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Abstract
This paper focuses on the large-scale optimization
which is very popular in the big data era. The gra-
dient sketching is an important technique in the
large-scale optimization. Specifically, the random
coordinate descent algorithm is a kind of gradi-
ent sketching method with the random sampling
matrix as the sketching matrix. In this paper, we
propose a novel gradient sketching called GSGD
(Gaussian Sketched Gradient Descent). Com-
pared with the classical gradient sketching meth-
ods such as the random coordinate descent and
SEGA (Hanzely et al., 2018), our GSGD does not
require the importance sampling but can achieve
a fast convergence rate matching the ones of these
methods with importance sampling. Furthermore,
if the objective function has a non-smooth reg-
ularization term, our GSGD can also exploit the
implicit structure information of the regulariza-
tion term to achieve a fast convergence rate. Fi-
nally, our experimental results substantiate the
effectiveness and efficiency of our algorithm.

1. Introduction
Optimization is an important pillar of modern machine learn-
ing because it needs optimization algorithms to train ma-
chine learning models. In this paper, we consider the fol-
lowing composite optimization problem:

min
x∈Rd

F (x)
def
= f(x) + φ(x), (1)

where function f : Rd → R is µ-strongly convex and
differentiable, while the regularization term φ is convex but
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may be non-differentiable. There is a large class of machine
learning models that can be presented as Eq. (1) such as
the elastic net (Zou & Hastie, 2005) and sparse logistic
regression (Xiao & Zhang, 2014).

Optimization problems related machine learning models
often are of high complexity and dimension because of the
rapid development of data science and the accelerated accu-
mulation of industry data. Thus, the large-scale optimization
has become an important research topic in machine learning
and has attracted great research interest. Because of the high
dimension, that is, d is very large, the gradient sketching
method has become an important technique to conquer the
dilemma of large-scale optimization. Specifically, the classi-
cal random coordinate gradient descent is a kind of gradient
sketching method.

In order to facilitate the following description, we first ex-
plain the following definition. The meaning of the separa-
bility of φ is that the regularization term can be written as a
finite sum of all coordinates or block coordinates. In most
cases, the inseparable regularization term is a generalized
indicator function.

When the regularization term φ is separable, the classi-
cal random coordinate gradient descent methods can ef-
fectively and efficiently solve the problem (1) (Nesterov,
2012; Wright, 2015). These methods can achieve linear
convergence rates. Because of fast convergence rates and
low computation costs for each iteration, random coordinate
gradient descent methods have been used in practical appli-
cations for many years, and their popularity continues to
grow because they are useful in data analysis and machine
learning.

However, if the regularization term φ is not separable, the
corresponding random coordinate gradient will incur an in-
herent non-zero variance at the optimum. Thus, in this case,
the linear convergence rate of random coordinate descent
is not achievable (Richtárik & Takáč, 2014). To conquer
this dilemma, Hanzely et al. (2018) propose SEGA algo-
rithm and SVRCD algorithm (Hanzely & Richtárik, 2019b)
which base on the variance reduction. These two algorithms
modify the random coordinate descent algorithms to reduce
the variance incurred by the random coordinate gradient.
Accordingly, both SEGA and SVRCD can achieve linear
convergence rates. If the regularization term φ = 0, then
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SEGA requires the importance sampling to achieve a rate
1−O

(
tr(M)

µ

)
if f(x) is M-smooth and µ-strongly convex

where M is a positive definite matrix. However, the impor-
tance sampling requires to access the diagonal entries of M
which is impossible or very computationally expensive. For
example, if one can only access to the sketched gradient,
then the diagonal entries of M can not be obtained.

Therefore, an interesting question arises: can we design
an algorithm that can achieve the same convergence rate
to SEGA both for non-separable φ and for φ = 0 with
importance sampling? In this paper, we endeavor to address
this problem.

1.1. Literature Review

In this part, we briefly review the algorithms for solving
large-scale high-dimensional optimization problems.

