].
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Figure 1: (Left) Model perturbation methods randomize rewards via off-estimated models f̃t. (Right)
Feature Perturbation (FP) perturbs inputs and evaluates them with a fixed model f̂t.
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As illustrated in Figure 1, whereas UCB, TS, PHE, and RandUCB randomize parameters or reward
estimates via modified models f̃t, GLM-FP explores through feature-space perturbations evaluated
under a fixed f̂ . This structural shift preserves the inductive bias of the model class and decouples
exploration from parameter uncertainty, a property that becomes crucial in high-dimensional regimes.

5 Regret analysis of GLM-FP

In this section, we establish the regret guarantee for the proposed algorithm, GLM-FP, and outline the
key steps in its proof. We introduce fundamental concepts and lemmas that form the backbone of
our analysis. We begin by presenting the standard assumptions commonly adopted in the analysis of
generalized linear bandit algorithms [1, 3, 4, 6, 15, 17, 32, 37, 39, 52].
Assumption 1 (Boundedness). The feature space X and the parameter space Θ are compact subsets
of Rd. For any x ∈ X[T ] and θ∗ ∈ Θ, we have ∥x∥ ≤ 1 and ∥θ∗∥ ≤ 1.
Assumption 2 (Self-concordance). The function g is three times differentiable, and its derivative
ġ = µ is strictly increasing and Lµ-Lipschitz continuous. Furthermore, g is self-concordant,
characterized by the constant Mµ := supx∈X ,θ∈Θ |µ̈(⟨x, θ⟩)| /µ̇(⟨x, θ⟩).

Many widely studied GLB instances naturally satisfy these assumptions [43]. For example, the triple
(µ(z),Lµ,Mµ) takes the form (z, 1, 0) in linear, ( 1

1+e−z ,
1
4 , 1) in logistic, and (ez, e, 1) in Poisson.

5.1 Confidence bound for the true parameter

An important step in analyzing the regret bound of the algorithm is to establish a confidence set for
the underlying parameter θ∗. This involves constructing a region that reliably contains θ∗ throughout
the learning process. To obtain a practical and tighter bound, we adopt confidence sets derived from
the log-likelihood function using an ellipsoidal relaxation. The confidence width is provided by
recent work [37], which can be substituted with alternative, potentially tighter bounds.
Lemma 1 (Adapted from Theorem 3.2. in Lee et al. [37]). Let Lt := maxθ∈Θ ∥∇Lt(θ)∥ denote the
Lipschitz constant of the loss function Lt(·).3 For any λ > 0, define the regularized Hessian matrix
at θ̂t as Ĥt := ∇2Lt(θ̂t) + λI . Then, with probability at least 1 − δ, for all t ≥ 1, it holds that
θ∗ ∈ Θt(δ, λ) := {θ ∈ Rd | ∥θ − θ̂t∥Ĥt

≤ βt(δ)}, where

βt(δ) =

√
4λ+ 2(1 +Mµ)

(
log

1

δ
+ d log

(
2eLt

d

))
.

5.2 Concentration and anti-concentration

In addition to ensuring that θ̂t remains close to the true parameter θ∗, it is crucial to balance the
degree of randomization in the algorithm. Our regret analysis relies on showing that, with an
appropriate choice of the tuning parameter ct, the perturbed feature x̃t is stochastically optimistic,
while concentrated around its estimated value µ(x⊤

t θ̂t). These properties are fundamental to the
analysis, and we introduce the relevant components in this section.
Definition 1. Let t ∈ [T ]. We define the following events:

(i) Êt: θ̂τ remains close to θ∗ for all steps τ ≤ t.

(ii) Ẽt: all perturbed vectors x̃τi concentrated around their corresponding xτi for all steps τ ≤ t.

For a given confidence level δ ∈ (0, 1), define δ′ = δ/(4T ) and γt(δ) = βt(δ
′)
√
c log(c′/δ), where

c and c′ are constants consistent with Eq. (2). The events are formally defined as:

Êt :=
{
∀τ ≤ t; ∥θ̂t − θ∗∥Ĥt

≤ βt(δ
′)
}

and Ẽt := {∀τ ≤ t, xτi ∈ Xτ ; x̃τi ∈ Eτ (xτi)} ,

where Et(x) := {x̃ ∈ Rd | |⟨x̃− x, θ̂t⟩| ≤ γt(δ
′)∥x∥Ĥ−1

t
} represents a high-probability region for

the perturbed feature vector associated with each arm x.
3It has been shown by Lee et al. [37] that Lt = O(t) for linear, logistic, and Poisson bandit instances.
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A key requirement for the perturbation distribution D is the following concentration property: for
some constants c, c′ > 0 and any unit vector u, we have

Pζ∼D

(
|u⊤ζ| ≤

√
c log(c′/δ)

)
≥ 1− δ. (2)

Remark 1. The perturbing distribution of TS on θ is described in Appendix B. Unlike in TS, the
concentration here is evaluated along a fixed direction u, not over all coordinates. This avoids
the need for a union bound over d dimensions, and the resulting bound is independent of d. This
dimensionality reduction is a key advantage of perturbing features instead of parameters.

By construction, the events satisfy the nested structure ÊT ⊂ · · · ⊂ Ê1 and ẼT ⊂ · · · ⊂ Ẽ1. Building
on these definitions, we show that the proposed perturbation distribution induces an appropriate
balance between exploration and exploitation, as formalized in the following lemmas.

Lemma 2 (Concentration). Under Assumptions 1 and 2, with ct = βt(δ
′), P(ÊT ∩ ẼT ) ≥ 1− δ

2 .

Lemma 3 (Stochastic optimism). For each round t, given that the events Êt and Ẽt occur, the
probability of anti-concentration, conditioned on the filtrationHt−1 and under Assumptions 1 and 2,
is lower bounded as

Pt(µ(x̃
⊤
t θ̂t) ≥ µ(x⊤

t∗θ
∗) | Êt, Ẽt) ≥

1

4
√
eπ

.

In our construction, the concentration term in Eq. (2) induces only a constant-order inflation, yielding
both βt and γt scaling as O(

√
d). In contrast, TS incurs an extra

√
d factor, resulting in γt = O(d).

This leads to a tighter exploration term in our algorithm and improved regret performance.

5.3 Regret bound of GLM-FP

The complexity of the GLB problem is fundamentally determined by the following quantities, which
captures the degree of nonlinearity in the reward function:

κ∗ :=

∑T
t=1 µ̇(x

⊤
t∗θ

∗)

T
, κ := min

x∈X[T ],θ∈Θ
µ̇(x⊤θ), where X[T ] :=

T⋃
t=1

Xt. (3)

These may scale exponentially small, particularly in the case of logistic bandits [15]. The following
theorem presents the regret guarantee for our algorithm.
Theorem 1. For all δ ∈ (0, 1), define δ′ = δ/(4T ). Under Assumptions 1 and 2, with ct = βt(δ

′)
and λ = O(d), the cumulative regret R(T ) is bounded with probability at least 1− δ as follows:

R(T ) = Õ
(
d
√

κ∗T + d2/κ
)
.

Discussion of Theorem 1. The leading term of the regret guarantee is Õ(d
√
κ∗T ), which matches

the minimax optimal regret bound in terms of the dimensionality d, the horizon T , and the instance-
dependent constant κ∗ [4, 37]. While RandUCB [46], another randomized algorithm, also achieves
a regret bound of Õ(d

√
T ), it is penalized by its inverse dependence on κ, lacking adaptation to

instance-dependent complexity. In contrast, to the best of our knowledge, our result is the first to show
that a randomized algorithm achieves a regret bound with linear d-dependency, without additional
dependence on the number of arms, benefiting form κ∗ in GLB problems.

5.4 Proof sketch of Theorem 1

Our proof begins by decomposing the instantaneous regret into two components: RegFP, the regret
which arises from the randomization through FP, and RegEST, the regret accounting for the estimation
error. By bounding each component separately, we derive the overall regret bound:

R(T ) =

T∑
t=1

( Optimism︷ ︸︸ ︷
µ(x⊤

t∗θ
∗)− µ(x̃⊤

t θ̂t)+

Perturbation Concentration︷ ︸︸ ︷
µ(x̃⊤

t θ̂t)− µ(x⊤
t θ̂t)

)
︸ ︷︷ ︸

RegFP

+

T∑
t=1

(
µ(x⊤

t θ̂t)− µ(x⊤
t θ

∗)
)

︸ ︷︷ ︸
RegEST

. (4)
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To bound RegFP, we rely on two key properties: (i) optimism induced by selecting the best estimated
arm, and (ii) concentration of the perturbation around the original context. Under the high-probability
events ÊT and ẼT , both properties are well controlled, leading to the following bound:

RegFP ≤ (8
√
eπ + 1)

T∑
t=1

∣∣∣∣ max
x∈Et(xt)

µ(x⊤θ̂t)− µ(x⊤
t θ̂t)

∣∣∣∣+ Õ
(√

d2T

λ2

)
,

where the Õ(·) term results from an Azuma–Hoeffding concentration and becomes negligible under
the choice λ = O(d). Note that since the stochastic optimistic probability in Lemma 3 is lower
bounded by a constant, RegFP can be effectively bounded by the sum of per-round concentration
widths, multiplied by a constant that is independent of d and T .

Unlike previous randomized algorithms [3, 32, 46] that linearize the reward function and thereby
suffer regret bounds inversely proportional to κ, our analysis avoids such linearization. Instead, we
directly utilize the gradient of the link function µ to characterize the shape of the elliptical confidence
region, enabling more efficient exploration tailored to the reward model. This is reflected in the
weighted Gram matrix Ĥt, where the curvature of µ enters via the term µ̇(x⊤

τ θ̂t).

However, this construction introduces a dependency on t (rather than solely on τ ) in the weighted
Gram matrix, which precludes a direct application of the standard Elliptical Potential Lemma (EPL).
To address this, we build upon recent analytical developments [4, 15, 35], and introduce a lower
envelope of derivatives by defining θ̄t as the minimizer of µ̇(x⊤

t θ) over the union ∪τ∈[t,T ]Θτ (δ, λ).

This yields a matrix H̄t := λI +
∑t−1

τ=1 µ̇(x
⊤
τ θ̄τ )xτx

⊤
τ which satisfies Ĥt ⪰ H̄t, thereby enabling

the application of EPL. We bound RegEST in a similar fashion and show that both RegFP and RegEST
admit the same upper bound. This reduces the analysis to solving a quadratic inequality of the form:

Regmax ≤ A
√
B + CRegmax +D, where Regmax = max{RegFP,RegEST}.

The constants A, B, C, and D are explicitly analyzed in the full proof, deferred to Appendix E.

6 Carving off the
√
d factor compared to TS

The proposed algorithm, GLM-FP, adopts a novel exploration strategy by perturbing the input feature
vectors, in contrast to conventional randomized algorithms such as Thompson Sampling (TS), which
introduce randomness into the model parameter θ. This design yields a regret bound with linear
dependence on d, whereas TS incurs a higher O(d3/2) dependence. We examine the origin of this
discrepancy by comparing the linear variants of both algorithms (see Appendix C.2), highlighting
how each introduces randomness to facilitate exploration.

The randomized evaluation score f̃t(xi) (either x⊤
ti θ̂t for TS or x̃⊤

ti θ̂t for FP) for each arm used for
action selection in both algorithms is straightforward to compute as follows:

(TS) f̃t(xi) = x⊤
ti θ̃t = x⊤

ti θ̂t+ct x
⊤
tiV

−1/2
t ζt, (FP) f̃t(xi) = x̃⊤

ti θ̂t = x⊤
ti θ̂t+ct zt∥xti∥V −1

t
,

where ζt ∼N (0, I) and zt ∼N (0, 1). Thus, for each arm individually, both methods induce the
same Gaussian distribution,4 f̃t(xi) ∼ N (x⊤

ti θ̂t, c
2
t∥xti∥2V −1

t

). However, the object of perturba-
tion—parameter in TS versus feature in FP—fundamentally alters how exploration bonuses are
assigned and how arm comparisons are coupled at each timestep.

