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ABSTRACT

The prediction modeling of drug-target interactions is crucial to drug discovery and
design, which has seen rapid advancements owing to deep learning technologies.
Recently developed methods, such as those based on graph neural networks (GNNs)
and Transformers, demonstrate exceptional performance across various datasets by
effectively extracting structural information. However, the benchmarking of these
novel methods often varies significantly in terms of hyperparameter settings and
datasets, which limits algorithmic progress. In view of these, we conduct a compre-
hensive survey and benchmark for drug-target interaction modeling from a structure
perspective, via integrating tens of explicit (i.e., GNN-based) and implicit (i.e.,
Transformer-based) structure learning algorithms. To this end, we first unify the
hyperparameter setting within each class of structure learning methods. Moreover,
we conduct a macroscopical comparison between these two classes of encoding
strategies as well as the different featurization techniques that inform molecules’
chemical and physical properties. We then carry out the microscopical comparison
between all the integrated models across the six datasets, via comprehensively
benchmarking their effectiveness and efficiency. Remarkably, the summarized
insights from the benchmark studies lead to the design of model combos. We
demonstrate that our combos can achieve new state-of-the-art performance on
various datasets associated with cost-effective memory and computation.

1 INTRODUCTION

The prediction modeling of drug-target interactions (DTI) has emerged as an irreplaceable task for
efficacious therapeutic interventions. The binding affinity between a drug molecule and its target
protein plays a significant role in the design and repurpose of drugs, where a high affinity typically
indicates the desired therapeutics, target specificity, long residence, and drug resistance delay (Hughes
et al., 2011; Copeland et al., 2006; Swinney, 2004). The precise modeling of DTI can expedite the
drug discovery process and circumvent the associated cost (Ashburn & Thor, 2004; Strittmatter, 2014).
Deep learning based frameworks have recently revolutionized this field, enabling more accurate and
efficient predictions compared with laboratory experimental methods (Wen et al., 2017; Abbasi et al.,
2021; Huang et al., 2020a).

Within the deep learning frameworks (Öztürk et al., 2018; 2019), drugs are commonly represented
using the Simplified Molecular Input Line Entry System (SMILES) (Weininger, 1988a), and proteins
are represented as sequences of amino acids. These representations are processed by separate
convolutional neural networks (CNNs) (Krizhevsky et al., 2017; He et al., 2016) and subsequently
integrated and processed using a multi-layer perceptron (MLP) for DTI prediction. It is notorious that
the reliance on sequence-based representations can result in the loss of structural information, which
can potentially compromise the DTI predictive capability. From the drug perspective, molecular
structure modeling helps identify the specific binding sites (Ma et al., 2011), contribute to predicting
pharmacokinetic properties (Ekins et al., 2007), and allow conformational flexibility (Karplus &
Kuriyan, 2005).

To address this problem, a number of drug algorithms have been proposed to promote DTI prediction,
which can be categorized into explicit and implicit structure learning. First, graph neural networks
(GNNs) (Kipf & Welling, 2016; Nguyen et al., 2020) have been widely adopted to learn the molecular
structures, owing to their ability to directly operate on graph-based representations of molecules.
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By explicitly propagating information through the graph, GNNs can learn node and edge features
and thereby capture the structural and functional relationships between atoms and bonds. Second,
Transformers, originally focused on natural language processing (Vaswani et al., 2017a), have also
shown promise in biomedical applications (Huang et al., 2020b; Chen et al., 2020). They rely on
self-attention mechanisms to implicitly weight the correlations between different parts of the input
SMILES, allowing them to capture long-range dependencies and contextual information.

While these techniques contribute to the learning of drug structures, there is still a key knob under-
explored: we lack a systematic study to benchmark their effectiveness and efficiency. Without such a
standardized benchmark, it is unachievable to offer fair comparisons and subsequently summarize
designing philosophy necessary to inform DTI. There have been several surveys and benchmarks
on computational methods for DTI prediction (Öztürk et al., 2018; Huang et al., 2020a; 2021;
Xu et al., 2022), which leave out the recent developments of structure learning algorithms and
unavoidably fail to focus on drug structure benchmarking. Moreover, although massive efforts (Bal
et al., 2024; Zhu et al., 2023; Nguyen et al., 2020) have been made to explore the effectiveness of
modeling structural information, they predominantly use their proprietary training hyperparameters,
datasets, and evaluation metrics. Due to the various settings, one cannot reach convincing answers
whether a configuration of structure encoders and/or featurization methods generally performs well.
The complex of DTI classification and regression tasks and datasets complicates the benchmark
comparison.

In this study, we introduce GTB-DTI, a comprehensive benchmark customized for GNN and
Transformer-based methodologies for DTI prediction. i) We thoroughly examine the implementation
details for each category of drug structure learning methods and integrate three widely-used datasets
for classification and regression tasks, respectively. Then, we harmonize the sensitive hyperparameters
across different methods using a greedy search to identify an optimal sweet spot configuration. The
unified setting lays the foundation for a fair and reproducible benchmark. ii) To gain macroscopical
insights into the structure encoders and featurization methods, we fix the drug encoder to be either
GNN or Transformer-based approaches and benchmark these two strategies in the various settings.
We also integrate tens of drug features given their importance to inform molecules’ chemistry and
physical properties and evaluate them on the representative datasets. iii) To gain macroscopical
insights into nuance between 31 concerned models, we conduct the benchmark studies of their effec-
tiveness on the six datasets with the unified setting, Moreover, we assess the efficiency of each method
by measuring peak GPU memory usage, running time, and convergences. iv) The comprehensive
study finally provides a number of surprising observations: ❶ The CNN-encoder accompanied with
integer features has the close protein embedding performance compared to the Transformer or larger
language models, but they are more efficient. ❷ The explicit and implicit structure encoders for drugs
exhibit unequal performances across the different datasets, which suggests their hybrid usage for
generalization purpose. ❸ Inspired from these insights, we conclude with a model combos that leads
us to attaining state-of-the-art (SOTA) regression results and performing similarly to SOTA in the
DTI classifications. Our combos further deliver cost-effective memory usage and running time as
well as faster convergence, which can serve as new baseline for the following explorations.

2 FORMULATIONS FOR DRUG-TARGET INTERACTION MODELING

In this research, we focus on the formulations of recently-emerging structure modeling approaches
for drug molecules, which could be categorized into explicit methods based on graph neural networks
and implicit methods based on transformer. The target proteins are learned by the sophisticated
tools of convolutional/recurrent neural networks (CNNs/RNNs) or transformers, after which both the
molecules’ and proteins’ embeddings are integrated to facilitate interaction prediction. We will also
summarize and benchmark the various widely-adopted molecule features.

2.1 GRAPH NEURAL NETWORKS BASED METHODS

A drug molecule is typically represented as a graph G = (V, E), where V and E denotes the sets of
atoms and chemical bonds, respectively. The classical GNN frameworks involve key processes of
aggregating and updating node features, collectively referred to as message passing, which can be
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mathematically represented as (Scarselli et al., 2008; Duan et al., 2022):
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where h
(l)
i is the feature representation of node vi at layer l, e(l)ij is the feature representation of

edge between nodes vi and vj , Ni refers to the set of neighboring nodes next to node vi. Functions
AGGREGATE(l) and COMBINE(l) aim to aggregate the neighborhood representations and integrate
them together with the nodes features, respectively. Additionally, fα and gβ are feature mapping
functions, parameterized by α and β, respectively. The molecule’s representation can be derived
using READOUT function, which processes on the set of vertex features H(L) at the last layer.

Graph Convolutional Networks (GCN). Given a molecule with N atoms, the adjacency matrix
A ∈ RN×N indicates its connectivity, with Aij = 1 if atom vi is adjacent to atom vj , and 0 otherwise.
Considering the self-connection of atoms, we have Ã = A+ I. Let X ∈ RN×C denote the initial
atom feature matrix. GCN (Kipf & Welling, 2017) models the message passing as follows:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W(l)), (3)

where H(l) is the node feature matrix at layer l, starting with H(0) = X. Matrix W(l) represents
the learnable weights for layer l, σ denotes a non-linear activation function, e.g., ReLU, and D̃ is
a diagonal degree matrix of Ã. A couple of pioneering works have leveraged GCN to facilitate
drug-protein interaction prediction (Mukherjee et al., 2022; Tran et al., 2022; Tsubaki et al., 2018;
Pan et al., 2023b). For example, DeepGLSTM (Mukherjee et al., 2022) uses mixture-of-depths GCNs
to capture drug representations from different scales. CPI (Tsubaki et al., 2018) considers cross-atom
distance and introduces the concept of r-radius subgraphs (Costa & Grave, 2010), using r-radius
vertices and edges to redefine the structure of graphs.

Graph Isomorphism Networks (GIN). GIN excels in learning distinct graph features by approxi-
mating the Weisfeiler-Lehman test, enabling it to distinguish a wide range of graph structures (Xu
et al., 2018). The message passing process at the (l + 1)-th layer is of the following form:

h
(l+1)
i = MLP(l)((1 + ϵ(l))h

(l)
i +

∑
j∈Ni

h
(l)
j ), (4)

where MLP(l) is a multi-layer perceptron that parameterizes the update function, and ϵ(l) is a
learnable parameter. We benchmark several GIN-based drug-target interaction modeling methods.
GraphCPI (Quan et al., 2019) and GraphDTA (Nguyen et al., 2020) adopt GIN-based models with
batch normalization to obtain the drug representation. SubMDTA (Pan et al., 2023a) uses subgraph’s
generation task and contrastive learning to pretrain a molecular graph encoder with multiple GIN
layers for further prediction.

Graph Attention Networks (GAT). Unlike fixed-weight aggregation, GAT (Veličković et al.,
2018) employs an attention mechanism to determine neighborhood importance and learn the node
embeddings as:

h
(l+1)
i = σ(

∑
j∈i∪Ni

softmax(LeakyReLU(WT
a [W

(l)h
(l)
i ||W(l)h

(l)
j ]))W(l)h

(l)
j ). (5)

WT
a denotes attention weights, and || is concatenating operation. GraphDTA (Nguyen et al., 2020)

and AMMVF (Wang et al., 2023) leverage the multi-head GAT layers to optimize the atom messaging.
They integrate GAT with other architectural modules, such as GCN, facilitating a more comprehensive
representation of drugs.

2.2 TRANSFORMER-BASED METHODS

Besides the graph representation, drugs could also be decorated as SMILES strings (Weininger, 1988b)
and encoded similarly to natural language processing. Specifically, after tokenizing SMILES strings,
Transformer model utilizes multi-head attention to model the interactions between different segments
of the input and obtain the molecular representations. Positional encodings are also integrated
to preserve the sequence order, enhancing the model’s ability to process sequential information
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effectively. We review and benchmark two typical types of attention mechanisms used for molecular
representations.

Self-Attention (Huang et al., 2020b; Qian et al., 2023; Yin et al., 2024). Self-attention com-
putes a weighted sum of all input values based on their relevance to each other. Considering an
embedding of SMILES sequence H(l) ∈ Rd×N at a specific transformer layer, where N and d
are token length and dimension, respectively, the attention is calculated by Attention(Q,K,V) =
softmax(QKT/

√
dk)V. Q,K ∈ Rdk×N and V ∈ Rdv×N are projections of the input matrix

H(l). Multi-head attention combines these projections across different subspaces for a more detailed
analysis. Following by normalization and feed-forward neural networks, the SMILES embedding is
updated as H(l+1) and the output from the last layer is treated as molecular representations. Trans-
former encoders like MolTrans (Huang et al., 2020b) and FOTFCPI (Yin et al., 2024) are adopted to
enhance sub-structure embeddings in proteins and drugs.

