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ABSTRACT

Gaussian Processes (GPs) and related unsupervised learning techniques such as
Gaussian process dynamical models (GP-DMs) have been very successful in the
accurate modeling of high-dimensional data based on limited amounts of train-
ing data. Usually these techniques have the disadvantage of a high computational
complexity. This makes it difficult to solve the associated learning problems for
large data sets, since the related computations, as opposed to neural networks, are
not node-local. Combining sparse approximation techniques for GPs and stochas-
tic expectation propagation (SEP), we present a framework for the computation-
ally efficient implementation of deep Gaussian process (state-space) models. We
provide implementations of this approach on the GPU as well as on the CPU.
We present the first implementation of such deep GP-SSMs and demonstrate the
computational efficiency of our GPU implementation.

1 INTRODUCTION

Many applications, e.g., computer graphics and robotics, require real-time generative models for
complex, high-dimensional and coordinated human motion. One possible approach for the solution
to this problem is the use of neural networks Harvey & Pal (2019); Holden et al. (2017). How-
ever, the generalization properties of such models are difficult to control and often they require
substantial amounts of training data to accomplish high accuracy and robustness of the generated
motion Mourot et al. (2022). As an alternative, which allows a better control aof generalization, we
propose probabilistic graphical models Bishop (2007). They provide an attractive theoretical frame-
work for constructing modular and hierarchical models that enable inference for arbitrary variables
within their latent space. In addition, they are suitable for the formulation of multi-layer archi-
tectures in the form of Deep Gaussian processes (DGP) Kaiser et al. (2018); van der Wilk et al.
(2020). Such architectures are equivalent to deep neural networks with infinitely many hidden units
per layer Damianou & Lawrence (2013); Neal (1994). Furthermore, Gaussian process state-space
models (GP-SSM), which are non-parametric generalizations of finite state-space models, allow to
implement inference about time series Deisenroth & Mohamed (2012). Consequently, these models
provide a framework for the accurate approximation of high-dimensional human motion.

For these reasons, it is not surprising that motion synthesis and editing techniques in computer graph-
ics Chai & Hodgins (2005); Brand & Hertzmann (2000); Ikemoto et al. (2009) and robotics Zhao
et al. (2018); Schmerling et al. (2018) have extensively used Gaussian process models. Notably,
kinematic modelling and motion interpolation Grochow et al. (2004), inverse kinematics Levine
et al. (2012), and learning of low-dimensional dynamical models Wang et al. (2008); Ye & Liu
(2010) have all successfully applied Gaussian process latent variable (GP-LVM) models.

However, these models also come with their drawbacks. Due to their high computational complex-
ity, many of these techniques result in offline models unsuitable for embedding online control sys-
tems. Moreover, they tend to overfit, making them inappropriate for various applications, e.g., large
datasets. Nevertheless, different methods have addressed these issues. By the inclusion of sparse
approximation techniques, they become suitable for real-time applications Taubert et al. (2013).
By an approximate inference exploiting sparse approximations of Gaussian processes (GP) within
a variational free energy (VFE) framework, their overfitting is controllable Titsias (2009). Never-
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theless, the VFE approach is not parallelizable. It produces unnecessarily large memory footprints
during learning, making it unsuitable for GPU implementations and thus preventing these models
from being used with large scale datasets.

Therefore, to address this issue, we propose here to use approximate inference exploiting expectation
propagation (EP) Minka (2001). EP results in a more suitable algorithm for GPU implementations
as it is parallelizable during learning. Moreover, it provides significantly more accurate approxima-
tions. The use of stochastic expectation propagation (SEP) Li et al. (2015) also reduces the memory
overhead. In addition, the underlying learning scheme of Power EP Minka (2004) combines the
advantages of VFE and EP within a single algorithm.

Combining all these elements, we propose a probabilistic graphical model in the form of deep Gaus-
sian process state-space models (DGP-SSM) which leverage GPU computing by exploiting approx-
imate inference using SEP. We demonstrate the suitability of this approach for learning online gen-
erative models for complex full-body movements of two interacting humans with 189 degrees of
freedom.