In TS, the bonus ⟨xti, ζt⟩Vt
−1/2 projects each arm onto a shared random direction ζt in the V

−1/2
t -

transformed space. As conceptually illustrated in Figure 2a, this shared dependence can produce
counterintuitive effects: well-explored arms may occasionally receive large bonuses simply due
to alignment with ζt, while under-explored ones may be neglected. Because the same ζt governs
all arms, the analysis must ensure uniform reliability of exploration across directions, requiring
high-probability control of the d-dimensional Gaussian vector ζt. Applying a union bound over d
coordinates introduces an additional

√
d factor into the regret bound.

4In the linear bandit setting, this distribution also matches RandUCB [46], though its derivation is conceptually
distinct and diverges beyond the GLB case; see Section 4.2 and Appendix A.
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(a) Illustration of the transformation of the feature vectors in TS.
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Figure 2: (a) Transformation of the well-explored arm xt1 and under-explored arm xt2 using
A = D1/2P⊤, where V

−1/2
t = PDP⊤. Left: ζ1 induces a proper bonus. Right: ζ2 reverses the

effect. (b) Average terminal regret R(T ) over 100 runs with T = 200,000, K = 50, and varying d.

FP, in contrast, decouples exploration from directional uncertainty. Its bonus zt · ∥xti∥V −1
t

scales
directly with per-arm uncertainty, ensuring under-explored arms systematically receive larger bonuses.
Since randomness enters only through the scalar zt, the analysis reduces to bounding a one-
dimensional Gaussian projection u⊤ζt for some fixed unit vector u.

From an equation-level viewpoint, the regret of TS also admits the decomposition in Eq. (4) [3].
For both algorithms, the estimation component RegEST is bounded in the same manner, and the
anti-concentration event occurs with the same probability p. Consequently, the optimism-driven term
in the regret scales with the concentration width divided by p. The essential difference therefore
lies in the concentration width—or, equivalently, in how each algorithm controls the perturbation
magnitude that also determines the second part of the decomposition. We express the upper bound
for each perturbation term as

(TS)
∣∣x⊤

t (θ̃t − θ̂t)
∣∣ = ct

∣∣x⊤
tiV

−1/2
t ζt

∣∣ ≤ ct∥xti∥V −1
t
· ∥V −1/2

t ζt∥Vt
= ct∥xti∥V −1

t
·
∥∥ζt∥∥2,

(FP)
∣∣(x̃t − xt)

⊤θ̂t
∣∣ = ct

∣∣∥xt∥V −1
t

θ̂⊤t ζt

|θ̂t|2

∣∣ = ct∥xti∥V −1
t
·
∣∣u⊤ζt

∣∣.
The concentration width in TS depends on ∥ζt∥2, the norm of a d-dimensional Gaussian vector,
whereas that of FP scales with the one-dimensional projection |u⊤ζt|. To obtain a uniform high-
probability guarantee across all coordinates, a union bound over the d-dimensional perturbation space
introduces an additional O(

√
d) factor for TS. Thus, despite having identical marginal distributions

for individual arms, the two algorithms differ fundamentally in how their perturbations couple across
arms: TS requires concentration over all directions in Rd, whereas FP relies on a single scalar
randomization. This structural decoupling eliminates the extraneous

√
d factor, yielding linear O(d)

dependence in the regret bound and clarifying the geometric origin of FP’s improvement over TS.

7 Experiments

We conduct experiments in two contextual bandit settings: (i) generalized linear bandits (GLBs),
including linear and logistic models, and (ii) nonlinear contextual bandits based on neural networks.
In each setting, we compare the proposed method with state-of-the-art baselines across varying feature
dimensions and datasets. All results are averaged over 100 independent runs to ensure robustness.
Detailed experimental setups are provided in Appendix H.

7.1 Generalized linear bandits

We evaluate GLM-FP in both linear and logistic contextual bandit settings, where the expected reward
follows a generalized linear model. In the linear bandit case, the reward is generated as rt = x⊤

t θ
∗+εt

with εt ∼ N (0, 1), while in the logistic bandit case, rt ∼ Bernoulli(µ(x⊤
t θ

∗)) with the logistic
function µ. We compare against widely used baselines including ε-greedy, UCB, TS, PHE, and
RandUCB. Parameter estimation is performed via regularized weighted least squares (WLS) in linear
bandit setting or IRLS in logistic bandit setting.

8



0 5000 10000 15000 20000
Round t

0

250

500

750

C
um

ul
at

iv
e

R
eg

re
t

d = 10

0 5000 10000 15000 20000
Round t

0

250

500

750

1000
d = 20

0 5000 10000 15000 20000
Round t

0

500

1000

1500

d = 40

ε-Greedy LinUCB LinTS LinPHE RandLinUCB GLM-FP (ours)

0 100 200 300 400 500
Round t

0

5

10

15

20

C
um

ul
at

iv
e

R
eg

re
t

d = 10

0 500 1000 1500 2000 2500 3000
Round t

0

20

40

60

80

d = 20

0 2000 4000 6000 8000 10000
Round t

0

100

200

300

400

d = 40

ε-Greedy OFUGLB-e LogTS LogFPL RandUCBLog GLM-FP (ours)

0 5000 10000 15000 20000
Round t

0

500

1000

1500

C
um

ul
at

iv
e

R
eg

re
t

shuttle (K = 7, d = 9)

0 5000 10000 15000 20000
Round t

0

2000

4000

6000

8000
isolet (K = 26, d = 617)

0 5000 10000 15000 20000
Round t

0

100

200

300

mushroom (K = 2, d = 116)

deep ε-Greedy NeuralUCB NeuralTS FTPL DeepFP(ours)

Figure 3: Comparison of cumulative regret across contextual bandit algorithms: linear (top), logistic
(middle), and neural (bottom).

As shown in Figure 3 (top and middle), GLM-FP consistently achieves the lowest regret across all
tested dimensions. While RandLinUCB performs competitively in the linear case, GLM-FP exhibits
superior robustness, particularly in fixed-arm settings or environments with non-stationary arm sets
(see Appendix H for more details). In the logistic setting, GLM-FP outperforms all baselines across all
tested configurations, demonstrating its effectiveness even when the utility scale (i.e., x⊤θ∗, the inner
product term inside µ(·)) or the reward noise variance is varied. These results highlight the reliability
and adaptability of our approach across diverse GLB scenarios.

7.2 Neural bandits

We extend the feature perturbation framework to the neural contextual bandit setting through a simple
and scalable algorithm, DeepFP. At each round, DeepFP injects independent, arm-wise Gaussian
noise into the input features before prediction: x̃ti = xti + ζti, where ζti ∼ N (0, I/t). The variance
decay 1/t reflects the diminishing feature uncertainty over time, analogous to the confidence scaling
∥x∥Ĥ−1

t
in GLBs. This approach enables exploration without requiring access to model parameters

or gradients. We evaluate DeepFP on three UCI benchmark datasets: shuttle (7 classes, 9 features),
isolet (26 classes, 617 features), and mushroom (binary, 112 features). Baselines include ε-greedy,
NeuralUCB, NeuralTS, and Follow-the-Perturbed-Leader (FTPL).

Unlike NeuralTS, which adds randomness to predicted rewards (essentially functioning as a ran-
domized UCB variant), or FTPL, which perturbs historical rewards, DeepFP directly perturbs the
input features. This structural distinction simplifies implementation and preserves the exploration
intent in a more principled way. Furthermore, unlike parameter-sampling-based approaches whose
application becomes increasingly unstable in high-capacity models where p≫ d, DeepFP perturbs a
much lower-dimensional space, making it scalable and numerically stable.

9



As shown in Figure 3 (bottom), DeepFP outperforms all baselines across the three datasets. Notably,
it achieves strong performance without relying on posterior approximations or gradient-based confi-
dence intervals, demonstrating that simple feature perturbation can remain effective even in complex,
high-dimensional settings.

8 Conclusion

We introduced a new paradigm for randomized exploration in contextual bandits. By shifting
stochasticity to feature space, FP bridges the gap between randomized and optimistic methods while
achieving optimal regret. This perspective offers a broadly applicable exploration principle and
invites future work on leveraging structured randomness for efficient decision making.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately describe the proposed exploration
scheme (feature perturbation), theoretical contribution (an Õ(d

√
T ) regret bound for a

randomized algorithm, benefiting from κ), and extensibility beyond GLBs, which are
elaborated in Sections 4, 5, and 7.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Appendix G

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The paper states assumptions (Assumption 1 and 2) and provides detailed
proofs for the main theoretical results (Theorem 1) in Section 5 and Appendix E.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper describes the experimental setup, datasets (UCI benchmarks and
MNIST datasets) in Section 7 and Appendix H. The appendix provides network architecture
and hyperparameter details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have included the code in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: It is stated in Appendix H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars are reported in Section 7 and Appendix H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix H

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work fully adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper focuses on theoretical results and therefore does not discuss societal
impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Not using existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The study does not involve human participants or sensitive data.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We used LLMs only for writing and editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Further related wokrs

Landscape of GLB Algorithms. Generalized linear bandit (GLB) algorithms can be broadly
divided into deterministic OFU-type and randomized exploration-based methods. OFU approaches
such as GLM-UCB [17] and Logistic-UCB [26] achieve the tight Õ(d

√
T ) or Õ(d

√
T/κ) regret

bound, and refinements further improve confidence construction [27], achieving Õ(
√
dT logK) in

the finite-K arm setting. Abeille et al. [4] provided an instance-dependent analysis showing that the
regret can benefit from the curvature constant κ∗, achieving Õ(d

√
κ∗T ). Subsequent works [36, 37]

relaxed the dependence on S or improved computational efficiency [16] while preserving the same
order. Randomized methods such as Thompson Sampling (TS) and Perturbed History Exploration
(PHE) [3, 6, 31, 32], as well as more recent algorithms like EVILL [25] and RandUCB [46], typically
achieve superior empirical performance but incur an additional

√
d penalty in the worst case, yielding

Õ(d3/2
√
T ) for infinite arms or Õ(d

√
T logK/κ) for finite arms. Our proposed feature perturbation

(FP) departs from parameter- or reward-perturbation by randomizing the input features, thereby
closing this gap: as summarized in Table A.1, FP is the first randomized algorithm for GLBs to
provably achieve Õ(d

√
κ∗T + d2/κ) regret with no dependence on K, unifying the tight guarantees

of OFU-type methods with the empirical robustness of randomized exploration.

Comparison to RandUCB Algorithm. Our linear variant LinFP (see C.2) and RandUCB [46]
coincide in the linear bandit setting. Both sample randomized scores f̃t(xi)∼N (x⊤

ti θ̂t, β
2
t ∥xti∥2Vt

−1)

and couple the arms identically, yielding matching Õ(d
√
T ) regret bounds. The difference lies only
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Table A.1: Representative GLB algorithms: regret bounds and source of stochasticity.

Type Algorithm Regret Upper Bound Stochasticity

Deterministic
GLM-UCB [17] Õ(d

√
T/κ) –

Logistic-UCB-2 [26] Õ(d
√
T + d2/κ) –

OFUGLB [37] Õ(d
√
κ∗T + d2/κ) –

Randomized

LinTS [3] Õ(d3/2
√
T/κ) Parameter (θ)

GLM-TSL [32] Õ(d3/2
√
T/κ) Parameter (θ)

GLM-FPL [32] Õ(d3/2
√
T/κ) Reward (r)

RandUCB [46] Õ(d
√
T/κ) Linear utility (x⊤θ)

GLM-FP (Ours) Õ
(
d
√
κ∗T + d2/κ

)
Feature vector (x)

in the source of randomness: FP perturbs the input features, whereas RandUCB perturbs the reward
estimate itself. These distinct mechanisms collapse to the same Gaussian rule under linear models,
though they have been analyzed through different theoretical perspectives. Equivalently, one may
view RandUCB as a special instance of FP with an identical perturbation distribution, differing only
in interpretation and analytical framework.