Cross Attention (Kurata & Tsukiyama, 2022; Qian et al., 2023). Cross-attention is designed to
capture the interaction between the drug and protein sequences, with the query matrix Q derived from
one sequence and the key and value matrices K,V from another. This mechanism is particularly
useful in integrating hybrid representations such as drug graphs and SMILES (Wang et al., 2023), as
well as drugs and proteins (Pan et al., 2023b; Kurata & Tsukiyama, 2022).

2.3 FEATURE PROCESSING METHODS

Beyond the drugs’ structure or sequence learning with GNNs or Transformers, the extra molecular
properties, such as molecular weight, solubility, and lipophilicity, are crucial for building accurate
and quantitative drug-target relationship models. We summarize two typical featurization methods.

Sequence Processing Methods. Both drugs and proteins are input as strings of ASCII charac-
ters, whose features can be extracted using statistical solutions. Integer encoding (Nguyen et al.,
2020) simply converts the string to a sequence of integers, which assigns an integer to each char-
acter. The N-gram (Dong et al., 2005) captures the statistical dependencies between characters in
an input string. Specifically, a 3-gram model breaks down a sequence S = {s1, s2, ..., sm} into
{[s1, s2, s3], [s2, s3, s4], ..., [sm−2, sm−1, sm]}, analyzing the relationship between adjacent charac-
ters.

Drug-unique Featurization Methods. The additional chemical properties and structural details
of SMILES strings are often considered to gain a more comprehensive understanding. Extended-
Connectivity Fingerprints (ECFP) (Morgan, 1965; Rogers & Hahn, 2010), involves generating unique
identifiers for atoms based on their local chemical environment and iteratively updating these through
a hash function to capture a broader molecular context, ultimately producing a set of fingerprints that
represent the molecule’s overall structure. Another approach, RDKit, is used to convert SMILES into
molecular graphs (Landrum et al., 2006; Nguyen et al., 2020), where nodes represent the physical and
chemical properties of molecules, and bonds are represented by an adjacency matrix. For example,
atomic properties such as atom type, degree, and hydrogen information (like the number of explicit
hydrogens) are all crucial for constructing a graph. More detailed properties can be found in Appendix
F.

Embedding Featurization Methods. Embedding methods are used to translate these discrete se-
quences into continuous embedding spaces. Notably, Smi2Vec (Quan et al., 2018) and Prot2Vec (As-
gari & Mofrad, 2015) convert discrete tokens of drug SMILES and protein sequences into vectors
that encapsulate semantic and syntactic similarities, effectively grouping similar tokens together
in vector space. Additionally, pretrained language models (Bal et al., 2024; Lin et al., 2022) are
increasingly utilized to leverage large-scale learned patterns, fine-tuned to analyze complex protein
data representations effectively.

3 A FAIR BENCHMARK PLATFORM SETUP

Benchmark Model and Dataset Selection. From the perspective of reproducibility, we restrict
our analysis to models for which the source code has been publicly released. To enhance the
comprehensiveness, credibility, and sophistication of our benchmark, we conduct experiments on
more than 30 models, including both GNN-based and Transformer-based methods. These models are
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derived from papers spanning the years 2018 to 2024. We run these models on 6 frequently evaluated
datasets including both binary interaction classification and continuous affinity regression. For the
classification aspect, we utilize datasets including Human (Liu et al., 2015), Caenorhabditis elegans
(C. elegans) (Tsubaki et al., 2018), and DrugBank (Wishart et al., 2008). For regression, we employ
the Davis (Davis et al., 2011), KIBA (Tang et al., 2014), and BindingDB (Liu et al., 2007) with
dissociation constant (Kd) measures datasets, as processed in (Huang et al., 2021). The statistical
details of these models and datasets are presented in Section B and Table 4 of Appendix, respectively.

Unifying Hyperparameter Configuration. Given the critical role of hyperparameters in achieving
optimal performance, we perform a detailed review of the hyperparameters associated with the
selected models in Section E of the Appendix. There is significant variability in the hyperparameters
across different models, making it unfair to conduct comparisons directly. To achieve equitable
comparisons between varied models, we select two representative approaches from both the GNN-
based and Transformer-based categories, i.e., GraphDTA (Nguyen et al., 2020), GraphCPI (Quan
et al., 2019), MRBDTA (Zhang et al., 2022), and TransformerCPI (Chen et al., 2020), to perform
a greedy hyperparameter search to find their sweet spot for classification and regression tasks,
respectively. For the search space of hyperparameters, we mainly focus on the influence of batch size
(BS), learning rate (LR), and dropout rate (DR), as these are the common hyperparameters utilized
by all models. Additionally, we standardize the hyperparameters for epochs, weight decay, and
the choice of optimizer, setting a consistent 1000 epochs for GNN-based methods and 300 epochs
for Transformer-based methods, with a weight decay of 0 and the Adam optimizer for all models
according to Table 5. We illustrate the selected results for the metrics MSE and CI for the regression
task, along with AUC-ROC and accuracy for the classification task, in Fig. 1 and the results of all
metrics in Table 6. In all experiments, we employ the five-fold cross-validation method with a random
split to evaluate all different methods and report the averaged results.

We observe that different models exhibit distinct preferences for hyperparameters. Taking into account
various models and metrics, we recommend the configuration {512, 0.0005, 0.1} as the sweet point
hyperparameter configuration for the GNN-based model. Similarly, for the Transformer-based model,
we suggest {128, 0.0005, 0.1}. We strictly follow it in the following experiments.
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Figure 1: The greedy hyperparameter searching results on Davis and Human datasets. BS traverses
from {64, 128, 256, 512} for GNN-based approaches, and {32, 64, 128} for Transformer-based ap-
proaches. LR and DR are selected from {0.0001, 0.0005, 0.001} and {0, 0.1, 0.2, 0.5}, respectively.

4 A MACROSCOPICAL BENCHMARK ON ENCODER AND FEATURIZATION
STRATEGIES

⋆Encoder Exploration for Drugs and Proteins. To investigate the influence of different encoding
strategies for extracting the structural information of drugs, we employ GCN (Kipf & Welling, 2016)
and vanilla Transformer (Vaswani et al., 2017b) as the encoders for drugs. Meanwhile, integer
encoding with CNN, n-gram encoding with CNN, and the vanilla Transformer are considered to
capture protein’s representations, which are frequently adopted. To leverage the advantages of the
pretrained protein information, we include a language model, i.e., Evolutionary Scale Modeling
(ESM2) (Lin et al., 2022). The results of various combinations of drug and protein encoders are listed
in Table 1.

Obs. 1. GNN and Transformer-based drug encoders exhibit unequal performance depending
on DTI tasks. When the encoder for the protein sequence is fixed, drug features extracted by the
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Transformer generally perform better than those by GNNs in regression tasks, but the opposite is
true in classification tasks. Notably, in the classification tasks on Human dataset, the combination of
GNN and Transformer used, respectively, for drugs and proteins yields excellent performance but
falls short in the regression task. This disparity may be due to the smaller size of the Human dataset
compared to the Davis dataset, which allows for faster convergence in classification tasks than in
regression tasks under a fixed epoch.

Obs. 2. Transformer models are better in extracting features from protein. Although we only
consider the simplest pretrained protein language model of ESM2, it still significantly outperforms
other encoders. This improvement can likely be attributed to the robust and generalizable representa-
tions learned from extensive data by the pretrained model. In the classification task, transformers
achieve the best performance, underscoring their effectiveness in extracting protein sequence features.

Obs 3. Integer encoding appears to be more effective when paired with a CNN as the protein
encoder and a fixed drug encoder. Compared to this specific model configuration, the local context
provided by 3-gram encoding does not significantly enhance the model’s predictive performance. This
implies that the simple relationships in amino acids’ immediate neighbors, as modeled by Word2Vec,
do not capture much useful information compared with simple integer encoding.

Drug Encoder Protein Encoder Regression Classification

MSE MAE R2 PCC CI Spearman ROC-AUC PR-AUC Log-AUC Acc. Precision Recall F1

GCN Int encoding with CNN 0.3181 0.3314 0.5263 0.7315 0.8311 0.5906 0.9122 0.8761 0.4452 0.9127 0.9033 0.9301 0.9165
GCN 3-gram pretrained with CNN 0.3361 0.3613 0.4994 0.7133 0.8332 0.5956 0.9016 0.8634 0.4045 0.9021 0.8944 0.9183 0.9061
GCN ESM2 0.2611 0.3112 0.6111 0.7843 0.8665 0.6480 0.9331 0.9046 0.5034 0.9334 0.9275 0.9446 0.9371
GCN Trans 0.2911 0.3326 0.5664 0.7600 0.8571 0.6329 0.9435 0.9192 0.5282 0.9438 0.9395 0.9524 0.9458
Trans Int Encoding with CNN 0.2553 0.2853 0.6197 0.7890 0.8620 0.6397 0.9096 0.8783 0.4623 0.9096 0.9142 0.9099 0.9121
Trans 3-gram pretrained with CNN 0.2618 0.3032 0.6101 0.7820 0.8581 0.6338 0.9011 0.8674 0.4327 0.9012 0.9054 0.9030 0.9040
Trans ESM2 0.2609 0.3052 0.6115 0.7869 0.8617 0.6391 0.9203 0.8924 0.4902 0.9203 0.9257 0.9192 0.9224
Trans Trans 0.2828 0.3222 0.5788 0.7721 0.8554 0.6297 0.9306 0.9073 0.5158 0.9304 0.9391 0.9250 0.9319

Table 1: Comparison of different encoding strategies for drugs and proteins when the total epoch is
300, LR is 0.0005, BS is 512, and DR is 0.1. Trans is a Transformer-based model, which is composed
of two parts: embedding and position encoding, and the encoder in Transformer.

⋆Featurization Exploration. Despite the efficacy of GNNs in learning drug structures, the featur-
ization of nodes plays a critical role in capturing both the intrinsic properties of atoms and their
contextual relevance. We conduct a detailed analysis of various methods (summarized in Section F of
Appendix) for constructing graph features within the DTI context. The node feature is constructed
via various characteristics, such as chemical and physical properties. We categorize each feature into
five main classes, e.g., atomic properties (AP), hydrogen information (HI), electron properties (EP),
stereochemistry (Ste) and structural information (Str). To better determine which types of features are
more effective in capturing the structural information, we conduct an ablation study on the different
featurization strategies. Here we choose GprahDTA (Nguyen et al., 2020) and GraphCPI (Quan et al.,
2019) as our backbone models. The results of feature combinations are reported in Fig. 2.
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Figure 2: Various performance of GraphDTA and GraphCPI versus different features on DAVIS and
Human datasets. +x means that x is added to the basic featurization. All means using all properties.

Obs. 4. More complex featurization does not necessarily bring positive effect. Despite employing
different protein representations (different colors in Fig. 2), GraphCPI and GraphDTA perform stably
on the benchmark dataset Davis. Moreover, the basic feature configuration has the lowest MSE
compared to other featurization strategies, suggesting that additional features may complicate the
model’s ability to discern critical information for regression task. Additionally, the increased CI with
more complex features, such as stereochemistry and structure, suggests that while they might not
improve the prediction accuracy, they do contribute positively to the model’s ranking capability.
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Obs. 5. The role of atomic and electron properties in modeling drug features may not be
inherently detrimental, but their contribution appears to be context-dependent. In Fig. 2, it
suggests that these properties, when not combined with other informative features, don’t significantly
enhance two models’ performance. In the classification task, as reflected by the F1 scores and ROC-
AUC, it is evident that stereochemistry and structural information substantially improve the model’s
accuracy. Thus, while atomic and electron properties are fundamental, their full potential is unlocked
when integrated with stereochemical and structural information, underscoring the importance of a
multifaceted approach in node featurization.

