
FC-Aligner: A Lightweight Regressor Model for
Embedding Space Conversion

André Luiz Vieira-e-Silva René Ferrari Álvaro Nolibos Gustavo Zanoni Felipe

AI Biometrics, Caf∗
R. Tiradentes, 1077, Venâncio Aires, Brazil

{andre.silva, rene.ferrari, alvaro.nolibos, gustavo.felipe}@caf.io

Abstract

In diverse applications like image clustering, facial recognition and text embed-
dings, similarity search is critical. Deep models utilize feature embeddings for
efficient representation, learning shared similarities during training. However,
developing new models raises compatibility issues, necessitating the re-extraction
of the entire embedding database (backfilling). Very large datasets become a bigger
problem, considering the necessary time and computational power. While solutions
like backward compatibility models and harmonic embeddings exists, they may
be impractical without the original input data. We present a simple yet efficient
model called FC-Aligner, which converts embeddings from a previous embedding
space to a new one through a regression-inspired approach. We use production data
from a real-world face recognition system, with a total of 3.39M samples. Results
show an acceptable increase in FAR from 0.0032% to 0.0048%, while keeping
a similar FRR (∼5%). Using FC-Aligner in 20M embeddings is 11× faster and
2.5× cheaper than backfilling.

1 Introduction

The use of feature embeddings is prevalent in large language models and computer vision, providing
vectorized representations of text and images. These embeddings enable similarity assessments, such
as matching face images to determine if they belong to the same person (10).

Various deep learning models have been developed to generate embeddings from face images
(10; 7; 14). In our case, the images to be encoded by the embedding generator model consist of
cropped and aligned human faces. The process of encoding all the images in a database is known as
backfilling. A gallery set consists of all encoded images, and the task of matching face embeddings
(similarity distance under a defined threshold) is recognized as face recognition.

As model architectures, datasets, and loss functions evolve, new embedding generators may outper-
form previous ones, necessitating a costly backfilling of existing datasets to ensure compatibility
in the latent space. This challenge is well-known in both academia and industry, and while various
solutions have emerged (8; 13; 5; 6), it is still an open challenge.

To achieve embedding compatibility, strategies include direct compatibility training during model
training (10), or developing translation functions for embeddings between spaces (13; 5). Compat-
ibility can be backward or forward, where the latter enables translating old embeddings to a new
embedding space.

∗https://www.caf.io/

Latinx in AI @ NeurIPS-24 (LXAI 2024).

https://www.caf.io/


Embeddings extracted 
from previous model 

versions (k, ...) and data

ek
Subjects [1, 1M)

el
Subjects [1M, 2M)

em
Subjects [2M, 3M)

Embedding 
extractor model 

version z

Production environment

Production 
data

New face image of subject #1M

New face image of subject #1

New face image of subject #2M

Ak,z

FC-Aligners

ek, #1

Al,z

el, #1M

Am,z

em, #2M

.

.

.

ez, #1

ez, #1M

ez, #2M

ez, #1

Allegedly

Match
?

Match
?

Match
?

ez, #1M

ez, #2M

Accept or Reject

Figure 1: An overview of our proposed framework. To avoid backfilling, we train multiple lightweight
and fast forward-compatibility models to align embeddings extracted from previous models with
embeddings from the latest version of our embedding extractor model. Considering the employed
Face Recognition application, embeddings extracted from different face images using different
embedding models are now comparable with little degradation and a significant cost reduction.

To mitigate the costs associated with backfilling, we propose a lightweight neural network that
translates old embeddings into new latent spaces while preserving face-matching metrics. Our
proposed framework is summarized in Figure 1.

This work hypothesizes that a model can effectively convert embeddings from an older version of a
Face Recognition (FR) model to the embedding space of a newer version. The old and new versions of
the FR model differ in the used training dataset and hyperparameters, but not in network architecture.
The conversion model should be lightweight and fast, making it a cost-effective alternative to re-
extracting embeddings (backfilling) with the new FR model. It should also require only a small
sample size for training compared to the entire embedding database.