In generalized linear bandits (GLBs), however, the two algorithms diverge fundamentally. RandUCB
extends its linear recipe by linearizing the link function, introducing a multiplicative κ−1 penalty
and yielding a regret bound of Õ(d

√
T/κ). In contrast, GLM-FP perturbs the inputs directly using a

curvature-aware Gram matrix that weights past features by µ̇(x⊤θ̂t), enabling both anti-concentration
(for exploration) and concentration (for confidence). This yields a tighter regret of Õ(d

√
κ∗T ), linear

in d and directly in κ∗. Conceptually, FP injects stochasticity before inference, so that each sampled
reward f̂(x̃) remains within the hypothesis class—preserving inductive bias and reflecting epistemic
uncertainty. RandUCB, in contrast, adds randomness after inference, producing post hoc scores that
may not correspond to any f ∈ F . As a result, in expressive models FP remains aligned with the
model structure, while RandUCB may misalign exploration incentives, leading to divergent empirical
and theoretical behaviors.

Geometry and Scalability in Randomized Exploration. Recent studies have examined when ran-
domized exploration can match the Õ(d

√
T ) guarantees of optimistic approaches. Abeille et al. [5]

identified a class of geometric conditions—absorbing, strongly convex, and smooth action sets—under
which Thompson Sampling (TS) achieves optimal dependence on d. While these conditions provide
valuable insights into the role of geometry, they often fail to hold in high-dimensional or unstructured
settings. Subsequent works [21, 32] further clarified that posterior variance inflation can inherently
introduce the extra

√
d factor observed in randomized methods. In contrast, feature-level perturbation

achieves similar statistical optimality under the standard boundedness assumption, bridging geometric
optimality with more general feature-level regularity. From a computational standpoint, randomized
exploration in large or continuous action spaces raises significant scalability challenges. Several
strategies have been proposed to mitigate this issue, including lazy or delayed updates of the Gram
matrix [1], two-stage candidate selection using approximate nearest neighbors, and optimization-
oracle-based methods such as batched soft elimination [22]. These approaches highlight a trade-off
between statistical tightness and computational efficiency: while algorithms like FP prioritize theoret-
ical optimality in the online setting, batched or oracle-based techniques offer scalable alternatives for
large-scale practical applications.

Connections to Feature Perturbation in Broader ML Feature perturbation is a common idea
in other areas of machine learning, most notably in computer vision and natural language process-
ing, where it is employed for robustness or regularization during training. Examples include data
augmentation [44], adversarial training [20], or NoisyNets for exploration in deep reinforcement
learning [18]. In these contexts, perturbations are introduced at training time to improve model
generalization or robustness. In contrast, our FP algorithm introduces perturbations at decision time
as a principled mechanism for exploration in online learning. This distinction highlights the novelty
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of FP: rather than making a static predictor robust, we leverage feature perturbations dynamically to
induce stochasticity in action selection, enabling efficient exploration. The same principle applies
naturally when contextual information comes from high-dimensional embeddings, such as ResNet
or ViT features for images [23, 30] or BERT embeddings for language [13], where FP can induce
semantically meaningful exploration by perturbing compact representations. Thus, FP not only closes
a theoretical gap in contextual bandits but also suggests a unifying exploration paradigm that resonates
with broader trends in modern ML. Finally, this perspective also provides a bridge to reinforcement
learning (RL), where perturbing the state–action feature representation can serve as an efficient alter-
native to parameter-space randomization used in posterior sampling or Noisy Networks [24, 42, 50].
Extending feature perturbation to structured settings such as Linear MDPs or value-function approxi-
mation is a promising direction for future work, potentially unifying exploration principles across
bandit and reinforcement learning paradigms.

B Properties of FP distributions

Perturbation in Thompson Sampling The perturbation distribution utilized in the TS algorithm
to bring randomness to the parameter, as described by Abeille and Lazaric [3] is as followed:
Definition B.1 (Definition 1. in Abeille and Lazaric [3]). DTS is a multivariate distribution on Rd,
absolutely continuous with respect to the Lebesgue measure, and satisfies the following properties:

1. (Anti-concentration) There exists a positive probability p > 0 such that for any unit vector u ∈ Rd,

Pζ∼DTS(u⊤ζ ≥ 1) ≥ p,

2. (Concentration) There exist positive constants c and c′ such that for all δ ∈ (0, 1),

Pζ∼DTS

(
||ζ|| ≤

√
cd log(c′d/δ)

)
≥ 1− δ.

Below, we provide examples of distributions satisfying these anti-concentration and concentration
properties, with the latter condition restated in Eq. (2) in Section 5.

Example 1: Gaussian distribution ζ ∼ N (0, I) The concentration property comes directly from
Lemma F.6, as the inner product of a standard multivariate normal random variable ζ and an arbitrary
unit vector u follows a standard normal distribution. In the same manner, for a unit vector u,

Pζ∼N (0,I)

(
u⊤ζ ≥ 1

)
= Pz∼N (0,1) (z ≥ 1) =

1

2
erfc(

1√
2
) ≥ 1

4
√
eπ

. (B.1)

Thus, the standard Gaussian distribution satisfies the concentration property with c = c′ = 2 and
anti-concentration property with p = 1

4
√
eπ

. Adjusting the scale of the covariance matrix, we can
easily prove other variants satisfy the conditions.

Example 2: Uniform distribution ζ ∼ UBd(0,
√
d) Let the random variable ζ = rv, where

r = ||ζ|| ∈ [0,
√
d] and v = ζ/||ζ|| is a unit vector. Then, u⊤ζ can be expressed as the product of

two independent random variables, r and u⊤v (∼ Beta( 12 ,
d−1
2 )), as r · (u⊤v). These two random

variables follow the distributions:

fr(r) =
drd−1

√
d
d
, r ∈ [0,

√
d], and fu⊤v(x) =

Γ(d2 )

Γ( 12 )Γ(
d−1
2 )

(1− x2)
d−3
2 , x ∈ [−1, 1].

Based on these random variables, we can write:

fu⊤ζ(z) =

∫ √
d

0

∫ 1

−1

δ(z − rx)fr(r)fu⊤v(x)dxdr.

Using Monte Carlo simulations, we observe that u⊤ζ has a lighter tail distribution compared a
standard normal distribution. Accordingly, c = c′ = 2 satisfies the concentration property. By
proposition 9 and 10 in Abeille and Lazaric [3],

P(u⊤ζ ≥ 1) =
1

2
I1− 1

d

(
d+ 1

2
,
1

2

)
≥ 1

16
√
3π

,

where Ix(a, b) is the incomplete regularized beta function. This suggests that the Uniform distribution
satisfies the anti-concentration property with p = 1

16
√
3π

.
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C Application of FP algorithm

C.1 Generalized version of GLM-FP

In Section 4, we introduced how FP can be applied to the contextual bandit settings in which
the reward model extends beyond generalized linear models. We provide the general algorithmic
framework below.

Algorithm C.1 Feature Perturbation in Bandit Problems

1: Input: Regularization parameter λ > 0, tuning parameter {ct}
2: for t = 1, 2, . . . , T do
3: Compute f̂ = argminf∈F

∑t−1
τ=1(f(xτ,iτ )− rτ )

2 via a least squares oracle
4: Sample x̃ti ∼ D(xti,Σti) for all i ▷ e.g., D(xti,Σti) = N (xti, I/t)

5: Select arm it = argmaxi∈[|Xt|] f̂(x̃ti) ▷ either i.i.d. or via shared perturbation
6: Observe reward rt = f∗(xt,it) + ξt
7: end for

C.2 Application to the linear bandit problem

While line 4 in Algorithm C.1 merely defines the sampling distribution for each arm, in prac-
tice—mirroring the design of GLM-FP—one may introduce a shared perturbing factor that is first
sampled and then applied to all arms. This construction induces dependencies across the perturbed
arms and can serve as the basis for the arm selection mechanism.

Algorithm C.2 LinFP: Feature Perturbation in Linear bandits

1: Input: Regularization parameter λ > 0, tuning parameter {ct}
2: Initialize: V1 ← λI , b1 ← 0d

3: for t = 1, 2, . . . , T do
4: Compute θ̂t = V −1

t bt
5: Sample ζt ∼ N (0, I) ▷ Shared perturbing factor

6: Compute x̃ti = xti + ct ·
∥xti∥V̂

−1
t

∥θ̂t∥
· ζt for all i

7: Choose it = argmaxi∈[|Xt|] x̃
⊤
ti θ̂t ▷ x⊤

ti θ̃t ∼ N (x⊤
ti θ̂t, c

2
t∥xti∥2V −1

t
) for all i.

8: Observe reward rt = x⊤
t,it

θ∗ + ξt
9: UpdateVt+1 = Vt + xt,itx

⊤
t,it

, bt+1 = bt + xt,itrt
10: end for

In Section 6, we compare LinFP, the linear variant of our approach, to LinTS [3, 6]. The primary
algorithmic difference lies in lines 6–7 of Algorithm C.2. In our method, the shared random vector
ζt is used to perturb each feature vector. In contrast, LinTS perturbs the model parameter as
θ̃t = θ̂t + ct · V −1/2

t ζt, and selects the arm maximizing x⊤
ti θ̃t. For LinTS, we have:

E[x⊤
ti θ̃t] = x⊤

ti θ̂t + ct · x⊤
tiV

−1/2
t E[ζt] = x⊤

ti θ̂t

Var[x⊤
ti θ̃t] = c2t ·Var[x⊤

tiV
−1/2
t ζt] = c2t · x⊤

tiV
−1
t xti = c2t∥xti∥2V −1

t

While the marginal distribution of x⊤
ti θ̃t under both methods is identical, the use of a shared perturba-

tion ζt in LinFP induces algorithmic coupling across arms. This distinction is further discussed in
Section 6.
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D Table of notations

This section introduces additional notations and concepts essential for the analysis. For ease of
reference, Table D.1 summarizes the key notations defined in this paper, along with newly introduced
notations. Conventional concepts such as d, T , A, C, X , K or r are omitted here. The concepts will
be reintroduced as needed in subsequent sections.

Table D.1: Notations and concepts for the analysis of the main theorem

Notation Definition

Mµ Self-concordance constant

Lµ Lipschitz constant of the link function µ

Lt Lipshitz constant of the negative log-likelihood function

Θt(δ, λ) 1− δ probability ellipsoidal relaxed confidence set with regularization λ for the true parameter θ∗

βt(δ)
√

4S2λ+ 2(1 + SMµ)(log(1/δ) + d log(2eLt/d)) = Õ(
√
d)

γt(δ) βt(δ/(4T ))
√
c log(4c′T/δ) (c, c′: constant satisfying concentration property)

Et(x)
{
x̃ ∈ Rd

∣∣||⟨x̃− x, θ̂t⟩|| ≤ γt(δ/(4T ))||x||Ĥ−1
t

}
κ∗ Average derivative of link function at the true optimal arm over T rounds

κ Minimum reachable derivative of link function

Warm-up stage

IT

{
t ∈ [T ] :

(∣∣∣∣√µ̇(x⊤
t θ̄t)xt

∣∣∣∣
H̄−1

t
≥ 1
)
∨
(
||xt||V −1

t
≥ 1
)}

Taylor remainder term

ᾱt(x)
∫ 1

0
(1− u)µ̇(x⊤

t θ̂t + u(x⊤θ̂t − x⊤
t θ̂t))du

ᾱt(θ, ν)
∫ 1

0
(1− u)µ̇

(
x⊤
t θ + u(x⊤

t ν − x⊤
t θ)
)
du

Matrices

Vt

∑t−1
τ=1 xτx

⊤
τ + λI

V̄t

∑t−1
τ=1 xτx

⊤
τ + λI/κ

Ĥt

∑t−1
τ=1 µ̇(x

⊤
τ θ̂t)xτx

⊤
τ + λI

H̄t

∑t−1
τ=1 µ̇(x

⊤
τ θ̄τ )xτx

⊤
τ + λI

H̃t(θ, ν)
∑t−1

τ=1 ᾱτ (θ, ν)xτx
⊤
τ

Other notations

R∗ maxx∈X |µ(x⊤θ∗)|
θ̄t argminθ∈∪τ∈[t,T ]Θτ (δ,λ) µ̇(x

⊤
t θ)

(τ(t), ωt) argmaxτ∈[t,T ],θ∈Θτ (δ,λ)

∣∣∣µ(x⊤
t θ)− µ(x⊤

t θ̂τ )
∣∣∣

(p, cδ′ ) constants related to standard normal distribution (p = 1/(4
√
eπ), cδ′ =

√
2 log(2/δ′))
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E Proof of main theorem

The first step in our proof is to derive the high-probability confidence bound for the estimate θ̂t. Using
this bound, we ensure that the events defined in Definition 1 occur with high probability. Finally, we
compute the regret bound of our algorithm under these events.