5 A MICROSCOPIC BENCHMARK ON DTI MODELS

⋆Benchmark over Effectiveness. As shown in Table. 2 and Table. 3, we conduct experiments on 31
different models across two tasks and three datasets, respectively (see more comprehensive model
comparisons in Section G of Appendix). All results are averaged by five-fold cross-validation.

Obs. 6. Molecular graphs are better than fingerprints to capture the graph features of drug. In
reference to Table. 7, it is evident that GNN-based approaches utilizing the molecular graph generally
yield superior performance compared with fingerprints (CPI (Tsubaki et al., 2018), BACPI (Li et al.,
2022), GANDTI (Wang et al., 2021)). This reinforces the idea that the rich structural and atom
property information inherent to molecular graphs is pivotal for representation extraction, leading to
enhanced model performance.

Obs. 7. Graph structure is a crucial part in extracting drug’s features. Different GNNs have
the distinct performances in both tasks when the protein representation is fixed. Specifically, GIN,
with its unique ability to distinguish non-isomorphic graphs, consistently outperforms other models
across different protein encoders in regression tasks. Although transformer-based methods such as
MRBDTA are proficient in handling sequential information from SMILES and proteins, the depth
of information they capture appears to be marginally less comprehensive than that provided by
molecular graph-based approaches. This is substantiated by the superior performance of GNN-based
methods, including MGraphDTA, ColdDTA, and SubMDTA, which suggest that GNN captures
intricate structural details more effectively.

Category Models DAVIS KIBA BindingDB Kd Avg. Reduce

MSE R2 CI MSE R2 CI MSE R2 CI of MSE (%)

GNN

GraphDTA-GIN (Nguyen et al., 2020) 0.2309 0.6562 0.8711 0.0004 0.5544 0.7996 0.5033 0.7259 0.8576 8.5625
GraphCPI-GIN (Quan et al., 2019) 0.2413 0.6407 0.8671 0.0005 0.4963 0.7808 0.5069 0.7239 0.8572 10.2845
MGraphDTA (Yang et al., 2022) 0.2179 0.6755 0.8820 0.0003 0.7208 0.8649 0.4887 0.7338 0.8649 4.9795
SAGDTA (Zhang et al., 2021) 0.2656 0.6045 0.8675 0.0039 -3.3777 0.8096 0.6590 0.6410 0.8366 27.6575
EmbedDTI (Jin et al., 2021) 0.2561 0.6186 0.8624 0.0007 0.2364 0.6374 0.5095 0.7225 0.8559 12.3450
DeepGLSTM (Mukherjee et al., 2022) 0.2915 0.5659 0.8476 0.0003 0.6919 0.8480 0.5385 0.7067 0.8529 19.1015
CPI (Tsubaki et al., 2018) 0.3503 0.4784 0.8319 0.0003 0.6274 0.8190 0.6962 0.6208 0.8261 35.8330
BACPI (Li et al., 2022) 0.4036 0.3990 0.7982 0.0006 0.5320 0.8175 0.6468 0.6477 0.8297 36.0894
DeepNC-HGC (Tran et al., 2022) 0.2782 0.5857 0.8551 0.0005 0.4983 0.7823 0.5611 0.6944 0.8464 20.0167
DeepNC-GEN (Tran et al., 2022) 0.2543 0.6213 0.8634 0.0004 0.5355 0.7981 0.5561 0.6971 0.8496 17.1559
DrugBAN (Bai et al., 2023) 0.2391 0.6440 0.8757 0.0004 0.5611 0.8388 0.4485 0.7557 0.8693 2.3692
GANDTI (Wang et al., 2021) 0.3082 0.5410 0.8414 0.0003 0.6569 0.8342 0.6714 0.6343 0.8322 31.4522
PGraphDTA-CNN (Bal et al., 2024) 0.3273 0.5126 0.8701 0.0005 0.4833 0.7473 0.5334 0.7095 0.8590 22.0042
BridgeDPI (Wu et al., 2022) 0.3623 0.6477 0.8991 0.0004 0.5686 0.7849 0.4482 0.7559 0.8698 17.1661
ColdDTA (Fang et al., 2023) 0.2346 0.6507 0.8693 0.0004 0.5948 0.8018 0.4697 0.7442 0.8644 4.6828
SubMDTA (Pan et al., 2023a) 0.2326 0.6537 0.8691 0.0003 0.6855 0.8485 0.4566 0.7513 0.8670 2.5816
IMAEN (Zhang et al., 2024) 0.2412 0.6409 0.8721 0.0004 0.5800 0.8061 0.4720 0.7429 0.8553 5.8716

Transformer

CSDTI (Pan et al., 2023b) 0.3029 0.5490 0.8395 0.0007 0.2448 0.6475 0.6408 0.6510 0.8369 28.8755
TDGraphDTA (Zhu et al., 2023) 0.2217 0.6698 0.6685 0.0008 0.0533 0.3429 0.4750 0.7413 0.7887 3.6989
AMMVF (Wang et al., 2023) 0.3325 0.5048 0.8307 0.0006 0.4696 0.7711 0.6597 0.6407 0.8336 32.3429
IIFDTI (Cheng et al., 2022) 0.2741 0.5918 0.8500 0.0005 0.2584 0.7952 0.5097 0.7170 0.8585 14.3568
ICAN (Kurata & Tsukiyama, 2022) 0.3481 0.4816 0.8211 0.0008 0.1159 0.8256 0.6582 0.6415 0.8277 33.3035
MolTrans (Huang et al., 2020b) 0.2588 0.6146 0.8601 0.0003 0.6378 0.8453 0.5138 0.7201 0.8570 13.0935
TransformerCPI (Chen et al., 2020) 0.2869 0.5728 0.8326 0.0008 0.0728 0.8357 0.5704 0.6894 0.8426 21.7224
MRBDTA (Zhang et al., 2022) 0.2350 0.6499 0.8775 0.0006 0.3210 0.7239 0.4977 0.7289 0.8629 8.4004
FOTFCPI (Yin et al., 2024) 0.2803 0.5825 0.8546 0.0004 0.5342 0.7947 0.5743 0.6872 0.8444 21.4386
Our combos 0.2063 0.6927 0.8901 0.0003 0.7168 0.8677 0.4651 0.7467 0.8683 0

Table 2: Regression task benchmark on DAVIS, KIBA, and BindingDB Kd datasets, respectively.
For the GraphDTA and GraphCPI, we only show the one with a specific GNN encoder which has the
best performance. The best result is highlighted in bold and the runner-up is underlined.

⋆Benchmark over Efficiency To analyze the training speed and memory usage, we empirically
evaluate the peak memory and running time for various methods during the training procedure on
one regression dataset and one classification task, respectively. To fairly compare various methods,
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Category Models Human C.elegans Drugbank Avg. Improve

ROC-AUC Accuracy F1 ROC-AUC Accuracy F1 ROC-AUC Accuracy F1 of Accuracy (%)

GNN

GraphDTA-GATGCN (Nguyen et al., 2020) 0.9296 0.9297 0.9319 0.9487 0.9484 0.9485 0.7712 0.7711 0.7764 2.5140
GraphCPI-GATGCN (Quan et al., 2019) 0.9097 0.9099 0.9129 0.9372 0.9370 0.9369 0.7561 0.7561 0.7593 4.3335
MGraphDTA (Yang et al., 2022) 0.9408 0.9410 0.9429 0.9631 0.9630 0.9628 0.8146 0.8146 0.8157 -0.1030
SAGDTA (Zhang et al., 2021) 0.9021 0.9018 0.9032 0.9380 0.9378 0.9375 0.7655 0.7655 0.7662 4.2494
EmbedDTI (Jin et al., 2021) - - - - - - 0.7625 0.7625 0.7674 5.3770
DeepGLSTM (Mukherjee et al., 2022) 0.9180 0.9183 0.9212 0.9414 0.9412 0.9409 0.7640 0.7640 0.7674 3.5182
CPI (Tsubaki et al., 2018) 0.9110 0.9111 0.9138 0.9312 0.9310 0.9309 0.7467 0.7466 0.7515 4.9098
BACPI (Li et al., 2022) 0.9249 0.9251 0.9276 0.9556 0.9555 0.9551 0.7748 0.7748 0.7776 2.2746
DeepNC-HGC (Tran et al., 2022) 0.8796 0.8798 0.8834 0.9418 0.9417 0.9413 0.7673 0.7673 0.7718 4.9057
DeepNC-GEN (Tran et al., 2022) 0.9178 0.9180 0.9205 0.9501 0.9499 0.9498 0.7464 0.7463 0.7571 3.8865
DrugBAN (Bai et al., 2023) 0.9302 0.9302 0.9320 0.9596 0.9594 0.9593 0.8188 0.8188 0.8179 0.2732
GANDTI (Wang et al., 2021) 0.9333 0.9333 0.9351 0.9404 0.9403 0.9400 0.7427 0.7425 0.7550 3.8110
PGraphDTA-CNN (Bal et al., 2024) - - - - - - 0.7910 0.7910 0.7948 1.5803
BridgeDPI (Wu et al., 2022) 0.9456 0.9456 0.9471 0.9651 0.9651 0.9646 0.7825 0.7825 0.7853 0.8392
ColdDTA (Fang et al., 2023) 0.9420 0.9421 0.9436 0.9623 0.9622 0.9619 0.8186 0.8186 0.8203 -0.2608
SubMDTA (Pan et al., 2023a) 0.9326 0.9328 0.9351 0.9570 0.9568 0.9566 0.8045 0.8045 0.8072 0.8055
IMAEN (Zhang et al., 2024) 0.9058 0.9059 0.9089 0.9506 0.9505 0.9500 0.7995 0.7994 0.8014 2.2592

Transformer

CSDTI (Pan et al., 2023b) 0.8630 0.8630 0.8663 0.8962 0.8958 0.8966 0.7269 0.7269 0.7306 9.2569
TDGraphDTA (Zhu et al., 2023) 0.9411 0.9409 0.9419 0.9573 0.9571 0.9569 0.8083 0.8082 0.8116 0.3547
AMMVF (Wang et al., 2023) 0.9287 0.9290 0.9314 0.9636 0.9635 0.9632 0.7814 0.7814 0.7849 1.5670
IIFDTI (Cheng et al., 2022) 0.9392 0.9392 0.9409 0.9679 0.9679 0.9675 0.8084 0.8084 0.8125 0.0110
ICAN (Kurata & Tsukiyama, 2022) 0.9387 0.9389 0.9410 0.9644 0.9644 0.9637 0.7731 0.7731 0.7745 1.4721
MolTrans (Huang et al., 2020b) 0.9453 0.9455 0.9471 0.9639 0.9638 0.9634 0.7910 0.7909 0.7922 0.5777
TransformerCPI (Chen et al., 2020) 0.9311 0.9312 0.9333 0.9581 0.9580 0.9577 0.8097 0.8097 0.8125 0.6262
MRBDTA (Zhang et al., 2022) 0.9447 0.9446 0.9458 0.9713 0.9713 0.9709 0.8102 0.8102 0.8134 -0.3778
FOTFCPI (Yin et al., 2024) 0.9444 0.9444 0.9459 0.9673 0.9672 0.9669 0.7845 0.7845 0.7889 0.7307
Our combos 0.9435 0.9435 0.9451 0.9688 0.9688 0.9684 0.8035 0.8035 0.8061 0

Table 3: Classification task benchmark on Human, C.elegans, and Drugbank datasets, respectively.
Here, ‘−’ means that the method cannot be reproduced on these datasets. For the GraphDTA and
GraphCPI, we only show one which has the best performance.

we set the batch size as 32, as such maximum batch size is adopted by some methods. All results are
measured on an RTX 3090 GPU. The memory and running time comparisons are illustrated in Fig. 3.
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Figure 3: Model parameter, memory usage and running time comparisons on Davis dataset.

