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Abstract

In-context learning with large language models
(LLMs) has recently caught increasing atten-
tion due to its superior few-shot performance
on various tasks. However, its performance on
text-to-SQL parsing still has much room for
improvement. In this paper, we hypothesize
that a crucial aspect of LLMs to improve for
text-to-SQL parsing is their multi-step reason-
ing ability. Thus, we systematically study how
to enhance LLMs’ reasoning ability through
chain of thought (CoT) style prompting, includ-
ing the original chain-of-thought prompting
(Wei et al., 2022b) and least-to-most prompting
(Zhou et al., 2023). Our experiments demon-
strate that iterative prompting as in Zhou et al.
(2023) may be unnecessary for text-to-SQL
parsing, and using detailed reasoning steps
tends to have more error propagation issues.
Based on these findings, we propose a new
CoT-style prompting method for text-to-SQL
parsing. It brings 5.2 and 6.5 point absolute
gains on the Spider development set and the
Spider Realistic set, respectively, compared to
the standard prompting method without reason-
ing steps; 2.4 and 1.5 point absolute gains, com-
pared to the least-to-most prompting method1.

1 Introduction

Text-to-SQL parsing, the task of mapping a natu-
ral language utterance to a SQL query, has found
wide applications in building language agents for
databases and piqued significant research interest in
recent years (Deng et al., 2021; Yu et al., 2021; Ra-
jkumar et al., 2022; Hongjin et al., 2023; Ni et al.,
2023). To develop a text-to-SQL parser, a prevalent
approach is to collect labeled data and train a model
via supervised learning (Shaw et al., 2021; Scholak
et al., 2021). While effective, this approach necessi-
tates a considerable amount of training data, which
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1We include all our prompts in the appendix.

is costly to obtain because annotating SQL queries
requires programming expertise.

As an alternative to supervised learning, in-
context learning (Brown et al., 2020), an emergent
capability of large language models (LLMs), alle-
viates the need for large-scale data. With only a
few examples, in-context learning enables LLMs
to demonstrate performance comparable to or even
better than fully supervised models on many NLP
tasks, such as question answering, machine transla-
tion, and natural language inference (Chowdhery
et al., 2022; Kojima et al., 2022; Wei et al., 2022b,a;
Brohan et al., 2023). When applied to text-to-SQL
parsing, in-context learning has also shown encour-
aging results (Rajkumar et al., 2022; Chang et al.,
2023b; Liu et al., 2023a), but there is still much
room for improvement.

We hypothesize that a crucial aspect of LLMs
to improve for text-to-SQL parsing is their multi-
step reasoning ability. Even for a seemingly simple
question, such as “What is the ID of Kyle,” a model
has to ground it to the given database schema, infer
the relational algebra among schema items, and
construct syntactically correct SQL clauses. To
enhance LLMs’ reasoning capabilities, chain of
thought (CoT) style prompting methods (Wei et al.,
2022b; Zhou et al., 2023) are proposed and have
shown promising results. However, how to ap-
ply CoT-style prompting to text-to-SQL parsing
remains under-explored, and we fill this gap by sys-
tematically exploring CoT-style prompting for text-
to-SQL parsing. Specifically, we seek to answer
two research questions: (RQ1) Which prompting
style is better, generating all reasoning steps in one
pass, or iterative prompting and problem solving?
(RQ2) Do more detailed reasoning steps lead to
better results for text-to-SQL parsing?

To address these questions, we adapt two widely
used prompting methods for text-to-SQL parsing.
As the first method, we apply chain-of-thought
prompting (Wei et al., 2022b) by drawing an anal-



Figure 1: Example model input and expected outputs for four CoT style prompting methods applied to text-to-SQL parsing: A.
Chain-of-Thought, B. Least-to-Most, C. QDecomp, and D. QDecomp + InterCOL, where C and D are our proposed methods.

ogy between its problem-solving process and the
execution procedure of a SQL query (Figure 1A).
Referring to the logical execution order of SQL
clauses (Narechania et al., 2021), we compose the
intermediate execution steps in natural language
and prompt LLMs to derive them before generating
the SQL query. For the second method, we follow
Zhou et al. (2023) to apply least-to-most prompting
in two stages: (1) problem reduction: generate a se-
ries of sub-questions from the original question and
(2) problem solving: iteratively translate each sub-
question into its corresponding SQL query, with
the original question as the last sub-question, as
shown in Figure 1B. With a careful analysis (Sec-
tion 5.2), we find that directly applying these two
methods for text-to-SQL parsing tends to introduce
error propagation issues frequently. Also, the itera-
tive process in least-to-most prompting incurs more
computational costs to generate each SQL query.

Therefore, we propose a new CoT-style prompt-
ing method called question-decomposition prompt-
ing (QDecomp, Figure 1C). Similar to chain-
of-thought prompting, QDecomp generates a se-
quence of reasoning steps followed by the natural

language question in one pass. Instead of generat-
ing the intermediate execution steps, we instruct
LLMs to decompose the original complex question,
akin to the problem reduction stage in least-to-most
prompting. Furthermore, to help LLMs ground
database schemas, we design a variant of question
decomposition prompting (QDecomp+InterCOL,
Figure 1D) by incrementally including the table
and column names involved in each sub-question.

We conduct comprehensive evaluations on two
cross-domain text-to-SQL datasets, Spider (Yu
et al., 2018) and Spider Realistic (Deng et al.,
2021). Compared to the standard prompting
method without reasoning steps, QDecomp + In-
terCOL brings 5.2 and 6.5 point absolute gains on
the Spider development set and the Spider Realistic
set, respectively. It also brings 2.4 and 1.5 point
absolute gains compared to least-to-most prompt-
ing. Our results suggest that it may be unneces-
sary to perform iterative prompting, which is also
computationally costly (RQ1). Besides, our anal-
ysis shows that our QDecomp+InterCOL method
reduces the chance of error propagation by provid-
ing less detailed reasoning steps and generating



the SQL query in one pass (RQ2). Meanwhile,
it includes key schema information in reasoning,
which is still beneficial to database grounding. Fur-
ther, we evaluate the robustness of our proposed
methods by varying the number, selection, and
format of in-context examples, providing useful
guidelines for designing text-to-SQL prompting
strategies. We also extend our evaluation to three
single-domain datasets (Zelle and Mooney, 1996;
Iyer et al., 2017; Yaghmazadeh et al., 2017) and
show our proposed method can achieve strong per-
formance consistently across different datasets.