Some stochastic coordinate descent algorithms and stochas-
tic subspace descent algorithms (Nesterov, 2012; Gower
& Richtárik, 2015b; Wright, 2015) have been proposed
and received extensive attention. At the same time, some
stochastic coordinate descent methods for parallel comput-
ing (Liu et al., 2014; Fercoq & Richtárik, 2015; Liu &
Wright, 2015) have been proposed, but they can only solve
the problem with separable regularization term. Among
them, the stochastic coordinate descent algorithm has been
developed many variants. Let us first give the definitions of
vi and pi: these parameters come from the ESO method (Qu
& Richtárik, 2016), in case of single coordinate sketches,
parameters vi are equal to coordinate-wise smoothness con-
stants of f and pi represents the probability of the i-th coor-
dinate being sampled. Richtárik & Takáč (2016) propose a
non-accelerated with arbitrary sampling, and proof that the
iteration complexity of the algorithm is (maxi

vi
piµ

) log 1
ε .

Nesterov (2012) proposes a non-accelerated with impor-
tance sampling, and proofs that the iteration complex-
ity of the algorithm is tr(M)

µ log 1
ε . Hanzely & Richtárik

(2019a) propose an accelerated with arbitrary sampling,
and proof that the iteration complexity of the algorithm
is (maxi

vi
p2
iµ
) log 1

ε . Allen-Zhu et al. (2016) propose an
accelerated with importance sampling, and proof that the
iteration complexity of the algorithm is

∑
i

√
Mii√
µ log 1

ε . To
our best knowledge, the methods with importance sampling
are state-of-the-art variants of stochastic coordinate descent
algorithms. But Hanzely et al. (2018) once again indicate
above algorithms does not work with inseparable φ and
create a new algorithm to overcome this dilemma. Since
then, the limitations of the traditional stochastic coordinate
descent algorithms have gradually been concerned.

In recent years, scholars pay more attention to using next
two techniques to create new algorithms in this field. A
technique called variance reduction which is used by SVRG

(Johnson & Zhang, 2013) and SAGA (Defazio et al., 2014)
to make SGD (Robbins & Monro, 1951; Nemirovski et al.,
2009) converge linearly and is summarized in Gower et al.
(2020) finally. The other technique called sketch-and-project
(Gower & Richtárik, 2015a; Gower, 2016) which is first
used to reduce the dimension and solve complex linear
systems begins to be applied in this field. Hanzely et al.
(2018) use above techniques to create the SEGA algorithm
and proof that the iteration complexity of the algorithm is
(maxi

4vi+µ
piµ

) log 1
ε , which well solves the limitations of the

traditional stochastic coordinate descent algorithms in deal-
ing with the problem with an inseparable regularization term.
Its convergence rate is the same as traditional stochastic co-
ordinate descent algorithm. However, in the special case of
setting the regularization term φ = 0, SEGA algorithm re-
quires importance sampling to achieve the best convergence
rate of state-of-the-art variant. In the next year, Kozak et al.
(2019) propose VRSSD with controlling variates, but this
method only work when φ = 0. Then, Hanzely & Richtárik
(2019b) propose SVRCD algorithm which is a variant of
SEGA and prove that the iteration complexity of the algo-
rithm is (maxi

4vi

piµ
+ 1

ρ ) log
1
ε . SVRCD updates hk to the

current true gradient with a fixed probability ρ in order to ob-
tain the scheme with smaller constant factor of convergence
rate, rather than updating part of the coordinates like SEGA.
But SVRCD has no obvious advantages over SEGA, both the-
oretically and practically. SVRCD even performs worse than
SEGA in most experiments. The main purpose of studying
SVRCD is to facilitate the introduction of momentum terms
to obtain an accelerated algorithm. Hanzely et al. (2020)
first combine Nesterov’s momentum with SVRCD algorithm
to obtain an accelerated version of SVRCD called ASVRCD
and accelerated the SVRCD and ASVRCD by introducing a
projection matrix further. Chorobura & Necoara (2023) uses
a new perspective to obtain a linearly convergent coordinate
proximal gradient by introducing KL property. Recently, the
application range of SEGA algorithm is extended by propos-
ing a stochastic coordinate algorithm called SEGA-SGDA
to deal with variational inequality problems (Beznosikov
et al., 2023).

