
Under review as a conference paper at ICLR 2024

ISCUTE: INSTANCE SEGMENTATION OF CABLES
USING TEXT EMBEDDING

Anonymous authors
Paper under double-blind review

ABSTRACT

In the field of robotics and automation, conventional object recognition and in-
stance segmentation methods face a formidable challenge when it comes to per-
ceiving Deformable Linear Objects (DLOs) like wires, cables, and flexible tubes.
This challenge arises primarily from the lack of distinct attributes such as shape,
color, and texture, which calls for tailored solutions to achieve precise identifi-
cation. In this work, we propose a foundation model-based DLO instance seg-
mentation technique that is text-promptable and user-friendly. Specifically, our
approach combines the text-conditioned semantic segmentation capabilities of
CLIPSeg model with the zero-shot generalization capabilities of Segment Any-
thing Model (SAM). We show that our method exceeds SOTA performance on
DLO instance segmentation, achieving a mIoU of 91.21%. We also introduce a
rich and diverse DLO-specific dataset for instance segmentation.

1 INTRODUCTION

Deformable Linear Objects (DLOs), encompassing cables, wires, ropes, and elastic tubes, are com-
monly found in domestic and industrial settings (Keipour et al., 2022b; Sanchez et al., 2018). Despite
their widespread presence in these environments, DLOs present significant challenges to automated
robotic systems, especially in perception and manipulation, as discussed by Cop et al. (2021). In
terms of perception, the difficulty arises from the absence of distinct shapes, colors, textures, and
prominent features, which are essential factors for precise object perception and recognition.

Over the past few years, there has been a notable emergence of approaches customized for DLOs.
State-of-the-art (SOTA) instance segmentation methods such as RT-DLO (Caporali et al., 2023)
and mBEST (Choi et al., 2023) use novel and remarkable approaches influenced by classic con-
cepts from graph topology or by bending energy to segment these challenging objects accurately.
Nevertheless, none of these methods excel in handling real and complex scenarios, nor do they in-
corporate prompt-based control functionality for segmentation, such as text prompts, which could
enhance user accessibility.

In the domain of purely computer vision-based approaches, the Segment Anything Model (SAM;
Kirillov et al., 2023) is one of the most notable segmentation models in recent years. As a foundation
model, it showcases remarkable generalization capabilities across various downstream segmentation
tasks, using smart prompt engineering (Bomasani & Others, 2021). However, SAM’s utility is lim-
ited to manual, counterintuitive prompts in the form of points, masks, or bounding boxes, with basic,
proof-of-concept text prompting. On the other hand, in the domain of deep vision-language fu-
sion, CLIPSeg (Lüddecke & Ecker, 2022) presents a text-promptable semantic segmentation model.
However, this model does not extend its capabilities to instance segmentation.

In this paper, we present a novel adapter model that facilitates as a communication channel between
the CLIPSeg model and SAM, as illustrated in Figure 1. Specifically, our model is capable of
transforming semantic mask information corresponding to a text prompt to batches of point prompt
embedding vectors for SAM, which processes them to generate instance segmentation masks.

In our method, we exhibit the following novelties:

1. A novel prompt encoding network that converts semantic information obtained from text
prompts to point prompts’ encoding that SAM can decode.
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2. A classifier network to filter out duplicate or low-quality masks generated by SAM.
3. A CAD-generated, fully annotated, DLO-specific dataset consisting of about 30k high-

resolution images of cables in industrial settings.

Our method also improves the SOTA in DLO segmentation, achieving mIoU = 91.21% on the
generated dataset, compared to RT-DLO (mIoU = 50.13%). Furthermore, we show our model’s
strong zero-shot generalization capabilities to datasets presented in RT-DLO (Caporali et al., 2023)
and mBEST (Choi et al., 2023). Finally, our method offers a user-friendly approach to the problem,
requiring only an image and a text prompt to obtain one-shot instance segmentation masks of cables.

Figure 1: Overview of the full pipeline - blocks in red represent our additions

2 RELATED WORK

In this section, we review related works of DLOs instance segmentation and methods we use in our
approach.