2 Related Work

LLM and CoT-Style Prompting. As large lan-
guage models (LLMs) advance (Brown et al.,
2020; Chowdhery et al., 2022), in-context learn-
ing emerged as a new paradigm in natural language
processing (Liu et al., 2023b). Although LLMs
can achieve outstanding performance by prompting
them with few-shot examples in context, they strug-
gle with tasks that require multi-step reasoning. As
a solution, Wei et al. (2022b) proposed chain-of-
thought prompting. By explicitly describing inter-
mediate reasoning steps to answer a complex ques-
tion in the prompts, chain-of-thought prompting
improves the accuracy of LLMs by a large mar-
gin across many natural language reasoning tasks.
Besides, Zhou et al. (2023) proposed least-to-most
prompting to solve complex problems in two stages.
The method first prompts LLMs to generate a list of
sub-questions as a decomposition of the given prob-
lem. Then, it uses the sub-questions to guide LLMs
to incrementally solve each of them and derive a
correct final answer. However, how to apply these
two CoT-style prompting methods to text-to-SQL
parsing remains under-explored.

We fill this gap by systematically exploring sev-
eral CoT-style prompting methods for the task. In
particular, we propose a new CoT-style prompting
method that guides LLMs to perform reasoning via
question decomposition. Question decomposition
is a method that converts a complex problem into
a sequence of simpler sub-questions (Gupta and
Lewis, 2018; Min et al., 2019). Our work refers to
existing question decomposition methods for text-
to-SQL parsing (Wolfson et al., 2020, 2022) and
presents a novel CoT-style prompting method to
improve LLMs’ performance. We conduct com-
prehensive experiments and show that our ques-
tion decomposition prompting outperforms chain-

of-thought prompting and least-to-most prompt-
ing on several text-to-SQL datasets. Our exper-
iments validate our hypothesis that text-to-SQL
parsing indeed requires multi-step reasoning, and
carefully designed CoT-style prompting can help
LLMs achieve higher parsing accuracy.

Text-to-SQL Semantic Parsing. Text-to-SQL
semantic parsing has long been studied to build
language agents for database applications (Dahl
et al., 1994; Zelle and Mooney, 1996). Since the
release of Spider (Yu et al., 2018), a cross-database
text-to-SQL benchmark, many parsers have been
developed on top of language models to better un-
derstand various database schemas (Wang et al.,
2020; Yu et al., 2021; Deng et al., 2021). Recent
work starts to explore the potential of LLMs, such
as Codex (Chen et al., 2021), in text-to-SQL pars-
ing by including database schemas in the prompts
(Rajkumar et al., 2022) or retrieving similar ques-
tions as few-shot examples (Hongjin et al., 2023).
Orthogonal to these methods, our question decom-
position prompting teaches LLM to perform multi-
step reasoning for text-to-SQL parsing without ad-
ditional engineering efforts. With a few in-context
examples, an LLM, such as Codex in our experi-
ments, can learn to decompose natural language
questions and predict table and column names (Sec-
tion 3) incrementally in each step.

Our method demonstrates comparable perfor-
mance to RASAT+PICARD (Qi et al., 2022), a
fine-tuned text-to-SQL parser, on the Spider devel-
opment set without using relational structures or
constrained decoding. Compared to other LLM-
based methods, it achieves better execution accu-
racy than DIN-SQL (Pourreza and Rafiei, 2023) on
the Spider development set in a single pass, while
DIN-SQL requires iterative prompting. Although
our method shows lower execution accuracy than
LEVER (Ni et al., 2023), we note that LEVER’s
verifier model is fine-tuned on the full Spider train-
ing set, which may have extra advantages over our
method. Also, LEVER uses the execution results of
SQL queries, which provides extra information for
better database grounding. We leave the incorpora-
tion of database contents beyond table and column
names into our method as future work.

3 Prompting for Multi-Step Reasoning in
Text-to-SQL

In this section, we outline three CoT-style prompt-
ing methods that teach an LLM to perform



multi-step reasoning. We first describe how we
adapt chain-of-thought and least-to-most prompt-
ing for text-to-SQL parsing. Then, we pro-
pose a novel prompting method, question de-
composition prompting (QDecomp), and its vari-
ant QDecomp+InterCOL. Figure 1 demonstrates
different prompting methods, and we provide
more examples in Appendix A. For all ex-
periments, we use Codex (Chen et al., 2021),
code-davinci-002, as the LLM. The experi-
ments were conducted between January and March
2023 through OpenAI API, using greedy decoding
with temperature 0.

3.1 Chain-of-Thought Prompting
Chain-of-thought prompting (Wei et al., 2022b)
aims to improve LLMs’ reasoning ability by gener-
ating a series of intermediate steps before predict-
ing the final answer. For text-to-SQL parsing, one
challenge is how to come up with the reasoning
steps to predict the SQL query (i.e., final answer
in our case). In our work, we use each clause in
the SQL query to compose a reasoning step in CoT
prompting. Specifically, inspired by Narechania
et al. (2021), we use natural language templates
to describe each SQL clause and chain them in
the logical execution order of the SQL query. For
example, the logical execution order for the SQL
query in Figure 1A is first the FROM clause, then
the WHERE clause, and finally the SELECT clause.
Following this order, we assemble the natural lan-
guage description of each clause in the query to
compose its CoT reasoning steps.

3.2 Least-to-Most Prompting
Unlike chain-of-thought prompting, which in-
structs LLMs to generate all reasoning steps in
a single pass, least-to-most prompting (Zhou et al.,
2023) tackles complex questions by prompting
LLMs in two stages: problem reduction and prob-
lem solving. During problem reduction, it prompts
the LLM to generate a series of sub-questions from
the original complex question. During problem
solving, it prompts the LLM with one sub-question
at a time and iteratively builds up the final solution.

