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Figure 1: Extreme Parkour: Low-cost robot with imprecise actuation can perform precise athletic behaviors
directly from a high-dimensional image without any explicit mapping and planning. The robot is able to long
jump across gaps 2× of its own length, high jump over obstacles 2× its own height, run over tilted ramps, and
walk on just front two legs (handstand) – all with a single neural network operating directly on depth from a
single, front-facing camera.

Abstract: Humans can perform parkour by traversing obstacles in a highly dynamic
fashion requiring precise eye-muscle coordination and movement. Getting robots
to do the same task requires overcoming similar challenges. Classically, this is
done by independently engineering perception, actuation, and control systems
to very low tolerances. This restricts them to tightly controlled settings such as
a predetermined obstacle course in labs. In contrast, humans are able to learn
parkour through practice without significantly changing their underlying biology.
In this paper, we take a similar approach to developing robot parkour on a small
low-cost robot with imprecise actuation and a single front-facing depth camera
for perception which is low-frequency, jittery, and prone to artifacts. We show
how a single neural net policy operating directly from a camera image, trained in
simulation with large-scale RL, can overcome imprecise sensing and actuation to
output highly precise control behavior end-to-end. We show our robot can perform
a high jump on obstacles 2x its height, long jump across gaps 2x its length, do a
handstand and run across tilted ramps, and generalize to novel obstacle courses
with different physical properties.
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1 Introduction

Parkour is a popular athletic sport that involves humans traversing obstacles in a highly dynamic
manner like running on walls and ramps, long coordinated jumps, and high jumps across obstacles.
This involves remarkable eye-muscle coordination since missing a step can be fatal. Further, because
of the large torques exerted, human muscles tend to operate at the limits of their ability and limbs
must be positioned in such a way as to maximize mechanical advantage. Hence, margins for error
are razor thin, and to execute a successful maneuver, the athlete needs to make all the right moves.
Understandably, this is a much more challenging task than walking or running and requires years of
practice to master. Replicating this ability in robotics poses a massive software as well as hardware
challenge as the robot would need to operate at the limits of hardware for extreme parkour. Perception
and control must be precise and tightly coupled to execute the correct moves at the right time. The
robot should have a precise physical understanding and be able to come up with correct moves on the
fly in advance of the obstacle because, unlike locomotion, recovering from suboptimal behavior is
not only unsafe but also makes it impossible to do the task. For instance, jumping over a wide gap
needs enough time to generate the required momentum to take off before the edge. Hence, classical
approaches can only do parkour when everything is pre-measured precisely, that is, placement, size,
and type of obstacle course are known and optimization is performed to decide the right control
actions at each timestep [1]. But what if any obstacle were to move, or if the robot is asked to perform
as is on a new parkour course? All these challenges are not feasible with such an approach.

In contrast, humans take a very different approach. A parkour expert and novice have access to
the same set of “sensors", and in the process of learning parkour, their sensing capabilities are
not significantly improved. Instead, through years of trial and error, they learn to use the same
imprecise sensing and actuation to accomplish amazing feats in in-the-wild settings. In this paper,
our hypothesis is that we can demonstrate learning parkour in a similar way on low-cost robots.

We build upon the recent line of works that show impressive results on walking and running in diverse
scenarios [2, 3, 4, 5, 6, 7, 8, 9, 10, 11] and use the low-cost Unitree A1 hardware. However, low cost
poses a new challenge for parkour which is not as prominent in prior walking works. Due to the noisy
and laggy action, the perception has artifacts, latency, and jitter [6]. Hence, building a terrain map
with noisy perception leads to large errors in the map which throws off the action planner. Even if the
actions were correct, executing them on laggy and noisy actuators leads to catastrophic failure.

In addition to precise control from noisy actuation, training extreme parkour controllers has two
conceptual challenges as well. First, the robot should have the “freedom” to automatically adjust its
heading direction depending on the type of parkour obstacle. We found that even if a human expert
is providing the heading direction, it is sub-optimal because in extremely long or high jumps over
obstacles or ramps, even a few degrees of error in heading leads to failure. Second, each parkour
behavior from jumping to handstand are very different in nature, so combining them within a single
neural network is a challenging learning problem.