Obs. 8. In general, the memory usage of GNN-based methods is smaller than that of
Transformer-based methods, which is positively proportional to run time. This difference
is primarily due to the self-attention mechanism employed in Transformers, which requires significant
memory resources. In contrast, model parameters, such as those in DeepGLSTM, do not exhibit a
direct relationship with either runtime or performance.

⋆Benchmark over Convergence. We select the top two methods from the GNN-based and
Transformer-based frameworks, respectively, and evaluate them across six datasets on two tasks. The
training losses are depicted in Fig. 4. In order to compare different methods, we only show the epochs
before 300. Based on the empirical data, we summarize our primary observations as follows:

Obs. 9. GNN-based methods demonstrate quicker and more stable convergence compared to
Transformer-based methods. This phenomenon arises from the fact that GNN-based methods have
fewer memory usage and model parameters, leading to a larger batch size usage or faster convergence
compared with Transformer-based methods.

5.1 OUR BEST COMBO OF DRUG AND PROTEIN ENCODERS

Based on our benchmark results, we summarize the insights of protein and drug encoder usages
and propose a light yet effective architecture, which could be treated as new strong baseline for
the following explorations. Regarding the proteins, we observe that multi-scale CNNs associated
with a mixture of model depths can generally learn the effective protein representations (Yang et al.,
2022; Zhu et al., 2023; Fang et al., 2023), which approximates the language model’s accuracy
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Figure 4: The empirical results of convergence for five selected methods.

while having lower memory and computation costs. Regarding the drug molecules, both GNN
and Transformer-based methods, such as MRBDTA (Zhang et al., 2022), MolTrans (Huang et al.,
2020b) and MGraphDTA (Yang et al., 2022) prove promising in DTI tasks. This encourages us to
leverage information from hybrid perspectives, i.e., implicit structure (via attention in Transformers)
and explicit structure learning (via message passing along edges in GNNs).

We are thus motivated to integrate these powerful modules and shed novel insight into the design
philosophy of drug-target interaction modeling. Our model combos are illustrated in Fig. 5, where
the multi-scale CNNs and hybrid networks of molecular Transformer and GNNs are adopted to
learn the representations of proteins and drugs, respectively. As shown by the graph encoder part
in Fig. 5, the hybrid networks augment the differential attention matrix in molecular Transformer
with inter-atomic distances and graph adjacency matrix (Maziarka et al., 2020), which provides
the 3D and 2D molecule conformations to further facilitate atom interaction learning. Specifically,
given the projections of molecular input at an attention head, i.e., Q,K,V ∈ RN×d, the adjacent
matrix A ∈ {0, 1}N×N , and the inter-atomic distances matrix D ∈ RN×N obtained using RDkit,
the augmented attention is calculated as:

Multi-Attn = (λa · softmax(QKT/
√
d) + λdg(D) + λgA)V, (6)

where g(·) is a row-wise softmax function, and λa, λd and λg denote scalars weighting the self-
attention, distance, and adjacency matrices, respectively. Besides the implicit and explicit structure
learning, we integrate the features from drug SMILES. It is notable that simply utilizing the SMILES
representation extracted from a transformer for downstream tasks does not perform as well as GNN.
To align with the protein embedding paradigm, we adopt a simple CNN to unearth potential SMILES
information, as suggested in (Zhao et al., 2021). Subsequently, due to the fact that cross-attention is
more complex and hard to optimize, we implement a straightforward attention mechanism to integrate
the representations of the drug graph and SMILES, denoted as fG and fS , respectively, using a
weighting parameter λ, as follows:

fD = λ · fG + (1− λ) · fS , λ = MLP (MLP(fG) +MLP(fS)) . (7)

Finally, the prediction is obtained by processing the concatenated protein and drug representations
through a task-relevant head, as shown in Fig. 5

Benchmark Comparison to State-of-the-Art Frameworks. We compare the proposed combos with
the SOTA frameworks in Tables 2 and 3, and Figures 3 and 4. It is observed that our model consistently
achieves the best performance in the regression tasks across three datasets and nearly outperforms
most methods in classification tasks. By leveraging the physical conformation information from
the molecular graph, our combos converge faster than the other two Transformer-based methods,
MRBDTA (Zhang et al., 2022) and TDGraphDTA (Zhu et al., 2023), particularly on the KIBA
dataset. Moreover, our model uses three times less peak memory and fewer parameters than other
Transformer-based methods, enabling faster computation and reduced storage requirements

6 CONCLUSION

In this work, we establish a benchmark with fair and consistent experimental configurations, aim-
ing to push DTI research, particularly emphasizing the utilization of structural information. Our
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Figure 5: Overview of our proposed model combos.

meticulous approach has entailed thorough exploration of diverse encoder strategies and featurization
techniques for both drug molecules and proteins. Moreover, dozens of existing approaches across six
representative datasets for both regression and classification tasks are investigated on various metrics,
including DTI classification and regression accuracy, peak memory usage, and model convergence.
Provided with the comprehensive benchmark results, we propose a novel approach that integrates the
strengths of GNN and transformer-based methods. Our studies on benchmarking and rethinking help
lay a solid, practical, and systematic foundation for the DTI community and provide researchers with
broader and deeper insights into the intricate dynamics of drug-target interactions.
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Hakime Öztürk, Elif Ozkirimli, and Arzucan Özgür. Widedta: prediction of drug-target binding
affinity. arXiv preprint arXiv:1902.04166, 2019.

Shourun Pan, Leiming Xia, Lei Xu, and Zhen Li. SubMDTA: drug target affinity prediction based on
substructure extraction and multi-scale features. BMC Bioinformatics, 24(1):334, 2023a.

Yaohua Pan, Yijia Zhang, Jing Zhang, and Mingyu Lu. CSDTI: an interpretable cross-attention
network with GNN-based drug molecule aggregation for drug-target interaction prediction. Applied
Intelligence, 53(22):27177–27190, 2023b.

13

https://doi.org/10.1093/bioinformatics/btac035
https://doi.org/10.1093/bioinformatics/btac035
https://api.semanticscholar.org/CorpusID:214728430
https://api.semanticscholar.org/CorpusID:214728430
https://doi.org/10.1021/c160017a018
https://doi.org/10.1093/bioinformatics/btaa921


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ying Qian, Xinyi Li, Jian Wu, and Qian Zhang. MCL-DTI: using drug multimodal information
and bi-directional cross-attention learning method for predicting drug–target interaction. BMC
bioinformatics, 24(1):323, 2023.

Zhe Quan, Xuan Lin, Zhi-Jie Wang, Yan Liu, Fan Wang, and Kenli Li. A system for learning
atoms based on long short-term memory recurrent neural networks. In 2018 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pp. 728–733, 2018. doi: 10.1109/BIBM.
2018.8621313.

Zhe Quan, Yan Guo, Xuan Lin, Zhi-Jie Wang, and Xiangxiang Zeng. GraphCPI: Graph
Neural Representation Learning for Compound-Protein Interaction. In 2019 IEEE Interna-
tional Conference on Bioinformatics and Biomedicine (BIBM), pp. 717–722, Nov 2019. doi:
10.1109/BIBM47256.2019.8983267.

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of Chemical
Information and Modeling, 50(5):742–754, 2010. doi: 10.1021/ci100050t. URL https:
//doi.org/10.1021/ci100050t. PMID: 20426451.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Stephen M. Strittmatter. Overcoming Drug Development Bottlenecks With Repurposing: Old
drugs learn new tricks. Nature Medicine, 20(6):590–591, Jun 2014. ISSN 1546-170X. doi:
10.1038/nm.3595. URL https://doi.org/10.1038/nm.3595.

David C Swinney. Biochemical mechanisms of drug action: what does it take for success? Nature
reviews Drug discovery, 3(9):801–808, 2004.

Jing Tang, Agnieszka Szwajda, Sushil Shakyawar, Tao Xu, Petteri Hintsanen, Krister Wennerberg, and
Tero Aittokallio. Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative
and integrative analysis. Journal of Chemical Information and Modeling, 54(3):735–743, 2014.

Huu Ngoc Tran Tran, J Joshua Thomas, and Nurul Hashimah Ahamed Hassain Malim. DeepNC: a
framework for drug-target interaction prediction with graph neural networks. PeerJ, 10:e13163,
2022.

Masashi Tsubaki, Kentaro Tomii, and Jun Sese. Compound–protein interaction prediction with
end-to-end learning of neural networks for graphs and sequences. Bioinformatics, 35(2):309–318,
07 2018. ISSN 1367-4803. doi: 10.1093/bioinformatics/bty535. URL https://doi.org/10.
1093/bioinformatics/bty535.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17, pp. 6000–6010, Red Hook, NY,
USA, 2017a. Curran Associates Inc. ISBN 9781510860964.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017b.
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A RELATED WORKS

GNN-based Methods GNNs play a crucial role in mining the intricate features of drug molecules for
drug-target prediction. Numerious models, including Graph Convolutional Network (GCN), Graph
Isomorphism Network (GIN), and Graph Attention Network (GAT) have been utilized (Nguyen
et al., 2020; Quan et al., 2019; Wang et al., 2023; Lin et al., 2020;?; Jin et al., 2021) to process and
enhance drug features. Additionally, MGraphDTA (Yang et al., 2022) employs a multi-scale GNN
architecture, while DeepGLSTM (Mukherjee et al., 2022) leverages parallel GNN structures for drug
representation. DeepNC integrates advanced techniques from generalized aggregation networks (Li
et al., 2020) and hypergraph convolution (Bai et al., 2021) to improve feature extraction. BACPI (Li
et al., 2022) develops a bi-directional attention network to integrate the representations of drug
molecules and proteins, enhancing their mutual interaction. Besides, BridgeDPI (Wu et al., 2022)
innovates by incorporating bridging nodes between proteins and drugs, utilizing a three-layer GNN
for graph embeddings.

Transformer-based Methods Transformers, known for their efficacy in handling sequence data, are
extensively applied in drug and protein feature processing. For instance, models like MolTrans (Huang
et al., 2020b) and FOTFCPI (Yin et al., 2024) employ self-attention mechanisms to refine embeddings
by focusing on drug and protein substructures. MRBDTA (Zhang et al., 2022) uses multi-head
attention and skip connection to enhance drug and protein representation. Additionally, a cross-
attention mechanism (Pan et al., 2023b; Kurata & Tsukiyama, 2022) is employed to facilitate the
integration of drug and protein features, enabling effective mutual querying. TDGraphDTA (Zhu
et al., 2023) captures contextual relationships between molecular substructures by using a multi-
head cross-attention mechanism and graph optimization. Lastly, DrugormerDTI (Hu et al., 2023)
incorporates degree centrality with positional information to highlight the positional relevance of
amino acids in proteins.

Input and Featurization Structural information is crucial at the input stage for models such as
BridgeDPI (Wu et al., 2022). Various libraries, such as DGLGraph (Wang et al., 2019), DGL-
lifeSci (Li et al., 2021), and RDKit (Landrum et al., 2006), are employed to process input SMILES of
drugs, with RDKit (Landrum et al., 2006) being pivotal for converting SMILE strings into molecular
graphs and extracting diverse chemical properties, including chemical bonds, hydrogen presence,
electron properties, and so on. Additionally, some approaches (Wang et al., 2023; Lin et al., 2020;
Li et al., 2022; Wang et al., 2021) incorporate molecular fingerprints (Rogers & Hahn, 2010) to
capture local chemical information. For protein sequences, typical pre-processing involves converting
amino acid sequences into N-grams (Pan et al., 2023a; Dong et al., 2005) or integers (Nguyen et al.,
2020) sequences. To enhance the expressiveness of embeddings, some models leverage pre-trained
Word2Vec (Mikolov et al., 2013; Quan et al., 2019; Wang et al., 2023; Li et al., 2022; Tsubaki et al.,
2018; Lin et al., 2020; Cheng et al., 2022) or pretrained protein language models (Bal et al., 2024).