To derive the sub-questions for problem reduc-
tion, we segment the original question following
three principles: (1) If the question has multiple
sentences, we treat each sentence as a sub-question.
(2) We further decompose each sentence by con-
junction words (such as “and,” “or,” and “but”) and
prepositions (such as “for,” “with,” and “without”).

(3) For each decomposition, we remove words
and phrases that may leak the information in any
subsequent questions. This segmentation allows
the LLM to focus on parsing each sub-question,
thereby decreasing the complexity of the original
problem (Wolfson et al., 2022).

For instance, the question “Show first name, last
name, age for all female students. Their sex is F.”
in Figure 1B would derive two sub-questions: (a)
“Show first name, last name, age for all students.”
(b) “Show first name, last name, age for all female
students. Their sex is F.” This decomposition fol-
lows principle (1) and (3) by removing the second
sentence and the information-leaking word “female”
from the original question to construct the first step.
For the first sub-question, the LLM only needs to
construct the SELECT and FROM clauses. Then for
the second sub-question, the LLM can build upon
the SQL query generated for the first sub-question,
and focus solely on the WHERE clause.

3.3 Question Decomposition Prompting

We propose a new prompting method, question de-
composition prompting (QDecomp). Similar to
chain-of-thought, QDecomp generates intermedi-
ate reasoning steps and the final SQL query in a
single pass. Instead of using the logical execution
procedure of SQL as in CoT, we follow the problem
reduction stage in least-to-most prompting and in-
struct the LLM to decompose the original complex
question as the reasoning steps. Through this de-
sign, we hope to explore (1) the potential advantage
of using question decomposition over the logical
execution procedure of SQL clauses for composing
reasoning steps; (2) whether an iterative process as
in least-to-most prompting is necessary.

On top of that, we propose a variant, QDe-
comp+InterCOL, to alleviate the well-known ta-
ble/column linking issue in text-to-SQL parsing
(Wang et al., 2020). Specifically, we augment
the in-context examples to prompt the LLM to
identify any corresponding table/column names
when generating each sub-question. Given a sub-
question and its corresponding SQL parse, we anno-
tate all table-column pairs mentioned in the parse
as ground-truth. For star operators (*), we sam-
ple a random column from tables mentioned in
the same (sub-)query. If a table-column pair has
been mentioned in the SQL parse of a sub-question,
we would exclude it from the annotations of all
subsequent steps. If a sub-question does not have



any table-column pairs to annotate, we randomly
choose one pair from preceding steps.

We include examples of these two methods in
Figure 1C and 1D. Following the same decom-
position method in least-to-most prompting, the
example has two sub-questions. In Figure 1D, for
the first sub-question, “Show first name, last name,
age for all students,” we expect the model to high-
light the table “student” and its columns “fname,”
“lname,” and “age,” as they appear in the SQL parse
of this sub-question. Then, for the follow-up ques-
tion, the model is expected to identify the table
“student” and its column “sex,” which is not men-
tioned in the previous step.

In addition to the prompting methods mentioned
above, we also include the standard prompting
method as the baseline in our experiments. It
uses question-SQL pairs as in-context examples to
prompt LLMs to directly parse a natural language
question to its corresponding SQL query without
generating any intermediate reasoning step.

4 Experimental Setup

4.1 Datasets

Spider (Yu et al., 2018). Spider is a commonly
used benchmark to evaluate text-to-SQL parsing
in a cross-database setting, which requires mod-
els to generalize to novel database schemas. The
dataset consists of 7,000 question-query pairs in
the training set and 1,034 pairs in the development
set, covering 200 different databases and 138 do-
mains. In this paper, due to the unavailability of
the test set, we evaluate on the Spider development
set to demonstrate the effectiveness of our question
decomposition prompting methods.

Spider Realistic (Deng et al., 2021). Spider Re-
alistic is a more challenging version of the Spider
development set. It modifies the natural language
questions in Spider by removing or paraphrasing
explicit mentions of column names to generate a
more realistic dataset that reflects real-world sce-
narios, where questions rarely contain explicit men-
tions of column names. The final dataset comprises
a total of 508 question-query pairs.

4.2 In-context Example Selection

To show the robustness of question decomposi-
tion prompting, we consider two ways of choos-
ing in-context examples: random selection and

difficulty-based selection. In our main results, we
use random selection for its simplicity and ease of
replication. Additionally, in Section 5.3, we com-
pare results obtained using random selection with
those obtained using difficulty-based selection.

For random selection, we uniformly sample in-
context examples from the Spider training set at
random. For difficulty-based selection, we first
group the Spider training examples into four diffi-
culty levels, pre-defined by Yu et al. (2018), includ-
ing easy, medium, hard, and extra-hard. Then, we
devise three methods to randomly select in-context
examples based on their difficulties: (G1) sampling
an equal number of examples at each difficulty
level, (G2) sampling the same number of exam-
ples from the hard level and the extra-hard level
respectively, and (G3) sample all examples from
the extra-hard level.

4.3 Prompt Formats

We also experiment with two prompt formats in-
troduced by Rajkumar et al. (2022), API Docs and
Create Table + Select 3. Both formats have their
own advantages and can be utilized together with
any prompting method in Section 3.

API Docs format represents database schemas
as Python API comments, which only includes the
table and column names. This format reduces the
prompt length for each example, so we may include
more in-context demonstrations from databases in
different domains to increase diversity. In compari-
son, Create Table + Select 3 format adheres more
closely to the SQLite standards, but with much
longer prompts2. It represents a database schema
using the CREATE TABLE command, which pro-
vides more information, such as column data types
and foreign key declaration. Besides, this format in-
cludes the results of executing SELECT * FROM
T LIMIT 3 for each table T in the database as
SQL comments. In Section 5.3, we show that API
Docs format can achieve competitive performance
compared to the Create Table + Select 3 format.
Thus, we primarily use the API Docs format in our
experiments due to its efficiency.