We address all these challenges with an end-to-end data-driven reinforcement learning framework. A
single neural network is trained via RL in simulation to directly output motor commands from pixels
[2, 3, 7]. To allow the robot to adjust itself as per the obstacle type at deployment, we propose a novel
dual distillation method. The policy is first trained with a privileged heading in Phase 1 and then
distilled to predict its own heading direction in Phase 2. As a result at deployment, the policy not
only outputs agile motor commands but also rapidly adjusts heading directions all from input depth
image. Furthermore, to allow a single neural network to represent diverse parkour skill behaviors we
propose a simple yet effective universal reward design principle based on inner-products. Below, we
summarize the main contributions:

• A novel dual distillation method for distilling both agile motor commands and rapidly fluctuating
heading directions from depth images.

• A simple yet effective inner-product reward design principle for general robot base motion acquisi-
tion, together with an automatic terrain curriculum for overcoming exploration in RL.
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• Our results set a new landmark in learning-driven parkour with high jumps that are 2x the height
of the robot, long jumps that are 2x the length of the robot, walking on front two legs (handstand),
and jumping over titled ramps directly from a single front-facing egocentric depth camera (Tab. 1).

2 Related Work
2.1 Legged Locomotion Method Robot Climb Gap Ramp Handstand

Rudin et. al [12] AnymalC 1.1 0.75 × ×
Hoeller et. al [13]* AnymalC 2 1.5 × ×
Zhuang et. al [14]* Unitree-A1 1.6 1.5 × ×
Extreme Parkour (ours) Unitree-A1 2 2 37◦ ✓

Table 1: Comparison of parkour setups. Starred papers in 2nd and 3rd row are
concurrent works (recently released). The numbers in Climb and Gap denote
the relative size of obstacles with respect to quadruped’s height and length
respectively. Notably, our method is able to push the low-cost A1 robot to
extreme scenarios which are twice the height and length of robot. Anymal is
an industry-standard high-quality robot and therefore much more expensive.

Classical approaches for lo-
comotion use model-based
control to define walking
controllers [15, 16, 17, 18,
19] and combine them with
elevation maps constructed
by fusing point cloud and
odometry data [20, 21, 22,
23, 24, 25, 26, 27, 28, 29].
However, these controllers
can struggle to generalize to situations with widely varying physical properties such as ice or de-
formable material. This has motivated the use of learned controllers trained with RL that can adapt to
changes in dynamics [8, 30, 31, 32, 33, 34, 35] and also leverage elevation maps [6, 36, 37, 38, 39]
for perceptive walking. Building elevation maps usually requires sophisticated sensors and causes
artifacts that degrade downstream performance. Recent work skips the use of elevation maps entirely
and accomplishes highly robust perceptive walking [2, 7, 3, 40]. In this paper, we generalize a similar
paradigm with key modifications to parkour.

2.2 Robotic Parkour
Most animals and humans learn locomotion within the first year of their life. In contrast, parkour is
more challenging and requires years to master since a single error can lead to failure. Results on this
task are comparatively fewer although recent years have seen some progress [1]. [12] use the classical
approach of decomposing perception into elevation mapping and use RL to train a policy conditioned
on it. Some recent work demonstrates blind dynamic running and jumping using sim2real RL on
quadrupeds [41] and bipeds [9, 10].