The following sections first develop the underlying mathematical theory. We then discuss the im-
plementation details briefly and present our results, comparing the GPU and CPU implementations,
followed by a conclusion.

2 PRELIMINARIES

2.1 GP REGRESSION AND APPROXIMATION

In the function space view GPs can be considered as nonlinear mapping, f(x), from an input variable
x to a one-dimensional real-valued output variable. The function value fn := f(xn), at a particular
input point, xn of an input set X = [x1, . . . ,xN ]T ∈ RN×Q, is a random variable, and a GP is an
infinite collection of random variables, any finite number of which have a joint Gaussian distribution
Rasmussen & Williams (2008); Bui (2017), where N being the sample size and Q the dimensionality
of the input space.

A real Gaussian process f(x) is characterized through its mean function m(x) and kernel function
k(x,x′),

m(x) = E[f(x)],

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))].

This can be interpreted as f(x) being drawn from a Gaussian process prior with mean function m(x)
and kernel function k(x,x′),

f(x) ∼ GP(f(x);m(x), k(x,x′)).

In most cases we assume a zero mean function, m(x) = 0, since for our application the prior
knowledge about f(·) can be encoded by the kernel function and its hyperparameters. For our
model we used in all layers an automatic relevance determination (ARD) kernel of the form,

k(x,x′) = σ2 exp

(
−1

2

Q∑
q=1

|xq − x′
q|2

l2q

)
, (1)

where σ is the variance and lq the length-scale of the q-th input dimension of the kernel. For this
particular kernel θ = (σ, {lq}Qq=1) are the hyperparameters.

Typically for regression models, a data set {yn}Nn=1 is modeled by an unknown function f(·) := f ,
evaluated at input location xn and corrupted by some independent noise εn,

yn = f(xn) + εn.

With the prior p(εn) = N (εn; 0, β
−1) the corresponding probabilistic model can be written as

follows,
f |θ ∼ GP(f ; 0, k(·, ·)), (2)

p(y|f, β) =

N∏
n=1

N (yn; f(xn), β
−1), (3)
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where y specifies the vector of all one dimensional data points. To find the noise free function
values f and the right hyperparameter set {θ, β} by hand is quite difficult. The usual Bayesian
approach would be to specify a prior over the hyperparameter set to compute the joint posterior
p(f , θ, β|y). For Gaussian processes this inference problem is typically not analytically solveable,
due to the intrinsic non-linearity of the GP. A common practice to handle this problem is to optimize
the hyperparameter set instead by minimizing the negative log-marginal likelihood,

L(θ, β) = − log p(y|θ, β),

= − log

∫
p(y|f(xn), β)p(f |θ) df,

= − logN (y;0,Kff + β−1I),

= −N

2
log 2π − 1

2
log|Kff + β−1I|

−1

2
yT(Kff + β−1I)−1y,

where the constructed matrix Kff results from the covariance function evaluations of the training
inputs {xn}Nn=1, i.e [Kff ]n,n′ = k(xn,xn′). To derive a conditional posterior p(y∗|y, θ, β), based
on Gaussian identities Bishop (2007), from the joint probability of the prior function of the training
set p(y|θ, β) and the prior function of the test set p(y∗|θ, β) for the prediction of new test outputs
y∗ with given test inputs x∗ and a fixed hyperparameter set Lawrence (2005),

m̃(x∗) = k∗,f (Kff + β−1I)−1y,

k̃(x∗,x
′
∗) = k(x∗,x

′
∗)− k∗,f (Kff + β−1I)−1kT

∗,f ,

which is also a GP. Similar to Kff , the constructed matrices result from the covariance function
evaluations between the test inputs {[x∗]i}Ii=1 and training input locations {xn}Nn=1, [k∗,f ]i,n =
k([x∗]i,xn).

This minimization procedure has several disadvantages: First, it often gets stuck at local minima
and has a computational cost, due to the inversion of Kff + β−1I, see equation (4), of O(N3)
at each iteration step and a O(N2) for prediction. Second, one has to store the full observation
vector y for learning and prediction, see equations (4) and (4). These limitations prohibit larger
scale learning using this approach, because of time and memory limitations. Especially the memory
aspect is critical if optimization is implemented by GPU computing. Further, due to intractability
of the posterior joint probability p(f , θ, β|y), the construction of hierarchical (deep) models is not
possible, because of the conditional dependency between the function value sets in the different
layers.