4.4 Evaluation Metric

We use test-suite execution accuracy (Zhong et al.,
2020) to evaluate different prompting methods, in-
context example selection strategies, and prompt

2https://platform.openai.com/examples/
default-sql-translate

https://platform.openai.com/examples/default-sql-translate
https://platform.openai.com/examples/default-sql-translate


Method Spider Dev Spider Realistic

Easy Medium Hard Extra Hard Overall TS (Overall EX) Overall TS (Overall EX)

Standard 86.8 65.3 50.3 36.0 63.2 ± 2.51 (68.7 ± 4.08) 51.0 ± 4.29 (62.5 ± 4.01)
Chain-of-Thought 73.9 64.5 44.6 23.4 56.8 ± 5.83 (53.9 ± 7.21) 50.3 ± 4.94 (53.4 ± 9.19)
Least-to-Most 88.1 68.7 52.9 39.5 66.0 ± 2.48 (68.9 ± 3.44) 55.0 ± 2.51 (63.3 ± 2.73)
Least-to-Most (G3) 80.3 64.6 52.8 45.3 63.3 ± 1.95 (73.8 ± 1.72) -∗

QDecomp 89.8 71.3 53.1 38.6 67.4 ± 1.89 (70.7 ± 2.80) 55.8 ± 2.01 (65.8 ± 2.29)
+ InterCOL 89.6 74.1 52.4 38.1 68.4 ± 2.05 (69.7 ± 5.82) 56.5 ± 2.05 (63.3 ± 4.19)
+ InterCOL (G3) 88.7 71.1 56.8 45.7 68.8 ± 1.16 (78.2 ± 1.07) -∗

Table 1: 8-shot test-suite (TS) accuracy of Codex on Spider Dev and Spider Realistic using different prompting methods and API
Doc format. In-context examples are randomly selected except for the two rows marked with G3, where we only use extra-hard
SQL queries (Section 4.2). We also include the overall standard execution accuracy (EX) in parenthesis for reference. For each
method, we repeat the experiments with 5 different sets of in-context examples and report the average performances with their
standard deviation. ∗We were not able to run G3 example selection on Spider Realistic before Codex became unavailable.

SELECT WHERE GROUP BY ORDER BY KEYWORDS

Standard 89.8 66.1 74.7 83.0 84.2
Chain-of-Thought 83.5 70.7 67.1 72.8 76.9
Least-to-Most 90.0 70.7 72.5 82.4 84.3

QDecomp 91.2 70.7 77.2 85.1 86.4
+ InterCOL 91.4 72.4 76.6 85.3 86.0

Table 2: 8-shot component matching accuracy of Codex on the Spider development set.

formats. Leveraging the idea of “code coverage” in
software testing (Miller and Maloney, 1963), the
metric synthesizes a large number of databases as
“test cases” and compares the execution results of
the predicted and gold SQL queries on all of them.
In this way, test-suite accuracy reduces the num-
ber of false positives (i.e., semantically different
SQL queries that happen to have the same execu-
tion result) in standard execution accuracy, which
compares execution results on only one database.
As shown in Table 1, standard prompting’s test-
suite accuracy falls behind least-to-most prompting.
However, their standard execution accuracy results
are very close, which might be misleading.

5 Results and Analysis

By analyzing our experimental results, we seek to
answer the following two research questions:

• RQ1: Which prompting style is better, generat-
ing all reasoning steps in one pass, or iterative
prompting and problem solving?

• RQ2: Do more detailed reasoning steps lead
to better results for text-to-SQL parsing?

5.1 Main Results

Through comprehensive experiments on Spider
Dev and Spider Realistic (Table 1), we show that
our proposed question decomposition (QDecomp)

prompting and its variant (QDecomp+InterCOL)
consistently outperform two existing methods,
chain-of-thought and least-to-most prompting.
Specifically, QDecomp+InterCOL achieves 68.4%
test-suite accuracy on the Spider development set
and 56.5% on the Spider Realistic set. Compared
to the standard prompting, it brings 5.2% and 6.5%
point absolute gains, respectively. Compared to
least-to-most prompting (the second best method),
it brings 2.4% and 1.5% point absolute gains. Fur-
thermore, when using extra-hard (G3) in-context
examples, we can improve the execution accu-
racy of QDecomp+InterCOL prompting to 78.2%,
which is comparable to RASAT+PICARD (Qi
et al., 2022), a strong fine-tuned text-to-SQL parser.
In contrast, least-to-most prompting does not gain
too much execution accuracy (73.8%) from G3 in-
context examples and even has decreased test-suite
accuracy (63.3%). We will present more analysis
on this contrast in Section 5.3.

Additionally, the experiments show that iter-
atively solving a series of sub-questions may
not be necessary for text-to-SQL parsing (RQ1).
Although chain-of-thought prompting (56.8%)
underperforms least-to-most prompting (66.0%)
on the Spider development set, these two methods
have several distinct designs other than iterative
prompting, so we cannot directly answer RQ1 by
comparing them. With our QDecomp prompting,



Question Which dogs are of the rarest breed? Show their names and treatment dates.

Chain-of-
Thought

# This query chooses records from the dogs table, followed by joining the breeds table on the breed_code

column. It then joins the treatments table on the dog_id column. It then groups the results by breed_name.

It then orders the results by COUNT(DISTINCT T1.dog_id) in descending order. It then selects the

breed_name and date_of_treatment columns.
# Thus, the answer for the question is: Which dogs are of the rarest breed? Show their names and treatment
dates. SELECT T2.breed_name , T3.date_of_treatment FROM dogs AS T1

JOIN breeds AS T2 ON T1.breed_code = T2.breed_code JOIN treatments AS

T3 ON T1.dog_id = T3.dog_id GROUP BY T2.breed_name ORDER BY

COUNT(DISTINCT T1.dog_id) DESC

Gold SELECT T1.name, T2.date_of_treatment FROM dogs AS T1 JOIN Treatments
AS T2 ON T1.dog_id = T2.dog_id WHERE T1.breed_code = (SELECT breed_code
FROM Dogs GROUP BY breed_code ORDER BY count(*) ASC LIMIT 1)

Table 3: An example error made by Codex with chain-of-thought prompting.

Question How many United Airlines flights go to City ‘Aberdeen’?