2.3 Concurrent work
There are two other concurrent works released within weeks. [13] demonstrates agile behaviors
by training task-specific policies and composing them using a high-level trained module but still
relying on elevation maps. And [14] trains an end-to-end policy that uses depth instead of elevation
map but needs a complex curriculum of first training with soft penetration constraints in simulation
followed by distillation to hard constraints. They also use simplified obstacle abstractions (type,
width, height, and robot’s distance to the obstacle) as privileged visual information. However, this
type of information cannot be generalized to general obstacle geometries. In contrast to both of these
papers, we propose a conceptually simple framework that results in more extreme parkour behaviors.
The simplicity comes from three ideas: (i) instead of privileged abstractions, we use scandots as
privileged information that generalizes across terrain geometries, (ii) allowing the policy to decide its
own heading at deployment depending on obstacles. This allows us to demonstrate the capability
of jumping across tilted ramps. And (iii) a unified general-purpose reward principle. Furthermore,
we are able to cross gaps that are upto 2× the length of the robot and jump obstacles that are 2× its
height, whereas concurrent work jumps at most 1.5× its height and 1.5× its length (Tab. 1).

3 Method
We wish to train a single neural network that goes directly from raw depth and onboard sensing to
joint angle commands. To train adaptive motor policies, recent approaches use two-phase student
teacher training [8, 6, 42, 43]. Later works [44, 45] introduce regularized online adaptation (ROA) to
collapse this into a single phase. To train the vision backbone, a similar teacher-student framework
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Figure 2: Training overview. In phase 1, we use RL to learn a locomotion policy with access to privileged
information like environment parameters and scandots [2] in addition to heading direction from waypoints. We
use Regularized Online Adaptation (ROA)[31] to train an estimator to recover environmental information from
the history of observations. In phase 2, we distill from scandots into a policy that operates from onboard depth
and automatically decides its heading (yaw) direction conditioned on the obstacle.

is employed [2, 3, 7] where a teacher trained with privileged scandots information is distilled to a
student with access to depth. In this paper, we use ROA for adaptation and two-phase training for the
vision backbone but introduce key modifications for the challenging task of extreme parkour.
First, since parkour requires diverse behaviors to traverse different obstacles it is challenging to
engineer reward functions specific to each. We present a simple, unified reward formulation from
which diverse behaviors emerge automatically and are perfectly adapted to the terrain geometry.
Second, during parkour the robot needs to be able to choose its own direction as opposed to following
human-specified ones. For instance, when jumping across tilted ramps, it needs to jump on the first
ramp at a very specific angle and then change directions immediately which is impossible for a human
to provide. Instead, we provide directions in phase 1 using suitably placed waypoints and in phase 2
we train a network to predict these oracle heading directions from depth information.

3.1 Unified Reward for Extreme Parkour
The rewards used in [2] do not transfer directly to the parkour case. The robot cannot follow arbitrary
direction commands and instead must have the freedom to choose the optimal direction. Instead of
randomly sampling directions, we compute direction using waypoints placed on the terrain (Fig. 3) as

d̂w =
p−x
∥p−x∥

(1)

where p is the next waypoint location and x is robot location in the world frame. The velocity tracking
reward is then computed as

rtracking = min(⟨v, d̂w⟩,vcmd) (2)
where v ∈ R2 is the robot’s current velocity in world frame and vcmd ∈ R is the desired speed. Note
that [2] tracks velocity in the base frame but world frame is used. This is done to prevent the robot
from exploiting the reward and learning the unintended behavior of turning around the obstacle.
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Figure 3: Terrains in simulation with red dots indicating waypoints that are used to get heading direction.

While the above reward is sufficient for diverse parkour behavior, for challenging obstacles the robot
tends to step close to the edge to minimize energy usage. This behavior is risky and does not transfer
well to real settings. We therefore add a term to penalize foot contacts near terrain edges.

rclearance =−
4

∑
i=0

ci ·M[pi] (3)

ci is 1 if ith foot touches the ground. M is a boolean function which is 1 iff the point pi lies within
5cm of an edge. pi is the foot position for each leg.
The rewards defined above typically lead to a gait that uses all four legs. However, a defining feature
of parkour is walking in different styles that are aesthetically pleasing but may not be biomechanically
optimal. To explore this diversity, we introduce a term to track a desired forward vector using the
same inner product design principle, which can be controlled by the operator at test time.

rstylized =W ·
[
0.5 · ⟨v̂ f wd , ĉ⟩+0.5

]2 (4)

where v̂ f wd is the unit vector pointing forward along the robot’s body, ĉ is also a unit vector indicating
the desired direction and W is a binary number to switch the reward on/off. In our case, we train the
robot to do a handstand and choose ĉ = [0,0,−1]T . W is sampled randomly in {0,1} at training and
controlled via remote at deployment. We also use the additional regularization terms from [45].

