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Abstract
The strong lottery ticket hypothesis (SLTH) conjectures that high-performing subnetworks are

hidden in randomly initialized neural networks. Although recent theoretical works have established
the existence of such subnetworks across various neural architectures, the existence of SLTs in
transformer architectures has only been observed empirically and lacks theoretical understanding.
In particular, the current SLTH theory does not yet account for the multi-head self-attention (MHA)
mechanism, a core component of transformers. To address this gap, we introduce a theoretical
analysis of the existence of SLTs within the attention mechanism. Given H heads, we prove that
an arbitrary target MHA can be approximated by suitably pruning the randomly initialized MHA
with the key and value dimensions O(d log(Hd3/2)), where d is the dimension of the input and
output. We further empirically validate our theoretical findings, demonstrating that an SLT within
a random MHA of logarithmically wider hidden dimensions can approximate the performance of
trained counterparts.

1. Introduction

The lottery ticket hypothesis [7]—overparameterized networks should contain subnetworks that
achieve comparable accuracy to fully trained networks even if trained in isolation—presented new
possibilities for compact and high-performing models in deep neural networks. Subsequent works
[18, 23] proposed a stronger claim, which is formally defined as the strong lottery ticket hypothesis
(SLTH) [13]: overparameterized networks should contain subnetworks that achieve high accuracy
comparable to the trained dense network even without any training. Unraveling these hypotheses is
important for a deeper understanding of the intrinsic nature of overparameterized neural networks.

The first rigorous proof for the existence of such subnetworks was given by Malach et al. [13].
They proved that, given a fully-connected network (a target network), there exists an SLT that ap-
proximates the target network, in a randomly-weighted fully-connected network of the sufficient
width and depth (a source network). Afterwards, this overparameterization requirement for the
source network has been relaxed [2, 15, 17]. Pensia et al. [17] concluded that the logarithmic
overparameterization is approximately optimal in the case of fully-connected networks by utiliz-
ing the subset-sum approximation [12]. Then, the SLTH has been extended both theoretically and
empirically to more complex architectures such as convolutional, residual, and equivariant net-
works [1, 3, 4, 6].

However, its applicability to transformers, which form the basis of modern language models,
has been only empirically observed [11, 16, 20] and remains unexplored theoretically. By the
definition of Vaswani et al. [21], a transformer is mainly constructed with residual connections,
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fully-connected networks, and attention mechanisms. Based on previous studies on residual and
fully-connected networks [1, 17], we can say that the SLTH is already partially established in trans-
formers; thus, the last piece left to prove the existence of SLTs in transformers is the attention
mechanism. While attention mechanisms require second-order computation via inner product be-
tween input vectors, the existing SLTH theories have discussed only first-order computation (i.e.,
operations without any product between input vectors, such as linear operations), which makes it
non-trivial whether SLTs theoretically exist within transformers. This gap motivates our key re-
search question: how can we extend the theory of the SLTH to the attention mechanisms?

This work addresses this open problem by providing a proof of the existence of SLTs within at-
tention mechanisms. The main idea for our proof is to view the inner product in the target attention
as a quadratic form. This form contains the single matrix defined by the key and query projection
matrices of the target attention. Consequently, we can approximate this single matrix by the product
of (suitably pruned) key and query projection matrices in the source attention, leading to the approx-
imation of the target attention by the pruned source attention. As shown in the following statement,
we prove that any multi-head self-attention mechanism can be approximated by pruning a randomly
initialized attention mechanism of the logarithmically wider hidden dimensions (i.e., the query, key,
value, and output dimensions).

Theorem 1 (informal) Given T tokens as inputs, a suitably pruned randomly initialized attention
mechanism of H heads and hidden dimension O(d log(Hd3/2/ϵ)) can approximate any multi-head
attention of H heads and hidden dimension dK, with probability at least 1− ϵ.

We also empirically demonstrate the justification of Theorem 1, namely, the relationship between
the hidden dimension and the approximation error holds on the order of O(d log(Hd3/2/ϵ)).

Our contributions are summarized as follows:

• We provide the first theoretical proof that SLTs exist within the source attention mechanism
based on the formula transformation of the target attention.

• We then empirically validate the justification of Theorem 1. Our experiment shows that the
approximation error ϵ decreases exponentially with increasing the source hidden dimensions.