E.1 Proof of Lemma 1

We rederived Theorem 3.2 of Lee et al. [37] to obtain a tighter bound with improved dependence on
the regularization parameter λ, such that the λ term no longer scales with Mµ.

By Theorem 3.1. in [37], with probability at least 1− δ, for all t ≥ 1, the following inequality holds:

Lt(θ
∗)− Lt(θ̂t) ≤ log

1

δ
+ d log

(
2eSLt

d

)
:=Wt(δ)

2

Then we observe:∫ 1

0

(1− u)∇2Lt(θ̂t+u(θ∗ − θ̂t))du =

∫ 1

0

(1− u)
t−1∑
τ=1

µ̇(x⊤
τ (θ̂t + u(θ∗ − θ̂t))xτx

⊤
τ du

=

t−1∑
τ=1

(∫ 1

0

(1− u)µ̇(x⊤
τ (θ̂t + u(θ∗ − θ̂t))du

)
︸ ︷︷ ︸

ᾱτ (θ̂t,θ∗)

xτx
⊤
τ = H̃t(θ̂t, θ

∗),

where the second equality follows from Fubini’s theorem, where the order of the integral and the
summation can be switched. Using Taylor’s theorem with an integral remainder (Proposition F.2), we
can further deduce that, with probability 1− δ:

Wt(δ)
2 ≥ Lt(θ

∗)− Lt(θ̂t)

= ⟨∇Lt(θ̂t), θ
∗ − θ̂t⟩+ (θ∗ − θ̂t)

⊤
(∫ 1

0

(1− u)∇2Lt(θ̂t + u(θ∗ − θ̂t))du

)
(θ∗ − θ̂t).

As the optimality condition at θ̂t infers that ⟨∇Lt(θ̂t), θ
∗ − θ̂t⟩ ≥ 0 and by equation (Proposition F.1),

we have that

Wt(δ)
2 ≥

∣∣∣∣θ∗ − θ̂t
∣∣∣∣2
H̃t(θ̂t,θ∗)

≥ 1

2 + 2SMµ

∣∣∣∣θ∗ − θ̂t
∣∣∣∣2
Ĥt−λI

, (Proposition F.1)

where the last inequality holds, since

H̃t(θ̂t, θ
∗) ⪰

t−1∑
τ=1

(
µ̇(x⊤

τ θ̂t)

2 + 2SMµ

)
xτx

⊤
τ =

1

2 + 2SMµ
(Ĥt − λI).

Accordingly,∣∣∣∣θ∗ − θ̂t
∣∣∣∣2
Ĥt
≤
∣∣∣∣θ∗ − θ̂t

∣∣∣∣2
Ĥt−λI

+ λ
∣∣∣∣θ∗ − θ̂t

∣∣∣∣2 ≤ 4S2λ+ 2(1 + SMµ)Wt(δ)
2 = βt(δ)

2,

and by Assumption 1, we finish a proof.

E.2 Proof of Lemma 3

Let the event Ët be defined as Ët :=
{
µ(x̃⊤

t θ̂t) ≥ µ(x⊤
t∗θ

∗)
}

. This event corresponds to the case
where the chosen perturbed feature vector yields an optimistic expected reward relative to the true
optimal arm at step t. To bound the anti-concentration probability as required in Lemma 3, we aim to
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lower bound Pt(Ët | Êt, Ẽt), conditioned on the events Êt and Ẽt. For any t ∈ [T ], we have:

Pt

(
Ët | Êt, Ẽt

)
= Pt

(
µ(x̃⊤

t θ̂t) ≥ µ(x⊤
t∗θ

∗) | Êt, Ẽt

)
= Pt

(
x̃⊤
t θ̂t ≥ x⊤

t∗θ
∗ | Êt, Ẽt

)
(∵ µ is strictly increasing)

≥ Pt

(
x̃⊤
t∗θ̂t − x⊤

t∗θ̂t ≥ x⊤
t∗θ

∗ − x⊤
t∗θ̂t | Êt, Ẽt

)
(∵ xt = argmax

i∈[|Xt|]
x⊤
ti θ̂t)

≥ Pt

(
⟨x̃t∗ − xt∗, θ̂t⟩ ≥

∣∣∣⟨xt∗, θ
∗ − θ̂t⟩

∣∣∣ ∣∣∣∣ Êt, Ẽt

)

≥ Pt

(βt(δ
′)
||xt∗||Ĥ−1

t

||θ̂t||
ζt

)⊤

θ̂t ≥ ||xt∗||Ĥ−1
t
||θ̂t − θ∗||Ĥt

∣∣∣∣ Êt, Ẽt


≥ P

(
βt(δ

′)||xt∗||Ĥ−1
t
· ⟨ζt, ut⟩ ≥ βt(δ

′)||xt∗||Ĥ−1
t
| Êt, Ẽt

)
= P (⟨ζt, ut⟩ ≥ 1) ≥ 1

4
√
eπ

:= p,

where the third inequality follows from the Cauchy-Schwarz inequality, and the fourth from the
assumption that under the event Êt, we have ||θ∗ − θ̂t||Ĥt

≤ βt(δ
′). The final inequality follows

from the anti-concentration property of the standard normal distribution, as detailed in (B.1). For
simplicity, we henceforth fix p := 1/(4

√
eπ) as the corresponding lower bound on this probability.

E.3 Proof of Lemma 2

We now proceed to establish how the probability of each event defined in Definition 1 can be ensured
using the confidence bound βt(δ) derived in Appendix E.1. Each event is analyzed and bounded
individually, and the results are then combined to complete the proof of the lemma.

Bounding ÊT Let δ′ = δ/(4T ). By the choice of βt(δ) in Lemma 1, we have that

∀1 ≤ t ≤ T, P
(∣∣∣∣θ̂t − θ∗

∣∣∣∣
Ĥt
≤ βt(δ

′)
)
≥ 1− δ′

from union bound, P

(
T⋂

t=1

{∣∣∣∣θ̂t − θ∗
∣∣∣∣
Ĥt
≤ βt(δ

′)
})
≥ 1−

T∑
t=1

P
(∣∣∣∣θ̂t − θ∗

∣∣∣∣
Ĥt
≥ βt(δ

′)
)

=⇒ P

(
T⋂

t=1

{∣∣∣∣θ̂t − θ∗
∣∣∣∣
Ĥt
≤ βt(δ

′)
})
≥ 1−

T∑
t=1

δ′

=⇒ P(ÊT ) ≥ 1− Tδ′ = 1− δ

4
.

Bounding ẼT The expression for the perturbed feature vector x̃ti is given as the expression

x̃ti = xti + βt(δ
′)

||xti||Ĥ−1
t

||θ̂t||
ζt with the choice of ct = βt(δ

′), where ζt is drawn i .i .d . from N (0, I).

Note that the constants c and c′ indicated in (2) are both 2, as proved in (B.1), from now on for
simplicity, we let cδ′ :=

√
2 log(2/δ′). Since all arms are coupled5 with same ζt, we can write

∀1 ≤ t ≤ T, P
(
∀xti ∈ Xt;

∣∣∣⟨x̃ti − xti, θ̂t⟩
∣∣∣ ≤ γt(δ

′)||xti||Ĥ−1
t

)
(E.1)

= P

(
∀xti ∈ Xt; βt(δ

′)||xti||Ĥ−1
t

∣∣∣∣∣⟨ζt, θ̂t

||θ̂t||
⟩

∣∣∣∣∣ ≤ cδ′ · βt(δ
′)||xti||Ĥ−1

t

)
(E.2)

= P (|⟨ζt, ut⟩| ≤ cδ′) ≥ 1− δ′, (E.3)

5Uncoupled sampling means ζti’s are sampled for each arm respectively and it results in extra logK term in
the regret bound because of the union bound over the number of arms at each step.
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where ut is a unit vector. The first equality holds by the definition of cδ′ and Definition 1, and the
inequality follows from the concentration property. The cancellation in the second equality plays a
critical role in removing arm-wise dependence in GLB setting. A union bound over T rounds yields

P(ẼT ) ≥ 1− Tδ′ = 1− δ

4
.

Finally, applying the union bound across the events ÊT and ẼT , we have that

P(ÊT ∩ ẼT ) ≥ 1− δ

2
.

Remark. To guarantee the same probability level 1− δ′ as in equations (E.1)–(E.3), which bound
the randomness arising from perturbations to the feature vectors, Thompson Sampling requires the
confidence parameters β and γ to be inflated by an additional factor of

√
d. This inflation arises due

to the right-hand side of the concentration bound in Definition B.1, which scales with
√
d. Such

adjustment is necessary to control the deviation in the perturbed estimated expected reward, which
takes the form x⊤(θ̃ − θ̂). This is consistent with the reasoning discussed in Section 6.

E.4 Proof of Theorem 1

In this section, we establish the regret guarantee for our algorithm. Given the complexity of the
analysis, we divide the proof into multiple steps. Supporting lemmas and their proofs are deferred to
Appendix F.

Step 1 (Warm-up) We begin by partitioning the T rounds into a “warm-up” stage and the primary
stage. The set of time steps corresponding to the primary stage is defined as:

IT :=

{
t ∈ [T ] :

(∣∣∣∣∣∣∣∣√µ̇(x⊤
t θ̄t)xt

∣∣∣∣∣∣∣∣
H̄−1

t

≤ 1

)
∧
(
||xt||V̄ −1

t
≤ 1
)}

,

where H̄t, V̄t, and θ̄t are given by:

H̄t := λI +

t−1∑
τ=1

µ̇(x⊤
τ θ̄τ )xτx

⊤
τ , V̄t := λI/κ+

t−1∑
τ=1

xτx
⊤
τ , θ̄t := argmin

θ∈∪τ∈[t,T ]Θτ (δ,λ)

µ̇(x⊤
t θ).

The introduction of H̄t is crucial because Ĥt = λI +
∑t−1

τ=1 µ̇(x
⊤
τ θ̂t)xτx

⊤
τ depends on t, which

prevents direct application of the Elliptical Potential Lemma (EPL; Lemma F.1), as discussed in
Section 5. To address this, we leverage H̄t, which incorporates the minimum derivative of µ within
future confidence sets (θ̄τ ), ensuring it serves as a smaller Gram matrix suitable for bounding the
regret. Similarly, V̄t is introduced to directly apply EPL.