16

https://www.sciencedirect.com/science/article/pii/S0010482523010867
https://www.sciencedirect.com/science/article/pii/S0010482523010867


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B MODEL DESCRIPTIONS

This section provides a comprehensive overview of 31 DTI methods, which are classified into
GNN-based and Transformer-based approaches. The DTI framework can be simplified as using
two encoders to process drugs and proteins separately, followed by an MLP to handle the integrated
representations.

B.1 GNN-BASED METHODS

B.1.1 GCN

⋆ GraphDTA-GCN (Nguyen et al., 2020): GraphDTA-GCN uses GCN to process the molecular
graph, which is derived from SMILES using the RDkit tool, and a simple CNN with integer encoding
to handle protein sequences.

⋆ GraphCPI-GCN (Quan et al., 2019): Similar to GraphDTA, GraphCPI-GCN employs 3-gram
encoding with pretrained Word2Vec to process protein sequences, followed by a CNN to handle the
protein embeddings.

⋆ MGraphDTA (Yang et al., 2022): MGraphDTA utilizes a multiscale GCN, inspired by dense
connections, and a multiscale CNN to process drug graphs and protein sequences, respectively.

⋆ SAGDTA (Zhang et al., 2021): Similar to GraphDTA, SAGDTA introduces global or hierarchical
pooling after GCN to aggregate node representations weightedly.

⋆ EmbedDTI (Jin et al., 2021): For protein sequences, EmbedDTI leverages GloVe for pretraining
amino acid feature embeddings, which are then fed into a CNN. For drugs, it constructs both an atom
graph and a substructure graph to capture structural information at different levels, processed by
GCN.

⋆ DeepGLSTM (Mukherjee et al., 2022): DeepGLSTM processes molecular graphs using a parallel
GCN module composed of three GCNs with different layers. For protein sequences, it adopts a
bi-LSTM.

⋆ CPI (Tsubaki et al., 2018): CPI processes drug graphs using GCN. The protein sequence is handled
via n-gram with integer encoding, followed by a CNN.

⋆ DeepNC (Tran et al., 2022): DeepNC adopts advanced techniques from generalized aggregation
networks and hypergraph convolution, two variants of GCN, to capture the representations of drug.
For protein sequences, it uses a simple CNN.

⋆ DrugBAN (Zhang et al., 2022): DrugBAN employs GCN and CNN blocks to encode molecular
graph and proteins, respectively. Then they use a bilinear attention network module to learn local
interactions between the representations of drugs and proteins.

⋆ BridgeDPI (Wu et al., 2022): BridgeDPI innovates by constructing a learnable drug–protein
association network, which is processed using a three-layer GNN for graph embeddings. The learned
representations for drug and protein pairs are then concatenated for further processing.

⋆ ColdDTA (Fang et al., 2023): ColdDTA removes the subgraphs of drugs. For the model, they
adopt the dense GCN and multiscale CNN from MGraphDTA as the encoders for drugs and proteins,
respectively. Additionally, an attention-based method is developed to integrate representations for
improved prediction.

⋆ IMAEN (Zhang et al., 2024): IMAEN employs a molecular augmentation mechanism to enhance
molecular structures by fully aggregating molecular node neighborhood information. It then uses
multiscale GCN and CNN for drug and protein processing, respectively.

⋆ GanDTI (Wang et al., 2021): Inspired by residual networks, GanDTI add the input drug fingerprints
to the output of three GCN layers as graph node features and use summation to get the final drug
representation.
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B.1.2 GAT

⋆ GraphDTA-GAT (Nguyen et al., 2020): GraphDTA-GAT adopts a GAT as the encoder for drugs,
while other components remain the same as in GraphDTA-GCN.

⋆ GraphDTA-GATGCN (Nguyen et al., 2020): GraphDTA-GATGCN adopts a combination of GAT
and GCN as the encoder for drugs, while other components remain the same as in GraphDTA-GCN.

⋆ GraphCPI-GAT (Quan et al., 2019): GraphDTA-CPI adopts a GAT as the encoder for drugs, while
other components remain the same as in GraphCPI-GCN.

⋆ GraphCPI-GATGCN (Quan et al., 2019): GraphCPI-GATGCN adopts a combination of GAT and
GCN as the encoder for drugs, while other components remain the same as in GraphCPI-GCN.

⋆ BACPI (Li et al., 2022): BACPI adopts a GAT and a CNN for the features of the fingerprints
and protein sequence, respectively. These features are then fed into a bi-directional attention neural
network to obtain integrated representations.

⋆ PGraphDTA-CNN (Bal et al., 2024): PGraphDTA-CNN is a straightforward method that utilizes
GAT for drug feature extraction and CNN for protein sequences.

B.2 GIN

⋆ GraphDTA-GIN (Nguyen et al., 2020): GraphDTA-GAT adopts a GAT as the encoder for drugs,
while other components remain the same as in GraphDTA-GCN.

⋆ GraphCPI-GIN (Quan et al., 2019): GraphDTA-GAT adopts a GAT as the encoder for drugs, while
other components remain the same as in GraphDTA-GCN.

⋆ SubMDTA (Pan et al., 2023a): SubMDTA utilizes a pretrained GIN encoder obtained through
contrastive learning for the molecular graph. For protein sequences, it employs N-gram embedding
with different N to extract features at various scales, which are then processed by a BiLSTM.

B.3 TRANSFORMER-BASED METHODS

B.3.1 SELF-ATTENTION

⋆ AMMVF (Wang et al., 2023): AWMVF introduces the multi-head mechanism to GAT to learn
features in different spaces, and the update function is obtained through the concatenation of different
heads’ outputs.

⋆ IIFDTI (Cheng et al., 2022): IIFDTI model attains the drug matrix and protein matrix and inputs
them to the bi-directional encoder-decoder block, which considers both the drug and target directions.
The decoder is mainly composed of multi-head attention.

⋆ MolTrans (Huang et al., 2020b): MolTrans uses transformer encoder layers to augment the
embedding of sub-structure sequences of proteins and drugs.

⋆ FOTFCPI (Yin et al., 2024): Similar to MolTrans, FOTFCPI uses transformer encoder layers to
extract the features of protein and drug fragments after the embedding layers.

⋆ TransformerCPI (Chen et al., 2020): TransformerCPI uses the decoder module of Transformer,
which takes in the atom sequence embedding processed by GCN and the protein sequence embedding
processed by word2vec and 1D CNN.

⋆ MRBDTA (Zhang et al., 2022): In MRBDTA, after the embedding layer, drug sequences are directly
fed into a block consisting of three Transformer encoders. The first encoder has a linear layer before
it and the following two encoders are parallel. The protein sequence is also processed by a block with
similar structure.

B.3.2 CROSS ATTENTION

⋆ CSDTI(Pan et al., 2023b): CSDTI use cross attention to fuse the deep representations of drugs
and proteins. Specifically, the different projections of protein feature are used as key and value
respectively while the projection of drug feature is used as query.
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⋆ TDGraphDTA(Zhu et al., 2023): TDGraphDTA use a multi-head cross-attention mechanism with
two attention heads. Both drug and protein features are linearly transformed into query, key and value
matrices. One cross attention layer uses a drug query matrix, a protein key matrix, and a protein value
matrix, while its parallel counterparts use the rest of the matrices. The outputs of these two layers are
concatenated and fed into MLP to get the final output.
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C DATASETS DESCRIPTIONS

In this subsection, we provide a detailed description of the datasets for both the regression task and
classification task. The statistical characteristics of the datasets are summarized in Table 4.

Regression Classification
Davis KIBA BindingDB Kd Human C. elegans DrugBank

Number of drugs 68 2068 10661 2726 1767 6645
Number of target proteins 379 229 1413 2001 1876 4256
Number of total samples 25772 117657 52274 6728 7786 35021

Table 4: Statistics of the benchmark dataset for two tasks.

(a) Label distribution of DVAIS, KIBA and
Binding Kd for regression tasks.

(b) Label distribution of Human, C. elegans
and Drugbank for classification tasks.

Figure 6: Label distribution of different datasets for two tasks.

D EVALUATION METRICS

We adopt distinct sets of metrics to evaluate the classification and regression tasks. In particular,
considering the classification task, we utilize the common metrics including Area Under Receiver
Operating Characteristic Curve (ROC-AUC), Precision-Recall Area Under Curve (PR-AUC), Lo-
gAUC, accuracy, precision, recall, and F1 score. For the continuous binding affinity regression, we
benchmark the models using metrics of mean squared error (MSE), mean absolute error (MAE),
coefficient of determination (R2), Pearson correlation coefficient, Concordance Index (CI), and
Spearman correlation coefficient. Each of these metrics offers unique insights into different aspects
of model performance, allowing us to assess predictive accuracy, correlation with observed values,
and consistency in ranking predictions.
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E GREEDY SEARCH ON HYPERPARAMETER

Here we present the detailed experiment on hyperparameters with full metrics. The detailed review
of the hyperparameters associated with the selected models is in Table 5. The detailed greedy
hyperparameter seraching results on Davis and Human datasets are in Table 6.

Category Models Batch size Total epoch Learning rate & Decay & Decay epoch Weight decay Dropout Optimizer

GNN

GraphDTA-GCN (Nguyen et al., 2020) 512 1000 0.0005 - 0.2 Adam
GraphDTA-GAT (Nguyen et al., 2020) 512 1000 0.0005 - 0.2 Adam
GraphDTA-GATGCN (Nguyen et al., 2020) 512 1000 0.0005 - 0.2 Adam
GraphDTA-GIN (Nguyen et al., 2020) 512 1000 0.0005 - 0.2 Adam
GraphCPI-GCN (Quan et al., 2019) 512 1000 0.0005 - 0.2 Adam
GraphCPI-GAT (Quan et al., 2019) 512 1000 0.0005 - 0.2 Adam
GraphCPI-GATGCN (Quan et al., 2019) 512 1000 0.0005 - 0.2 Adam
GraphCPI-GIN (Quan et al., 2019) 512 1000 0.0005 - 0.2 Adam
MGraphDTA (Yang et al., 2022) 512 292 0.0005 - 0.1 Adam
SAGDTA (Zhang et al., 2021) 512 2000 0.001 - 0.1 Adam
EmbedDTI (Jin et al., 2021) 512 1500 0.0005 - 0.2 Adam
DeepGLSTM (Mukherjee et al., 2022) 128 1000 0.0005 - 0.2 Adam
CPI (Tsubaki et al., 2018) 1 100 {0.001, 0.5, 10} 1e-6 0 Adam
BACPI (Li et al., 2022) 16 20 {0.0005, 0.5, 10} - 0.1 Adam
DeepNC-HGC (Tran et al., 2022) 256 1000 0.0005 - 0.2 Adam
DeepNC-GEN (Tran et al., 2022) 256 1000 0.0005 - 0.2 Adam
DrugBAN (Bai et al., 2023) 64 100 0.0005 - 0 Adam
GANDTI (Wang et al., 2021) 1 30/15 0.001 1e-6 0.5 Adam
PGraphDTA-CNN (Bal et al., 2024) 512 1500 0.0005 - 0.2 Adam
BridgeDPI (Wu et al., 2022) 512 100 0.001 - 0.5 Adam
ColdDTA (Fang et al., 2023) 128 292 0.003 - 0 Adam
SubMDTA (Pan et al., 2023a) 512 1200 0.0005 - 0.2 Adam
IMAEN (Zhang et al., 2024) 128 1000 0.0005 - 0.2 Adam

Transformer

CSDTI (Pan et al., 2023b) 256 292 0.0005 - {0.5,0.2} Adam
AMMVF (Wang et al., 2023) 32 40 {0.001, 0.5, 5} 1e-4 0.1 Adam
TDGraphDTA (Zhu et al., 2023) 1024 3000 0.0005 - 0.1 Adam
IIFDTI (Cheng et al., 2022) 64 100 0.001 1e-6 0.2 AdamW
ICAN (Kurata & Tsukiyama, 2022) 128 50 0.001 - 0.1 Adam
MolTrans (Huang et al., 2020b) 16 13 0.001 - 0.1 Adam
TransformerCPI (Chen et al., 2020) 8 40 0.0001 0.0001 0.2 Radam
MRBDTA (Zhang et al., 2022) 256 300 0.001 - 0.1 Adam
FOTFCPI (Yin et al., 2024) 64 100 0.0001 - 0.1 Adam

Table 5: Configurations of basic hyperparameters adopted to implement different approaches for
Drug-Target task.