2. Background: Strong Lottery Ticket Hypothesis

The strong lottery ticket hypothesis (SLTH) [13, 18] conjectured that a randomly initialized network
inherently contains subnetworks that achieve high accuracy comparable to trained dense networks,
without any weight updates. The first theoretical results of the SLTH was by Malach et al. [13], who
proved the existence of such SLTs in fully connected ReLU networks. Subsequent works [2, 15, 17]
relaxed the architectural requirements for containing such subnetworks. In particular, Pensia et al.
[17] showed that SLTs exist in networks of the double depth and logarithmically wider width relative
to the target function by applying a subset-sum approximation technique [12].

Lemma 2 Given x ∈ Rd1 and W ∈ Rd2×d1 , let f(x) = Wx and g(x) = W̃ 2ReLU(W̃ 1(x))
be target and source networks, respectively. Assume that ∥W ∥ ≤ 1, ∥x∥ ≤ 1, and each entry
of W̃ 1 ∈ Rn×d1 and W̃ 2 ∈ Rd2×n is drawn i.i.d. from U [−1, 1]. Then, if the intermediate
dimension n satisfies n ≥ d1C log (2d1d2/ϵ), with probability at least 1 − ϵ, there exist binary
masks M1 ∈ {0, 1}n×d1 and M2 ∈ {0, 1}d2×n such that

∥Wx− (W̃ 2 ⊙M2)ReLU((W̃ 1 ⊙M1)x)∥ ≤ ϵ.
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This approach, which approximates a single matrix using two matrices by the subset-sum approxi-
mation, is now foundational for theoretical SLTH analyses across architectural variants [1, 3, 4, 6].

3. SLT Existence Within Attention Mechanisms

This section analyzes the existence of SLTs within multi-head self-attention mechanisms (MHAs).
For a notation and detailed proof, see Appendix A.

3.1. Setups for Main Theorem

Input Tokens: We consider MHAs with inputs of length T . Let X = [x1 . . .xT ]
⊤ ∈ RT×d1

denote the input token embedding matrix, where each token embedding vector xi ∈ Rd1 satisfies
∥xi∥ ≤ α for some constant α > 0. For each token, let ai ∈ {0, 1}T denote its attention mask,
where ai,j = 1 indicates that the i-th token attends to the j-th token. Throughout this paper, we
assume that each token has to attend to at least one other token, i.e., ∥ai∥1 ≥ 1.

Multi-Head Attention Mechanism: An MHA with H heads, denoted by Attn(-), is defined as

Attn(xi;X,W
(1:H)
Q:O ) :=

[
head

(1)
i . . . head

(H)
i

]
WO =

H∑
j=1

head
(j)
i W

(j)
O ∈ R1×d2 ,

head
(j)
i :=σ

(
1√
dK

(x⊤
i W

(j)
Q )(XW

(j)
K )⊤;ai

)
XW

(j)
V ∈ R1×dV ,

σ(xi;ai)j :=
ai,j exp(xi,j)∑T
k=1 ai,k exp(xi,k)

,

where W
(j)
Q ,W

(j)
K ∈ Rd1×dK , and W

(j)
V ∈ Rd1×dV are query, key, and value weights for the j-

th head. σ is the softmax function with an attention mask. We decompose the output weight
WO ∈ RHdV×d2 into WO = [W

(1)⊤
O . . .W

(H)⊤
O ]⊤, where W

(j)
O ∈ RdV×d2 . We denote the all

weights as the set W (1:H)
Q:O := {W (j)

Q ,W
(j)
K ,W

(j)
V ,W

(j)
O }Hj=1.

Target and Source Attention Mechanisms: To validate the existence of SLTs for attention mech-
anisms, we consider two MHAs: a target MHA AttnT with arbitrary tuned weights, and a suitably
pruned source MHA AttnS with randomly initialized weights, denoted as follows:

AttnT(xi) =Attn(xi;X,W
(1:H)
Q:O ) and AttnS(xi) = Attn(xi;X, (W̃ ⊙M)

(1:H)
Q:O ). (1)

Here, W̃
(j)
Q , W̃

(j)
K ∈ Rd1×nK , W̃

(j)
V ∈ Rd1×nV , and W̃

(j)
O ∈ RnV×d2 are the query, key, value, and

output weights of AttnS for the j-th head, respectively, and M
(j)
Q ,M

(j)
K ,M

(j)
V and M

(j)
O are their

corresponding binary masks. We define the set of pruned weights as

(W̃ ⊙M)
(1:H)
Q:O := {W̃ (j)

Q ⊙M
(j)
Q , W̃

(j)
K ⊙M

(j)
K , W̃

(j)
V ⊙M

(j)
V , W̃

(j)
O ⊙M

(j)
O }Hj=1.