2.1 DLOS INSTANCE SEGMENTATION

DLO detection algorithms have been introduced with distinctive methodologies that are necessary
to overcome the challenges associated with the problem. Zanella et al. (2021) first presented a
Convolutional Neural Network (CNN; LeCun et al., 1995) based approach to perform semantic seg-
mentation of DLOs. Yan et al. (2019) and Keipour et al. (2022a) pioneered data-driven techniques
for DLO instance segmentation, using neural networks to reconstruct DLO topology and fitting cur-
vatures and distances for a continuous DLO, respectively. However, these methods were limited to
a single DLO.

Ariadne (De Gregorio et al., 2018) and it is immediate successor Ariadne+ (Caporali et al., 2022b),
segment DLOs into superpixels (Achanta et al.), followed by path traversal to generate instance
masks. Ariadne+ provided a DeepLabV3+ (Chen et al., 2018) based model to extract a semantic
mask before superpixel processing. This allowed the authors to forego Ariadne’s limiting assump-
tion about having a uniformly colored DLO and requiring the manual selection of endpoints. How-
ever, both Ariadne and Ariadne+ encounter a significant challenge due to their reliance on numerous
hyperparameters .

FASTDLO (Caporali et al., 2022a) and RT-DLO (Caporali et al., 2023), approach DLOs instance
segmentation using skeletonization of semantic masks, instead of superpixel generation. This al-
lows both algorithms to operate much faster because the slow process of superpixel generation is
non-essential. In FASTDLO, the skeletonized semantic mask is processed using path traversal, and
a neural network is used to process intersections. Contrastively, RT-DLO employs a graph node
sampling algorithm from DLO centerlines using the semantic mask. This is followed by topolog-
ical reasoning-based edge selection and path determination. Although both algorithms offer either
near-real-time or real-time performance (depending on the number of DLOs and intersections in the
image), they are sensitive to noise introduced by centerline sampling and scene-dependent hyperpa-
rameter tuning.

2



Under review as a conference paper at ICLR 2024

Another recent work, mBEST (Choi et al., 2023), involves fitting a spline to minimize bending
energy while traversing skeleton pixels. This method has shown impressive results compared to all
the aforementioned works, exhibiting a unique solution to the problem, but it is limited to fewer than
two intersections between different DLOs and relies on a manually tuned threshold that depends on
the number of DLOs in the scene.

All the aforementioned approaches, including the current SOTA baselines, RT-DLO (Caporali et al.,
2023) and mBEST (Choi et al., 2023) exhibit sensitivity to scenarios such as occlusions, cables
intersecting near image edges, and small cables positioned at the edges of the image, which are
commonly encountered scenes in industrial settings. Furthermore, these methods face challenges
when transferring to other datasets and are limited to images with specific operating conditions. Our
approach is designed to address these challenges through the utilization of a diverse and compre-
hensive generated dataset as well as the generalization power of foundation models. Furthermore, to
the best of our knowledge, this is the first approach that combines DLO instance segmentation with
text prompts, offering a user-friendly solution.

2.2 FOUNDATION MODELS

Introduced by Kirillov et al. (2023), SAM is a powerful foundation model that shows remarkable
performance on a myriad of downstream tasks. It shows promising performance on datasets contain-
ing DLOs that have historically been difficult to segment. The generalization power of this model
lies in its prompting capabilities, specifically using points, boxes, or masks to direct the segmen-
tation. SAM outperforms other promptable segmentation models such as FocalClick (Chen et al.),
PhraseClick (Ding et al.), PseudoClick (Liu et al., 2022b) and SimpleClick (Liu et al., 2022a) in the
generalizability and quality of segmentation. The authors of SAM also present a proof-of-concept
for text-based prompting, but this method still requires manual point prompt assistance to give the
same high-quality segmentation masks. Box prompts are not conducive to one-shot instance seg-
mentation, as a single bounding box can encompass multiple DLOs, as illustrated in Fig. 2c. Single
point-prompting displays a strong potential for performance (Fig. 2b). However, it struggles to per-
form effectively in complex scenarios (Fig. 2a). Manually inputting multiple points per cable proves
inefficient for process automation in an industrial context because it necessitates human interven-
tion. In our work, we harness the capabilities of the SAM model for segmentation and its ability to
use point prompts. We replaced its prompt encoder, capable of converting text prompts into point
prompts’ embedding. Moreover, our model performs instance segmentation in one forward pass
without the need for sequential mask refinement as in Kirillov et al. (2023). Additionally, we also
introduce a network to filter out duplicate and low-quality masks.