In this paper, we show that approximate inference, exploiting Expectation Propagation (EP) frame-
work in combination with sparse approximations of the Gaussian processes, offers an elegant solu-
tion for these problems.

2.2 GP SPARSE APPROXIMATIONS

In order to implement the proposed GP framework for large data sets it is essential to reduce the
computational complexity. This can be accomplished by a the GP sparse approximation approach
Quiñonero Candela & Rasmussen (2005). For this purpose, the noise-free function value set f , is
approximated by selection of a small set of M ≪ N pseudo-point inputs {[xu]m}Mm=1, mapped to
the function values u. It is assumed that training and test points of the Gaussian process are ap-
proximately conditionally independent, if conditioned on their pseudo-points. Further, the function
values of f and u are disjoint so that f = {f ,u, f̸=f ,u}. Under this assumptions, the GP prior, see
equation (2), can be approximated as follows:

q(f |θ) = q(f |u, θ)p(u|θ)p(f ̸=f ,u|f ,u, θ), (4)

where p(u|θ) is the GP prior over u. The conditional relationship between u and f is fundamental
for this equation. With the GP priors p(f |θ) and p(u|θ) it is possible to derive from their joint prob-
ability the conditional dependency p(f |u, θ) = N (f ;KfuK

−1
uuu,Dff ), where Dff = Kff −Qff and

Qff = KfuK
−1
uuKuf . The constructed matrices correspond to the covariance function evaluations
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at the pseudo-point input locations {[xu]m}Mm=1, i.e. [Kuu]m,m′ = kf ([xu]m, [xu]m′) and sim-
ilarly covariance function evaluations between pseudo-point input and data locations [Kfu]n,m =
kf (xn, [xu]m). The matrices of p(f |u, θ) can be approximated by simpler forms using several ap-
proaches, compactly summarized Bui (2017) by:

q(f |u, θ) =
B∏

b=1

N (fb;KfbuK
−1
uuu, αDfb,fb). (5)

where b indexes B disjoint blocks of data-function values with fb = [f1, . . . , fB ]
T. The Deter-

ministic Training Conditional (DTC) approximation uses α → 0; the Fully Independent Training
Conditional (FITC) approximation uses α = 1 and B = N ; the Partially Independent Training Con-
ditional (PITC) approximation uses α = 1 Quiñonero Candela & Rasmussen (2005); Schwaighofer
& Tresp (2002).

This approximation assumes that f(x) is fully determined by the pseudo-point inputs and reduces
the computational cost to O(M2N) during learning and O(MN) for prediction.

The new prior q(f |θ) with approximation can be combined with the data likelihood to obtain the
modified generative model:

q(y, f |θ) = q(f |θ)
N∏

n=1

p(yn|f(xn), θ). (6)

This modified model is suitable for the construction of hierarchical models, keeping the memory
inference steps node-local because each layer is associated with its own GP approximation. How-
ever, this formulation still leaves some problems unsolved. One is the intrinsic non-linearity of the
data likelihood and its related analytic intractability. The second problem is that, due to GP ap-
proximation (especially for DTC), the model tends to overfit Titsias (2009). Approximate inference
exploiting the expectation propagation framework can solve these remaining problems.