Note that the target and source MHAs have different hidden dimensions: dK, dV for the target
and nK, nV for the source. We assume that α ≥ max(

√
d1,

√
d2) for the input tokens, and

∥W (j)
Q ∥, ∥W (j)

K ∥, ∥W (j)
V ∥, ∥W (j)

O ∥ ≤ 1 for each head of the target MHA. The source MHA are

initialized such that each entry in W̃Q, W̃K is drawn i.i.d. from U [−n
1/4
K , n

1/4
K ] and each entry in

W̃V, W̃O from U [−1, 1].
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3.2. Main Theorem: Existence of Strong Lottery Tickets within Attention Mechanisms

Now, we prove the following SLT existence theorem:

Theorem 3 Let AttnS and AttnT be as defined in Equation (1). Then, with probability at least
1− ϵ, there exists a choice of binary masks M (j)

Q ,M
(j)
K ,M

(j)
V ,M

(j)
O that satisfy

max
i∈[T ]

∥AttnS(xi)−AttnT(xi)∥ ≤ ϵ,

if the source hidden dimensions satisfy

nK ≥ d1C log

(
8Hα3d

3/2
1

ϵ

)
and nV ≥ d1C log

(
2Hαd1

√
d2

ϵ

)
,

for some universal constant C > 0.

To prove this theorem, it is necessary to approximate the inner product (x⊤
i W

(j)
Q )(XW

(j)
K )⊤ of the

target MHA by the inner product (x⊤
i (W̃Q⊙MQ))(X(W̃K⊙MK))

⊤ of the pruned source MHA.
If we consider naively applying the existing approximation theory to each matrix WQ and WK,
it requires a two-layer structure (fully-connected network) for the source key or query projection,
respectively. However, since our source MHA has a single-layer projection for the query or key
((W̃Q ⊙MQ) or (W̃K ⊙MK)), we cannot naively apply it in our setting. Instead, to overcome
this situation, we propose to merge the two target matrices WQ and WK into a single matrix as

W
(j)
QK :=

1√
dk

W
(j)
Q (W

(j)
K )⊤. (2)

Now, these operations enable us to apply the standard approximation approach, which approx-
imate a single matrix by two matrices, to the composite matrices W

(j)
QK by the inner product

(x⊤
i (W̃Q ⊙MQ))(X(W̃K ⊙MK))

⊤ of the pruned source MHA. Similarly, we can approximate
the matrix multiplication of the value and output projections in the target attention by defining the
merged martix as W (j)

VO := W
(j)
V W

(j)
O .

Lemma 4 Let W ∈ Rd2×d1 be a target matrix with ∥W ∥ ≤ 1, and let W̃ 1 ∈ Rn×d1 and
W̃ 2 ∈ Rd2×n be source matrices whose entries are independently drawn from U [−1, 1]. For any
0 < ϵ < 1, suppose that n ≥ d1C log(d1d2/ϵ) for some universal constant C > 0. Then, with
probability at least 1− ϵ, there exist binary masks M1,M2 such that∥∥∥W − (W̃ 2 ⊙M2)(W̃ 1 ⊙M1)

∥∥∥
max

≤ ϵ

d1d2
.

Note that this Lemma 4 can be seen as a variant of Lemma 2 without ReLU activation, since our
approximation here does not involve any nonlinearity between matrices.

Next, we analyze the behavior of the attention output when the query and key weights are
approximated and passed through the softmax function. Although one may consider using the
fact that the softmax function is 1-Lipschitz [9], such an approximation results in rough upper
bounds. Indeed, if we employ the Lipschitz continuity in our argument, we obtain an upper bound
of softmax error growing with the number of input tokens, while the difference between softmax
functions should never diverge. In our setting, we can assume the perturbation within the softmax
input is bounded by a small finite constant, leading to the following tighter analysis than Lipschitz
continuity.
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Lemma 5 Let ϵ ∈ Rd1 be an error vector with ∥ϵ∥max ≤ ϵmax for some 0 ≤ ϵmax ≤ 1/2. Then,

max
i∈[T ]

∥σ(xi;ai)X − σ(xi + ϵ;ai)X∥ ≤ 4
√
d1αϵmax.