Least-to-
Most

Q: How many United Airlines flights go to City?
A:SELECT count(*) FROM flights WHERE airline = ’United Airlines’ AND

destairport = ’City’
Q: How many United Airlines flights go to City ‘Aberdeen’?
A:SELECT count(*) FROM flights WHERE airline = ’United Airlines’ AND

destairport = ’Aberdeen’

Gold Q: How many United Airlines flights?
A:SELECT count(*) FROM flights AS T1 JOIN airlines AS T2 ON T2.uid =
T1.airline WHERE T2.airline = ’United Airlines’
Q: How many United Airlines flights go to City ‘Aberdeen’?
A:SELECT count(*) FROM flights AS T1 JOIN airports AS T2 ON
T1.destairport = T2.airportcode JOIN airlines AS T3 ON T3.uid =
T1.airline WHERE T2.city = ’Aberdeen’ AND T3.airline = ’United
Airlines’

Table 4: An example error made by Codex with least-to-most prompting.

we show that generating sub-questions and the SQL
query in a single pass can also achieve improved ac-
curacy. Thus, iterative prompting, which is compu-
tationally costly, is not necessary when prompting
LLMs to reason for text-to-SQL parsing.

Another interesting finding is that chain-of-
thought prompting performs even worse than the
standard prompting method. We analyze the reason
in the next section, which helps answer RQ2.

5.2 Error Analysis

We conduct a quantitative error analysis of all four
prompting methods with the component matching
accuracy (Yu et al., 2018) on the Spider develop-
ment set. Component matching accuracy is a fine-
grained exact match metric that evaluates five SQL
components, including SELECT clauses, WHERE
clauses, GROUP BY clauses, ORDER BY clauses,
and KEYWORDS (all SQL keywords, operators, and
column names). Since exact match is too strict, we

also consider a component to be correct if the whole
SQL query’s test-suite accuracy is 1.

As shown in Table 2, our QDecomp and QDe-
comp+InterCOL prompts achieve better perfor-
mance than other CoT-style prompting methods
across all five SQL components. Further analy-
sis shows that chain-of-thought prompting under-
performs standard prompting because it provides
very detailed reasoning steps. Translating such
detailed steps is error-prone and incurs more er-
ror propagation issues. For example, in Table 3,
Codex follows its reasoning steps faithfully to gen-
erate the corresponding SQL query, but the reason-
ing steps themselves have several errors, such as
choosing the “breed_name" column instead of the
“name" column in the SELECT clause. Least-to-
most prompting makes improvements by providing
reasoning steps at a higher level (via the problem
reduction phase). However, it sometimes still can-
not translate a sub-question into the correct SQL



Spider Dev

Selection Method Easy Medium Hard Extra Hard Overall

Random 89.6 74.1 52.4 38.1 68.4 ± 2.05
G1 89.8 75.6 51.7 38.8 69.0 ± 2.18
G2 87.4 72.2 50.4 39.4 66.9 ± 2.31
G3 88.7 71.1 56.8 45.7 68.8 ± 1.16

Table 5: 8-shot test-suite accuracy of Codex on Spider Dev using QDecomp+InterCOL prompting with different in-context
example selection methods.

Random G1 G2 G3

Standard 63.2 64.1 60.2 58.2
Least-to-Most 65.8 62.6 61.2 63.3

QDecomp 67.4 68.2 65.2 66.6
+ InterCOL 68.4 69.0 66.9 68.8

Table 6: 8-shot test-suite accuracy of Codex on the Spider dev
set using different in-context example selection methods.

query, especially when involving hard components,
such as JOIN clauses, GROUP BY clauses, and
ORDER BY clauses (Table 2). We include an er-
ror example in Table 4. As a result, the errors are
propagated to subsequent reasoning steps, leading
to an incorrect final SQL parse. In contrast, QDe-
comp+InterCOL prompting outperforms these two
methods because it does not instruct Codex to gen-
erate detailed reasoning steps or intermediate SQL
queries. In this way, it reduces the possibility of
accumulating mistakes in reasoning steps.

5.3 Robustness to Prompt Design

To further validate our conclusions in the main ex-
periments, we conduct additional experiments to
test the robustness of all four prompting methods
in this section. Because chain-of-thought prompt-
ing already under-performs the standard prompting
without reasoning, we omit this method in this and
the next section.

Selection of In-Context Examples. Besides ran-
dom selection, we evaluate the efficacy of QDe-
comp+InterCOL and other prompting methods
with in-context examples at various difficulty lev-
els. As Table 5 suggests, QDecomp+InterCOL
enables Codex to learn to reason for SQL queries at
different difficulty levels from in-context examples.
When using G1 examples, Codex learns to generate
SQL queries and reasoning steps of various lengths
from G1 examples. Thus, it is less likely to gener-
ate redundant SQL clauses or reasoning steps and
achieves the highest accuracy for SQL queries at
easy and medium level. When using G3 examples,

0 1 4 8

Standard 59.6 62.0 63.9 63.2
Least-to-Most - 59.2 62.1 65.8

QDecomp - 63.1 66.6 67.4
+ InterCOL - 61.4 66.5 68.4

Table 7: Test-suite accuracy of Codex on the Spider dev set
using different numbers of in-context examples. We do not
have 0-shot results for the proposed methods as they need at
least one example to learn how to solve the task step by step.

Codex obtains the best performance for hard and
extra-hard SQL queries. We conjecture that QDe-
comp+InterCOL teaches Codex to become better at
generating SQL queries at difficulty levels similar
to the in-context examples.

Base on the conjecture, we extend this experi-
ment to compare QDecomp+InterCOL and other
prompting methods. As shown in Table 6, QDe-
comp+InterCOL prompting achieves the best per-
formance across all settings, demonstrating its ro-
bustness. However, least-to-most prompting does
not benefit from G1 or G3 examples and shows
decreased accuracy. We believe this performance
drop is because its iterative prompting generates
one reasoning step at a time, which is relatively
independent of the overall reasoning step length.

Number of In-Context Examples. Intuitively,
performances of all prompting methods improve as
the number of in-context examples increases (Ta-
ble 7). We found that our QDecomp prompting
is the most robust and consistently achieves better
performance than standard prompting. However,
least-to-most prompting underperforms standard
prompting when the number of examples is less
than 8. In addition, we note that in our preliminary
experiments, further increasing the number of ex-
amples only leads to minor gains. Hence, we use 8
in-context examples in our main experiments.