3 METHODS

3.1 STOCHASTIC EXPECTATION PROPAGATION

Expectation Propagation (EP) is a deterministic Bayesian inference algorithm Minka (2001) which
allows to approximate intractable, but factorizable joint-distributions. EP returns a tractable form
of the model joint-distribution, evaluated on the observed data. In the case of GP regression, the
approximation takes the form of an unnormalized process q∗(f |θ) ≈ p(y, f |θ) (the superscript ∗
defines an unnormalized process). The basic concept of distributional inference approximations, like
Variational Free Enery (VFE) Titsias (2009), EP Minka (2001) and Power EP Minka (2004) is the
decomposition of the joint-distribution into terms of interest, such that p(f,y|θ) = p∗(y|f, θ) =
p(y|θ)p(f |y, θ). They are fully reflected by tractable terms of the decomposed approximation
q∗(f |θ) = Zq(f |θ), where the normalization constant Z approximates the marginal likelihood
p(y|θ) ≈ Z and the posterior is approximated by GP sparse approximation, equation (4), so that
p(f |y, θ) ≈ q(f |θ), i.e. the approximate inference schemes return simultaneously approximations
of the posterior and marginal likelihood in form of an unnormalized Gaussian process q∗(f |θ).
For the implementation of EP we reformulate the unnormalized form p∗(y|f, θ) in terms of a dense
Gaussian process prior p(f |θ), see equation (2), and the independent likelihoods {p(yn|f, θ)}Nn=1.
EP constructs the approximate posterior as a product of site functions tn Naish-guzman & Holden
(2008) and employs an approximating family whose form mirrors that of the target Bui (2017),

p∗(f |y, θ) = p(f |y, θ)p(y|θ) = p(f |θ)
N∏

n=1

p(yn|f, θ)

≈ p(f |θ)
N∏

n=1

tn(u) = Z q(f |θ) = q∗(f |θ), (7)
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where tn(u) is approximated by a simple Gaussian. The site functions were iterativly refined by
minimizing an unnormalized Kullback-Leibler divergence, KL Bui (2017), between the real poste-
rior and each of the distributions formed by replacing one of the likelihoods by the corresponding
approximating factor Li et al. (2015),

argmin
tn(u)

KL

(
p(f,y|θ)

∥∥∥∥ p(f,y|θ) tn(u)
p(yn|fn, θ)

)
= argmin

tn(u)

KL(p∗\n(f |θ)p(yn|fn, θ) ∥ p
∗
\n(f |θ) tn(u)).

Unfortunately, such an update is still intractable as it involves the computation of the full posterior.
Instead, EP replaces the leave-one-out posteriors p∗\n(f |θ) ∝ p(f,y|θ)/p(yn|fn, θ) on both argu-
ments of KL by approximate leave-one-out posterior q∗\n(f |θ) ∝ q∗(f |θ)/tn(u), called the cavity,
so that:

KL(q∗\n(f |θ)p(yn|fn, θ) ∥ q
∗
\n(f |θ)tn(u))

= KL(q∗\n(f |θ)p(yn|fn, θ) ∥ q
∗(f |θ)).

The update for the approximating factors are coupled and must be optimized by iterative updating.
EP is doing this in four steps. We apply here a generalized version, called Power EP Minka (2004),
where only a fraction α of the approximate or true likelihood is removed (or included). The steps
are as follows:

1. Compute the cavity distribution by removing a fraction of one approximate factor,
q∗\n(f |θ) ∝ q∗(f |θ)/tαn(u).

2. Compute a hybrid or tilted distribution, p̃(f |θ) = q∗\n(f |θ)p
α(yn|fn, θ).

3. Project the hybrid distribution onto the approximate posterior by minimizing unnormalized
KL divergence,

q∗(f |θ)← argmin
q∗(f |θ)∈Q

KL(p̃(f |θ) ∥ q∗(f |θ)),

where Q is the approximation set defined in equation (7).
4. Update the approximate factor by multiplicative mixing of the new fraction of the approxi-

mate factor, tn(u) = [t1−α
n (u)]old[t

α
n(u)]new, with [tαn(u)]new = q∗(f |θ)/q∗\n(f |θ).

The fractional updates are equivalent to running the original EP procedure, but replacing the KL
minimisation with an α-divergence minimisation Zhu & Rohwer (1995); Minka (2004), where

Dα(p
∗(f |θ) ∥ q∗(f |θ)) =

1

α(1− α)

∫
[αp∗(f |θ) + (1− α)q∗(f |θ)

− p∗(f |θ)αq∗(f |θ)1−α] df. (8)

The α-divergence becomes the inclusive KL divergence, KL(p∗(f |θ) ∥ q∗(f |θ)), for α = 1. It
becomes the exclusive KL divergence, KL(q∗(f |θ) ∥ p∗(f |θ)), when α → 0. Minimising a set
of local exclusive KL divergences is equivalent to minimizing a single global exclusive KL diver-
gence Minka (2004) and the Power EP solution is the minimum of a variational free energy (VFE)
Bui (2017). Since the unnormalized approximation, q∗(f |θ), consists of the product of independent
approximate factors tn(u), the data can be partitioned in B disjoint blocks yb = {yn}n∈Bb

. The
choice of α and corresponding approximate factors tb(u) have a strong influence on the GP sparse
approximation scheme, see equation (5) (and Bui (2017) for more details) and enables batch learn-
ing, which makes the GP regression task scaleable. However, local computation comes at the cost of
memory overhead that grows with the number of datapoints, since local approximating factors need
to be stored for every datapoint.