Multi-modal data processing such as text-image, text-video, and image-audio has gained impetus in
recent years following the advent of mode-fusion models such as CLIP (Radford et al., 2021) and
GLIP (Li et al., 2021). GroundingDINO (Liu et al., 2023) uses BERT (Devlin et al.) and either
ViT (Dosovitskiy et al., 2020) or Swin-Transformer (Liu et al., 2021) to perform text conditioned
object detection. The approach is a SOTA object detector but relies on bounding boxes, proving less
effective for DLOs (Fig. 2c).

A notable counter example is CLIPSeg (Lüddecke & Ecker, 2021), that leverages a CLIP (Radford
et al., 2021) backbone followed by a FiLM layer (Perez et al., 2017) and finally a UNet (Ronneberger
et al., 2015) inspired decoder to generate semantic segmentation based on text prompts (Fig. 1).
Important to our application, the penultimate layer’s embedding space in CLIPSeg represents a
spatially oriented attention heatmap corresponding to a given text prompt.

Another recent trend in computer-vision research is adapters that have been proposed for incremen-
tal learning and domain adaptation (Chen et al., 2022; Rebuffi et al., 2017; Selvaraj et al., 2023).
Some adapters like VL-Adapter (Sung et al., 2021), CLIP-Adapter (Gao et al., 2021), Tip-Adapter
(Zhang et al., 2021) use CLIP to transfer pre-trained knowledge to downstream tasks. The method
we propose in this work is also inspired by some ideas from research in adapters.

3 METHODS

In this section, we describe the core method behind our approach.
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(a) An example of unsuc-
cessful segmentation with a
single point.

(b) An example of success-
ful segmentation with a sin-
gle point

(c) An example of box
prompt for DLO segmenta-
tion.

Figure 2: Issues with using SAM out-of-the-box

3.1 THE ISCUTE MODEL

The adapter model we propose consists of 2 main networks (as depicted in Fig. 1):

1. Prompt encoder network - This network extracts batches of point prompts from
CLIPSeg’s embedding space. It can be controlled using 2 hyperparameters: N (the number
of prompt batches) and Np (the number of points in each batch).

2. Classifier network - A binary classifier network that labels whether a particular mask from
the generated N masks should appear in the final instance segmentation.

In the following, we detail each of these networks. We perform ablation studies to justify our choice
of architecture. The results of these ablation studies can be found in Appendix C. We note that
we neither fine-tune CLIPSeg nor fine-tune SAM, and the only trained component is the adapter.
The motivation for this is twofold. First, we would like to refrain from degrading the original
performance of both CLIPSeg and SAM. Second, it is more efficient in many cases to train only an
adapter instead of foundation models.

3.1.1 PROMPT ENCODER NETWORK

The Prompt Encoder Network’s goal is to efficiently convert the embedding space generated by
CLIPSeg into batches of point prompt embedding that SAM’s mask decoder can accurately deci-
pher, as depicted in Figure 3. This process of selecting the appropriate point prompts relies on the
following stages:

1. Identification of critical patches.
2. Determining an optimal threshold based on patch importance and filtering out the rest.
3. Categorizing each selected point as foreground, background, or no-point to leverage SAM’s

capabilities.

CLIPSeg generates a 22 × 22 × 64 embedding tensor, which embeds a semantic mask that aligns
with the input image spatially and is conditioned on text. To maintain a consistent embedding
size throughout the pipeline, we employ an MLP (bottom left MLP in Fig. 3) to upscale the 64-
dimensional embedding to 256 dimensions, followed by a self-attention layer, which learns inter-
patch correlations to focus on the relevant patches. CLIPSeg’s embedding output is enhanced with
Dense Positional Encoding (DPE) to ensure that the self-attention layer has access to crucial ge-
ometric information. To this end, the DPE values are added to the embedding vector even after
participating in the self-attention layer. To generate our DPE, we use an identical frequency matrix
as SAM. This ensures that every element within each vector of the DPE conveys consistent informa-
tion, that is aligned with what SAM’s decoder has been trained to interpret. This output is processed
by an MLP that acts like a filter and aims to retain only the most important patches. After the im-
portant patches are extracted, we pass them into the Sampler Attention (pink layer in Fig. 3). This
process resembles standard scoring, where the interaction of the keys and queries determines which
positional encoding vector to select from the DPE. Here, the self-attended patches act as the keys,
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Figure 3: The ISCUTE adapter: on the left, the architecture of the prompt encoder network is
outlined (indicated by the purple dashed line), while on the right, the classifier network architecture
is detailed (represented by the pink dashed line).