Our main works include designing an algorithm that con-
verges faster under the premise of setting the regularization
term φ = 0 without introducing importance sampling
method, and can also achieve the same convergence rate
to SEGA and even faster convergence rate by introducing
the projection matrix when the regularization term is
inseparable. It should be pointed out that importance
sampling has certain limitations in practice. The importance
sampling needs to calculate every Li-smooth constant about
coordinates under coordinate-wise Lipschitz continuous
assumption. If we study the optimization problem in
d-dimensional space, the cost of the above calculation is
at least O(d). Even in some zero-order cases, we cannot
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calculate these constants at all. It is worth noting that
(Hanzely et al., 2018) only focus on the theoretical analysis
of the Coordinate sketching version of the SEGA, but we are
more concerned about Gaussian sketching. Therefore, our
works can be regarded as a further extension of (Hanzely
et al., 2018). It is worth pointing out that some papers also
consider Gaussian sketching under federated learning. We
need to explain the essential differences between our work
and these works from two aspects. From the perspective of
results, (Rothchild et al., 2020) do not propose an algorithm
with linear convergence rate. Although (Song et al., 2023)
only propose a linear convergence algorithm without the
regularization term, the complexity of their algorithm is
O((LN/µ)max{d,

√
σ2/(µε)} log(LE[

∥∥ω0 − ω∗
∥∥2
2
]/ε))

indicates that their algorithm does not converge as fast
as our algorithm GSGD whose complexity is described
detailedly in Corollary 4.4. Regardless of whether there
is a regularization term, our algorithm GSGD gives linear
convergence rate conclusions. So, our paper has a more
comprehensive analysis. Especially for GSGD without regu-
larization term, the complexity is O((tr(M)/µ) log(1/ε)),
this shows that our algorithm is better than the algorithms
involved in the above two papers. From the perspective
of applications, these works are dedicated to reducing
the communication cost in federated learning by using
gradient methods. Our algorithm GSGD can not only be
used in situations where gradients need to be calculated,
but can also be used in situations where gradients cannot
be obtained. As we mentioned in Remark 3.1, the use of
Gaussian vectors makes our algorithm can be naturally
applied to the field of zero-order optimization when the
gradient is difficult or impossible to compute. All in all, our
paper is compared with the two papers mentioned above in
the field of federated learning has a more comprehensive
analysis and our algorithm GSGD has wider application
prospects.

The main contributions of this paper are summarized as
follows:

• We propose a novel gradient sketching method called
GSGD. When φ = 0, compared with the SEGA algo-
rithm with the importance sampling, our algorithm can
achieves the same convergence rate but without the im-
portance sampling. SEGA uses importance sampling
technology will increase the computational overhead
and may even be inapplicable in the field of many zero-
order cases, but our algorithm GSGD can be naturally
expanded to the field of zero-order optimization. Thus,
GSGD has a wider application range, especially suit-
able for the cases that only sketched gradient can be
accessed.

• For the problems that regularization term φ is non-
separable, we prove that it can achieve a linear con-

vergence rate which is also comparable to the one of
SEGA.

• If the regularization term φ has some special structure,
our GSGD can inherently exploit the special structure
in the regularization term to improve the convergence
rate.

• Extensive experiments confirm our algorithm’s superi-
ority in terms of computational efficiency when com-
pared to existing state-of-the art algorithms.

2. Notation and Assumptions
Throughout this paper, we denote the proximal operator of
regularization term φ

Proxαφ(x)
def
= argmin

y∈Rd

{φ(y) + 1

2α
∥y − x∥2}.

Let us define the weighted Euclidean norm and weighted
inner product associated with a positive weight matrix M ≻
0

∥x∥M
def
= ⟨x, x⟩

1
2

M,

⟨x, y⟩M
def
= ⟨Mx, y⟩.

In addition, we make the following assumptions for objec-
tive function f and regularization term φ in Eq. (1). Firstly,
we will use the following general version of smoothness and
standard version of strong convexity.