Finally, using these two lemmas, we can prove Theorem 3. (See Appendix A.3 for the full proof.)

Proof Sketch of Theorem 3: First, as shown in Equation (2), we reformulate the approximation
task by combining the target weights into two merged matrices: one for query-key and one for
value-output. By applying Lemma 4 to these matrices, we can prune the source MHA so that the
source inner product approximates the target inner product. Next, we analyze how the approxima-
tion error in W

(j)
QK affects the attention output via the softmax function. Lemma 5 gives a bound on

how the softmax output changes corresponding to small perturbations via query-key approximation.
This bound shows that the output difference is linear with respect to the perturbation magnitude and
independent of the number of inputs. Putting everything together, we conclude that if the source
hidden dimensions nK and nV are sufficiently large, then there exist binary masks that approxi-
mate the target attention mechanism with an error no greater than ϵ. Finally, we ensure the overall
probability of successful approximation is at least 1− ϵ by applying a union bound across all steps.

4. Experimental Results
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Figure 1: Approximation error ϵ of SLTs
for source hidden dimensions
nK = nV. This result shows that
the error holds ϵ = O(exp(−n)),
as shown in Theorem 3.

This section empirically validates our SLTH theo-
rem by approximating a trained MHA via pruning a
randomly initialized MHA. We evaluate the approxi-
mation by using a synthetic toy dataset designed for
an angular velocity estimation task. To identify the
SLTs, we apply a subset-sum technique via Gurobi’s
mixed integer program solver [10]. For more details,
see Appendix C.

We vary the key and value source dimensions nK

and nV, and observe the approximation error ϵ. For
simplicity, these parameters are set equal. As shown
in Figure 1, the error decreases rapidly as the hid-
den dimensions increase. Since the results can be
fitted by ϵ = 0.77 exp(−0.055nK), it provides the
empirical support for our theoretical claim: given a
target MHA, each source hidden dimension requires
O(log(1/ϵ)) for the existence of SLTs.

5. Conclusion

This work investigated the existence of SLTs within a multi-head self-attention mechanism (MHA).
We extended the existing SLTH theory and found that, if the source MHA has sufficiently large
hidden dimensions, SLTs exist in the model. We hope that our findings will contribute to developing
efficient network architectures in the future.
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Appendix A. Proofs of Main Theorems

This section presents the detailed proofs of the main theorems in the manuscript. We first introduce
several lemmas that are used to prove the main theorem. Then, leveraging these lemmas, we prove
the existence of SLTs in attention mechanisms.

Notation: In this paper, scalars, vectors, and matrices are denoted by lowercase, bold lowercase,
and bold uppercase letters, respectively. We use the norm of matrices and vectors ∥ · ∥ as the
spectral norm unless otherwise specified by a subscript. We denote the uniform distribution on [a, b]
by U [a, b]. ”⊙” represents an element-wise multiplication, Hadamard product.

A.1. Weight Approximation

To prove our main theorem, we require approximating a target weight matrix using the product of
two random matrices, modified only via pruning. Pensia et al. [17] have shown that a two-layer
ReLU network can approximate any real matrix with high probability. Our setting can be viewed
as a simplified version of their construction, in which the ReLU nonlinearity is omitted. We follow
their proof strategy and adapt it to the linear (non-activated) case.

Lemma 6 (Weight Approximation) Let W ∈ Rd2×d1 be a target matrix with entries in [−1, 1].
Let W̃ 1 ∈ Rn×d1 and W̃ 2 ∈ Rd2×n be source random matrices whose entries are indepen-
dently drawn from the uniform distribution U [−1, 1]. For any 0 < ϵ < 1, suppose that n ≥
d1C log(d1d2/ϵ) for some universal constant C > 0. Then, with probability at least 1 − ϵ, there
exist binary masks M1 ∈ {0, 1}n×d1 and M2 ∈ {0, 1}d2×n such that∥∥∥W − (W̃ 2 ⊙M2)(W̃ 1 ⊙M1)

∥∥∥
max

≤ ϵ

d1d2
.