and the DPE tensor as the values. The output of this layer is the positional encoding of the points
we wish to prompt SAM with. Finally, a single Linear layer is applied to this output, to categorize
the chosen point as foreground/background/no-point. This layer aims to mimic the labeling protocol
from SAM, which employs a standard affine transformation, where a learned embedding is added to
each point embedding corresponding to its category.

It is important to highlight that the queries are reintroduced to the updated tokens whenever they
engage in an attention layer. This allows for a strong dependence on both the queries that carry
the semantic information and the values that carry the geometric information. Moreover, layer
normalization (Ba et al., 2016) is applied after each attention layer, as recommended by Vaswani
et al. (2023). Furthermore, our DPE, like SAM, takes inspiration from Fourier features (Tancik
et al., 2020) alongside classical techniques from digital communication (Ling, 2017), utilizing the
same frequency matrix as SAM instead of a randomly generated one.

3.1.2 MASK CLASSIFICATION NETWORK

In previous works, such as DETR (Carion et al., 2020) and MaskFormer (Cheng et al., 2021), the
authors train a classifier network along with the box regression model to classify which object is
contained within the box. Both of these works introduced an additional no-object class, to filter
out duplicate or erroneous boxes/masks during prediction. Inspired by them, we developed a binary
classifier network for this purpose.

This binary classifier model is composed of an MLP, one cross-attention block, followed by one
self-attention block, and an MLP, as illustrated in Figure 3. First, the sampled point embeddings
(from our prompt encoder) are transformed using an MLP. Second, a cross-attention block operates
on these transformed embedding generated by our model, which encode text-conditioned informa-
tion, and on the mask tokens produced by SAM, which encapsulate submask-related details. This
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interaction results in an embedding that fuses both types of information for each generated submask.
Subsequently, the queries are combined with the output to reintroduce textual information to these
classifier tokens. These classifier tokens then undergo a self-attention layer followed by the MLP to
yield binary classifications.

3.2 TRAINING PROTOCOL

The full architectural framework of our model, illustrated in Figure 1, accepts a single RGB image
and a text prompt as input, delivering an instance segmentation mask for each DLO in the image.
Inspired by the work of Cheng et al. (2021), we employ a bipartite matching algorithm (Kuhn, 1955)
to establish the optimal correspondence between the generated masks and ground-truth submasks to
train the prompt encoder. We use a combination of the focal loss (Lin et al., 2017) and the DICE
loss (Milletari et al., 2016) in the ratio of 20 : 1, as recommended by Kirillov et al. (2023).

The binary classification labels are extracted from the output of the bipartite matching algorithm.
If a mask successfully matches, then it is labeled as 1; else, it is labeled as 0. We use the binary
cross-entropy loss to train this network. To balance the distribution of 0s and 1s in the dataset, we
introduce a weight for positive labels that we set to 3.

The most time-intensive step within the SAM workflow involves generating the image embedding.
However, once this image embedding is created, it can be used repeatedly to produce multiple sub-
masks as needed. This approach significantly speeds up the process and can be executed in a single
step. To enhance training efficiency using this method, we set the training batch size to just 1. This
configuration enables us to form batches of prompts, with each DLO in the scene associated with
an individual prompt. We place a cap of N = 11 prompts for each image and limit the number of
points within each prompt to Np = 3. Specific details about the training process can be found in
Appendix A.