Assumption 2.1. A differentiable function f : Rd → R is
M-smooth for some positive definite matrix M ≻ 0. That
is, for all x, y ∈ Rd, the following inequality is satisfied

f(x) ≤ f(y) + ⟨∇f(y), x− y⟩+ 1

2
∥x− y∥2M . (2)

If f is L-smooth, then for all x, y ∈ Rd, the following
inequality is satisfied

f(x) ≤ f(y) + ⟨∇f(y), x− y⟩+ L

2
∥x− y∥2 . (3)

Assumption 2.2. A differentiable function f : Rd → R is
µ-strongly convex. That is, for all x, y ∈ Rd, the following
inequality is satisfied

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩+ µ

2
∥x− y∥2 . (4)

For the regularization term φ, we let it include an indicator
function of some affine subspace of Rd associated with the
started point and the range of projection matrix W, indicat-
ing the dimension of affine subspaces. The regularization
term φ satisfies the following assumption.
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Algorithm 1 GSGD:Gaussian Sketched Gradient Descent
Initialize: x0, h0 ∼ N(0, Id), stepsize η > 0
for k = 0, 1, · · · do

Sample u ∼ N(0, Id)
gk = hk + uu⊤(∇f(xk)− hk)

hk+1 = hk + uu⊤

d+2 (∇f(xk)− hk)
xk+1 = Proxαφ(xk − ηgk)

end for

Assumption 2.3 ((Hanzely et al., 2020)). Assume that W
is an orthogonal projection matrix, then we obtain the com-
posite regularization term

φ(x) =

{
ψ(x) if x ∈ {x0 +Range(W)}
∞ if x /∈ {x0 +Range(W)} ,

where ψ(x) is a general convex function. Furthermore, it is
necessary to assume that the proximal operator of φ is easy
to calculate.

This assumption will be used to accelerate our algorithm
under certain circumstances.

Proposition 2.4 ((Hanzely et al., 2020)). If f : Rd → R
is M-smooth, for all x, y ∈ Rd, the following inequality is
satisfied:

f(x) ≥ f(y)+⟨∇f(y), x−y⟩+1

2
∥∇f(xk)−∇f(x∗)∥2M−1 .

(5)

This proposition will be utilized in the convergence analysis
of our algorithm 1 with regularization term in Assumption
2.3.

3. The Gaussian Sketched Gradient Descent
Algorithm

This section commences with a detailed description of the
algorithm. Then, we introduce the concept of Gaussian
sketch and the structure of the inseparable regularization
term. Finally, we present the main theoretical results.

3.1. Algorithm Description

To more efficiently address the composite optimization prob-
lem as delineated in Eq. (1), we introduce a principal algo-
rithm named Gaussian Sketched Gradient Descent whose
main algorithmic procedure is listed as follows

gk =hk + uu⊤(∇f(xk)− hk), (6)

hk+1 =hk +
uu⊤

d+ 2
(∇f(xk)− hk), (7)

xk+1 =Proxαφ(xk − ηgk), (8)

where u ∼ N(0, Id). When the regularization term φ = 0,
then the update rule of xk+1 is reduced to

xk+1 = xk − ηgk. (9)

The detailed description of GSGD is listed in Algorithm (1).

Classical gradient sketching methods commonly directly
use the sketched gradient uu⊤∇f(xk) to update xk (Gower
et al., 2019; Gower & Richtárik, 2015b; Nesterov, 2012).
That is, it conducts the following update:

xk+1 = xk − ηtuu
⊤∇f(xk).

However, once φ ̸= 0, then it holds that ∥∇f(x∗)∥ ̸=
0. At the same time, it holds that E[∥uu⊤∇f(x)∥2] =
O
(
∥∇f(x)∥2

)
(Nesterov & Spokoiny, 2017; Hanzely et al.,

2018). Thus, classical gradient sketching methods can not
achieve a linear convergence rate for the composite prob-
lems. Thus, our method introduces an extra variance reduc-
tion variate hk tracks the exact gradient. Eq. (14) shows
that for each iteration, the variance related to hk reduces
with a rate 1− 1

d+2 . However, hk is a biased estimation of
the gradient. Thus, we introduce gk which is an unbiased
estimation of the gradient and full exploit the information
of hk. Therefore, GSGD can achieve a linear convergence
rate when the objective function has a regularization term.