3.2 Reinforcement Learning from Scandots (Phase 1)
We use the above rewards to learn a policy using model-free RL [46] in simulation. This policy takes
as input, the proprioception x, scandots m, target heading d̂, walking flag W and commanded speed
vcmd. We use regularized online adaptation (ROA) [44] to train an adaptation module to estimate
environment properties. We create a set of tilted ramps, gaps, hurdles and high step terrains (Fig. 3),
and arrange them in increasing difficulty as in [2]. To aid exploration, robots are first initialized in
easy levels. They are promoted to harder ones if they traverse more than half the length, and demoted
to an easier one if they travel less than half the expected distance vcmdT (T is episode length).

3.3 Distilling Direction and Exteroception (Phase 2)
The phase 1 policy relies on two pieces of information not directly available on the real robot. First,
exteroceptive information is only available in the form of depth images from a front-facing camera
instead of scandots. Second, there is no expert to specify waypoints and target directions, these must
be inferred from the visible terrain geometry. We use supervised learning to obtain a deployable policy
which automatically estimates these quantities. For exteroception, similar to the RMA architecture
in [2] we replace the scandots input to the base policy with a convnet-GRU pipeline that accepts
depth. This network is trained using DAgger [47], with ground truth actions from the phase 1 policy.
We use student predicted motor commands to step the environment. We initialize the actor network
with a copy from phase 1 to minimize the drift when we directly step the environment with student
actions. However for predicted heading, the depth encoding network is not pre-trained. Directly using
predicted heading as observation could result in catastrophic distribution drift leading to incorrect
action labels from the teacher. To overcome this issue, we propose to use a mixture of teacher and
student (MTS). Concretely, the heading command the student observes

obsθ =

{
θ pred, if |θ pred − d̂w|< 0.6
d̂w, otherwise

where θ pred and d̂w are the desired yaw angle from prediction and oracle, respectively. obsθ is the
yaw angle the policy observes.
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50cm 
(2x robot)

Figure 4: Key frames of our robot executing a very high jump (2x its height). We note the emergent foot
placement, power generated through hind legs and climbing behavior from the front legs.

4 Results
4.1 Experimental Setup
We use the Unitree A1 robot with 12 joints and IssacGym simulator for training. When standing,
height of the thigh joint is 26cm and body length is 40cm. For exteroception, we use the Intel
RealSense D435 inside the head of the robot which captures images at 10±2Hz. We run both depth
backbone (10Hz) and the base policy (50Hz) on the Jetson NX and communicate via UDP. The depth
server captures depth images, processes them and passes the latent and target direction to the base
policy. We preprocess the image by cropping dead pixels from the left hand side and downsampling
to 58×87. We enforce a constant depth latency of 0.08s to prevent jitter. Specifically, we record
the time from receiving the depth image to the time before sending the latent as tp. If tp < 0.08, we
pause the program for 0.08− tp before sending the latents. Similarly, proprioception latency is fixed
at 0.016s. The deployable policy can be trained on a single 3090 GPU in less than 20 hours.

4.2 Emergent results

80cm 
(2x robot)

Figure 5: Keyframes from a long jump (2x
robot length)

Our simple reward functions impose no priors and the
robot is free to learn emergent behaviors that would be
impossible to heuristically define. We illustrate three such
examples in Fig. 4, 5, 6.

4.2.1 High jump
Our robot is able to jump on a gym box 0.5m high (Fig. 4)
which is twice the height of its hip joint. For context, the
human high jump record is 2.45m which is roughly 2.5
times as high as the human hip joint. This feat is only
possible with highly optimized behavior.