Stochastic Expectation Propagation (SEP) reduces the memory complexity of Power EP by a fac-
tor of N . This is accomplished by parameterizing a global factor, t(u), that captures the average
effect of a likelihood on the posterior t(u)N :=

∏N
n=1 tn(u) and combines the benefits of local
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Figure 1: Factor graphs of the DGP-SSM. The model consists of a dynamic layer on top and multiple
emission layers. Left: The model is fully factorized with tied factor constraints.

approximation (tractability of updates, distributability, and parallelisability) with global approxima-
tion (reduced memory demands) Li et al. (2015). The set of the approximate posterior in equation
(7) can be rewritten as,

p∗(f |y, θ) = p(f |y, θ)p(y|θ) = p(f |θ)
N∏

n=1

p(yn|f, θ)

≈ p(f |θ)
N∏

n=1

tn(u) = p(f |θ)t(u)N = q∗SEP(f |θ). (9)

One method to implement SEP would be to compute the approximate factorizations by the iterative
procedure of Power EP and optimizing the hyperparameters in an outer loop with Power EP Li et al.
(2015). But, it was shown in Hernandez-Lobato & Hernandez-Lobato (2016) that the factor tying
approximation turns the optimization problem into a minimization problem, i.e. the approximate
Power EP energy can be optimized with standard optimization algorithms (e.g. ADAM, L-BFGS-
B) to find the approximate posterior and hyperparameters at the same time for each iteration step.
This makes construction of hierarchical deep GP-LVMs feasible.

3.2 DEEP GAUSSIAN PROCESS STATE-SPACE MODEL

GP-SSMs are a general form of discrete-time state-space models with nonlinear transitions between
continuous latent variables. They are able to compress high dimensional data into low dimensional
latent factors and to separate transition and measurment noise Bui (2017). Standard GP models with
sparse approximation have strong limitations in terms of real world data sets with large numbers
of training examples. This typically requires a substantial increase of the pseudo-inputs for a good
approximation, resulting in a quadratic increase of computational complexity with the number of
data points. This renders larger-scale learning not practicable. Constructing a multi-layer GP model
reduces the computational cost to O(NLM2), where L is the number of layers. The general DGP-
SSM consists of a GP dynamic layer and multiple GP emission layers,

p(x0) = N (x0;µ0,Σ0),

p(xt|xt−1, fdyn, θdyn) = N (xt; fdyn(xt−1), β
−1
dyn),

p(h
(l)
t |h

(l−1)
t , f (l), θ(l)) = N (h

(l)
t ; f (l)(h

(l−1)
t ), [β(l)]−1),

for h(1)
t = xt, h

(L)
t = yt, t = 1 : T and l = 1 : L, where h

(l)
t is the hidden variable associated

to the l-th emission layer and f (l) is the function of the l-th layer. The joint density of the latent
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variables,latent dynamics and the observed measurements is,

p(h(1:L), fdyn, f
(1:L)|θdyn, θ(1:L)) = p(x0)p(fdyn|θdyn)

×

[
T∏

t=1

p(xt|xt−1, fdyn, θdyn)

][
L∏

l=1

p(f (l)|θ(l))
T∏

t=1

p(h
(l)
t |h

(l−1)
t , f (l), θ(l))

]
. (10)

The joint probability is analytically intractable, due to the non-liniarity of the data likelihoods and
also the unknown intermediate outputs of each layer. So we make use of the SEP set for a tied factor
constraint, see equation (9), in combination with GP sparse approximation to approximate the data
likelihood of each layer,

q∗SEP(x0:T , fdyn, f
(1:L)|θdyn, θ(1:L))