4 EXPERIMENTS

4.1 THE CABLES DATASET

The dataset used for training, testing, and validation was generated using Blender1, a 3D rendering
software. It comprises images depicting various cables in diverse thicknesses, shapes, sizes, and
colors within an industrial context, exemplified in Figures 1 and 4. The dataset consists of 22k
training images, along with 3k images, each designated for validation and testing. Each image has
a resolution of 1920x1080, and each DLO within an image is accompanied by a separate mask,
referred to as a submask in this work. This pioneering DLO-specific dataset encompasses an ex-
tensive range of unique scenarios and cable variations. We anticipate that granting access to this
comprehensive dataset will significantly advance numerous applications in the field of DLO percep-
tion within industrial environments. For more details and sample images from the dataset, refer to
the Appendix B. This dataset will be made publicly available on acceptance.

4.2 BASELINE EXPERIMENTS

In the process of designing the model and configuring the best hyperparameters, we carried out
multiple experiments. The initial experiment involved selecting the number of points per prompt,
denoted as Np. As previously mentioned, the point prompt within the SAM framework can encom-
pass more than just a single point, with each point being labeled as either foreground or background.
In the SAM paper (Kirillov et al., 2023), the authors explored various values for the number of
points and documented the resulting increase in Intersection over Union (IoU) for the generated
masks. They observed diminishing returns after reaching 3 points. However, it was necessary to
reevaluate this parameter for one-shot applications. We conducted this using the same base model
but with different values for Np, specifically Np = 2, 3, 4. Our findings led us to the conclusion
that Np = 3 is indeed the optimal number of points per prompt, and we adopted this value for all
subsequent experiments. The second experiment focuses on SAM’s capacity to generate multiple
masks, specifically, three masks, per prompt. We examined and compared this multi-mask output

1https://www.blender.org/

6



Under review as a conference paper at ICLR 2024

with the single-mask output in terms of the mean IoU (mIoU). Our findings indicated that employ-
ing multi-mask output led to only a minor improvement at the cost of significantly higher memory
utilization. Consequently, for all our subsequent experiments involving SAM, we opted to disable
the multi-mask functionality.

4.3 QUANTITATIVE EXPERIMENTS

In these experiments, our primary objective is to compare our model’s DLO instance segmentation
results with those of SOTA baselines while also assessing the model’s limitations using the Oracle
method, inspired by Kirillov et al. (2023), which involves removing the classifier network during
testing and employing bipartite matching to filter out duplicate and low-quality masks. This method
allows us to independently evaluate our prompt encoder and classifier networks, providing insights
into the performance of foundation models under ideal conditions, with the important note that our
model has access to ground-truth annotations during Oracle tests.

We additionally test the following characteristics - the overall quality of the generated instance
masks, zero-shot generalization capabilities, and the effect of image augmentation on the general-
ization. In Table 1, we explore the effects of image augmentation and the oracle method. Adhering
to recent testing protocols in the domain of DLO instance segmentation, as conducted by Choi et al.
(2023) in mBEST, we use the DICE score as a metric to analyze the performance of our model. The
comparative results are portrayed in Table 2. These tests exhibit the zero-shot transfer capabilities
of our models to the testing datasets discussed in mBEST (Choi et al., 2023).

5 RESULTS

5.1 QUANTITATIVE RESULTS

We summarize the comparison of results of different configurations of our model on our test dataset
in Table 1. As a reference, we tested the RT-DLO algorithm (Caporali et al., 2023) on our test
dataset. It achieved an mIoU = 50.13%. The Oracle tests show upper bound on the performance
our method can achieve. This upper bound is related to the limitations of CLIPSeg to produce good
semantic masks given a text prompt and the limitations of SAM to segment a particular object in the
scene given a set of points as a prompt.

Test data performance
Model Configuration mIoU [%] DICE [%] Augmentation Oracle

A (Aug only) 90.64 99.78 Y N

A+O (Aug+Oracle) 92.10 99.80 Y Y

B+O (Base+Oracle) 92.51 99.82 N Y

B (Base) 91.21 99.77 N N

Table 1: Comparison of our model configurations (values in bold signify best performance).

Table 2 shows the DICE scores of our model compared to current SOTA baselines: Ariadne+ (Capo-
rali et al., 2022b), FASTDLO (Caporali et al., 2022a), RT-DLO (Caporali et al., 2023) and mBEST
(Choi et al., 2023). The datasets C1, C2, C3 are published by Caporali et al. (2023), while the
datasets S1, S2, S3 are published by Choi et al. (2023).