Format of In-Context Examples. Finally, we
show the performance of Codex using two prompt
formats, API docs and Create Table + Select 3



API docs Create Table + Select 3

Standard 63.9 64.1
Least-to-Most 62.1 63.8

QDecomp 66.6 66.2
+ InterCOL 66.5 64.3

Table 8: 4-shot test-suite accuracy of Codex on the Spider dev
set using different prompt formats.

(Table 8). Due to OpenAI’s prompt length restric-
tions, we use 4 in-context examples in this exper-
iment. Although Create Table + Select 3 format
includes foreign key information and database con-
tent, compared with API docs, it brings a negligible
improvement in performance for standard prompt-
ing and a (slight) decrease for QDecomp and QDe-
comp+InterCOL prompting methods. Nonetheless,
QDecomp is still the best prompting method under
this format. Therefore, we use API docs as our de-
fault format due to its efficiency and leave further
experiments for future work.

5.4 Results on Other Text-to-SQL Datasets

Besides the Spider datasets, we further compare
QDecomp (+InterCOL) to standard and least-to-
most prompting on other datasets including Geo-
Query (Zelle and Mooney, 1996; Iyer et al., 2017),
IMDB (Yaghmazadeh et al., 2017), and Yelp (Yagh-
mazadeh et al., 2017). Since the database schema
and SQL queries in these datasets are more com-
plex than those in the Spider datasets, we also use
4-shot in-context examples in this experiment.

As shown in Table 9, QDecomp (+InterCOL)
consistently achieves the best performance for all
three datasets. Moreover, we observe that least-to-
most prompting underperforms standard prompting
on IMDB and Yelp, which may be related to both
iterative prompting and error propagation (Section
5.2). For example, least-to-most prompting would
decompose the question “Find all movies that were
produced by Netflix” into two sub-questions: 1)
“Find all movies” and 2) “Find all movies that were
produced by Netflix.” Then, in the iterative solving
stage, there are many correct SQL queries using dif-
ferent tables and columns for the first sub-question.
Without seeing the second sub-question, it is hard
for the LLM to pinpoint the correct ones. As a
result, the LLM would include redundant or wrong
schema items in the SQL parse for the first sub-
question, which are propagated to subsequent steps.
Since QDecomp (+InterCOL) instructs the LLM to
generate the SQL query after all sub-questions are

GeoQuery IMDB Yelp MacroAvg

Standard 60.99 73.28 45.31 59.86
Least-to-Most 60.99 58.78 36.72 52.16

QDecomp 64.84 77.86 48.44 63.71
+ InterCOL 75.82 73.28 49.22 66.11

Table 9: 4-shot test-suite accuracy of Codex on three other
text-to-SQL datasets across different prompting methods.

derived, it maintains a global view of all reasoning
steps and mitigates such error propagation issues.

6 Conclusion and Future Work

In this paper, we systematically explore CoT-style
prompting to enhance LLMs’ reasoning capability
for text-to-SQL parsing. We design reasoning steps
in order to apply two existing methods, chain-of-
thought and least-to-most prompting, and propose
new question decomposition prompting methods.
Through comprehensive experiments, we demon-
strate: (1) Iterative prompting may be not necessary
for reasoning in text-to-SQL parsing. (2) Using de-
tailed reasoning steps (in CoT) or intermediate SQL
queries (in least-to-most prompting) is error-prone
and aggravates error propagation.

Our question decomposition prompting serves as
one of the first attempts to mitigate the error prop-
agation issue in LLMs’ multi-step reasoning, and
we highlight this problem as a meaningful future di-
rection. For example, we can further reduce errors
in intermediate reasoning steps by incorporating
our method into an interactive semantic parsing
framework (Yao et al., 2019, 2020; Li et al., 2020;
Zeng et al., 2020; Chen et al., 2023a,b). Since the
decomposed sub-questions are in natural language,
this interactive approach enables database users to
easily spot the errors in each sub-question. Then,
they can collaborate with LLMs by editing the sub-
questions directly or providing natural language
feedback (Elgohary et al., 2020, 2021; Narechania
et al., 2021; Mo et al., 2022), which should further
improve text-to-SQL parsing accuracy.

Limitations

Experiments on other large language models.
Our study focused on conducting experiments us-
ing Codex as the LLM, since it was available at no
cost and showed impressive performance in text-
to-SQL parsing among LLMs before GPT-4 (Ra-
jkumar et al., 2022). To gain a comprehensive
understanding of different CoT-style promptings
for text-to-SQL, future research should explore the



effects of these promptings on more recent, more
powerful LLM models, such as GPT-4 (if budget al-
lows). By doing so, we can determine whether the
improvements achieved by our proposed prompt-
ings are consistent across different LLMs.

Experiments on robustness. In our work, we
mainly test robustness from the prompt design per-
spective such as how to select in-context examples,
the number of in-context examples and the prompt
format of in-context examples. It would also be
valuable to investigate our prompting methods un-
der different databases, natural language questions,
or SQL perturbations (Chang et al., 2023a). This
broader exploration would enable us to evaluate
the robustness of our prompting methods across
diverse scenarios.
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A Example Prompts
### SQLite SQL tables, with their properties:
#
# medicine (id, name, trade_name, fda_approved)
# enzyme (id, name, location, product, chromosome, omim, porphyria)
# medicine_enzyme_interaction (enzyme_id, medicine_id, interaction_type)
#

Figure 2: An example for API docs prompt format, introduced by Rajkumar et al. (2022), on Spider.