Models Hyper parameter Regression Classification

Batch size Learning rate Dropout MSE MAE R2 PCC CI Spearman ROC-AUC PR-AUC Range-AUC Acc. Precision Recall F1

GraphDTA

512 0.0005 0.2 0.2838 0.3053 0.5773 0.7619 0.8508 0.6226 0.9117 0.8807 0.4712 0.9117 0.9157 0.9125 0.9141
256 0.0005 0.2 0.2781 0.2924 0.5859 0.7677 0.8523 0.6250 0.9132 0.8805 0.4584 0.9135 0.9115 0.9218 0.9165
128 0.0005 0.2 0.2634 0.2552 0.6077 0.7840 0.8700 0.6828 0.9134 0.8822 0.4716 0.9135 0.9157 0.9166 0.9160
64 0.0005 0.2 0.2591 0.2506 0.6141 0.7885 0.8634 0.6862 0.9121 0.8793 0.4608 0.9123 0.9112 0.9195 0.9153
512 0.0001 0.2 0.3209 0.3148 0.5221 0.7299 0.8369 0.6008 0.9165 0.8851 0.4775 0.9168 0.9159 0.9232 0.9195
512 0.001 0.2 0.2909 0.3076 0.5668 0.7812 0.8425 0.6073 0.9133 0.8827 0.4765 0.9134 0.9172 0.9145 0.9157
512 0.0005 0 0.2827 0.2923 0.5791 0.7632 0.8527 0.6267 0.9177 0.8863 0.4764 0.9180 0.9163 0.9252 0.9207
512 0.0005 0.1 0.2771 0.2947 0.5873 0.7695 0.8521 0.6241 0.9170 0.8873 0.4830 0.9171 0.9204 0.9189 0.9194
512 0.0005 0.5 0.2951 0.3165 0.5605 0.7494 0.8478 0.6176 0.9128 0.8819 0.4637 0.9129 0.9161 0.9151 0.9155

GraphCPI

512 0.0005 0.2 0.3173 0.3309 0.5275 0.7325 0.8267 0.5825 0.9049 0.8687 0.4275 0.9053 0.9005 0.9177 0.9089
256 0.0005 0.2 0.2781 0.2924 0.5859 0.7677 0.8523 0.6250 0.9058 0.8712 0.4394 0.9061 0.9047 0.9140 0.9093
128 0.0005 0.2 0.3064 0.2988 0.5436 0.7402 0.8467 0.6213 0.9085 0.8762 0.4602 0.9086 0.9115 0.9111 0.9112
64 0.0005 0.2 0.3484 0.3569 0.4812 0.6944 0.8249 0.5850 0.9123 0.8774 0.4453 0.9128 0.9060 0.9270 0.9163
512 0.0001 0.2 0.3461 0.3494 0.4846 0.7075 0.8317 0.5927 0.9063 0.8691 0.4217 0.9068 0.8985 0.9235 0.9107
512 0.001 0.2 0.2870 0.2733 0.5726 0.7631 0.8598 0.6416 0.9064 0.8717 0.4438 0.9067 0.9048 0.9151 0.9099
512 0.0005 0 0.3431 0.3527 0.4891 0.7096 0.8297 0.5890 0.9060 0.8709 0.4386 0.9064 0.9036 0.9160 0.9097
512 0.0005 0.1 0.3291 0.3388 0.5100 0.7265 0.8294 0.5885 0.9060 0.8706 0.4385 0.9064 0.9029 0.9169 0.9098
512 0.0005 0.5 0.3329 0.3264 0.5043 0.7304 0.8361 0.6211 0.9064 0.8702 0.4286 0.9068 0.9010 0.9203 0.9105

MRBDTA

128 0.001 0.1 0.2397 0.2648 0.6430 0.8025 0.8716 0.6546 0.9340 0.9119 0.5240 0.9338 0.9427 0.9281 0.9353
64 0.001 0.1 0.2504 0.2679 0.6272 0.7935 0.8674 0.6483 0.9348 0.9113 0.5219 0.9348 0.9396 0.9336 0.9365
32 0.001 0.1 0.2567 0.2721 0.6177 0.7878 0.8622 0.6400 0.9328 0.9127 0.5331 0.9324 0.9474 0.9200 0.9334
128 0.0005 0.1 0.2350 0.2565 0.6499 0.8069 0.8775 0.6639 0.9382 0.9164 0.5304 0.9381 0.9442 0.9353 0.9397
128 0.0001 0.1 0.2335 0.2696 0.6523 0.8084 0.8767 0.6630 0.9372 0.9171 0.5350 0.9370 0.9481 0.9284 0.9381
128 0.001 0 0.2425 0.2663 0.6388 0.7997 0.8739 0.6587 0.9279 0.9010 0.4997 0.9280 0.9294 0.9316 0.9303
128 0.001 0.2 0.2408 0.2620 0.6414 0.8027 0.8679 0.6478 0.9438 0.9218 0.5363 0.9438 0.9450 0.9460 0.9454
128 0.001 0.5 0.2584 0.2666 0.6153 0.7894 0.8727 0.6573 0.9328 0.9123 0.5295 0.9325 0.9462 0.9215 0.9336

TransformerCPI

128 0.001 0.1 0.3747 0.4111 0.4420 0.6787 0.8164 0.5668 0.9294 0.9024 0.5047 0.9296 0.9301 0.9339 0.9317
64 0.001 0.1 0.5916 0.5422 0.1191 0.3531 0.6644 0.3014 0.9318 0.9061 0.5100 0.9319 0.9337 0.9342 0.9339
32 0.001 0.1 0.6219 0.5197 0.0740 0.2993 0.6360 0.2506 0.9269 0.8959 0.4860 0.9273 0.9198 0.9411 0.9302
128 0.0005 0.1 0.2869 0.3389 0.5728 0.7750 0.8326 0.5910 0.9270 0.9008 0.5030 0.9270 0.9312 0.9270 0.9290
128 0.0001 0.1 0.2877 0.3411 0.5716 0.7674 0.8348 0.5950 0.9208 0.8898 0.4664 0.9211 0.9181 0.9307 0.9239
128 0.001 0 0.3874 0.3948 0.4232 0.6481 0.7985 0.5358 0.9297 0.9015 0.4999 0.9300 0.9272 0.9376 0.9324
128 0.001 0.2 0.5181 0.5219 0.2284 0.5249 0.7476 0.4494 0.9236 0.8938 0.4780 0.9239 0.9217 0.9319 0.9265
128 0.001 0.5 1.5318 1.1598 -1.2809 0.2866 0.6441 0.2647 0.9218 0.8895 0.4746 0.9223 0.9153 0.9359 0.9253

Table 6: The greedy hyperparameter searching results for two graph-based models and two
transformer-based models on regression (DAVIS) and classification task (Human).
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F COMPARISON OF DIFFERENT FEATURIZATION

In this section, we present the summarized featurization methods in Table 7, the detailed description
of all properties is shown in Table 8. Besides, an ablation study on featurization strategies is in Table
9.

Model Information Atomic Properties Hydrogen Information Electron Properties Stereochemistry Structure
Models Graph Atom Type Degree Implicit Valence Explicit Valence Hybridization Aromaticity Formal Charge # Atom # Hs # Explicit Hs # Implicit Hs # Radical Electrons Electron Affinity CIP Chirality Ring

GraphDTA Mol. Graphs ✓ ✓ ✓ ✓ ✓
GraphCPI Mol. Graphs ✓ ✓ ✓ ✓ ✓
MGraphDTA Mol. Graphs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
SAGDTA Mol. Graphs ✓ ✓ ✓ ✓ ✓
EmbedDTI Mol. Graphs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
DeepGLSTM Mol. Graphs ✓ ✓ ✓ ✓ ✓
CPI Fingerprints ✓ ✓
BACPI Fingerprints ✓ ✓
DeepNC Mol. Graphs ✓ ✓ ✓ ✓ ✓
DrugBAN Mol. Graphs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
GANDTI Fingerprints ✓ ✓
PGraphDTA-CNN Mol. Graphs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
BridgeDPI Mol. Graphs ✓ ✓ ✓ ✓ ✓ ✓
ColdDTA Mol. Graphs ✓ ✓ ✓ ✓ ✓ ✓ ✓
SubMDTA Mol. Graphs ✓ ✓ ✓ ✓ ✓
IMAEN Mol. Graphs ✓ ✓ ✓ ✓ ✓
CSDTI Mol. Graphs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
TDGraphDTA Mol. Graphs ✓ ✓ ✓ ✓ ✓
AMMVF Both ✓ ✓ ✓ ✓ ✓ ✓ ✓
TransformerCPI Mol. Graphs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 7: Summary of the featurization of GNN-based model. Mol. Graphs means Molecular graphs,
and both means using molecular graphs and fingerprints.

Name Description
Atomic Properties

Atom Type Type of the atom (e.g., C, N, O, H)
Degree Number of directly bonded neighbors
Implicit Valence Number of implicit valence of the atom
Explicit Valence Number of explicit valence of the atom
Hybridization The state of hybridization (e.g., sp3, sp2)
Aromaticity Whether the atom is part of an aromatic system
Formal Charge The charge assigned to an atom
# Atom Total number of atoms

Hydrogen Information
# Hs Total number of hydrogens
# Explicit Hs Number of explicit hydrogens on the atom
# Implicit Hs Number of implicit hydrogens on the atom

Electron Properties
# Radical Electrons Number of radical electrons
Electron Affinity Tendency of an atom to accept electrons

Stereochemistry
CIP The CIP code (R or S) of the atom
Chirality If an atom is a possible chiral center

Structure
Ring Whether the atom is part of a ring structure

Table 8: Description of atomic and molecular properties for node featurization

Models Intial Feature Regression Classification

MSE MAE R2 PCC CI Spearman ROC-AUC PR-AUC Range-AUC Acc. Precision Recall F1

GraphDTA

Basic 0.2771 0.2947 0.5873 0.7695 0.8521 0.6241 0.9170 0.8873 0.4830 0.9171 0.9204 0.9189 0.9194
Basic+AP 0.2772 0.2978 0.5873 0.7671 0.8496 0.6200 0.9153 0.8817 0.4517 0.9157 0.9099 0.9290 0.9191
Basic+HI 0.2783 0.2983 0.5855 0.7663 0.8483 0.6185 0.9211 0.8903 0.4815 0.9214 0.9188 0.9296 0.9241
Basic+EP 0.2775 0.3068 0.5868 0.7682 0.8499 0.6205 0.9165 0.8862 0.4795 0.9166 0.9185 0.9198 0.9191
Basic+Ste 0.2838 0.3030 0.5773 0.7624 0.8523 0.6254 0.9200 0.8905 0.4869 0.9200 0.9216 0.9235 0.9224
Basic+Str 0.2783 0.2991 0.5857 0.7668 0.8505 0.6228 0.9198 0.8865 0.4649 0.9202 0.9124 0.9351 0.9235
Basic+AP+HI 0.2851 0.3029 0.5755 0.7610 0.8504 0.6222 0.9163 0.8822 0.4629 0.9168 0.9094 0.9313 0.9201
Basic+AP+HI+EP 0.2845 0.2917 0.5763 0.7620 0.8510 0.6227 0.9140 0.8811 0.4580 0.9143 0.9115 0.9232 0.9173
Basic+AP+HI+EP+Ste 0.2811 0.3099 0.5814 0.7640 0.8500 0.6212 0.9192 0.8899 0.4853 0.9193 0.9218 0.9215 0.9216
Basic+AP+HI+EP+Ste+Str 0.2801 0.2916 0.5829 0.7659 0.8538 0.6278 0.9217 0.8905 0.4794 0.9220 0.9180 0.9319 0.9248