In Fig. 4 we show a breakdown. As the robot approaches
the obstacle the stride length reduces and the robot aligns
its front feet and rear feet at the correct distance from the
obstacle. Next, it kicks out its rear feet with high torque
and velocity to propel itself upwards. Simultaneously, it
extends its front feet to clear the top of the obstacle. As
soon as the front feet touch the top of the obstacle, it uses
them to pull itself up. Next, it tucks its rear legs close to
the body so they are able to clear the object boundary and
then finally shifts to a stable walking pose.

4.2.2 Long jump
Our robot is able to jump across a gap 0.8m wide (Fig. 5). This is twice the separation between its
front and rear feet. To accomplish this, similar to the high jump case it lines up its front feet with
the edge of the obstacle. Next, it also moves its rear feet close to the edge to maximize its jumping
distance. Then it kicks back using its hind feet to propel itself forward and upward while extending
the front ones to reach the other side. While jumping, it extends its hind feet to maximize the duration
of force application. Once it is in midair it extends its front feet and moves the hind ones close to
them such that they both land on the far side. After landing safely, it extends its front ones again to
shift to a normal gait.

4.2.3 Handstand
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Figure 6: Transition from quadrupedal walk-
ing to bipedal walking.

Our robot can seamlessly transition between walking on
four and its front two legs (Fig. 6). Bipedal walking in
general is a much harder task than quadrupedal walking
since a four-legged system is more inherently stable. For
example, a quadruped in its canonical pose will remain
standing and is a stable system, however a biped will
topple unless small active adjustments are constantly made.
Our robot learns to make these adjustments and is even

able to do a handstand walk on soft deformable grass with gentle slopes (Fig. 6). To transition into a
handstand, it first bends forwards and shifts its entire weight onto the front legs. Then, it kicks upward
with its rear legs just the right amount to move into a vertical position. Once in the vertical position,
it keeps its rear legs in a neutral pose and makes tiny adjustments to them to maintain balance. Due to
the robustness of the handstand policy, our robot is able to descend stairs in a handstand pose without
vision and stabilize against the sudden dips.

4.3 Comparison to Baselines
We propose two sets of baselines to experimentally verify different parts of our system. First, we test
our reward design and overall pipeline (Tab. 2):
• Noisy: This simulates a system that uses an elevation map constructed by fusing depth and

odometry. As in [2], we simulate sensor noise in the map and train the phase 1 policy. This tests if
an end-to-end system is more performant over a modular one that relies on elevation mapping.

• No inner product reward (NoInner): This replaces the inner product reward Eq. 2 with velocity
tracking in base frame used in [2].

• No feet clearance penalty (NoClear): Removes the penalization for stepping near the edges
defined in Eq. 3.

The second set of baselines is designed to test our distillation setup which involves BC for the
direction prediction and dagger for actions (Tab. 3).
• Both: Student always observes predicted yaw angles.
• Mask: The yaw angle observations are masked with zeros in phase 2 and the student is trained via

action supervision to learn turning behaviors with no specified direction command.
• Oracle: Student observes oracle yaw angles from the waypoints.

4.3.1 Simulation results
For each terrain—tilted ramps, steps, gaps and hurdles we create an obstacle course consisting of
each arranged in increasing difficulty in series. We spawn 256 robots at the beginning of the course
and record the mean x-displacement (MVD) before they fall and the average number of times per
time-step a robot steps on an edge (mean edge violation - MEV). A larger value for the former while
a lower for the latter is desirable since stepping on the edge is unstable in the real world.
We find that our method outperforms the baselines in terms of both metrics. The NoInner’s behavior
on hurdle terrain is to walk around the obstacle instead of getting over it, so it has lowest edge
violation metric. It struggles especially on step terrain because there is no way to get around the
obstacle and still get to the next waypoint. All it learns is a colliding and retrying behavior where the
robot first walk and use its feet to bounce back from the high step and walk forward again. NoClear
achieves slightly higher performance but it places feet close to the obstacle edges which is unstable in
the real world. Noisy is able to get some performance but has very large variance since it can rely on
collisions with its legs to sense terrain geometry and overcome noise in the map. In addition, its feet
clearance also helps it to achieve some performance with noisy measurements. We omit the NoDir
baseline comparison in simulation since it is infeasible to provide human joystick commands and
provide real-world comparisons instead.
Similarly, we compare against the distillation baselines in Tab. 3 averaged across all terrain. We find
that ours is very close to the upper bound which receives oracle direction commands and it does much
better in terms of x displacement as compared to Mask and Both since they fail to converge to low
loss values since the data distribution used for imitation learning drifts significantly from the teacher.
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Terrain Mean X-Displacement (MXD) ↑ Mean Edge Violation (MEV) ↓
Ours NoInner NoClear Noisy Ours NoInner NoClear Noisy