Next, we bound each weighted 2-norm using the Elliptical Potential Count Lemma (EPCL;
Lemma F.2), which guarantees that the regret incurred during the warm-up phase remains man-
ageable. Consequently, the cumulative regret over T rounds is decomposed as follows:

R(T ) =
∑
t∈IT

{
µ(x⊤

t∗θ
∗)− µ(x⊤

t θ
∗)
}

︸ ︷︷ ︸
Reg(T )

+
∑
t̸∈IT

{
µ(x⊤

t∗θ
∗)− µ(x⊤

t θ
∗)
}

︸ ︷︷ ︸
warm-up regret

≤ Reg(T ) + 2R∗

(
T∑

t=1

1

{∣∣∣∣∣∣∣∣√µ̇(x⊤
t θ̄t)xt

∣∣∣∣∣∣∣∣
H̄−1

t

≥ 1

}
+

T∑
t=1

1
{
||xt||V̄ −1

t
≥ 1
})

≤ Reg(T ) +
4dR∗

log 2

{
log

(
1 +

Lµ

λ log 2

)
+ log

(
1 +

κ

λ log 2

)}
,

where R∗ := maxx∈X
∣∣µ(x⊤θ∗)

∣∣ is the maximum expected reward achievable under the underlying
model.The first and the second inequalities hold from the definition of IT and by EPCL (Lemma F.2),
respectively. Note that the warm-up regret is Õ(d), which is independent of T .
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Step 2-1 (Decomposition) We decompose the cumulative regret for the primary stage into three
components:

Reg(T ) =
∑
t∈IT

({
µ(x⊤

t∗θ
∗)− µ(x̃⊤

t θ̂t)
}

︸ ︷︷ ︸
At

+
{
µ(x̃⊤

t θ̂t)− µ(x⊤
t θ̂t)

}
︸ ︷︷ ︸

Bt

+
{
µ(x⊤

t θ̂t)− µ(x⊤
t θ

∗)
}

︸ ︷︷ ︸
Ct

)
.

Here, At and Bt relate to the perturbations’ effect on the estimated reward, while Ct concerns the
closeness of θ̂t to θ∗. We will bound each term under the events Êt and Ẽt.

Bounding Ct Bounding Ct is straightforward. Using the confidence set Θt(δ, λ), abbreviated as
Θt, we define (τ(t), ωt) as the pair maximizing the confidence width computed on the selected action
at round t, xt, after round t: argmaxτ∈[t,T ],θ∈Θτ

∣∣∣µ(x⊤
t θ)− µ(x⊤

t θ̂τ )
∣∣∣. Under the event Êt, we

know that θ∗ ∈ Θτ for all t ≤ τ ≤ T . Thus,

Ct1
{
Êt ∩ Ẽt

}
=
(
µ(x⊤

t θ̂t)− µ(x⊤
t θ

∗)
)
1
{
Êt ∩ Ẽt

}
≤
∣∣∣µ(x⊤

t ωt)− µ(x⊤
t θ̂τ(t))

∣∣∣1{Êt ∩ Ẽt

}
.

Bounding Bt Let x̃∗
t := argmaxx∈Et(xt)

∣∣∣µ(x⊤θ̂t)− µ(x⊤
t θ̂t)

∣∣∣. Under the event Ẽt, x̃t ∈ Et(xt)

holds and we can write:

Bt1
{
Êt ∩ Ẽt

}
=
(
µ(x̃⊤

t θ̂t)− µ(x⊤
t θ̂t)

)
1
{
Êt ∩ Ẽt

}
≤
∣∣∣µ(x̃∗⊤

t θ̂t)− µ(x⊤
t θ̂t)

∣∣∣1{Êt ∩ Ẽt

}
.

Before proceeding, note that for x̃t ∈ Et(xt), we can derive an upper bound using Taylor’s theorem
with an integral remainder (Proposition F.2). Define ᾱt(x) =

∫ 1

0
(1−u)µ̇(x⊤

t θ̂t+u(x⊤θ̂t−x⊤
t θ̂t))du,

which accounts for higher-order terms based on the estimated parameter θ̂t and feature vectors x and
xt. The difference

∣∣∣µ(x̃⊤
t θ̂t)− µ(x⊤

t θ̂t)
∣∣∣ then can be bounded as:

∣∣µ(x̃⊤
t θ̂t)− µ(x⊤

t θ̂t)
∣∣ = ∣∣∣∣∣µ̇(x⊤

t θ̂t)⟨x̃t − xt, θ̂t⟩+
∫ x̃⊤

t θ̂t

x⊤
t θ̂t

(µ(x̃⊤
t θ̂t)− z)µ̈(z)dz

∣∣∣∣∣
≤ µ̇(x⊤

t θ̂t)
∣∣∣⟨x̃t − xt, θ̂t⟩

∣∣∣+ ⟨x̃t − xt, θ̂t⟩2
∫ 1

0

(1− u)
∣∣∣µ̈(x⊤

t θ̂t + u(x̃⊤
t θ̂t − x⊤

t θ̂t)
)∣∣∣ du

≤ µ̇(x⊤
t θ̂t)

∣∣∣⟨x̃t − xt, θ̂t⟩
∣∣∣+Mµ⟨x̃t − xt, θ̂t⟩2

∫ 1

0

(1− u)µ̇
(
x⊤
t θ̂t + u(x̃⊤

t θ̂t − x⊤
t θ̂t)

)
du︸ ︷︷ ︸

=ᾱt(x̃t)

≤ µ̇(x⊤
t θ̂t)

∣∣∣⟨x̃t − xt, θ̂t⟩
∣∣∣+Mµᾱt(x̃t)⟨x̃t − xt, θ̂t⟩2

≤ µ̇(x⊤
t θ̂t)γt(δ

′)||xt||Ĥ−1
t

+Mµᾱt(x̃t)γt(δ
′)2||xt||2Ĥ−1

t
,

where the second and the last inequalities hold from Assumption 2 and the definition of Et(xt) in
Definition 1. This bound captures both the linear and higher-order contributions to the regret from
perturbations in the feature vectors.
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Bounding At With Ët :=
{
µ(x̃⊤

t θ̂t) ≥ µ(x⊤
t∗θ

∗)
}

and x̃∗
t defined above, we write:

At1
{
Êt ∩ Ẽt

}
=
(
µ(x⊤

t∗θ
∗)− µ(x̃⊤

t θ̂t)
)
1
{
Êt ∩ Ẽt

}
≤
(
µ(x⊤

t∗θ
∗)− inf

x
∼∼

t∈Et(xt)
µ(x∼

∼⊤
t θ̂t)

)
1
{
Êt ∩ Ẽt

}
≤ Et

[(
µ(x̃⊤

t θ̂t)− inf
x
∼∼

t∈Et(xt)
µ(x∼

∼⊤
t θ̂t)

)
1
{
Êt ∩ Ẽt

} ∣∣∣∣Ët

]
= Et

[(
µ(x̃⊤

t θ̂t)− µ(x⊤
t θ̂t)

)
+

(
µ(x⊤

t θ̂t)− inf
x
∼∼

t∈Et(xt)
µ(x∼

∼⊤
t θ̂t)

) ∣∣∣∣Êt, Ẽt, Ët

]
P(Êt ∩ Ẽt)

≤ 2Et

[(
sup

x
∼∼

t∈Et(xt)

∣∣∣µ(x∼∼⊤
t θ̂t)− µ(x⊤

t θ̂t)
∣∣∣) ∣∣∣∣Êt, Ẽt, Ët

]
P(Êt ∩ Ẽt)

≤ 2

p
Et

[∣∣∣µ(x̃∗⊤
t θ̂t)− µ(x⊤

t θ̂t)
∣∣∣1{Êt ∩ Ẽt

}]
.

We justify the second inequality under the specified event, and the final inequality follows from
the following reasoning: we use the bound C ≤ E[Z | Z ≥ C], and compensate for introducing
the conditional expectation by incorporating the inverse of the probability of the conditioning
event. Specifically, define C := (µ(x⊤

t∗θ
∗)− infx µ(x

⊤θ̂t) · 1{(} Êt ∩ Ẽt) and Z := (µ(x̃⊤
t θ̂t)−

infx µ(x
⊤θ̂t) · 1{(} Êt ∩ Ẽt). Then the second inequality holds. To compensate for conditioning on

the favorable event, we use the following logic:

Et

{
· | Êt, Ẽt

}
≥ Et

{
· | Êt, Ẽt, Ët

}
Pt(Ët | Êt, Ẽt)

≥ Et

{
· | Êt, Ẽt, Ët

}
· p. (Lemma 3)

The upper bound for this term is similar to the previous part (Bt), differing only by a constant and the
inclusion of the expectation over the filtration. However, since our goal is to bound the cumulative
sum over T rounds rather than the expectation itself, directly handling the expectation complicates the
application of the Elliptical Potential Lemma (EPL). To address this, we eliminate the expectation at
the cost of introducing a concentration error, which we control using Azuma-Hoeffding’s inequality.

Step 2-2 (Azuma-Hoeffding’s inequality) Unless otherwise specified, we now analyze the regret
bound under the assumption that events ÊT and ẼT hold.
p

2

∑
t∈IT

At ≤
∑
t∈IT

Et

[∣∣∣µ(x̃∗⊤
t θ̂t)− µ(x⊤

t θ̂t)
∣∣∣]

≤ γT (δ
′)
∑
t∈IT

µ̇(x⊤
t θ̂t)||xt||Ĥ−1

t
+ γT (δ

′)
∑
t∈IT

(
Et

[
µ̇(x⊤

t θ̂t)||xt||Ĥ−1
t

]
− µ̇(x⊤

t θ̂t)||xt||Ĥ−1
t

)
︸ ︷︷ ︸

R1

+MµγT (δ
′)2
∑
t∈IT

ᾱt(x̃t)||xt||2Ĥ−1
t

+MµγT (δ
′)2
∑
t∈IT

(
Et

[
ᾱt(x̃t)||xt||2Ĥ−1

t

]
− ᾱt(x̃t)||xt||2Ĥ−1

t

)
︸ ︷︷ ︸

R2

Note that R1 and R2 are constructed as martingales. Since the norm of each feature vector satisfies
||xt|| ≤ 1 , and given Ĥ−1

t ⪯ Ĥ−1
0 = I/λ and µ̇(x⊤

t θ̂t) ≤ Lµ, the following bounds hold:

0 ≤ µ̇(x⊤
t θ̂t)||xt||Ĥ−1

t
≤ Lµ

√
x⊤
t Ĥ

−1
t xt ≤ Lµ

√
1

λ
||xt||2 ≤

Lµ√
λ
.

This provides an upper bound for each instantaneous element of R1 as Lµ/
√
λ. Applying Azuma-

Hoeffding’s inequality (Proposition F.3), with probability at least 1− δ/4, we obtain:

R1 ≤
√

2TL2
µ

λ
log

8

δ
.
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Due to the convexity of Θt, the term µ̇ in ᾱt(xt) is bounded by Lµ. Consequently, we obtain:

ᾱt(x) :=

∫ 1

0

(1− u)µ̇
(
x⊤
t θ̂t + u(x⊤θ̂t − x⊤

t θ̂t)
)
du ≤

∫ 1

0

(1− u)Lµdu = Lµ/2 (E.4)

Similarly, we can show that

0 ≤ ᾱt(x̃t)||xt||2Ĥ−1
t
≤ Lµ

2

(
x⊤
t Ĥ

−1
t xt

)
≤ Lµ

2λ
||xt||2 ≤

Lµ

2λ
.

This provides an upper bound for each instantaneous element of R2 as Lµ/(2λ). Applying Proposi-
tion F.3, with probability at least 1− δ/4, we have:

R2 ≤
√

2TL2
µ

4λ2
log

8

δ
.