In the no Oracle setting, we observe that the model generalizes better if it is trained using aug-
mentations in the dataset, as expected. ISCUTE exhibits strong zero-shot generalization to all the
datasets. Specifically for C1, C2, and C3, our model exceeds SOTA performance even in the base
configuration. Furthermore, in the case of Oracle configuration, we see that our proposed method
outperforms all SOTA baselines on all datasets, showing that the major bottleneck in our full model
is the mask classifier network.

To assess generalizability across various text prompts, we tested our model on prompts like ”wires”
and ”cords,” in addition to our training prompt, ”cables,” which specifically refers to DLOs. Ta-
ble 3 showcases the performance of these prompts when assessed on the same model using Oracle.
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DICE[%]

ISCUTE (Ours)
Dataset Ariadne+ FASTDLO RT-DLO mBEST A A+O B+O B

C1 88.30 89.82 90.31 91.08 97.03 98.85 98.86 94.55
C2 91.03 91.45 91.10 92.17 96.91 98.69 98.70 96.12
C3 86.13 86.55 87.27 89.69 97.13 98.81 98.90 90.26
S1 97.24 87.91 96.72 98.21 97.36 98.43 98.60 93.08
S2 96.81 88.92 94.91 97.10 97.71 98.54 98.42 97.01
S3 96.28 90.24 94.12 96.98 96.69 98.79 98.58 95.83

Table 2: DICE score result from comparison for out-of-dataset, zero-shot transfer. Values in bold
signify the best performance

Remarkably, our model demonstrates the ability to effectively generalize across different prompts
zero-shot, producing results comparable to the base prompt, ”cables.”

Text Prompt mIoU [%] DICE [%]

cables (baseline) 92.51 99.82

wires 89.6 99.77

cords 89.3 99.64

Table 3: Generalizability Across Text Prompts: Demonstrates results comparable to the base prompt
”cables” through zero-shot transfer.

5.2 QUALITATIVE RESULTS

In this section, we will present the actual instance masks generated by our model. We used the
configuration that was trained on augmentations (A) to generate all these results (without Oracle).

Figure 4 presents the instance masks generated by ISCUTE in various complex scenarios, along
with the results of RT-DLO on the same image set for comparison. These scenarios encompass oc-
clusions, DLOs with identical colors, varying thicknesses, small DLOs in the corners, a high density
of cables in a single image, and real-world scenarios. Our model shows impressive performance
across all of these scenarios.

Figure 4: Qualitative comparison in specific scenarios. Each scenario demonstrates the following:
(a) and (b) real images, (c) identical colors, (d) a high density of cables in a single image, and (e)
and (f) small DLOs at the edge of the image with varying thicknesses.

In Figure 5, we show the instance masks generated by ISCUTE compared to the current SOTA
baselines on an external dataset. It is evident that our model demonstrates remarkable zero-shot
transfer capabilities when applied to data distributions different from its training data.

Finally, we test our model on real images taken around our lab using a smartphone camera. The
final output masks are shown in Figure 6. We see that our model generalizes to real-world, complex
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Figure 5: A qualitative comparison of our model vs. the SOTA baselines

scenarios zero-shot. However, because of an imperfect classifier, it misses some submasks in certain
complex situations. We report more generated instance masks in Appendix D.

Figure 6: Qualitative results on real-world, complex scenarios zero-shot

6 CONCLUSIONS AND FUTURE WORK

We introduced a novel method for DLO instance segmentation, leveraging SAM, a robust foun-
dation model for segmentation, alongside CLIPSeg, which combines text prompts with semantic
segmentation. We presented and tested an adapter model that converts text-conditioned semantic
masks embedding into point prompts for SAM and introduced a novel approach to automatically
filter duplicate and low-quality instance masks generated by SAM, both conditioned on text em-
bedding, potentially enabling adaptation to standard rigid-object instance segmentation with text
prompts. This work is an avenue for future research.