We propose FC-Aligner, a lightweight model for converting face embeddings between different
versions of an FR model. Using FC-Aligner, we could have avoided a costly backfilling process
for a dataset of over 20 million faces, which increased cloud expenses by 287.5% for storage and
67.32% for computing, taking 5 straight days to complete. Instead, FC-Aligner required only an
8-hour training session on a commercial GPU, converting all embeddings in 3 hours on a CPU-only
laptop. The False Acceptance Rate increased by just 0.0016 percentage points, while maintaining a
similar False Rejection Rate of around 5%.

2 Related Works

Backfilling. Each newly trained model creates a new embeddings space (or latent space) that can
not be compared to the embeddings generated by an old model, discarding all the processing time
invested to generate the old embeddings. When this happens, all the old subjects must have their
embeddings regenerated by the new model. This process, called backfilling, it is very expensive
in terms of processing time and financial costs. That is why a lot of works come with different
approaches to improve this method, like (6; 12; 11) that came up with a faster approach based on
making only a partial backfilling.

Model Compatibility. Since backfilling is expensive, some techniques emerged with the goal of
making the embeddings compatible across models. There are many ways to achieve this, the following
being the most common currently.

2



Direct Compatibility. One way to guarantee the compatibility between embeddings generated by
two models is using the embeddings generated by the old model during the new model training
(8; 15; 10), using the difference between the new and old embeddings in the loss function. This way,
the new model is forced to focus not only on making the embeddings of the same subject to be near
each other but also to be near the embeddings generated by the old model. This approach is used
by (8) in its compatibility framework to deal with Compatible Training cases. We performed some
experiments inspired by the harmonics embeddings (10) approach. However, in the context of this
research, we obtained a decrease in the accuracy of the new model.

Embedding Compatibility. Another way to achieve compatibility is to use some transformation
approach for converting the embeddings from one embedding space into another. This can be used
in both ways, such from the old embedding space to the new one, known as Forward Compatibility
(9; 3), and the other way around, known as Backward Compatibility (13; 5). (8) also uses both
approaches in its framework.

Backward Compatibility. (13) proposed a framework called Backward-Compatible Training (BCT),
which can train models that are compatible with previously computed embeddings regardless of
whether they have different dimensions, learned through different network architectures and losses.

Forward Compatibility. (9) presented a new paradigm, known as Forward Compatible Training
(FCT), where, during the training, the current model prepared the embeddings to be updated in the
future when a new model will be trained. This was made by preserving some features that may not
be useful for the current embedding representation, but will facilitate its transformation to a new
embedding space. In addition, (3) was successful in transforming voice profiles between embedding
spaces, making it possible to use multiple models for voice identification at the same time.

With all of that in mind, the main challenge is to develop a lightweight model that is faster and cheaper
than backfilling, while minimizing accuracy loss and the gap between embedding spaces. Given
our continuous influx of new anonymized data, a forward compatibility strategy is more appropriate.
Therefore, we propose the FC-Aligner model to efficiently adapt to future models.

3 Methodology

3.1 Problem Setting

We ground our application to face recognition despite our formulation being general and applicable to
other domains, such as other computer vision tasks and natural language processing. First, we define
a model that maps face images into face embeddings Mk : F −→ Ek, where k ∈ N is the model’s
version. In other words, a model Mk receives a face image fi ∈ F , where i is an image unique
identifier, and returns ek,i ∈ Ek, where ek,i means "the embedding of face image i extracted with
model version k" and Ek is the embedding space yielded by model Mk. Different model versions,
such as Mj or Ml, where j < k and l > k, mean older and newer model versions, respectively. Two
embeddings extracted with the same model Mk from different images, e.g., f0 and f1, are considered
embeddings from the same subject (person) if their Euclidean distance is lower than some threshold.