By applying a union bound, we conclude that with probability at least 1− δ/2, both R1 and R2 are
bounded. Therefore, the regret term

∑
t∈IT

At can be bounded by:∑
t∈IT

At ≤
2

p

(
γT (δ

′)
∑
t∈IT

µ̇(x⊤
t θ̂t)||xt||Ĥ−1

t
+MµγT (δ

′)2
∑
t∈IT

ᾱt(x̃t)||xt||2Ĥ−1
t

)
+ ε,

where ε is a function of T , δ, and λ, defined as:

ε = ε(T, δ, λ) :=
2

p

(
γt(δ

′)

√
2TL2

µ

λ
log

8

δ
+MµγT (δ

′)2

√
2TL2

µ

4λ2
log

8

δ

)
= Õ

(
d

√
T

λ2

)
.

In summary, combining this result with Lemma 3-2 and the bounds for Bt and Ct, the total regret
Reg(T ) can be bounded with probability at least 1− δ as:

Reg(T ) ≤
(
2

p
+ 1

)∑
t∈IT

(
γT (δ

′)µ̇(x⊤
t θ̂t)||xt||Ĥ−1

t
+MµγT (δ

′)2ᾱt(x̃t)||xt||2Ĥ−1
t

)
︸ ︷︷ ︸

RegFP

+
∑
t∈IT

∣∣∣µ(x⊤
t ωt)− µ(x⊤

t θ̂τ(t))
∣∣∣︸ ︷︷ ︸

RegEST

+ε

Here, RegFP captures the regret arising from perturbing the feature vectors, while RegEST accounts
for the estimation error of θ̂t compared to the true parameter θ∗.

Step 3 (Bounding RegFP) The presence of Ĥ−1
t in the weighted norm makes it challenging to

directly apply the Elliptical Potential Lemma (EPL; Lemma F.1). To address this, we introduce H̄t,
which allows us to leverage EPL by splitting µ̇(x⊤

t θ̂t) into two components: a leading term based on
θ̄t (used in defining H̄t) and a transient term that accounts for deviations from θ̂t.

RegFP = γT (δ
′)
∑
t∈IT

µ̇(x⊤
t θ̂t)||xt||Ĥ−1

t
+MµγT (δ

′)2
∑
t∈IT

ᾱt(x̃t)||xt||2Ĥ−1
t

≤ γT (δ
′)
∑
t∈IT

(
µ̇(x⊤

t θ̄t) +
∣∣∣µ̇(x⊤

t θ̄t)− µ̇(x⊤
t θ̂t)

∣∣∣) ||xt||Ĥ−1
t

+MµγT (δ
′)2
∑
t∈IT

ᾱt(x̃t)||xt||2Ĥ−1
t

≤
∑
t∈IT

µ̇(x⊤
t θ̄t)γT (δ

′)||xt||Ĥ−1
t︸ ︷︷ ︸

DFP
t

+
∑
t∈IT

∣∣∣µ̇(x⊤
t θ̄t)−µ̇(x⊤

t θ̂t)
∣∣∣ γT (δ′)||xt||Ĥ−1

t︸ ︷︷ ︸
EFP

t

+
∑
t∈IT

Mµᾱt(x̃t)γT (δ
′)2||xt||2Ĥ−1

t︸ ︷︷ ︸
F FP

t

.

Bounding
∑

t D
FP
t We define H̄t := λI +

∑t−1
τ=1 µ̇(x

⊤
τ θ̄τ )xτx

⊤
τ . Then for all τ ≤ t, as the

equation µ̇(x⊤
τ θ̄τ ) ≤ µ̇(x⊤

τ θ̂t) holds, we write:

Ĥt = λI +∇2Lt(θ̂t) = λI +

t−1∑
τ=1

µ̇(x⊤
τ θ̂t)xτx

⊤
τ ⪰ λI +

t−1∑
τ=1

µ̇(x⊤
τ θ̄τ )xτx

⊤
τ ⪰ H̄t. (E.5)
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Then, we can bound
∑

t D
FP
t as following:∑

t∈IT

DFP
t ≤ γT (δ

′)
∑
t∈IT

µ̇(x⊤
t θ̄t)||xt||Ĥ−1

t

≤ γT (δ
′)

√∑
t∈IT

µ̇(x⊤
t θ̄t)

√∑
t∈IT

µ̇(x⊤
t θ̄t)||xt||2Ĥ−1

t

(Cauchy-Schwartz inequality)

≤ γT (δ
′)

√∑
t∈IT

µ̇(x⊤
t θ̄t)

√∑
t∈IT

µ̇(x⊤
t θ̄t)||xt||2H̄−1

t

(By (E.5))

≤ γT (δ
′)

√∑
t∈IT

µ̇(x⊤
t θ̄t)

√√√√ T∑
t=1

min

{
1, ||
√

µ̇(x⊤
t θ̄t)xt||2H̄−1

t

}
(Definition of IT )

Applying Lemma F.1, the second square-root term is bounded by√√√√ T∑
t=1

min

{
1, ||
√
µ̇(x⊤

t θ̄t)xt||2H̄−1
t

}
≤

√
2d log

(
1 +
LµT

dλ

)
.

To handle the first term in the square root, we decompose it as:√∑
t∈IT

µ̇(x⊤
t θ̄t)≤

√√√√ T∑
t=1

µ̇(x⊤
t∗θ

∗)+
∑
t∈IT

{
µ̇(x⊤

t θ̄t)−µ̇(x⊤
t∗θ

∗)
}
=

√
κ∗T+

∑
t∈IT

{
µ̇(x⊤

t θ̄t)−µ̇(x⊤
t∗θ

∗)
}
.

Note that θ̄t := argminθ∈∪τ∈[t,T ]Θτ (δ,λ) µ̇(x
⊤
t θ). Let τ ′ be an arbitrary τ whose Θτ (δ, λ) contains

θ̄t. Then, the latter term in the square root is then bounded as follows:∑
t∈IT

{
µ̇(x⊤

t θ̄t)− µ̇(x⊤
t∗θ

∗)
}
=
∑
t∈IT

{
µ̇(x⊤

t θ̄t)− µ̇(x⊤
t θ

∗)
}
+
∑
t∈IT

{
µ̇(x⊤

t θ
∗)− µ̇(x⊤

t∗θ
∗)
}

≤Mµ

{∑
t∈IT

∣∣µ(x⊤
t θ̄t)− µ(x⊤

t θ
∗)
∣∣+ ∑

t∈IT

∣∣µ(x⊤
t θ

∗)− µ(x⊤
t∗θ

∗)
∣∣} (Lemma F.3)

≤Mµ

{∑
t∈IT

∣∣∣µ(x⊤
t θ̄t)− µ(x⊤

t θ̂τ ′)
∣∣∣+∑

t∈IT

∣∣∣µ(x⊤
t θ̂τ ′)− µ(x⊤

t θ
∗)
∣∣∣+∑

t∈IT

{
µ(x⊤

t∗θ
∗)− µ(x⊤

t θ
∗)
}}

≤Mµ

{
2
∑
t∈IT

∣∣∣µ(x⊤
t ωt)− µ(x⊤

t θ̂τ(t))
∣∣∣+ Reg(T )

}
≤Mµ {2RegEST + Reg(T )} ,

where the second inequality holds from triangular inequality. For the last inequality, we leverage the
definition of θ̄t and the pair(τ(t), ωt), as shown below:∣∣∣µ(x⊤

t θ̄t)− µ(x⊤
t θ̂τ ′)

∣∣∣ ≤ max
θ∈Θτ′ (δ,λ)

∣∣∣µ(x⊤
t θ)− µ(x⊤

t θ̂τ ′)
∣∣∣

≤ max
τ∈[t,T ],θ∈Θτ (δ,λ)

∣∣∣µ(x⊤
t θ)− µ(x⊤

t θ̂τ )
∣∣∣ = ∣∣∣µ(x⊤

t ωt)− µ(x⊤
t θ̂τ(t))

∣∣∣ ,
and that under the event ÊT , as θ∗ ∈ ∪τ∈[t,T ]Θτ (δ, λ), we can easily show that the second term
|µ(x⊤

t θ̂τ ′) − µ(x⊤
t θ

∗)| can be upper bounded by |µ(x⊤
t ωt) − µ(x⊤

t θ̂τ(t))|. Note that after decom-
posing Reg(T ), we are currently in the process of bounding its individual components. However,
during this process, Reg(T ) itself appears in the upper bound. This issue will be addressed in Step 5,
where we will provide a strategy to effectively resolve this recursive dependency.

Bounding
∑

t E
FP
t We define the Gram matrix V̄t := λI/κ+

∑t−1
τ=1 xτx

⊤
τ . The introduction of

this matrix is to apply EPL as in the previous section. As the weight µ̇(x⊤
τ θ̂t) on the weighted Gram

matrix Ĥt is greater than or equal to κ := minx∈X[T ],θ∈Θ µ̇(x⊤θ), we have:

Ĥt = λI +

t−1∑
τ=1

µ̇(x⊤
τ θ̂t)xτx

⊤
τ ⪰ κ

(
λ

κ
I +

t−1∑
τ=1

xτx
⊤
τ

)
⪰ κV̄t. (E.6)
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Then, we can bound
∑

t E
FP
t as following:

∑
t∈IT

EFP
t ≤ γT (δ

′)
∑
t∈IT

∣∣∣µ̇(x⊤
t θ̄t)− µ̇(x⊤

t θ̂t)
∣∣∣ ||xt||Ĥ−1

t

≤MµγT (δ
′)
∑
t∈IT

∣∣∣µ(x⊤
t θ̄t)− µ(x⊤

t θ̂t)
∣∣∣ ||xt||Ĥ−1

t
(Lemma F.3)

≤MµγT (δ
′)

√
1

κ

∑
t∈IT

∣∣∣µ(x⊤
t ωt)− µ(x⊤

t θ̂τ(t))
∣∣∣ ||xt||V̄ −1

t

≤ 2

κ
MµLµγT (δ

′)βT (δ
′)
∑
t∈IT

||xt||2V̄ −1
t

, (Lemma F.4)

where the third inequality holds from the definition of the pair (τ(t), ωt), and by (E.6) Here,
Lemma F.4 plays a crucial role by introducing the weighted norm ||xt||V̄ −1

t
, which enables the

application of Lemma F.1. Utilizing this lemma, we further proceed to bound as:

∑
t∈IT

EFP
t ≤

2

κ
MµLµγT (δ

′)βT (δ
′)

T∑
t=1

min
{
1, ||xt||2V̄ −1

t

}
(Definition of IT )

≤ 4

κ
dMµLµγT (δ

′)2 log

(
1 +

κT

dλ

)
, (Lemma F.1)

where the final inequality use the fact that γT (δ′) = cδ′ · βT (δ
′) ≥ βT (δ

′), as cδ′ ≥ 1.