= p(x0)γ(x0)

[
Zdynqdyn(fdyn|θdyn)

][
Zemiss

L∏
l=1

q(l)(f (l)|θ(l))

]

= p(fdyn|θdyn)s(udyn)
T p(x0)γ(x0)

T∏
t=1

γt−1(xt−1)γt(xt)

L∏
l=1

p(f (l)|θ(l))t(u(l))T , (11)

where s(udyn)
T is the global factor of the dynamic layer, γt−1(xt−1)γt(xt) are the global transition

factors with same parameterisation for similar factors, enforcing an identical contribution from each
factor to the posterior, i.e. each common factor could be thought of as the average effect each factor
has on the posterior Bui (2017). The factor graph of our model and its factorisations with global
factor approximations is illustrated in figure 1.

The transition factors have to be optimized to obtain the approximate contribution towards the true
posterior. Therefore the cavity for the dynamic layer can be computed as follows,

q∗\1(X1:T ,X0:T−1) = p(X1:T ,X0:T−1)/γ
α(X),

q∗\1(fdyn|θdyn) = p(fdyn|θdyn)/s(1−α)(udyn)
T .

Due to tied factor constraints the cavities above can be easily computed by taking out just a fraction
of the posteriors. In combination with a fraction of the exact transition factors the tilted distribution
takes the following form,

p̃(fdyn,X1:T ,X0:T−1|θ) = q∗\1(X1:T ,X0:T−1)q
∗
\1(fdyn|θdyn)p

α(X1:T |X0:T−1, fdyn, θdyn).

The essential projection step of EP performs a minimization of the unnormal-
ized KL divergence KL(p̃(fdyn,X1:T ,X0:T−1|θ) ∥ q∗(fdyn,X1:T ,X0:T−1|θ)) by
projecting the hybrid onto the approximate posterior q∗(fdyn,X1:T ,X0:T−1|θ) =
proj(p̃(fdyn,X1:T ,X0:T−1|θ))/(q∗\1(X1:T ,X0:T−1)q

∗
\1(fdyn|θdyn)), where the projec-

tion operator proj(·) returns the moments of the hybrid. This iterative moment match-
ing refinement is achived by computing the log-partition of the hybrid log Z̃dyn =
log
∫
p̃(f,X1:T ,X0:T−1|θ) dX1:T dX0:T−1 df and its gradients w.r.t. cavity mean and co-

variance and leads to the following updates,

µ = µ\1 +Σ\1
d log Z̃dyn

dµ\1
,

Σ = Σ\1 −Σ\1

d log Z̃dyn

dµ\1

(
d log Z̃dyn

dµ\1

)T

− 2
d log Z̃dyn

dΣ\1

Σ\1.

With the new mean and covariance, the global factor can be easily updated by dividing the new
approximate posterior q∗(fdyn,X1:T ,X0:T−1|θdyn) by the cavity distributions, see step 4 in EP
procedure.

The update rules for the emission layers include similar steps the ones of the dynamic layer. The
cavity of each layer can be calculated by dividing layers posterior p(f (l)|θ(l)) by a fraction of the
corresponding global factor,

q∗\1(f
(l)|θ(l)) = p(f (l)|θ(l))/t(1−α)(u(l))T . (12)
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For the emission model, the hybrid is composed of products of cavity distributions and fractions of
exact factors over layers,

p̃(f (1:L),h(1:L−1)|θ(1:L)) =

[
L∏

l=1

q∗\1(f
(l)|θ(l))

][
L−1∏
l=1

pα(h(l)|h(l−1), f (l), θ(l))

]
. (13)

For the iterative moment matching is the log-partition extended over layers, log Z̃emiss =
log
∫
p̃(f (1:L),h(1:L−1)|θ(1:L)) dh(1:L−1) df (1:L), to perform the updates for new means and co-

variances per layer,

m(l) = m
(l)
\1 + S

(l)
\1

d log Z̃emiss

dm
(l)
\1

,

S(l) = S
(l)
\1 − S

(l)
\1

d log Z̃emiss

dm
(l)
\1

d log Z̃emiss

dm
(l)
\1

T

− 2
d log Z̃emiss

dS
(l)
\1

S
(l)
\1 .