CREATE TABLE grapes (
ID INTEGER PRIMARY KEY,
Grape TEXT UNIQUE,
Color TEXT
)
/*
3 example rows:
SELECT * FROM grapes LIMIT 3;
ID Grape Color
1 Barbera Red
2 Cabernet Franc Red
3 Cabernet Sauvingnon Red
/

CREATE TABLE appellations (
No INTEGER PRIMARY KEY,
Appelation TEXT UNIQUE,
County TEXT,
State TEXT,
Area TEXT,
isAVA TEXT
)
/*
3 example rows:
SELECT * FROM appellations LIMIT 3;
No Appelation County State Area isAVA
1 Alexander Valley Sonoma California North Coast Yes
2 Amador County Amador California Sierra Foothills No
3 Amador-Mendocino-Sonoma Counties N/A California N/A No
/

CREATE TABLE wine (
No INTEGER,
Grape TEXT,
Winery TEXT,
Appelation TEXT,
State TEXT,
Name TEXT,
Year INTEGER,
Price INTEGER,
Score INTEGER,
Cases INTEGER,
Drink TEXT,
FOREIGN KEY (Grape) REFERENCES grapes(Grape),
FOREIGN KEY (Appelation) REFERENCES appellations(Appelation)
)
/*
3 example rows:
SELECT * FROM wine LIMIT 3;
No Grape Winery Appelation State Name Year Price Score Cases Drink
1 Zinfandel Robert Biale St. Helena California Old Kraft Vineyard 2008 44 93 275
now
2 Zinfandel Chiarello Family Napa Valley California Giana 2008 35 93 480 now
3 Zinfandel Robert Biale Napa Valley California Black Chicken 2008 40 91 2700 2012
/

Figure 3: An example for Create Table + Select 3 prompt format, introduced by Rajkumar et al. (2022), on Spider.



### SQLite SQL tables, with their properties:
#
# medicine (id, name, trade_name, fda_approved)
# enzyme (id, name, location, product, chromosome, omim, porphyria)
# medicine_enzyme_interaction (enzyme_id, medicine_id, interaction_type)
#
### What is the total count of enzymes?
SELECT count(*) FROM enzyme

### SQLite SQL tables, with their properties:
#
# buildings (id, name, city, height, stories, status)
# companies (id, name, headquarters, industry, sales_billion, profits_billion,
assets_billion, market_value_billion)
# office_locations (building_id, company_id, move_in_year)
#
### Show the industries shared by companies whose headquarters are "USA" and
companies whose headquarters are "China".
SELECT Industry FROM Companies WHERE Headquarters = "USA" INTERSECT SELECT Industry
FROM Companies WHERE Headquarters = "China"

### SQLite SQL tables, with their properties:
#
# stadium (stadium_id, location, name, capacity, highest, lowest, average)
# singer (singer_id, name, country, song_name, song_release_year, age, is_male)
# concert (concert_id, concert_name, theme, stadium_id, year)
# singer_in_concert (concert_id, singer_id)
#
### How many singers do we have?

Figure 4: An example prompt under the standard API docs prompting for 2-shot on Spider.



### SQLite SQL tables, with their properties:
#
# book_club (book_club_id, year, author_or_editor, book_title, publisher, category,
result)
# movie (movie_id, title, year, director, budget_million, gross_worldwide)
# culture_company (company_name, type, incorporated_in, group_equity_shareholding,
book_club_id, movie_id)
#
### List categories that have at least two books after year 1989.
# Let’s think step by step

# This query chooses records from the Book_Club table, followed by a WHERE clause
that selects records where the year column is greater than 1989. It then groups the
results by the category column. It then filters the results where the count of each
category is greater than or equal to 2. It then selects the category column.

# Thus, the answer for the question is: List categories that have at least two
books after year 1989.
SELECT category FROM book_club WHERE YEAR > 1989 GROUP BY category HAVING count(*)
>= 2

### SQLite SQL tables, with their properties:
#
# stadium (stadium_id, location, name, capacity, highest, lowest, average)
# singer (singer_id, name, country, song_name, song_release_year, age, is_male)
# concert (concert_id, concert_name, theme, stadium_id, year)
# singer_in_concert (concert_id, singer_id)
#
### How many singers do we have?

Figure 5: An example prompt under chain-of-thought + API docs prompting for 1-shot on Spider.



### SQLite SQL tables, with their properties:
# class (class_code, crs_code, class_section, class_time, class_room, prof_num)
# course (crs_code, dept_code, crs_description, crs_credit)
# department (dept_code, dept_name, school_code, emp_num, dept_address)
# employee (emp_num, emp_lname, emp_initial, emp_jobcode, emp_hiredate, emp_dob)
# enroll (class_code, stu_num, enroll_grade)
# professor (emp_num, dept_code, prof_office, prof_extension, prof_high_degree)
# student (stu_num, stu_lname, stu_fname, stu_init, stu_dob, stu_hrs, stu_class,
stu_gpa, stu_transfer, dept_code, stu_phone, prof_num)
# To answer the question “Find the first names and offices of all instructors who
have taught some course and the course description and the department name.”, we
need to know: “Find the first names and offices of all instructors.”, “Find the
first names and offices of all instructors who have taught some course.”, “Find
the first names and offices of all instructors who have taught some course and the
course description.”.

### SQLite SQL tables, with their properties:
# station (station_id, name, annual_entry_exit, annual_interchanges, total_-
passengers, location, main_services, number_of_platforms)
# train (train_id, name, time, service)
# train_station (train_id, station_id)
# To answer the question “Show all train names and times in stations in London in
descending order by train time.”, we need to know:

Figure 6: An example prompt under least-to-most + API docs prompting (problem reduction) for 1-shot on Spider.