Bounding
∑

t F
FP
t The process closely resembles that of bounding

∑
t E

FP
t . we have:

∑
t∈IT

F FP
t ≤MµγT (δ

′)2
∑
t∈IT

ᾱt(x̃t)||xt||2Ĥ−1
t

≤ Lµ

2κ
MµγT (δ

′)2
∑
t∈IT

||xt||2V̄ −1
t

(By (E.4) and (E.6))

≤ Lµ

2κ
MµγT (δ

′)2
T∑

t=1

min
{
1, ||xt||2V̄ −1

t

}
(Definition of IT )

≤ d

κ
MµLµγT (δ

′)2 log

(
1 +

κT

dλ

)
. (Lemma F.1)

Combining all three terms, we derive an upper bound for RegFP ≤
∑

t

{
DFP

t + EFP
t + F FP

t

}
as

follows:

RegFP ≤ γT (δ
′)

√
2d log

(
1 +
LµT

dλ

)√
κ∗T +Mµ {2RegEST + Reg(T )}

+
5d

κ
MµLµγT (δ

′)2 log

(
1 +

κT

dλ

)
. (E.7)

Step 4 (Bounding RegEST) Next, we proceed to bound RegEST. The overall process closely
mirrors that of RegFP. To begin, we decompose each instantaneous regret term. Let ᾱt(θ1, θ2) =∫ 1

0
(1− u)µ̇(x⊤

t θ1 + u(x⊤
t θ2 − x⊤

t θ1))du, which is derived from Taylor’s theorem when estimating
the regret for the selected arm xt using two parameter vectors, θ1 and θ2. Using Proposition F.2, we
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expand the instantaneous regret term as:∣∣µ(x⊤
t ωt)− µ(x⊤

t θ̂τ(t))
∣∣ = ∣∣∣∣∣µ̇(x⊤

t θ̂τ(t))⟨xt, ωt − θ̂τ(t)⟩+
∫ x⊤

t ωt

x⊤
t θ̂τ(t)

(µ(x⊤
t ωt)− z)µ̈(z)dz

∣∣∣∣∣
≤ µ̇(x⊤

t θ̂τ(t))
∣∣∣⟨xt, ωt − θ̂τ(t)⟩

∣∣∣+ ⟨xt, ωt − θ̂τ(t)⟩2
∫ 1

0

(1− u)
∣∣∣µ̈(x⊤

t θ̂τ(t) + u(x⊤
t ωt − x⊤

t θ̂τ(t))
)∣∣∣ du

≤ µ̇(x⊤
t θ̂t)

∣∣∣⟨xt, ωt − θ̂τ(t)⟩
∣∣∣+Mµ⟨xt, ωt − θ̂τ(t)⟩2

∫ 1

0

(1− u)µ̇
(
x⊤
t θ̂τ(t) + u(x⊤

t ωt − x⊤
t θ̂τ(t))

)
du︸ ︷︷ ︸

=ᾱt(θ̂τ(t),ωt)

≤
(
µ̇(x⊤

t θ̄t) +
∣∣∣µ̇(x⊤

t θ̄t)− µ̇(x⊤
t θ̂τ(t))

∣∣∣) ∣∣∣⟨xt, ωt − θ̂τ(t)⟩
∣∣∣+Mµᾱt(θ̂τ(t), ωt)⟨xt, ωt − θ̂τ(t)⟩2

≤
(
µ̇(x⊤

t θ̄t) +
∣∣∣µ̇(x⊤

t θ̄t)− µ̇(x⊤
t θ̂τ(t))

∣∣∣) ∣∣∣⟨xt, ωt − θ̂τ(t)⟩
∣∣∣+Mµᾱt(θ̂τ(t), ωt)βτ(t)(δ

′)2||xt||2Ĥ−1
τ(t)︸ ︷︷ ︸

F EST
t

,

where the second inequality follows from Assumption 2, and the last inequality results from the
Cauchy-Schwartz inequality. The key distinction between bounding RegFP and RegEST lies is the use
of β(δ′) instead of γ(δ′). The first term then can be upper bounded by the following terms, using
triangular inequality:(

µ̇(x⊤
t θ̄t) +

∣∣∣µ̇(x⊤
t θ̄t)− µ̇(x⊤

t θ̂τ(t))
∣∣∣)||xt||Ĥ−1

τ(t)
||ωt − θ̂τ(t)||Ĥτ(t)

≤ µ̇(x⊤
t θ̄t)βτ(t)(δ

′)||xt||Ĥ−1
τ(t)︸ ︷︷ ︸

DEST
t

+
∣∣∣µ̇(x⊤

t θ̄t)− µ̇(x⊤
t θ̂t)

∣∣∣βτ(t)(δ
′)||xt||Ĥ−1

τ(t)︸ ︷︷ ︸
EEST

t

.

Bounding
∑

t D
EST
t By the equation(E.5), instead of t-dependent Ĥt, we use τ -only dependent H̄t

to upper bound each term. We have:∑
t∈IT

DEST
t ≤ βT (δ

′)
∑
t∈IT

µ̇(x⊤
t θ̄t)||xt||Ĥ−1

t
(t ≤ τ(t) ≤ T )

≤ βT (δ
′)

√
2d log

(
1 +
LµT

dλ

)√√√√ T∑
t=1

µ̇(x⊤
t∗θ

∗) +
∑
t∈IT

{
µ̇(x⊤

t θ̄t)− µ̇(x⊤
t∗θ

∗)
}

≤ βT (δ
′)

√
2d log

(
1 +
LµT

dλ

)√
κ∗T +Mµ {2RegEST + Reg(T )}.

Since the derivation proceeds identically to the case of
∑

t D
FP
t , with the only difference being the

use of βT in place of γT , we omit the detailed derivation here for brevity.

Bounding
∑

t E
EST
t Following the bounding process of

∑
t E

FP
t , and using the equation (E.6),∑

t∈IT

EEST
t ≤ βT (δ

′)
∑
t∈IT

∣∣∣µ̇(x⊤
t θ̄t)− µ̇(x⊤

t θ̂t)
∣∣∣ ||xt||Ĥ−1

t
(t ≤ τ(t) ≤ T )

≤ 4d

κ
MµLµβT (δ

′)2 log

(
1 +

κT

dλ

)
.

Bounding
∑

t F
EST
t For ᾱt(θ̂τ(t), ωt) :=

∫ 1

0
(1−u)µ̇(x⊤

t θ̂τ(t)+u(x⊤
t ωt−x⊤

t θ̂τ(t)))du, as shown
in (E.4), it follows that ᾱt(θ̂τ(t), ωt) ≤ Lµ/2. Following the bounding process of

∑
t F

FP
t ,∑

t∈IT

F EST
t ≤MµβT (δ

′)2
∑
t∈IT

ᾱt(x̃t)||xt||2Ĥ−1
t

(t ≤ τ(t) ≤ T )

≤ d

κ
MµLµβT (δ

′)2 log

(
1 +

κT

dλ

)
.
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In summary, combining three regret components, we bound RegEST ≤
∑

t

{
DEST

t + EEST
t + F EST

t

}
as follows:

RegFP ≤ βT (δ
′)

√
2d log

(
1 +
LµT

dλ

)√
κ∗T +Mµ {2RegEST + Reg(T )}

+
5d

κ
MµLµβT (δ

′)2 log

(
1 +

κT

dλ

)
. (E.8)

Step 5 (Solving equation) The equation (E.8) is indeed cδ′ > 1 times the equation (E.7). There-
fore, both RegFP and RegEST can be bounded using the regret bound of RegFP. Let Regmax =
max {RegFP,RegEST}, and we can bound Regmax with the equation (E.7). Then we have,

Reg(T ) ≤
(
2

p
+ 1

)
RegFP + RegEST + ε ≤

(
2

p
+ 2

)
Regmax + ε,

and accordingly, we get the following inequality:

Regmax ≤ γT (δ
′)

√
2d log

(
1 +
LµT

dλ

)√
κ∗T +Mµ

{(
2

p
+ 4

)
Regmax + ε

}
+

5d

κ
MµLµγT (δ

′)2 log

(
1 +

κT

dλ

)
Now, The bound takes the form of Regmax ≤ A

√
B + CRegmax+D, where the following quantities

are defined:

A := γT (δ
′)

√
2d log

(
1 +
LµT

dλ

)
= Õ (d)

B := κ∗T +Mµε = Õ

(
κ∗T + d

√
T

λ2

)

C := Mµ

(
2

p
+ 4

)
= O(1)

D :=
5d

κ
MµLµγT (δ

′)2 log

(
1 +

κT

dλ

)
= Õ

(
d2

κ

)
,

focusing on the terms involving d,T , and κ. With the choice of λ = O(d) and applying Lemma F.5,
the upper bound for Regmax simplifies to:

Regmax = Õ
(
d
√

κ∗T + d2 +
d2

κ

)
= Õ

(
d
√
κ∗T +

d2

κ

)
.

Now, combining all terms, the cumulative regret R(T ) can be bounded as:

R(T ) ≤ Reg(T ) +
4dR∗

log 2

{
log

(
1 +

Lµ

λ log 2

)
+ log

(
1 +

κ

λ log 2

)}
≲

(
2

p
+ 2

)
Regmax + ε

= Õ

(
d
√
κ∗T +

d2

κ
+ d

√
T

λ2

)
= Õ

(
d
√
κ∗T +

d2

κ

)
. (Choose λ = O(d))

Our derived regret bound, Õ
(
d
√
κ∗T + d2/κ

)
, aligns with the state-of-the-art regret guarantee [4,

15, 36, 37].
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F Proof supplement and Lemmas

In this section, we provide key propositions, lemmas, and inequality bounds that are essential for
the main proof. These results serve as the mathematical foundation for the regret analysis and other
theoretical guarantees established in this work.

F.1 Supporting Lemmas for main proof

Proposition F.1 (Lemma D.1. of Lee et al. [37]). Let µ be increasing and self-concordant with Mµ.
Let Z ⊆ B(S) := {z ∈ R | |z| ≤ S} in R. Then for any z1, z2 ∈ Z , the following holds:∫ 1

0

(1− u)µ̇(z1 + u(z2 − z1))du ≥
µ̇(z1)

2 + 2SMµ

This proposition establishes a lower bound for the integral involving a self-concordant, particularly
useful for controlling weighted norms and derivatives in regret analysis. The following proposition
provides the well-known Taylor’s expansion expression with integral remainder. We highlight specific
cases that are frequently used throughout the main proof.
Proposition F.2 (Taylor’s Theorem with Integral Remainder Form). Let n ≥ 0 be an integer and let
the function f : R→ R be (n+ 1) times differentiable at the point x0 ∈ R. Let f (n) to denote its
n-th derivatives, then f(x) can be expressed as:

f(x) =

n∑
i=0

f (i)(x0)

i!
(x− x0)

i +
1

n!

∫ x

x0

f (n+1)(t)(x− t)ndt

Especially for n = 0, by letting t = x0 + u(x− x0), f(x) can be expressed as:

f(x) = f(x0) +

∫ x

x0

f ′(t)dt = f(x0) + (x− x0)

∫ 1

0

f ′ (x0 + u(x− x0)) du (F.1)

Especially for n = 1, by letting t = x0 + u(x− x0), f(x) can be expressed as:

f(x) = f(x0) + f ′(x0)(x− x0) +

∫ x

x0

f ′′(t)(x− t)dt

= f(x0) + f ′(x0)(x− x0) +

∫ 1

0

f ′′ (x0 + u(x− x0)) ((1− u)(x− x0)) · (x− x0)du

= f(x0) + f ′(x0)(x− x0) + (x− x0)
2

∫ 1

0

f ′′ (x0 + u(x− x0)) (1− u)du (F.2)

Similarly, with multivariate function f : Rd → R and n = 1, we have that:

f(x) = f(x0) +

d∑
i=1

∂

∂xi
f(x0)(x− x0)i +

d∑
i=1

(x− x0)
2
i

∫ 1

0

(1− u)
∂2

∂x2
i

f(x0 + u(x− x0))du

+
∑
i̸=j

2(x− x0)i(x− x0)j

∫ 1

0

(1− u)
∂

∂xi

∂

∂xj
f(x0 + u(x− x0))du

= f(x0)+∇f(x0)
⊤(x− x0)+(x− x0)

⊤
(∫ 1

0

(1− u)∇2f(x0 + u(x− x0))du

)
(x− x0).

The following lemmas provide critical tools for analyzing regret bounds in the context of bandit
algorithms. Specifically, they focus on bounding terms that involve weighted norms of feature vectors
under Gram matrices. These results are pivotal in deriving efficient bounds on cumulative regret and
exploration.