Compared with the Coordinate sketching version of SEGA,
our GSGD replaces the coordinate sampling vector ei to the
Gaussian sampling vector u, where k is the iteration number
of the algorithm, and d is the dimension of x. The Gaussian
sampling vector u of our method is the key to achieve a
faster convergence rate matching SEGA with the importance
sampling.

3.2. Gaussian Sketching View

Let u ∼ N(0, Id) be a random vector and x ∈ Rd be an
arbitrary point. Then, we can compress the real gradient
and obtain the Gaussian sketch of real gradient

δ(u, x)
def
= uT∇f(x), u ∼ N(0, Id). (10)

If we replace the Gaussian distribution N(0, Id) with the
uniform distribution over standard basis vectors. Then
δ(ei, x) becomes the i-th partial derivative of function f
at x, and it is actually used by the Coordinate sketching
version of the SEGA algorithm.

GSGD is closely related to the sketch-and-project technique
which is first used to solve the approximate solution of linear
systems iteratively. Let xk be the current iteration, hk be
the current middle estimate of the real gradient of f , and let
uk be the k-th Gaussian sampling vector during the iterative
process. The sketch-and-project tries to find a vector hk+1
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that minimizes the following optimization problem:

hk+1 = argmin
h∈Rd

∥h− hk∥2 ,

s.t. uTk h = δ(uk, xk).
(11)

The idea of the form of objective function is to try to pre-
serve as much of the information learned so far as possible,
as condensed in the current middle gradient estimate hk.
Eq. (11) has the the following closed-form solution,

hk+1 = hk + uk(u
T
k uk)

−1uTk (∇f(xk)− hk). (12)

The above equation is the general form of SEGA for the
Gaussian sketching. However, this is different from the
update of hk+1 in Eq. (7). Note that uk

∥uk∥ follows the uni-
form spherical distribution. Thus, even uk is of standard
Gaussian distribution, SEGA only admits a gradient sketch-
ing with respect to the uniform spherical distribution. In
contrast, our GSGD bases on the standard Gaussian distribu-
tion. Although the differences between Eq. (7) and Eq. (12)
are indeed not significant from numerical and experimental
perspectives, the update of hk+1 we proposed is more in
line with the concept of Gaussian sketching than the update
formula in SEGA.

The reason why we set the denominator to d+ 2 instead of
some other constants like d+O(1) is to help us make conver-
gence analysis easier. For example, in the proof of Lemma
4.2, if we do not specify the denominator as d+2, eventually
we will not be able to eliminate terms ⟨hk,∇f(xk)⟩ that is
detrimental to our proof of the convergence theorem. At
the same time, it is also impossible to make the coefficients
before ∥hk∥2 and ∥∇f(xk)∥2 all less than 1 and this does
not imply that ∥hk+1∥2 is decreasing.
Remark 3.1. It is worth mentioning that our algorithm has a
zero-order version when calculating the gradient or storing
the real full gradient is very difficult. In fact, δ(u, x) is the
directional derivative of function f at x in direction u. We
all know that the directional derivative can be approximated
by the finite difference of the function value. In other words,
we can replace uT∇f(x) with 1

α (f(x+αu)−f(x)), where
α > 0 is sufficiently small. The specific theoretical guar-
antee of this operation can refer to (Nesterov & Spokoiny,
2017; Berahas et al., 2022) .

4. Main Theoretical Results
This section offers an in-depth examination of the iteration
complexity of our algorithm under different assumptions.

We give several important lemmas that helps to derive the
main theorems in this part. First, we give two key lemmas
which describe the bounds of ∥gk∥2M and ∥hk+1∥2. By
these Lemmas, we can easily find that the norms of gk and
hk+1 decrease with the increase of iteration steps.

Lemma 4.1. For all k>0, the variance of gk (defined in
Eq. (6)) as an estimator of ∇f(xk) can be bounded as
follows

Eu

[
∥gk∥2M

]
≤ 4tr(M) ∥hk∥2 + 5tr(M) ∥∇f(xk)∥2 .