During training, for every iteration, there is an anchor embedding, a positive embedding, which is
an embedding extracted from a different image of the same subject as the anchor, and a negative
embedding, which is an embedding extracted from a different subject. Hence, a new model Mk+1

is learned by using a batch hard triplet loss (4), which approximates the anchor embedding to the
"hardest positive", which is the positive embedding farthest from the anchor inside that batch, and
distances the anchor to the "hardest negative", which is the negative embedding closest to the anchor
inside that batch. In our study, new embedding extraction models are proposed by changing the
dataset (size and samples), the training parameters and hyperparameters, such as loss function,
optimizer, learning rate, and batch size, although the network architecture remains constant, a residual
convolutional neural network.

Embeddings extracted from different model versions, for instance, ek,0 and el,1 are incompatible
and may not be compared. Hence, if a new model Mk+1 is developed, all embeddings have to be
re-extracted from the entire face image dataset, even the ones that already have been extracted before.

3



Figure 2: FC-Aligner multi-branch architecture.

3.2 Forward Compatibility Alignment

FC-Aligner is a lightweight regressor model A that maps embeddings from one embedding space
Ek to a newer embedding space El (l > k) as: Ak,l : Ek −→ El. In other words, ek,i ∈ Ek can be
mapped to el,i ∈ El and may be compared to other embeddings from El. Therefore, an image f1, that
has its embeddings extracted from a newer model Ml can be compared to an embedding extracted a
priori from another image f0, with a model Mk using a distance function dist and a threshold th by:

dist(Ak,l(ek,0),Ml(f1)) < th, (1)

where l > k. Two embeddings extracted a priori can also be aligned to a newer, third embedding
space Em to be compared, as in:

dist(Ak,m(ek,0), Al,m(el,1)) < th. (2)

We propose lightweight architectures to perform the forward compatibility alignment, each prioritizing
a different aspect: FC-Alignerdense and FC-Alignermb; in the latter, mb refers to the fact the
architecture has multiple branches. Figure 2 shows a graphical representation of the FC-Alignermb

architecture. The FC-Alignerdense architecture is basically the second branch of FC-Alignermb.

3.2.1 Training setup

First, we sample from embedding databases whose embedding spaces we want to generate an aligner,
e.g., k and l, where k < l. We now produce a training dataset with tuples of old and new embeddings
that correspond to the embeddings extracted with the old and new models from the same image, i.e.,
(ek,0, el,0), (ek,1, el,1), ..., (ek,i, el,i), where i is the dataset size. We learn Ak,l by minimizing the
training loss, which is the Euclidean distance between an old and a new embedding of an input image.

3.2.2 Testing setup

For testing, we sample from the same databases, but to produce the
testing dataset, anchor and positive embedding pairs are formed, i.e.,
(ek,anc0 , ek,pos0), ..., (ek,anci , ek,posi), (el,anc0 , el,pos0), ..., (el,anci , el,posi), where k and l are
embedding extraction model versions, and i is the dataset size. Now, we have pairs of embeddings
extracted from different face images of the same subject using two embedding models.

The evaluation is done in an N : N fashion, following four scenarios. Considering embeddingnew

as an embedding generated by a target model and embeddingconverted as an embedding generated
from a source model and converted to the target space by FC-Aligner, we define those four scenarios
as a comparison of: 1. anchornew vs. positivenew, 2. anchorconverted vs. positiveconverted, 3.
anchorconverted vs. positivenew, and 4. anchornew vs. positiveconverted. It is worth mentioning that

4



these scenarios aim to simulate a real-world application of FC-Aligner, where converted embeddings
are compared to newly generated ones.

Each embedding has exactly three matches and
∑ds

n=1 n non-matches, where ds is the total dataset
size or the total amount of embeddings in the test set. For example, following the terminology
described above, Ak,l(ek,anc0) has exactly three matches: Ak,l(ek,pos0), el,anc0 , and el,pos0 .

3.2.3 Inference setup

At inference time, the model receives one or a batch of embeddings from a source embedding space
and aligns it or them to a destination embedding space. In a production environment, multiple
FC-Aligners could co-exist, aligning embeddings from different source spaces to the space of the
current embedding model in production, as shown in Figure 1.