Hurdle 0.99±0.05 0.90±0.12 1.00±0.03 0.78±0.26 0.04±0.21 0.03±0.16 0.12±0.38 0.31±0.58
Step 0.99±0.07 0.14±0.00 1.00±0.04 0.84±0.29 0.04±0.20 0.04±0.21 0.07±0.27 0.15±0.38
Gap 0.96±0.14 0.86±0.26 0.96±0.12 0.87±0.24 0.02±0.14 0.04±0.20 0.07±0.32 0.06±0.25

Ramps 1.00±0.04 0.92±0.24 1.00±0.03 0.79±0.31 0.01±0.11 0.02±0.13 0.04±0.19 0.14±0.41

Total 0.98±0.09 0.75±0.36 0.99±0.06 0.82±0.29 0.03±0.18 0.04±0.20 0.08±0.32 0.20±0.50

Table 2: We create a simulated obstacle course consisting of versions of each terrain arranged in increasing
levels of difficulty and measure the average displacement along x and the mean time until failure for 256
randomly spawned robots in 30s. We report the mean maximum number of waypoints reached normalized to [0,
1] indicating the policy’s capability on different terrains, and the mean edge violation computed by taking the
average of feet contact counts on edges.

Robot Height Robot Height Robot Length

Figure 7: For each terrain, we run 5 trials and record the number of successes. We find that ours has 20-80%
higher success rate on the most difficult instance of each terrain. NoDir is provided direction commands via
a joystick controlled by a trained human operator. It sometimes succeeds on hurdles and gaps but fails when
the human has to provide sudden direction changes which are out-of-distribution. It also fails on tilted ramps
which require sudden direction changes hard for a human to do. NoClear is trained without feet edge penalty and
therefore steps very close to the edge which is unstable and often falls. Starred is recent concurrent work [14].

4.3.2 Real-world results

MXD ↑ MEV ↓
Both 0.12±0.07 0.26±0.57
Mask 0.05±0.07 0.00±0.00
Ours 0.92±0.19 0.09±0.33

Oracle 0.94±0.19 0.10±0.32

Table 3: Ours reaches almost the same per-
formance as oracle yaw angles as inputs.
Both and Mask work poorly because the
noisy yaw angle leads to large drift.

We compare against NoClear and NoDir baselines in the
real world. Each method is run for 5 trials on each terrain
for each difficulty and the success rate is recorded (Fig. 7).
For the NoDir baseline, directions commands are provided
via joystick by a trained human operator. We find that ours
has much higher success rate in all environments. NoDir
fails on jumps and gaps when the operator has to make last-
minute yaw adjustment to keep the robot perpendicular
to the obstacle. These sudden adjustments are out-of-
distribution for the policy and it cannot adapt fast enough,
causing it to fail. We find that NoDir is especially bad
on tilted ramps since this requires quick changes in direction which are tricky for a human to do.
The NoClear baseline without clearance reward rclearance tends to place feet very close to the gap or
cliff edge since this minimizes energy usage. We find that this is unstable behavior and the robot
sometimes misses the edge and falls.
For the handstand walking policy, we train it without exteroception. Despite this, we find it has strong
robustness not only on different types of terrain (indoor and outdoor), but can also walk down the
stairs using proprioception alone.
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