Our results show that our model performs exceptionally on our test dataset and exhibits exceptional
zero-shot transfer capability to other DLO-specific datasets. However, the final outcome of the
segmentation is upper-bounded by the performance of SAM and CLIPSeg, as we observe from
the Oracle tests (Refer to Appendix E for a detailed discussion). The performance with Oracle
configuration exhibits the strength of our prompting network, given an optimal classifier network.
In the current state (without Oracle), our classifier network limits the highest performance our model
can achieve without access to the ground truth. Improving our classifier network is an ongoing line
of work.
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A TRAINING DETAILS

In our method, we chose the ViT-L/16-based model of SAM (Kirillov et al., 2023) to attempt to
balance the speed-accuracy trade-off. We observed that this model gave high-quality segmentation
masks while being ∼ 2× smaller compared to ViT-H/16 in terms of the number of parameters. On
the other hand, for the CLIPSeg (Lüddecke & Ecker, 2021) model, we used the ViT-B/16 based
model, with reduce dim = 64. Throughout our training process, we freeze the weights and biases
of both foundational models, SAM and CLIPSeg.

Throughout the training phase, our text prompt remains ”cables,” with the aim of obtaining instance
segmentation for all the cables within the image. During training, we conduct augmentations applied
to the input images. These augmentations encompass random grayscale conversion, color jitter, and
patch-based and global Gaussian blurring and noise. In terms of computing, our model is trained
using 2 NVIDIA A5000 GPUs, each equipped with 32 GB of memory. All testing is carried out on
a single NVIDIA RTX 2080 GPU with 16 GB of memory.

Our training procedure employs a learning rate warm-up spanning 5 epochs, followed by a cosine
decay. The peak learning rate is set to lr = 0.0008, in line with recommendations from Kirillov
et al. (2023). We employ the default AdamW optimizer from Paszke et al. (2019) with a weight
decay of 0.01. The convergence graphs and learning rate profile of all the models can be seen in
Figure 7. Figure 8 displays the binary classification accuracy and mIoU computed on the validation
dataset during training. No smoothing was applied in creating the plots.

(a) Learning rate profile (b) Convergence graphs

Figure 7: Learning rate profile and convergence graphs

(a) mIoU[%] (b) Binary classifier accuracy[%]

Figure 8: Binary classification accuracy and mIoU

A brief summary of all the hyperparameters can be seen the Table 4
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Hyperparameter Value

Number of epochs 50
Max learning rate 8× 10−4

Learning rate warmup 5 (epochs)
Optimizer AdamW

Optimizer weight decay 0.01
Batch size 1

Attention dropout 0.5

Number of prompts per batch (N ) 11
Number of points per prompt (Np) 3

Number of attention heads (for all models) 8
Embedding dimension 256

SAM model type ViT-L/16 (frozen)
CLIPSeg model type ViT-B/16 (frozen)

Focal loss weight 20
DICE loss weight 1

Positive label weight (binary cross-entropy) 3
Classifier MLP activation ReLU

Prompt encoder MLP activation GELU

Train dataset size 20038
Validation dataset size 3220

Test dataset size 3233
Image size (1920× 1080)

Total number of parameters (including foundation models) 466M
Trainable parameters 3.3M

Table 4: Hyperparameters

B GENERATED DATASET

The dataset we presented contains 20038 train images, 3220 validation images, and 3233 test im-
ages. Each image we provide is accompanied by its corresponding semantic mask and binary
submasks for each DLO in the image. The images are located in {train,test,val}/RGB,
and named as train/RGB/00000 0001.png, train/RGB/00001 0001.png, and so on.
In the {train, test, val}/Masks folder, we have a sub-folder containing the binary sub-
masks for each corresponding RGB image. For example, train/Masks/00000 contains all the
submasks corresponding to train/RGB/00000 0001.png. Additionally, the semantic mask
for train/RGB/00000 0001.png is called train/Masks/00000 mask.png. The folder
structure can be seen in Figure 9.

Each image and its corresponding masks are 1920× 1080 in resolution. The number of cables, their
thickness, color, and bending profile are randomly generated for each image. There are 4 possible
colors for the cables - cyan, white, yellow, black. The number of cables in each image is randomly
sampled from 1 to 10. A sample image from the dataset, along with its corresponding submasks and
semantic mask, are portrayed in Figure 10.