GraphCPI

Basic 0.3291 0.3388 0.5100 0.7265 0.8294 0.5885 0.9060 0.8706 0.4385 0.9064 0.9029 0.9169 0.9098
Basic+AP 0.3331 0.3389 0.5040 0.7198 0.8223 0.5761 0.9038 0.8657 0.4103 0.9043 0.8955 0.9218 0.9084
Basic+HI 0.3402 0.3457 0.4934 0.7157 0.8228 0.5769 0.9051 0.8713 0.4495 0.9052 0.9058 0.9094 0.9080
Basic+EP 0.3408 0.3505 0.4926 0.7123 0.8211 0.5749 0.9053 0.8713 0.4442 0.9055 0.9060 0.9111 0.9085
Basic+Ste 0.3398 0.3634 0.4940 0.7119 0.8274 0.5855 0.9061 0.8692 0.4261 0.9065 0.8992 0.9221 0.9104
Basic+Str 0.3419 0.3562 0.4909 0.7113 0.8226 0.5766 0.9066 0.8683 0.4079 0.9073 0.8957 0.9281 0.9115
Basic+AP+HI 0.3326 0.3471 0.5048 0.7212 0.8210 0.5734 0.9010 0.8659 0.4288 0.9012 0.9018 0.9071 0.9043
Basic+AP+HI+EP 0.3404 0.3476 0.4931 0.7150 0.8212 0.5748 0.9015 0.8612 0.3821 0.9022 0.8890 0.9258 0.9070
Basic+AP+HI+EP+Ste 0.3403 0.3445 0.4932 0.7111 0.8169 0.5671 0.9109 0.8763 0.4511 0.9113 0.9065 0.9229 0.9146
Basic+AP+HI+EP+Ste+Str 0.3469 0.3550 0.4834 0.7073 0.8228 0.5775 0.9134 0.8772 0.4440 0.9140 0.9033 0.9328 0.9178

Table 9: Extra Graph embedding feature exploration. Here Basic: {Atom Type, Degree, Implicit
Valence, Aromaticity, # Hs}
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G FULL EXPERIMENT

The complete result on the regression task is shown in Table 10, and the complete result on classi-
fication task is shown in Table 11. All experiments are run on the RTX 3090 with more than 1000
hours.

Category Models DAVIS KIBA BindingDB
MSE MAE R2 PCC CI Spearman MSE MAE R2 PCC CI Spearman MSE MAE R2 PCC CI Spearman

GNN

GraphDTA-GCN 0.2771 0.2947 0.5873 0.7695 0.8521 0.6241 0.0005 0.0155 0.3924 0.6291 0.7502 0.6448 0.5033 0.4314 0.7259 0.8536 0.8576 0.7795
GraphDTA-GAT 0.2806 0.2928 0.5820 0.7856 0.8576 0.6331 0.0004 0.0123 0.6012 0.7720 0.7977 0.7259 0.5613 0.4460 0.6943 0.8358 0.8496 0.7662
GraphDTA-GATGCN 0.2570 0.2798 0.6173 0.7867 0.8607 0.6380 0.0004 0.0126 0.6128 0.7836 0.8086 0.7357 0.5447 0.4450 0.7033 0.8415 0.8489 0.7641
GraphDTA-GIN 0.2309 0.2714 0.6562 0.8105 0.8711 0.6540 0.0004 0.0131 0.5544 0.7451 0.7996 0.7400 0.5033 0.4314 0.7259 0.8537 0.8576 0.7795
GraphCPI-GCN 0.3291 0.3388 0.5100 0.7265 0.8294 0.5885 0.0006 0.0156 0.3454 0.5864 0.7378 0.6154 0.6372 0.5002 0.6530 0.8133 0.8329 0.7360
GraphCPI-GAT 0.3649 0.3852 0.4566 0.7609 0.8498 0.6215 0.0007 0.0179 0.1836 0.4196 0.6845 0.4896 0.6565 0.5007 0.6424 0.8163 0.8350 0.7407
GraphCPI-GATGCN 0.3078 0.3193 0.5416 0.7397 0.8365 0.5995 0.0005 0.0156 0.4062 0.6421 0.7530 0.6522 0.6023 0.4858 0.6719 0.8242 0.8370 0.7442
GraphCPI-GIN 0.2413 0.2848 0.6407 0.8020 0.8671 0.6478 0.0005 0.0138 0.4963 0.7093 0.7808 0.7049 0.5069 0.4247 0.7239 0.8531 0.8572 0.7784
MGraphDTA 0.2179 0.2355 0.6755 0.8239 0.8820 0.6704 0.0003 0.0090 0.7208 0.8508 0.8649 0.8439 0.4887 0.3852 0.7338 0.8586 0.8649 0.7897
SAGDTA 0.2656 0.2796 0.6045 0.7805 0.8675 0.6498 0.0039 0.0127 -3.3777 0.5064 0.8096 0.7547 0.6590 0.4709 0.6410 0.8061 0.8366 0.7418
EmbedDTI 0.2561 0.2798 0.6186 0.7874 0.8624 0.6410 0.0007 0.0175 0.2364 0.6864 0.6374 0.6897 0.5095 0.4193 0.7225 0.8516 0.8559 0.7765
DeepGLSTM 0.2915 0.2941 0.5659 0.7605 0.8476 0.6176 0.0003 0.0101 0.6919 0.8325 0.8480 0.8231 0.5385 0.4246 0.7067 0.8433 0.8529 0.7713
CPI 0.3503 0.3428 0.4784 0.6692 0.8319 0.5873 0.0003 0.0117 0.6274 0.7926 0.8190 0.7767 0.6962 0.5244 0.6208 0.7900 0.8261 0.7252
BACPI 0.4036 0.3534 0.3990 0.6518 0.7982 0.5373 0.0006 0.0122 0.5320 0.7338 0.8175 0.7719 0.6468 0.4805 0.6477 0.8109 0.8297 0.7303
DeepNC-HGC 0.2782 0.3010 0.5857 0.7669 0.8551 0.6297 0.0005 0.0141 0.4983 0.7127 0.7823 0.7052 0.5611 0.4512 0.6944 0.8367 0.8464 0.7600
DeepNC-GEN 0.2543 0.2830 0.6213 0.7893 0.8634 0.6419 0.0004 0.0132 0.5355 0.7447 0.7981 0.7349 0.5561 0.4350 0.6971 0.8395 0.8496 0.7629
DrugBAN 0.2391 0.2663 0.6440 0.8035 0.8757 0.6619 0.0004 0.0104 0.5611 0.7665 0.8388 0.8081 0.4485 0.3945 0.7557 0.8696 0.8693 0.7989
GANDTI 0.3082 0.3305 0.5410 0.7391 0.8414 0.6079 0.0003 0.0108 0.6569 0.8146 0.8342 0.8045 0.6714 0.5221 0.6343 0.7999 0.8322 0.7342
PGraphDTA-CNN 0.3273 0.3891 0.5126 0.7929 0.8701 0.6542 0.0005 0.0144 0.4833 0.6928 0.7473 0.6217 0.5334 0.4365 0.7095 0.8500 0.8590 0.7833
BridgeDPI 0.3623 0.3432 0.6477 0.8062 0.8991 0.6704 0.0004 0.0133 0.5686 0.7357 0.7849 0.7239 0.4482 0.3900 0.7559 0.8702 0.8698 0.7982
ColdDTA 0.2346 0.2511 0.6507 0.8083 0.8693 0.6501 0.0004 0.0129 0.5948 0.7764 0.8018 0.7451 0.4697 0.3783 0.7442 0.8645 0.8644 0.7866
SubMDTA 0.2326 0.2726 0.6537 0.8091 0.8691 0.6503 0.0003 0.0098 0.6855 0.8324 0.8485 0.8243 0.4566 0.3995 0.7513 0.8677 0.8670 0.7953
IMAEN 0.2412 0.2764 0.6409 0.8029 0.8721 0.6557 0.0004 0.0122 0.5800 0.7632 0.8061 0.7494 0.4720 0.3935 0.7429 0.8637 0.8553 0.7938

Transformer

CSDTI 0.3029 0.3011 0.5490 0.7436 0.8395 0.6045 0.0007 0.0184 0.2448 0.4504 0.6475 0.3937 0.6408 0.4723 0.6510 0.8118 0.8369 0.7422
TDGraphDTA 0.2217 0.2399 0.6698 0.8201 0.6685 0.8804 0.0008 0.0292 0.0533 0.2604 0.3429 0.6243 0.4750 0.3894 0.7413 0.8631 0.7887 0.8642
AMMVF 0.3325 0.3433 0.5048 0.7238 0.8307 0.5896 0.0006 0.0147 0.4696 0.6957 0.7711 0.6879 0.6597 0.4879 0.6407 0.8086 0.8336 0.7398
IIFDTI 0.2741 0.3006 0.5918 0.7816 0.8500 0.6202 0.0005 0.0156 0.2584 0.7894 0.7952 0.7439 0.5097 0.4474 0.7170 0.8576 0.8585 0.7792
ICAN 0.3481 0.3185 0.4816 0.7168 0.8211 0.5822 0.0008 0.0194 0.1159 0.7646 0.8256 0.7877 0.6582 0.5028 0.6415 0.8145 0.8277 0.7271
MolTrans 0.2588 0.2740 0.6146 0.7906 0.8601 0.5927 0.0003 0.0114 0.6378 0.8064 0.8453 0.7865 0.5138 0.4101 0.7201 0.8517 0.8570 0.7786
TransformerCPI 0.2869 0.3389 0.5728 0.7750 0.8326 0.5910 0.0008 0.0233 0.0728 0.8051 0.8357 0.7809 0.5704 0.4624 0.6894 0.8394 0.8426 0.7507
MRBDTA 0.2350 0.2565 0.6499 0.8069 0.8775 0.6639 0.0006 0.0171 0.3210 0.5718 0.7239 0.5878 0.4977 0.4133 0.7289 0.8557 0.8629 0.7874
FOTFCPI 0.2803 0.3004 0.5825 0.7704 0.8546 0.6286 0.0004 0.0133 0.5342 0.7552 0.7947 0.7353 0.5743 0.4472 0.6872 0.8322 0.8444 0.7569
our 0.2063 0.2481 0.6927 0.8330 0.8901 0.6839 0.0003 0.0094 0.7168 0.8512 0.8677 0.8432 0.4651 0.3878 0.7467 0.8657 0.8683 0.7956

Table 10: Regression task benchmark on DAVIS, KIBA, and BindingDB datasets, respectively.