4 Experimental Setup

4.1 Metrics, Parameters and Infrastructure

Following the evaluation scenarios described in Section 3.2, we employ an N : N evaluation
approach that compares every anchor embedding to the other embeddings in the test set that do not
belong to the same identity (person). Such comparison is based on calculating the euclidean distance
between embeddings and comparing the calculated distance to a pre-established threshold. A match is
characterized by when such distance is smaller than the threshold. Otherwise, we call it a non-match.

By calculating the False Negatives (fn), False Positives (fp), True Negatives (tn), and True Positives
(tp) values, we are able to evaluate our overall performance considering the False Rejection Rate
(FRR): FRR = fn

fn+tp and False Acceptance Rate (FAR): FAR = fp
fp+tn .

In the face recognition scenario, FRR measures the probability of a false non-match, i.e., the rejection
of two faces from the same identity. As FAR estimates the rate of acceptance (match) of two different
identities. When dealing with production metrics, such value would also represent how susceptible
the model is to facial identity fraud.

Models and training/testing pipelines were developed in TensorFlow 2 (1), with 240 maximum epochs
with a 10-epoch early stopping. We used the Adam optimizer, a 10−3 learning rate with 2-epoch
patience to be reduced a factor of 0.1. Batch sizes of 128 or 512 elements were evaluated. Training
sessions were taken on the AWS EC2 environment using a g4dn.xlarge instance which has 4 vCPUs,
16GB of RAM, and 1 GPU NVIDIA T4 with 16GB of VRAM.

FaceNet embeddings are typically trained with the Triplet Loss function, suggesting their correlations
exist in Euclidean space. Therefore, we used Euclidean Distance as a loss function, expecting the
model to learn to regress embeddings from the source to the target space, resulting in higher loss
values when embeddings diverge from their target points.

4.2 Datasets

The used dataset is composed of approximately 3.36 million embedding pairs for training/validation
and 14,848 pairs for testing the developed models. All embeddings were generated from a randomly
selected pair samples of face images from a private set of samples originating from an internal identity
solution. Due to the high sensitivity of this data, no real sample will be presented in this paper.
However, they can be described as arrays of 128 floating-point numbers. During training, 17.5% of
the full dataset was split for validating the model and generating online metrics.

To obtain the embedding images, two FaceNet (10) models were adapted following the training
schema described in the original paper. Both of them were developed with the goal of simulating
two stages of a deep learning model life-cycle. The first one was trained with a smaller dataset that
consisted of ∼200K face pairs from distinct identities. The second one was trained with a larger
dataset composed of ∼1M pairs of faces. Such an approach was taken, considering the earliest version
of a production model in highly growing companies is usually built with limited resource. In the later
iterations of such a model, the increase in data samples implies an overall quality improvement.

5



Table 1: Results table of multiple FC-Aligner models. Three comparable FC-Aligner models were
trained under varied parameters/hyperparameters to convert embeddings from model version 11 to
46.4. For a ’balanced FRR-FAR’ objective, the FC-Aligner Dense architecture is more fit, whereas,
for a ’lowest FAR’ goal, the Multi-branch architecture is more suitable. For the other tuple of model
alignments, the Multi-branch approach shows the best results for both objectives.

Old|New Architecture Train Set
Subjects Batch Size Scenario Same Subj

Avg Distance
Different Subj
Avg Distance FRR FAR

11|46.4 Dense 1.68M 512 1 0.902679 2.183250 4.977101% 1/30775
11|46.4 Dense 1.68M 512 2 0.857281 1.954131 2.929688% 1/11082