Proof This result follows directly from Corollary 3.3 of Lueker [12], which provides an exponen-
tially good approximation guarantee for subset-sum problems. While Pensia et al. [17] apply a
similar argument within a ReLU-activated setting, our linear setup allows us to invoke the original
result without modification.

A.2. Spectral Norm of Softmax Difference

In addition to approximating weights, we also analyze the stability of the softmax output under
small perturbations in the query vector, with respect to the spectral norm of the resulting attention-
weighted output.

Lemma 7 (Spectral Norm Bound for Softmax Output Perturbation) Let ϵ ∈ Rd1 be a pertur-
bation vector such that ∥ϵ∥max ≤ ϵmax for some ϵmax ≥ 0. Then,

∥σ(xi;ai)X − σ(xi + ϵ;ai)X∥ ≤
√
d1α (exp(2ϵmax)− 1) .

Proof Let p = σ(xi;ai) and p′ = σ(xi + ϵ;ai). Then for each coordinate j,

p′j = pj ·
exp(ϵj)

Z
, where Z =

T∑
k=1

pk exp(ϵk).
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By the assumption ∥ϵ∥max ≤ ϵmax, we have∣∣∣∣1− exp(ϵj)

Z

∣∣∣∣ ≤ exp(2ϵmax)− 1.

Now, bounding the spectral norm for the i-th token:∥∥pX − p′X
∥∥ ≤

√
d1 ·

∥∥pX − p′X
∥∥
max

≤
√
d1 · max

i∈[d1]

∣∣∣∣∣∣
T∑

j=1

(pj − p′j)xj,i

∣∣∣∣∣∣
≤
√
d1 · max

i∈[d1]

T∑
j=1

|xj,i| · |pj − p′j |

≤
√
d1 · α

T∑
j=1

|pj − p′j |

≤
√
d1 · α

T∑
j=1

pj

∣∣∣∣1− exp(ϵj)

Z

∣∣∣∣
≤
√
d1 · α (exp(2ϵmax)− 1)

T∑
j=1

pj

=
√
d1 · α (exp(2ϵmax)− 1) .

Since the final upper bound is independent of i, then the upper bound of maxi∈[T ] ∥pX − p′X∥ is
the same as that final bound.

A.3. SLT Existence within Attention Mechanisms

Finally, we prove the following main theorem:

Theorem 8 (SLT Existence within MHA) Let AttnS and AttnT be as defined in Equation (1).
Assume α ≥ max(

√
d1,

√
d2) for the input tokens. Then, with probability at least 1− ϵ, there exists

a choice of binary masks M (j)
Q ,M

(j)
K ,M

(j)
V ,M

(j)
O that satisfy

max
i∈[T ]

∥AttnS(xi)−AttnT(xi)∥ ≤ ϵ,

if the source dimensions satisfy

n1 ≥ d1C log

(
8Hα3d

3/2
1

ϵ

)
, n2 ≥ d1C log

(
2Hαd1

√
d2

ϵ

)
,

for some universal constant C > 0.
Proof We divide the proof into three key steps.
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Step 1: Representation Alignment. The target MHA weights are merged as

W
(j)
QK :=

1√
dk

W
(j)
Q (W

(j)
K )⊤, W

(j)
VO := W

(j)
V W

(j)
O ,

which allows us to express each head of AttnT as

AttnT(xi;X,W
(1:H)
Q:O ) =

H∑
j=1

σ
(
x⊤
i W

(j)
QKX⊤;ai

)
XW

(j)
VO.

By the norm assumption, we have ∥W (j)
QK∥ ≤ 1/

√
dk and ∥W (j)

VO∥ ≤ 1.

Step 2: Weight Approximation. From Lemma 6, for any 0 < ϵ < 1, if

nK ≥ d1C log

(
8Hα3d

3/2
1

ϵ

)
,

then with probability at least 1− ϵ
8Hα3

√
d1

, there exist binary masks M (j)
Q ,M

(j)
K such that∥∥∥∥W (j)

QK −
(
W̃

(j)
Q ⊙M

(j)
Q

)(
W̃

(j)
K ⊙M

(j)
K

)⊤∥∥∥∥
max

≤ ϵ

8Hα3d
3/2
1

.