Categories Models Human C.elegans Drugbank
ROC-AUC PR-AUC Range-AUC Acc. Precision Recall F1 ROC-AUC PR-AUC Range-AUC Acc. Precision Recall F1 ROC-AUC PR-AUC Range-AUC Acc. Precision Recall F1

GNN

GraphDTA-GCN 0.9222 0.8922 0.4852 0.9224 0.9210 0.9293 0.9251 0.9488 0.9174 0.5342 0.9468 0.9368 0.9564 0.9465 0.7590 0.6925 0.1490 0.7589 0.7458 0.7842 0.7645
GraphDTA-GAT 0.8935 0.8557 0.3986 0.8937 0.8925 0.9024 0.8974 0.9289 0.8909 0.4942 0.9287 0.9154 0.9423 0.9286 0.7684 0.7030 0.1595 0.7683 0.7587 0.7855 0.7718
GraphDTA-GATGCN 0.9296 0.9024 0.5030 0.9297 0.9298 0.9342 0.9319 0.9487 0.9176 0.5318 0.9484 0.9335 0.9640 0.9485 0.7712 0.7046 0.1585 0.7711 0.7573 0.7968 0.7764
GraphDTA-GIN 0.9019 0.8674 0.4393 0.9021 0.9037 0.9065 0.9051 0.9470 0.9174 0.5342 0.9468 0.9368 0.9564 0.9465 0.7871 0.7232 0.1797 0.7871 0.7797 0.7988 0.7892
GraphCPI-GCN 0.9034 0.8649 0.4048 0.9040 0.8941 0.9229 0.9083 0.9322 0.8940 0.4967 0.9319 0.9155 0.9493 0.9320 0.7362 0.6688 0.1292 0.7361 0.7178 0.7764 0.7459
GraphCPI-GAT 0.8935 0.8557 0.3986 0.8937 0.8925 0.9024 0.8974 0.9281 0.8913 0.4965 0.9279 0.9181 0.9373 0.9275 0.7515 0.6862 0.1470 0.7515 0.7433 0.7667 0.7548
GraphCPI-GATGCN 0.9097 0.8763 0.4644 0.9099 0.9090 0.9169 0.9129 0.9372 0.9028 0.5109 0.9370 0.9245 0.9496 0.9369 0.7561 0.6909 0.1508 0.7561 0.7479 0.7711 0.7593
GraphCPI-GIN 0.8870 0.8484 0.3791 0.8872 0.8881 0.8935 0.8908 0.9407 0.9072 0.5173 0.9405 0.9270 0.9543 0.9404 0.7866 0.7241 0.1845 0.7866 0.7840 0.7903 0.7870
MGraphDTA 0.9408 0.9166 0.5244 0.9410 0.9393 0.9466 0.9429 0.9631 0.9407 0.5795 0.9630 0.9535 0.9723 0.9628 0.8146 0.7539 0.2154 0.8146 0.8090 0.8228 0.8157
SAGDTA 0.9021 0.8728 0.4631 0.9018 0.9172 0.8897 0.9032 0.9380 0.9050 0.5165 0.9378 0.9281 0.9472 0.9375 0.7655 0.7018 0.1631 0.7655 0.7624 0.7700 0.7662
EmbedDTI - - - - - - - - - - - - - - 0.7625 0.6963 0.1526 0.7625 0.7504 0.7852 0.7674
DeepGLSTM 0.9180 0.8857 0.4758 0.9183 0.9145 0.9281 0.9212 0.9414 0.9103 0.5257 0.9412 0.9325 0.9496 0.9409 0.7640 0.6988 0.1567 0.7640 0.7551 0.7801 0.7674
CPI 0.9110 0.8789 0.4638 0.9111 0.9126 0.9152 0.9138 0.9312 0.8940 0.4983 0.9310 0.9176 0.9446 0.9309 0.7467 0.6812 0.1434 0.7466 0.7368 0.7683 0.7515
BACPI 0.9249 0.8958 0.4924 0.9251 0.9239 0.9313 0.9276 0.9556 0.9314 0.5637 0.9555 0.9493 0.9610 0.9551 0.7748 0.7100 0.1664 0.7748 0.7663 0.7895 0.7776
DeepNC-HGC 0.8796 0.8399 0.3579 0.8798 0.8823 0.8845 0.8834 0.9418 0.9106 0.5251 0.9417 0.9325 0.9504 0.9413 0.7673 0.7013 0.1571 0.7673 0.7556 0.7889 0.7718
DeepNC-GEN 0.9178 0.8873 0.4809 0.9180 0.9186 0.9224 0.9205 0.9501 0.9203 0.5385 0.9499 0.9366 0.9637 0.9498 0.7464 0.6785 0.1357 0.7463 0.7262 0.7928 0.7571
DrugBAN 0.9302 0.9048 0.5083 0.9302 0.9342 0.9299 0.9320 0.9596 0.9346 0.5645 0.9594 0.9478 0.9710 0.9593 0.8188 0.7610 0.2325 0.8188 0.8203 0.8157 0.8179
GANDTI 0.9333 0.9090 0.5162 0.9333 0.9374 0.9327 0.9351 0.9404 0.9082 0.5213 0.9403 0.9300 0.9504 0.9400 0.7427 0.6737 0.1298 0.7425 0.7188 0.7954 0.7550
PGraphDTA-CNN - - - - - - - - - - - - - - 0.7910 0.7260 0.1787 0.7910 0.7787 0.8117 0.7948
BridgeDPI 0.9456 0.9250 0.5435 0.9456 0.9485 0.9457 0.9471 0.9651 0.9470 0.6054 0.9651 0.9629 0.9663 0.9646 0.7825 0.7181 0.1742 0.7825 0.7739 0.7974 0.7853
ColdDTA 0.9420 0.9203 0.5348 0.9421 0.9453 0.9420 0.9436 0.9623 0.9403 0.5785 0.9622 0.9543 0.9697 0.9619 0.8186 0.7578 0.2175 0.8186 0.8108 0.8300 0.8203
SubMDTA 0.9326 0.9054 0.5066 0.9328 0.9304 0.9400 0.9351 0.9570 0.9313 0.5589 0.9568 0.9461 0.9674 0.9566 0.8045 0.7414 0.1968 0.8045 0.7946 0.8204 0.8072
IMAEN 0.9058 0.8719 0.4489 0.9059 0.9067 0.9111 0.9089 0.9506 0.9255 0.5546 0.9505 0.9469 0.9530 0.9500 0.7995 0.7365 0.1931 0.7994 0.7918 0.8113 0.8014

Transformer

CSDTI 0.8630 0.8216 0.3223 0.8630 0.8707 0.8620 0.8663 0.8962 0.8446 0.3710 0.8958 0.8759 0.9183 0.8966 0.7269 0.6626 0.1304 0.7269 0.7196 0.7420 0.7306
TDGraphDTA 0.9411 0.9226 0.5461 0.9409 0.9525 0.9316 0.9419 0.9573 0.9315 0.5591 0.9571 0.9460 0.9681 0.9569 0.8083 0.7448 0.1982 0.8082 0.7959 0.8281 0.8116
AMMVF 0.9287 0.9004 0.4994 0.9290 0.9268 0.9362 0.9314 0.9636 0.9426 0.5892 0.9635 0.9567 0.9700 0.9632 0.7814 0.7142 0.1717 0.7814 0.7728 0.7973 0.7849
IIFDTI 0.9392 0.9163 0.5279 0.9392 0.9420 0.9400 0.9409 0.9679 0.9500 0.6054 0.9679 0.9633 0.9718 0.9675 0.8084 0.7441 0.1950 0.8084 0.7934 0.8327 0.8125
ICAN 0.9387 0.9134 0.5194 0.9389 0.9361 0.9460 0.9410 0.9644 0.9479 0.6146 0.9644 0.9662 0.9613 0.9637 0.7731 0.7092 0.1682 0.7731 0.7681 0.7812 0.7745
MolTrans 0.9453 0.9233 0.5377 0.9455 0.9451 0.9492 0.9471 0.9639 0.9428 0.5847 0.9638 0.9565 0.9705 0.9634 0.7910 0.7283 0.1879 0.7909 0.7861 0.7988 0.7922
TransformerCPI 0.9311 0.9045 0.5060 0.9312 0.9316 0.9351 0.9333 0.9581 0.9343 0.5696 0.9580 0.9501 0.9655 0.9577 0.8097 0.7470 0.2024 0.8097 0.7992 0.8265 0.8125
MRBDTA 0.9447 0.9258 0.5521 0.9446 0.9523 0.9397 0.9458 0.9713 0.9569 0.6335 0.9713 0.9708 0.9710 0.9709 0.8102 0.7469 0.2003 0.8102 0.7978 0.8298 0.8134
FOTFCPI 0.9444 0.9235 0.5413 0.9444 0.9477 0.9443 0.9459 0.9673 0.9486 0.6009 0.9672 0.9618 0.9721 0.9669 0.7845 0.7188 0.1713 0.7845 0.7713 0.8075 0.7889
our 0.9435 0.9221 0.5400 0.9435 0.9462 0.9443 0.9451 0.9688 0.9518 0.6178 0.9688 0.9652 0.9718 0.9684 0.8035 0.7405 0.1961 0.8035 0.7941 0.8185 0.8061

Table 11: Classification task benchmark on Human, C.elegans, and Drugbank datasets, respectively.
Here − means that the method can not be reproduced on this datasets.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

H MEMORY AND PARAMETER COMPARISON

Categories Models Regression Classification
Model parameter Memory Usage (MB) Time(s) Model parameter Memory Usage (MB) Run Time (s)

Graph

GraphDTA-GCN 7.87 86.45 8.92 7.87 86.33 2.43
GraphDTA-GAT 6.58 104.71 9.62 6.58 99.40 2.43

GraphDTA-GATGCN 18.12 148.25 8.37 18.12 145.13 2.35
GraphDTA-GIN 5.97 78.00 12.33 5.95 77.47 3.13
GraphCPI-GCN 10.46 98.13 7.02 10.48 63.37 1.92
GraphCPI-GAT 9.16 116.19 9.38 9.18 112.34 2.48

GraphCPI-GATGCN 20.70 158.21 9.47 20.73 156.22 2.20
GraphCPI-GIN 8.55 88.55 12.54 8.56 88.02 2.92
MGraphDTA 11.75 235.97 69.84 11.43 217.15 17.59

SAGDTA 7.45 88.31 20.87 7.44 87.54 4.34
EmbedDTI 16.97 152.55 17.80 16.97 - -

DeepGLSTM 131.92 1287.92 20.69 131.93 1287.16 11.22
CPI 0.37 14.00 11.29 0.6 14.82 2.69

BACPI 4.05 1051.91 43.27 6.13 1058.95 12.38
DeepNC-HGC 16.61 123.70 9.85 16.60 123.65 3.46
DeepNC-GEN 18.84 174.00 11.35 18.84 166.55 3.46

DrugBAN 4.10 940.22 30.06 4.10 940.23 7.84
GANDTI 1.48 35.89 6.01 2.43 39.95 1.54

PGraphDTA-CNN 9.03 102.85 13.71 9.03 - -
BridgeDPI 39.32 232.53 16.27 39.32 232.53 4.36
ColdDTA 13.14 282.74 72.98 13.14 262.91 18.56
SubMDTA 169.37 992.61 35.12 195.50 1095.73 8.49

IMAEN 10.43 174.34 35.77 10.43 172.86 4.41

Transformer

CSDTI 9.67 281.23 17.66 9.66 281.02 4.35
TDGraphDTA 8.62 247.23 116.38 8.62 236.02 28.43

AMMVF 6.68 17847.62 216.20 7.49 17850.79 57.99
IIFDTI 10.75 7946.92 141.12 10.75 11890.79 56.95
ICAN 63.89 649.55 12.44 63.89 648.67 2.84

MolTrans 239.73 10624.55 70.19 239.74 10624.55 25.06
TransformerCPI 4.44 1219.58 28.98 4.45 1219.60 7.17

MRBDTA 17.83 3893.76 66.47 17.84 3893.78 16.13
FOTFCPI 189.15 6780.35 58.75 189.15 6780.35 14.80

Our 19.02 1081.99 94.71 19.02 1082.68 13.68

Table 12: Training time per epoch (s) and the max allocated memory (MB) for representative dataset
on both regression (Davis) and classification (Human) tasks when BS is 32.
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Figure 7: Model parameter and Memory usage comparison for various models on Human.
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