(13)

Lemma 4.2. For all k>0, the following equality between
hk+1 and hk holds

Eu

[
∥hk+1∥2

]
=

(
1− 1

d+ 2

)
∥hk∥2+

1

d+ 2
∥∇f(xk)∥2 .

(14)

Because Lyapunov analysis is well applied in article (Wilson
et al., 2016) and fully summarized in article (Wilson, 2018;
Sanz Serna & Zygalakis, 2021), we try to combine these
techniques to demonstrate the convergence later. Using
Lemma 4.1 and 4.2, we can obtain the following theorem.

Theorem 4.3. Let the objective function F (x) be of the
form (1) with φ = 0. Assume that f is M-smooth and µ-
strongly convex, that is, Assumption 2.1 and 2.2 hold. Define
the following Lyapunov function

Φk def
= f(xk)− f(x∗) + ηα1(d+ 2) · tr(M) ∥hk∥2 ,

and choose

η =
1

20tr(M)
, α1 =

1

2tr(M)
, (15)

c1 = max

{
1− µ

40tr(M)
, 1− 3

5(d+ 2)

}
. (16)

Then, the number of iterations of the algorithm 1 satisfy

Eu

[
Φk

]
≤ ck1Φ

0.

Next, by the convergence rate of our algorithm shown in
Theorem 4.3, we will give computational cost of algorithm
1 in the following corollary.

Corollary 4.4. Let the objective function satisfy the proper-
ties described in Theorem 4.3 and select the parameters in
Theorem 4.3. To find an ε-suboptimal solution, the iteration
complexity of Algorithm 1 is

T = O
((

tr(M)

µ
+ d

)
log

1

ε

)
. (17)

Remark 4.5. It is easy to check that tr(M)/µ is no less than
d. Thus, Eq. (17) demonstrates that our algorithm has an it-
eration complexity of K = O

(
tr(M)

µ log 1
ε

)
, aligning with

the one of the Coordinate sketching version of the SEGA
algorithm with importance sampling (Hanzely et al., 2018).
However, our GSGD does not need access to the diagonal
entries of matrix M which may be unaccessible such as in
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the zeroth-order optimization setting just as discussed in
Remark 3.1. A similar iteration complexity is also obtained
by the recent work (Yue et al., 2023). However, because
of lacking of variance reduction variate, the method of Yue
et al. (2023) is only suitable for the smooth optimization. In
contrast, our GSGD can be used for the composite optimiza-
tion, that is, there is a regularization term contained in the
objective function F (x).

Next, we will analyze the iteration complexity of algorithm
1 when the objective function has a non-smooth regular-
ization term. First, we give three important lemmas which
are needed to derive Theorem 4.9. The first two Lemmas
also show that the variances of gk and hk+1 all decrease
in the iterative process. This indicates that our algorithm 1
with an inseparable regularization term is also a variance
reduction algorithm. Lemma 4.8 describes the phenomenon
that the iterative sequences finally tend to be stable in the
convergence process of the proximal gradient method.
Lemma 4.6. For all k > 0, we define distances v1(k) =
∥hk −∇f(x∗)∥ and v2(k) = ∥∇f(xk)−∇f(x∗)∥, then,
the variance of gk −∇f(x∗) can be bounded as follows

Eu

[
∥gk −∇f(x∗)∥2

]
≤ 2(d+ 2)v1(k)

2 + 2(d+ 3)v2(k)
2.

(18)
Lemma 4.7. For all k > 0, we also denote distances v1 =
∥hk −∇f(x∗)∥ and v2 = ∥∇f(xk)−∇f(x∗)∥, then, the
following equality is satisfied

Eu

[
∥hk+1 −∇f(x∗)∥2

]
=

(
1− 1

d+ 2

)
v21 +

1

d+ 2
v22 .

(19)
Lemma 4.8 ((Parikh et al., 2014)). The proximal gradient
algorithm can also be interpreted as a fixed point iteration.
A point x∗ is a solution of 1, if and only if

0 ∈ ∇f(x∗) + ∂φ(x∗).