We can also bound the infinity-norm inside the softmax as follows:∥∥∥∥x⊤
i W

(j)
QKX⊤ − x⊤

i

(
W̃

(j)
Q ⊙M

(j)
Q

)(
W̃

(j)
K ⊙M

(j)
K

)⊤
X⊤

∥∥∥∥
∞

= max
k∈[T ]

∣∣∣∣x⊤
i W

(j)
QKxk − x⊤

i

(
W̃

(j)
Q ⊙M

(j)
Q

)(
W̃

(j)
K ⊙M

(j)
K

)⊤
xk

∣∣∣∣
≤ α2

∥∥∥∥W (j)
QK −

(
W̃

(j)
Q ⊙M

(j)
Q

)(
W̃

(j)
K ⊙M

(j)
K

)⊤∥∥∥∥
≤ α2d1

∥∥∥∥W (j)
QK −

(
W̃

(j)
Q ⊙M

(j)
Q

)(
W̃

(j)
K ⊙M

(j)
K

)⊤∥∥∥∥
max

≤ α2d1
ϵ

8Hα3d
3/2
1

=
ϵ

8Hα
√
d1

.

Now, for each token i ∈ [T ] and each head j ∈ [H], we define

p
(j)
i := σ

(
x⊤
i W

(j)
QKX⊤;ai

)
, p

′(j)
i := σ

(
x⊤
i (W̃

(j)
Q ⊙M

(j)
Q )(W̃

(j)
K ⊙M

(j)
K )⊤X⊤;ai

)
.

Then, applying Lemma 7, we obtain∥∥∥p(j)
i X − p

′(j)
i X

∥∥∥ ≤
√
d1α

(
exp

(
ϵ

4Hα
√
d1

)
− 1

)
≤ ϵ

2H
, (since 0 < ϵ

4Hα
√
d1

< 1.)
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Step 3: Output Approximation. Similarly, from Lemma 6, if

nV ≥ d1C log

(
2Hαd1

√
d2

ϵ2

)
,

then with probability at least 1−
√
d2ϵ

2Hα , there exist binary masks M (j)
V ,M

(j)
O such that∥∥∥W (j)

VO − (W̃
(j)
V ⊙M

(j)
V )(W̃

(j)
O ⊙M

(j)
O )
∥∥∥
max

≤ ϵ

2Hαd1
√
d2

.

The difference between the target and pruned source attention outputs is

∥AttnT(xi)−AttnS(xi)∥ =

∥∥∥∥∥∥
H∑
j=1

(
p
(j)
i XW

(j)
VO − p

′(j)
i X(W̃

(j)
V ⊙M

(j)
V )(W̃

(j)
O ⊙M

(j)
O )
)∥∥∥∥∥∥

≤
H∑
j=1

∥∥∥(p(j)
i XW

(j)
VO − p

′(j)
i X(W̃

(j)
V ⊙M

(j)
V )(W̃

(j)
O ⊙M

(j)
O )
)∥∥∥

We apply the triangle inequality and break the spectral norm into two terms for each head j:∥∥∥p(j)
i XW

(j)
VO − p

′(j)
i X(W̃

(j)
V ⊙M

(j)
V )(W̃

(j)
O ⊙M

(j)
O )
∥∥∥

≤
∥∥∥(p(j)

i − p
′(j)
i )XW

(j)
VO

∥∥∥+ ∥∥∥p′(j)
i X(W

(j)
VO − (W̃

(j)
V ⊙M

(j)
V )(W̃

(j)
O ⊙M

(j)
O ))

∥∥∥ .
Since ∥W (j)

VO∥ ≤ 1, the first term is bounded as follows.∥∥∥(p(j)
i − p

′(j)
i )XW

(j)
VO

∥∥∥ ≤
∥∥∥(p(j)

i − p
′(j)
i )X

∥∥∥∥∥∥W (j)
VO

∥∥∥
≤
∥∥∥(p(j)

i − p
′(j)
i )X

∥∥∥
≤ ϵ

2H
. (From the result of Step 2.)

For the second term, since the Euclidean norm of each token is α or below, we have∥∥∥p′(j)
i X(W

(j)
VO − (W̃

(j)
V ⊙M

(j)
V )(W̃

(j)
O ⊙M

(j)
O ))

∥∥∥
≤
√

d1

∥∥∥p′(j)
i X

∥∥∥
∞

√
d1d2

∥∥∥(W (j)
VO − (W̃

(j)
V ⊙M

(j)
V )(W̃

(j)
O ⊙M

(j)
O ))

∥∥∥
max

≤ d1
√

d2α
∥∥∥(W (j)

VO − (W̃
(j)
V ⊙M

(j)
V )(W̃

(j)
O ⊙M

(j)
O ))

∥∥∥
max

≤ d1
√

d2α
ϵ

2Hαd1
√
d2

=
ϵ

2H
.