Best
FRR-FAR

relation
11|46.4 Dense 1.68M 512 3 0.957023 2.071042 5.293642% 1/20779

11|46.4 Dense 1.68M 512 4 0.956371 2.071352 5.428341% 1/20561
11|46.4 Multi-branch 1.68M 512 1 0.902679 2.183251 4.977101% 1/30775
11|46.4 Multi-branch 1.68M 512 2 0.864956 1.975253 3.077856% 1/12110
11|46.4 Multi-branch 1.68M 512 3 0.961525 2.081599 5.697737% 1/21765
11|46.4 Multi-branch 1.68M 512 4 0.961273 2.081967 5.832435% 1/21572
11|46.4 Multi-branch 321k 128 1 0.902679 2.183251 4.977101% 1/30775
11|46.4 Multi-branch 321k 128 2 0.909361 2.046864 5.650593% 1/21091

Lowest
FAR 11|46.4 Multi-branch 321k 128 3 0.974820 2.115910 7.132274% 1/27607

11|46.4 Multi-branch 321k 128 4 0.973671 2.115586 7.293912% 1/27263
3|11 Multi-branch 60k 128 1 0.555701 1.264120 4.533921% 1/23523
3|11 Multi-branch 60k 128 2 0.497169 1.155949 2.196848% 1/1930
3|11 Multi-branch 60k 128 3 0.583338 1.210613 4.373665% 1/5263
3|11 Multi-branch 60k 128 4 0.582165 1.210958 4.033120% 1/5423
11|16 Multi-branch 60k 128 1 0.676062 1.571831 4.983836% 1/24523
11|16 Multi-branch 60k 128 2 0.657643 1.533731 3.683998% 1/17246
11|16 Multi-branch 60k 128 3 0.683286 1.552855 4.404634% 1/20716
11|16 Multi-branch 60k 128 4 0.683358 1.552975 4.552802% 1/20877
11|27 Multi-branch 60k 128 1 0.713236 1.643047 4.990571% 1/28401
11|27 Multi-branch 60k 128 2 0.683606 1.578432 3.158675% 1/14921
11|27 Multi-branch 60k 128 3 0.730033 1.610853 4.424838% 1/21488
11|27 Multi-branch 60k 128 4 0.730411 1.611267 4.431573% 1/21484

Finally, the above-mentioned 3.36 million embeddings are generated from both models. The target
model, i.e., trained with a larger dataset, usually outperforms the source model in accuracy. In
our experimentation scenario, the source model reached a FAR of 1/100k, while the target model
presented 1/2M for the same metric. Both of these values were obtained considering a fixed FRR
of 5%. Keeping that under consideration, the high increase in performance makes the target model
suitable for deployment. Supporting the opportunity of making the transition and avoiding backfilling.

5 Results and Discussion

5.1 Quantitative analysis

This study aims to evaluate the performance of the FC-Aligner architectures under different conditions.
To do this, we mainly compare false rejection rates and false acceptance rates. We also show how the
different conditions impact the average distance of embeddings belonging to the same subject and
also to different subjects. The results are presented in Table 1 and are analyzed below.

Our findings indicate that the best FRR-FAR relation for an aligner between versions 11 and 46.4 is
achieved using the FC-Aligner Dense architecture and a training set size of 1.68M subjects (3.36M
embeddings). From our experiments, the increased batch size of 512 was essential to reach an
acceptable FRR-FAR relation, as a good FRR-FAR can also be observed in the setting directly below
using the multi-branch approach.

However, when we focused on the False Acceptance Rate (FAR) alone, we noticed that the FC-Aligner
Multi-branch architecture provided the best results as evidenced in all trained aligners: A3,11, A11,16,
A11,27, and A11,46.4. This highlights the versatility of the FC-Aligner architectures, as different
versions can be optimized for different performance metrics.

Experimenting using different batch sizes produced more balanced results, as evidenced by the
achieved FRR-FAR relation. When aiming for a lower FAR only, a smaller batch size was more
suitable. The dataset size also had a positive impact when aiming for a better FRR-FAR relation and

6



(a) Old vs. New vs. Converted (Dense). (b) Old vs. New vs. Converted (Multi-branch).

Figure 3: Individual scatter embedding plots enabled by two-component PCA. It is notable the scatter
pattern changes from Model 11 (blue) to the aligned ones (green and purple), better matching the
pattern shown by the embeddings extracted from Model 46.4.

for lower individual metrics in general, as evidenced by the results achieved using small datasets of
60k subjects, which fell short of the results achieved using large datasets.