Again, with the new means and covariances, the approximate factors can be trivially updated by
dividing the cavity q∗\1(f

(l)|θ(l)) distribution from the new approximate posterior q∗(f (l),h(l)|θ) of
each layer.

4 RESULTS

We tested our method by modeling the body movements of subjects performing a golf swing with 99
DOFs. The kinematic data (BVH format; from http://mocap.cs.cmu.edu/, subject 64) was
converted to exponential maps Grassia (1998).Our DGP-SSM was trained on a small set of 779 data
points (7 trajectories, downsampled from 120Hz to 30Hz) with two and three layers and different
α-values (0.1, 0.25, 0.5, 0.75, 0.9). For comparison, we trained a usual one layer GPDM with the
same training data. All models used FITC approximation with 90 pseudo-point inputs per model.

Learning was implemented on the CPU with an AMD Ryzon Threadripper 1950X 16 core processor
3.4 GHz with 64 GB RAM, and on GPU with a NVIDIA Quadro P600 graphics card with 24 GB
RAM. Both implementations were realized in C++ using the ArrayFire framework Yalamanchili et al.
(2015) which allows to implement a single code that can be run alternatively either on the CPU or
the GPU.

For maximal 1000 iteration steps in each learning condition this took for the DGP-SSM in average
2.822h on CPU and 0.322h on GPU. The GPU implementation of DGP-SSM was almost nine times
faster than the one on the CPU. The usual GPDM was the fastest of all CPU implementations (Table
1). One possible reason could be the different learning approach and code implementation of the
usual GPDM. We also found a decrease in optimization time with increasing α-values (i.e. the
approximation being closer to a Power EP than to VFE). Also, the optimization time decreases for
models with more layers (due to the fact of computational complexity of O(LNM2)).

To determine the prediction performance of our models we computed the normalized mean squared
error (NMSE) and mean absolute errors (MAE), where the DGP-SSM performed overall better
than the GPDM. We found also an increase of NMSE and MAE with higher α-values. An α-value
of 0.5 seems to be the best trade-of between prediction performance and optimization time. Our
probabilistic generative motion model is fully real-time capable for computer-animation applications
with the GPU implementation, since the computation time is only 0.0035ms per frame.

5 CONCLUSION

Combining methods from Bayesian unsupervised learning and inference, we devised a real-time-
capable method for the realization of deep Gaussian process state-space models (DGP-SSMs). Our
method combines sparse GP approximations with Stochastic Expectation Propagation, and we pro-
vide a GPU implementation of the developed algorithms. We found that optimization using α-values
around 0.5 results in the best trade-of between prediction accuracy of the model and optimization
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GPDM DGP-SSM (2 Layer) DGP-SSM (3 Layer)
α = 0.1 α = 0.25 α = 0.5 α = 0.75 α = 0.9 α = 0.1 α = 0.25 α = 0.5 α = 0.75 α = 0.9

NMSE 0.5868 0.2847 0.2685 0.3004 0.3125 0.3312 0.2980 0.2882 0.3102 0.3146 0.3289
MAE 9.8763 0.2068 0.1890 0.2035 0.2057 0.2325 0.2202 0.2069 0.2168 0.2132 0.2305

OT CPU 0.893h 4.2h 4.051h 3.991h 3,771h 2.418h 2.152h 2.131h 2.13h 2.129h 1.251h
OT GPU - 0.483h 0.465h 0.459h 0.435h 0.278h 0.247h 0.245h 0.245h 0.245h 0.118h

Table 1: Normalized mean square error (NMSE), mean absolute error (MAE) and optimization
time (OT) for different learning conditions. Decreasing optimization time with higher α-values and
more layers comes at the cost of lower prediction performance.

speed. In spite of the sophisticated underlying probabilistic model, we demonstrated that the algo-
rithm is real-time-capable when implemented on the GPU for applications in computer animation.

Future work will use such architectures as part of real-time engines for motion generation in com-
puter graphics and VR. Further we plan to apply our algorithm on bigger data sets, exploiting batch
learning on the GPU.
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