C ABLATION STUDY

Within the prompt encoder network, each block is fundamental to the proper sampling of point
embedding vectors conditioned on text and performs a specific function in the process, as outlined
in section 3.1.1. However, the classifier network architecture requires an in-depth ablation study.
The modularity of our method permits the independent testing of the classifier and prompt encoder
networks. We train multiple configurations of the classifier network and compare the classification
accuracy that the network achieves, on the test dataset. In the remainder of this section, we discuss
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Figure 9: Dataset directory tree

Figure 10: Dataset Example

various configurations of the classifier network and the labelling accuracy they achieve. The results
are summarized in the Table 5.

The mask token that SAM outputs, contains encoded information about each of the N submasks.
Using this information, we need to generate tokens that can be used to classify each submask as
keep or discard. Each of these N tokens must be correlated with each other, which will extract
information about duplicate masks. For this purpose we must use a self attention layer. The first
study (config 1 in Table 5) was conducted by passing these tokens through a self attention layer
followed by a classifier MLP. This architecture caused the classifier network to diverge.

In the second study (config 2 in Table 5), we introduced N trainable tokens (we call these tokens
classifier tokens in the remainder of this section). These tokens are first passed through a self-
attention block, followed by cross attention with the mask tokens generated by SAM and finally
through a classifier MLP. The cross attention block was added to fuse the submask information with
the classifier token information. This method converged to a final binary classification accuracy of
76.37%.

The third study was conducted similar to config 2 except that we switched the order of self and
cross attention. Namely in config 3, we first fuse the mask token information and classifier token
information using a cross attention block, which is then followed by a self attention block and
then a classifier MLP. This configuration achieved an accuracy of 81.18%. This shows that cross
attention-based fusing before self-attention improves classification performance. However, by using
this method, the classifier network does not have direct access to the text information and cannot be
controlled using text prompts for example.
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In the fourth configuration (config 4 in Table 5), we no longer instantiate trainable tokens. We
take the output of the sampler attention block from the prompt encoder network (Fig. 3), which
are the text-conditioned prompt embedding vectors. These embedding vectors are then fused using
cross attention with mask tokens, followed by self attention and then a classifier MLP. This method
achieves an accuracy of 80.26%, but improves config 3, by providing the classifier network with
direct access to text information.

In the final configuration (config 5 in Table 5), we use the classifier network exactly as portrayed
in Fig. 3. Here we transform the text-conditioned prompts using an MLP, before passing it through
the cross and self attention blocks. This method boosts the classifier performance significantly, with
a classification accuracy of 84.83%. The comparison of all the aforementioned configurations is
summarized in Table 5

Configuration Binary Classification Accuracy [%]

config 1 NA (model diverged)
config 2 76.37
config 3 81.18
config 4 80.26
config 5 84.83

Table 5: Ablations of the classifier network (values in bold signify best performance)

D MORE QUALITATIVE RESULTS

Figures 11 and 12 show more instance segmentation masks generated by ISCUTE, on datasets from
RT-DLO and mBEST as well as on our generated test dataset, respectively. All the images are
examples of masks generated without oracle.

Figure 11: Qualitative results on RT-DLO and mBEST images

E LIMITATIONS OF FOUNDATION MODELS

The Oracle test results from Tables 1 and 2 display the maximum one-shot performance that can
be achieved with the ViT-L/16-based version of SAM on the DLO-dataset, with up to 3 points in a
prompt. The mask refinement method presented in SAM (Kirillov et al., 2023) can potentially im-
prove this upper bound, but for a practical use-case, one-shot mask generation is desirable. CLIPSeg
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Figure 12: Qualitative results on our test images

also has some limitations on generating the perfect heatmap embedding for a given text prompt. This
is demonstrated in Figure 13, where for the same prompt ”cables,” the model successfully locates
all the cables in the bottom image, while it fails to locate the white cable in the top one.

Figure 13: CLIPSeg generated heatmaps. In the top image, CLIPSeg is unsuccessful in detecting
the white cable, while it detects all the cables in the bottom one. The prompt used was ”cables”.
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Figure 14: CLIPSeg’s effectiveness on compliated text-prompts
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