We also evaluated the models in different scenarios, as shown in the Testing setup paragraph of
Section 3.2. It is important to mention that Scenario 1 compares embeddings that were extracted
directly using the target model, so it is used as a baseline reference of the maximum achievable
performance. It is important to note that we use ’target model’ and ’new model’ as synonyms.

Our results show that Scenarios 3 and 4 consistently perform better across different versions and
architectures in terms of FRR-FAR relation and FAR alone. This suggests that using at least of
embedding extracted with the target model can provide superior results. Following our proposed
framework logic shown in Figure 1, Scenario 3 is the one closest to reality if we consider that the
aligned embedding from the database is the anchor and the newly extracted embedding from the
production data is the positive.

5.2 Qualitative analysis

This analysis aims to provide graphical evidence that the FC-Aligner conversions perform an em-
bedding space conversion and not only reach promising numerical results. For this, we apply the
Principal Component Analysis (PCA) technique to reduce the embedding dimensionality from 128 to
2 so that it can be plotted in 2D space. Figure 3 shows the test set embedding scatter plots, in which
the first two columns were obtained by direct extraction from embedding models and the last column
by converting the source embeddings using the two different FC-Aligner architectures.

In Figure 3, it is clear the changes in the scatter pattern from Model 11, in blue, to the two converted
ones, in green and purple. It is noticeable that the new scatter pattern obtained by using FC-Aligner
is closer to the one presented by the embeddings directly extracted from target Model 46.4.

Finally, Figure 4 shows some plotted embedding samples extracted with the target model and
converted samples from the source model. Each figure shows converted samples from the two
proposed aligner architectures. In it, there are ten sets of four points, in which each set of four points
have the same color, representing embeddings from images of the same subject. In those sets, there
are two pairs connected by a straight line, meaning they are embeddings of the same image but
extracted differently: one by the target model and the other by converting the source model extraction
with an FC-Aligner model. It is possible to note that, in general, points of the same color are close to
each other and connected points are even closer, highlighting once again the converted embeddings
are not only close to each other but are also close to different embeddings from different input face
images of the same subject.

7



(a) Target and converted embeddings samples (Dense). (b) Target and converted embeddings samples (M-B).

Figure 4: PCA plots of the target model and converted embedding samples for both architectures.
Points of the same color (in ten sets of four) represent embeddings from the same subject, while
connected points indicate embeddings extracted from the same image.

5.3 Inference speed and memory usage

In the inference speed experiment, we utilized embedding data from Model 11, processing batches
of 8192 on a CPU-only laptop (i7-1165G7 @ 2.80GHz, 16 GB RAM). The results showed that
FC-Aligner’s Dense architecture converted 317,846 subjects in 176.8 seconds, while the Multi-branch
architecture took 205 seconds. The Dense model produced a 5.4 MB Keras .h5 file, compared to 7.6
MB for the Multi-branch model.

Both models were converted to ONNX (2) without size changes. Using the ONNX model, the
Dense approach converted embeddings in 52.2 seconds (approximately 3.4 times faster), with an
average Euclidean distance of 4.67× 10−7. The Multi-branch approach took 49 seconds (about 4.2
times faster), with an average distance of 4.93× 10−7. ONNX optimization allows for embedding
conversion three times faster with minimal precision loss.

For 20 million embeddings, the Dense approach took 3 hours with Keras, while the ONNX model
reduced this to 55 minutes. Compared to the 8-hour GPU training time and 5 days for full backfilling,
FC-Aligner is at least 10.8 times faster, with the ONNX model achieving over 13 times the speedup.

5.4 Limitations

Although FC-Aligner saves a significant amount of time and computational costs, it is not sustainable
to maintain and keep generating more FC-Aligner models if new embedding extraction models are
being constantly developed and deployed into production. Taking into consideration all constraints
raised in this work, it would be difficult to propose a universal aligner, although ideal.