### SQLite SQL tables, with their properties:
# class (class_code, crs_code, class_section, class_time, class_room, prof_num)
# course (crs_code, dept_code, crs_description, crs_credit)
# department (dept_code, dept_name, school_code, emp_num, dept_address)
# employee (emp_num, emp_lname, emp_initial, emp_jobcode, emp_hiredate, emp_dob)
# enroll (class_code, stu_num, enroll_grade)
# professor (emp_num, dept_code, prof_office, prof_extension, prof_high_degree)
# student (stu_num, stu_lname, stu_fname, stu_init, stu_dob, stu_hrs, stu_class,
stu_gpa, stu_transfer, dept_code, stu_phone, prof_num)
#
Q: Find the first names and offices of all instructors.
A: SELECT T1.emp_fname , T2.prof_office FROM employee AS T1 JOIN professor AS T2 ON
T1.emp_num = T2.emp_num

Q: Find the first names and offices of all instructors who have taught some course.
A: SELECT T2.emp_fname , T4.prof_office FROM CLASS AS T1 JOIN employee AS T2
ON T1.prof_num = T2.emp_num JOIN course AS T3 ON T1.crs_code = T3.crs_code JOIN
professor AS T4 ON T2.emp_num = T4.emp_num

Q: Find the first names and offices of all instructors who have taught some course
and the course description.
A: SELECT T2.emp_fname , T4.prof_office , T3.crs_description FROM CLASS AS T1
JOIN employee AS T2 ON T1.prof_num = T2.emp_num JOIN course AS T3 ON T1.crs_code
= T3.crs_code JOIN professor AS T4 ON T2.emp_num = T4.emp_num

Q: Find the first names and offices of all instructors who have taught some course
and the course description and the department name.
A: SELECT T2.emp_fname , T4.prof_office , T3.crs_description , T5.dept_name FROM
CLASS AS T1 JOIN employee AS T2 ON T1.prof_num = T2.emp_num JOIN course AS T3 ON
T1.crs_code = T3.crs_code JOIN professor AS T4 ON T2.emp_num = T4.emp_num JOIN
department AS T5 ON T4.dept_code = T5.dept_code

### SQLite SQL tables, with their properties:
# station (station_id, name, annual_entry_exit, annual_interchanges, total_-
passengers, location, main_services, number_of_platforms)
# train (train_id, name, time, service)
# train_station (train_id, station_id)
#
Q: Show all train names and times.

Figure 7: An example prompt under least-to-most + API docs prompting (problem solving) for 1-shot on Spider. The same
prompt will be used to solve the next sub-question after we get the generated SQL query for the first sub-question.



### SQLite SQL tables, with their properties:
# document_types (document_type_code, document_description)
# documents (document_id, document_type_code, grant_id, sent_date, response_-
received_date, other_details)
# grants (grant_id, organisation_id, grant_amount, grant_start_date, grant_end_date,
other_details)
# organisation_types (organisation_type, organisation_type_description)
# organisations (organisation_id, organisation_type, organisation_details)
# project_outcomes (project_id, outcome_code, outcome_details)
# project_staff (staff_id, project_id, role_code, date_from, date_to, other_details)
# projects (project_id, organisation_id, project_details)
# research_outcomes (outcome_code, outcome_description)
# research_staff (staff_id, employer_organisation_id, staff_details)
# staff_roles (role_code, role_description)
# tasks (task_id, project_id, task_details, eg agree objectives)
#
### Question: Find out the send dates of the documents with the grant amount of
more than 5000 were granted by organisation type described as "Research".
decompose the question

1. Find out the send dates of the documents.
2. Find out the send dates of the documents with the grant amount of more than
5000.
3. Find out the send dates of the documents with the grant amount of more than 5000
were granted by organisation type described as "Research".

# Thus, the answer for the question is: Find out the send dates of the documents
with the grant amount of more than 5000 were granted by organisation type described
as "Research".
SELECT T1.sent_date FROM documents AS T1 JOIN Grants AS T2 ON T1.grant_id =
T2.grant_id JOIN Organisations AS T3 ON T2.organisation_id = T3.organisation_id
JOIN organisation_Types AS T4 ON T3.organisation_type = T4.organisation_type WHERE
T2.grant_amount > 5000 AND T4.organisation_type_description = ’Research’

### SQLite SQL tables, with their properties:
# stadium (stadium_id, location, name, capacity, highest, lowest, average)
# singer (singer_id, name, country, song_name, song_release_year, age, is_male)
# concert (concert_id, concert_name, theme, stadium_id, year)
# singer_in_concert (concert_id, singer_id)
#
### Question: How many singers do we have?
decompose the question

Figure 8: An example prompt under QDecomp + API docs prompting for 1-shot on Spider.



### SQLite SQL tables, with their properties:
# document_types (document_type_code, document_description)
# documents (document_id, document_type_code, grant_id, sent_date, response_-
received_date, other_details)
# grants (grant_id, organisation_id, grant_amount, grant_start_date, grant_end_date,
other_details)
# organisation_types (organisation_type, organisation_type_description)
# organisations (organisation_id, organisation_type, organisation_details)
# project_outcomes (project_id, outcome_code, outcome_details)
# project_staff (staff_id, project_id, role_code, date_from, date_to, other_details)
# projects (project_id, organisation_id, project_details)
# research_outcomes (outcome_code, outcome_description)
# research_staff (staff_id, employer_organisation_id, staff_details)
# staff_roles (role_code, role_description)
# tasks (task_id, project_id, task_details, eg agree objectives)
#
### Question: Find out the send dates of the documents with the grant amount of
more than 5000 were granted by organisation type described as "Research".
decompose the question

1. Find out the send dates of the documents.
SQL table (column): documents (sent_date)
2. Find out the send dates of the documents with the grant amount of more than
5000.
SQL table (column): grants (grant_amount, grant_id)
3. Find out the send dates of the documents with the grant amount of more than 5000
were granted by organisation type described as "Research".
SQL table (column): organisation_Types (organisation_type_description,
organisation_type), organisations (organisation_type, organisation_id)

# Thus, the answer for the question is: Find out the send dates of the documents
with the grant amount of more than 5000 were granted by organisation type described
as "Research".
SELECT T1.sent_date FROM documents AS T1 JOIN Grants AS T2 ON T1.grant_id =
T2.grant_id JOIN Organisations AS T3 ON T2.organisation_id = T3.organisation_id
JOIN organisation_Types AS T4 ON T3.organisation_type = T4.organisation_type WHERE
T2.grant_amount > 5000 AND T4.organisation_type_description = ’Research’

### SQLite SQL tables, with their properties:
# stadium (stadium_id, location, name, capacity, highest, lowest, average)
# singer (singer_id, name, country, song_name, song_release_year, age, is_male)
# concert (concert_id, concert_name, theme, stadium_id, year)
# singer_in_concert (concert_id, singer_id)
#
### Question: How many singers do we have?
decompose the question

Figure 9: An example prompt under QDecomp+InterCOL + API docs prompting for 1-shot on Spider.