Lemma F.1 (Elliptical Potential Lemma). let {xt}Tt=1 be a sequence in Rd satisfying ||xt|| ≤ R for
all t ≤ T . For a gram matrix Vt := λI +

∑t−1
τ=1 xτx

⊤
τ , we have that

T∑
t=1

min
{
1, ||xt||2V −1

t

}
≤ 2d log

(
1 +

R2T

dλ

)
.
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Lemma F.2 (Elliptical Potential Count Lemma). For R, c > 0, let {xt}Tt=1 be a sequence in Rd

satisfying ||xt|| ≤ R for all t ≤ T . For a gram matrix Vt := λI +
∑t−1

τ=1 xτx
⊤
τ , the length of the

sequence NT :=
{
t ∈ [T ] | ||xt||V −1

t
> c
}

is bounded as:

|NT | ≤
2d

log(1 + c2)
log

(
1 +

R2

λ log(1 + c2)

)
The following connects the smoothness of µ̇ to the difference in µ.
Lemma F.3. For x, y ∈ R, |µ̇(x)− µ̇(y)| ≤Mµ |µ(x)− µ(y)|.

Proof.

|µ̇(x)− µ̇(y)| =
∣∣∣∣(x− y)

∫ 1

0

µ̈(y + u(x− y))du

∣∣∣∣ (By (F.1) with f = µ̇)

≤ |x− y|
∫ 1

0

|µ̈(y + u(x− y))| du

≤Mµ |x− y|
∫ 1

0

µ̇(y + u(x− y))du (Assumption 2)

= Mµ

∣∣∣∣(x− y)

∫ 1

0

µ̇(y + u(x− y))du

∣∣∣∣
= Mµ |µ(x)− µ(y)| (By (F.1) with f = µ)

where the second equality holds since the integral term is positive as µ̇ ≥ 0.

The following lemma bounds the difference in µ values, using linearization as in the previous works.
Lemma F.4. For any t ≥ 1 and θ1, θ2 ∈ Θτ(t), we have the following:

∣∣µ(x⊤
t θ1)− µ(x⊤

t θ2)
∣∣ ≤ 2γT (δ)Lµ

√
1

κ
||xt||V −1

t

Proof.

|µ(x⊤
t θ1)− µ(x⊤

t θ2)| =
∣∣∣∣⟨xt, θ1 − θ2⟩

∫ 1

0

µ̇(x⊤
t θ2 + u(x⊤

t θ1 − x⊤
t θ2))du

∣∣∣∣ (By (F.1))

≤
{
||xt||Ĥ−1

τ(t)
· ||θ1 − θ2||Ĥτ(t)

}∫ 1

0

Lµdu (Cauchy-Schwartz, Lµ-Lipschitzness)

≤ Lµ||xt||Ĥ−1
τ(t)

{
||θ1 − θ̂τ(t)||Ĥτ(t)

+ ||θ2 − θ̂τ(t)||Ĥτ(t)

}
(Triangle inequality)

≤ 2βτ(t)(δ
′)Lµ||xt||Ĥ−1

τ(t)

≤ 2βτ(t)(δ
′)Lµ

√
1

κ
||xt||V −1

τ(t)
(By (E.6))

≤ 2βT (δ
′)Lµ

√
1

κ
||xt||V −1

t
(t ≤ τ(t) ≤ T )

Lemma F.5. Let A,B,C,D,X ∈ R+. The following implication holds:

X ≤ A
√
B + CX +D =⇒ X ≤ 2(A

√
B +A2C +D)

Proof. let f : x→ x2 − px− q for p, q > 0. Then the roots for f(x) = 0 are:

x1, x2 =
p±

√
p2 + 4q

2
.
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Now, as f is a convex function, x2 ≤ px+ q implies:

x ≤ max {x1, x2} ≤
p+

√
p2 + 4q

2
≤

p+ (p+ 2
√
q)

2
= p+

√
q. (triangle inequality)

And accordingly, we have:

x ≤ p
√
x+ q =⇒

√
x ≤ p+

√
q

=⇒ x ≤ (p+
√
q)2 ≤ 2p2 + 2q (F.3)

where the inequality holds from (x+ y)2 ≤ 2(x2 + y2). Then according to the equation (F.3),

X ≤ A
√
B + CX +D =⇒ X ≤ A

√
C
√
X +A

√
B +D (triangle inequality)

=⇒ X ≤ 2(A
√
C)2 + 2(A

√
B +D) = 2(A

√
B +A2C +D)

F.2 Auxiliary bounding inequalities

We introduce key probabilistic inequalities and bounds frequently used in the analysis of randomized
algorithms. These results provide tools to bound the probabilities of deviations and concentration of
random variables, which are essential for deriving high-probability guarantees in the main analysis.
Proposition F.3 (Azuma’s inequality). If a super-martingale (Xt)t≥0 corresponding to a filtration
Ht−1 satisfies |Xt −Xt−1| < ct for some constant ct for all t = 1, . . . , T then for any α > 0,

P(XT −X0 ≥ α) ≤ 2 exp

(
− α2

2
∑T

t=1 c
2
t

)
.

Proposition F.4 (Chernoff bound). For a random variable X and its moment-generating function
M(t) = E

[
etX
]
,

P(X ≥ α) ≤ inf
t>0

M(t)e−tα.

Accordingly, for a random variable following a standard normal distribution (i.e. X ∼ N (0, 1)),

P(X ≥ α) ≤ inf
t>0

exp(
t2

2
− tα) = e−

α2

2 .

Lemma F.6. Let z be a random variable sampled from the standard Normal distribution. Then for
all δ ∈ (0, 1),

P(|z| ≤
√
2 log(2/δ)) ≥ 1− δ.

Proof. By proposition Proposition F.4, P(|z| > α) = 2P(z > α) ≤ 2e−
α2

2 . Set the right-hand side
as δ, and get α =

√
2 log(2/δ).

G Limitations

Our analysis focuses on structured settings such as generalized linear bandits (GLBs), where feature
perturbation achieves both strong empirical performance and provable regret guarantees. While the
same principle shows promise in more flexible or non-linear models, theoretical guarantees in these
broader settings remain open. The current formulation, though practically effective, is heuristic
outside the GLM framework and lacks formal justification under complex function classes. Extending
the theory to overparameterized or general Lipschitz models represents an important direction for
future work, where feature-level stochasticity may offer a stable alternative to parameter perturbation.
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H Experimental settings and additional results

H.1 Experimental details

The GLB experiments are entirely synthetic and computationally lightweight. All GLB runs were
performed on a standard CPU server equipped with an Intel Xeon Silver 4210R processor (40 threads),
with each run completing within a few minutes. The neural bandit experiments were conducted
using a single NVIDIA RTX 3090 GPU. Due to the moderate model size and limited data horizon,
neural runs for each algorithm completed in under one hour. Overall, the compute requirements were
modest, and no large-scale pretraining or extensive hyperparameter tuning was necessary for any of
the experiments.

H.1.1 Generalized linear bandit settings

We consider a time-varying set of K = 100 arms per round over a horizon of T = 20,000 (linear) or
T = 10,000 (logistic). Context vectors and the true parameter vector θ∗ are sampled from a standard
multivariate Gaussian distribution and normalized to satisfy the boundedness assumption. In the
logistic case, we use the sigmoid link function µ(x) = 1/(1 + e−x) and constrain ∥θ∗∥ ≤ 4 so that
the logits lie in [−4, 4]. For the linear bandit, the reward noise is sampled from N (0, 1). We vary the
feature dimension d over {10, 20, 40}. The confidence level is set as δ = 1/T , and the regularization
parameter is fixed at λ = 10−4.

Baselines and tuning. For linear bandits, we compare against ε-greedy [33], LinUCB [1],
LinTS [6], LinPHE [31], and RandLinUCB [46]. For logistic bandits, we include ε-greedy, OFUL-
GLB-e [37], LogTS [32], LogPHE [32], and RandUCBLog. All hyperparameters, such as inflation
factors and learning rates, are tuned according to the original papers. We fix Lµ = 0.25 and use a
minimum link derivative of 0.25 for numerical stability in the logistic setting. For TS-based algo-
rithms and our method, we set the inflation parameter as ct = 1. For ε-greedy, we use an annealing
schedule εt = ε

√
T/t with ε = 0.05.

H.1.2 Neural bandit settings

Objective. Following Zhang et al. [51], we evaluate neural contextual bandits using classifica-
tion tasks on UCI benchmark datasets [40]: shuttle, isolet, and mushroom. These tasks are
transformed into multi-armed bandit problems via a disjoint model construction (cf. Li et al. [38]).
For a k-class classification problem with input dimension d, we construct a kd-dimensional feature
representation by placing the input vector x into the corresponding class slot: x1 = (x;0; · · · ;0),
x2 = (0;x; · · · ;0), and so on. Each xi is treated as the feature vector for the i-th arm. A neural
model f predicts the reward for each xi, and the agent selects the arm with the highest predicted
reward. A reward of 1 is given if the selected arm corresponds to the correct label, and 0 otherwise.
Regret is measured as the cumulative number of classification errors. All experiments are repeated
five times with shuffled data. The time horizon is set to T = 10,000 for all datasets.

Neural networks. To study the effect of model capacity, we evaluate two neural network archi-
tectures: a shallow and a deep model. The shallow network consists of a single hidden layer with a
fully connected layer of size d× 100, followed by a ReLU activation, a final fully connected layer of
size 100× 1, and a softmax output layer, following the design used in Zhang et al. [51]. The deep
network, in contrast, uses two hidden layers with a fully connected layer of size d × 50, a ReLU
activation, another fully connected layer of size 50× 50 followed by ReLU, and a final output layer
of size 50×1 with softmax. Both models are trained online using the Adam optimizer with a learning
rate of 0.001 and a batch size of 32. Training is performed at each round using the most recent 32
observed examples. Figure 3(bottom) is a result with a deeper model.

Baselines and tuning. We compare against several baselines including ε-greedy, NeuralUCB [52],
NeuralTS [51], and FTPL [32]. To accelerate training for NeuralUCB and NeuralTS, we approximate
the confidence matrix inverse using only the reciprocals of the diagonal entries. In our proposed
algorithm, DeepFP, instead of perturbing the full kd-dimensional parameter space, we selectively
perturb only the d-dimensional subspace corresponding to the chosen arm. This masking avoids
interference from other arms, ensuring more accurate value estimation for the selected action.
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H.2 Additional experiments

We provide additional experiments by varying the norm of the true parameter S and the cardinality of
the context set |C|. The specific configurations are provided in each figure caption.

To further validate our algorithm in a neural contextual bandit setting, we conduct additional exper-
iments using the MNIST [12] and Fashion-MNIST [48] datasets. Each instance is represented as
a 28× 28 grayscale image with label set size K = 10, naturally forming a K-armed classification
bandit problem. At each round, the agent receives a context composed of K image tensors, where
the i-th arm corresponds to the image being placed in the i-th channel slot, and all others set to zero.
This yields a K × 28 × 28 tensor input for each arm. The model f used to estimate the expected
reward is a shared convolutional neural network that takes the entire K-channel tensor as input and
outputs a scalar score for each arm, promoting parameter sharing across arms.

The architecture of the model is as follows: two convolutional layers are applied with ReLU activation
and 2× 2 max pooling after each. The first layer uses 32 filters and the second 64 filters, both with
kernel size 3× 3 and stride 1. The resulting 64× 7× 7 feature map is flattened and passed through
two fully connected layers with hidden size 128, followed by ReLU and a final output scalar. This
design enables efficient learning of visual features while maintaining compatibility with the bandit
framework through arm-wise shared representation.
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Figure H.1: Linear Bandit. |C| = 1, d = {5, 10, 20}, K = 100, S = 1.
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Figure H.2: Linear Bandit. |C| = T , d = {10, 20, 40}, K = 100, S = 2.
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Figure H.3: Linear Bandit with noise N (0, 0.12). |C| = T , d = {10, 20, 40}, K = 100, S = 2.
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Figure H.4: Logistic Bandit. |C| = 1, d = {5, 10, 20}, K = 100, S = 1.
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Figure H.5: Logistic Bandit. |C| = 1, d = {5, 10, 20}, K = 100, S = 4.
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Figure H.6: Neural Bandit. Multi-layer perceptron model with one hidden layer and output layer.
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Figure H.7: Neural Bandit. Experiments on MNIST dataset with a CNN model.
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