These results do not depend on the token index i; thus, we obtain

max
i∈[T ]

∥AttnT(xi)−AttnS(xi)∥ ≤
H∑
j=1

( ϵ

2H
+

ϵ

2H

)
= ϵ.
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Since we assume α ≥ max(
√
d1,

√
d2), from the union bound, the probability that the two weight

approximations of Steps 2 and 3 succeed simultaneously is as follows.

1− ϵ

8Hα3
√
d1

−
√
d2ϵ

2Hα
≥ 1− ϵ.

Appendix B. Related Works

Strong Lottery Tickets: Zhou et al. [23] and Ramanujan et al. [18] empirically found the subnet-
works that achieve high accuracy without any weight training. This existence of high-performing
subnetworks is called as the strong lottery ticket hypothesis (SLTH), and Malach et al. [13] pro-
vided the first theoretical proof in fully-connected ReLU networks: given a target network with
arbitrary weights, the randomly initialized network (source network) contain SLTs that approxi-
mate the target network if the source network has sufficient width and double depth to the target.
Later, some works [2, 15, 17] relaxed the architectural requirements for containing such subnet-
works in the scenario of fully-connected networks. In particular, Pensia et al. [17] introduced the
subset-sum approximation [12] to approximate the target weights, and proved that the logarithmic
overparameterization of the source network is sufficient for the existence of SLTs.

Based on these pioneering studies, subsequent works have extended the SLTH in three main
directions. The first direction involves introducing additional flexibility into the source network.
In this context, it has been demonstrated that iterative randomization or small perturbations to the
source weights can reduce the required width of the source network. The second direction, in
contrast, imposes additional constraints on the source network. These studies in this context has
established the existence of SLTs in scenarios involving the sparse [8], partially frozen [16], and
sparsity-constrained networks [14]. The third direction expands the SLTH to various architectures,
including binarized networks, non-ReLU activation functions, networks with random biases, convo-
lutional networks, residual networks, and equivariant networks. Our work contributes to this third
direction about architectural expansion by proving the existence of SLTs within attention mecha-
nisms, a core component of transformer architectures. (For our theorem, see Section 3.)

Randomly Weighted Transformers: Several studies have empirically investigated the capabili-
ties of random transformers—the transformer architectures with randomly initialized weights. Shen
et al. [19] demonstrated that a transformer with a few randomly weighted layers achieves accuracy
comparable to fully trained models on translation and language understanding tasks. Zhong and
Andreas [22] found that random transformers can solve toy tasks with high accuracy as the hidden
dimension increases. Shen et al. [20] experimentally showed the existence of SLTs within random
transformers. Our work provides a theoretical explanation for the improved performance of random
transformers as the hidden dimension increases, particularly in scenarios where pruning is used for
optimization. Moreover, our analysis offers theoretical support of SLTH for the empirical findings
by Shen et al. [20].

Appendix C. Detailed Experimental Settings

Dataset: We evaluate the approximation by using a synthetic toy dataset designed for an angular
velocity estimation task. Each input token encodes a two-dimensional coordinate on a unit circle,
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updated according to a predefined angular velocity. We use a regression token—similar to the CLS
token in BERT [5]—to estimate the angular velocity. We generate 10,000 samples of training,
validation, and test data, respectively.

Models: From the dataset setting, we set the input and output dimensions of both target and source
MHA as two and one, respectively. Both target and source MHA have a single head, and we
define the trained MHA with hidden dimension 8 is used as the target function. The target MHA
is trained for 25 epochs using the AdamW and MSE loss function with the batch size of 1024 and
learning rates of 0.05, 0.1, 0.5, and 1.0, respectively. Our experiment employs the best setting of the
learning rate of 0.5. To identify the SLTs that achieve the best approximation, we apply a subset-
sum technique via Gurobi’s mixed integer program solver [10]. We approximate the target MHA
with 100 randomly initialized source MHAs, and report the mean and standard deviation of the
approximation error.
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