6 Conclusion

In this work, we proposed a method to employ forward compatibility in embedding-generation
models, more specifically for face recognition, in order to avoid large database backfilling. As
discussed throughout the paper, the process of backfilling is greatly expensive in many aspects. In
many scenarios, it requires the usage of large computational resources in order to fulfil the goal of
updating the data entries from one version of an embedding model to another. Our method is based
on a lightweight model, namely FC-Aligner, capable of regressing an embedding from a source latent
space to a target one. The found results are promising; by applying our multi-branch version of the
model, we were able to convert a large face database 11× faster than a regular backfilling, saving at
least 2.5× the cost of performing such action. When it comes to performance metrics, we were able
to maintain a similar FRR while presenting a tolerable metric decay on our final FAR value.

The next works will aim to further expand the concept of the FC-Aligner for different applications.
We look forward to testing the here developed model for text embeddings (LLM-based models, e.g.,
text similarity search) and other application tasks. Also, we consider validating other architectures as
a way to improve our method, with the goal of reducing the conversion degradation.

8



References
[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis,

A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S.,
Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M.,
Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015),
https://www.tensorflow.org/, software available from tensorflow.org

[2] developers, O.R.: Onnx runtime. https://onnxruntime.ai/ (2021), version: x.y.z

[3] Gao, C., Desplanques, B., Ju, C.J.T., Chadha, A., Stolcke, A.: Post-training embedding
alignment for decoupling enrollment and runtime speaker recognition models. arXiv preprint
arXiv:2401.12440 (2024)

[4] Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification.
arXiv preprint arXiv:1703.07737 (2017)

[5] Hu, W., Bansal, R., Cao, K., Rao, N., Subbian, K., Leskovec, J.: Learning backward compatible
embeddings. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining. pp. 3018–3028 (2022)

[6] Jaeckle, F., Faghri, F., Farhadi, A., Tuzel, O., Pouransari, H.: Fastfill: Efficient compatible
model update. arXiv preprint arXiv:2303.04766 (2023)

[7] Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: Deep hypersphere embedding
for face recognition. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 212–220 (2017)

[8] Meng, Q., Zhang, C., Xu, X., Zhou, F.: Learning compatible embeddings. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision. pp. 9939–9948 (2021)

[9] Ramanujan, V., Vasu, P.K.A., Farhadi, A., Tuzel, O., Pouransari, H.: Forward compatible train-
ing for large-scale embedding retrieval systems. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 19386–19395 (2022)

[10] Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face recognition and
clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 815–823 (2015)

[11] Seo, S., Uzunbas, M., Han, B., Cao, X., Zhang, J., Tian, T., Lim, S.N.: Metric compatible
training for online backfilling in large-scale retrieval. In: ICML Workshop on Localized Learning
(LLW) (2023)

[12] Seo, S., Uzunbas, M.G., Han, B., Cao, S., Zhang, J., Tian, T., Lim, S.N.: Online backfilling
with no regret for large-scale image retrieval. arXiv preprint arXiv:2301.03767 (2023)

[13] Shen, Y., Xiong, Y., Xia, W., Soatto, S.: Towards backward-compatible representation learning.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
6368–6377 (2020)

[14] Shi, Y., Jain, A.K.: Probabilistic face embeddings. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. pp. 6902–6911 (2019)

[15] Zhang, Y., Lu, H.: Deep cross-modal projection learning for image-text matching. In: Proceed-
ings of the European conference on computer vision (ECCV). pp. 686–701 (2018)

9

https://www.tensorflow.org/
https://onnxruntime.ai/

	Introduction
	Related Works
	Methodology
	Problem Setting
	Forward Compatibility Alignment
	Training setup
	Testing setup
	Inference setup


	Experimental Setup
	Metrics, Parameters and Infrastructure
	Datasets

	Results and Discussion
	Quantitative analysis
	Qualitative analysis
	Inference speed and memory usage
	Limitations

	Conclusion