Then, because the proximal operator is single-valued, we
can obtain the following equality by the optimality condition

x∗ = Proxαφ (x∗ − η∇f(x∗)) . (20)

Using Lemma 4.6, 4.7 and 4.8, we can obtain the following
theorem.
Theorem 4.9. Let the objective function F (x) contain the
general inseparable regularization term φ(x), and assume
that f is L-smooth and µ-strongly convex. That is, As-
sumption 2.1 and 2.2 hold. Define the following Lyapunov
function

Ψk def
= ∥xk − x∗∥2 + α2 ∥hk −∇f(x∗)∥2 ,

and choose

η2 =
1

2(3d+ 7)L
, α2 =

(d+ 2)2

(3d+ 7)2L2
, (21)

c2 = 1− µ

2(3d+ 7)L
. (22)

Then, the number of iterations of the algorithm satisfy

Eu

[
Ψk

]
≤ ck2Ψ

0.

So, above theorem shows that our Algorithm 1 converges
with a rate 1−O

(
µ
dL

)
. Accordingly, we will give the itera-

tion complexity of Algorithm 1 in the following corollary.

Corollary 4.10. Let the objective function satisfy the prop-
erties described in Theorem 4.9 and select the parameters in
Theorem 4.9. To find an ε-suboptimal solution, the iteration
complexity of Algorithm 1 is

K = O
(
dL

µ
log

1

ε

)
. (23)

Remark 4.11. Our algorithm can also achieve a linear
convergence rate even the objective function has an in-
separable regularization term. Eq. (23) demonstrates that
our Algorithm 1 attains an iteration complexity of K =

O
(

dL
µ log 1

ε

)
.

Next, we will show that when the regularization term has
the special structure that φ(x) satisfies Assumption 2.3, our
algorithm can exploit this special structure to improve the
convergence rate. We first give two more important lemmas
which help to derive our theorem.

Lemma 4.12 ((Hanzely et al., 2020)). Let {xk}k≥0 be a
sequence of iterates of algorithm and let x∗ be optimal
solution for (1). Then

xk ∈ {x0 +Range(W)}, x∗ ∈ {x0 +Range(W)},

for all k. Furthermore, for any x, y ∈ Rd we have

∥Proxαφ(x)− Proxαφ(y)∥2 ≤ ∥x− y∥2W . (24)

Lemma 4.13. For all k > 0, we define distances v1(k) =
∥hk −∇f(x∗)∥ and v2(k) = ∥∇f(xk)−∇f(x∗)∥, then,
∥gk −∇f(x∗)∥2W can be bounded as follows

Eu

[
∥gk −∇f(x∗)∥2W

]
≤ 6tr(W)v1(k)

2+7tr(W)v2(k)
2.

(25)

Using Lemma 4.7, 4.8, 4.12 and 4.13, we can obtain the
following theorem.

Theorem 4.14. Let the objective function F (x) contain
an inseparable regularization term which includes affine
subspaces of Rd, and assume that f is M-smooth and µ-
strongly convex. That is, Assumption (2.1), (2.2), (2.3) hold.
Define the following Lyapunov function

Υk def
= ∥xk − x∗∥2 + α3 ∥hk −∇f(x∗)∥2 ,

6
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Table 1. Setting of diagonal matrix Σ used in Eq. (30) to construct M.
Type Σ

1 Matrix with first 481 components equal to 1 and the rest equal to 500
2 Matrix with first 499 components equal to 1 and the remaining one equal to 500
3 Starting from 401–th component is the value from 1 to 100 and the rest equal to 1
4 Matrix with components coming from uniform distribution U(0,1)

and choose

η3 =
1

19Ltr(W)
, α3 = 12(d+ 2)η2tr(W), (26)

c3 = 1− µ

19Ltr(W)
. (27)

Then, the number of iterations of the algorithm satisfy

Eu

[
Υk

]
≤ ck3Υ

0.

So, theorem 4.14 shows that our algorithm 1 converges with
a rate 1 − O

(
µ

Ltr(W)

)
. Next, by the convergence rate of

our algorithm shown in Theorem 4.14, we will give iteration
complexity of Algorithm 1 in the following corollary.

Corollary 4.15. Let the objective function satisfy the prop-
erties described in Theorem 4.14 and select the parameters
in Theorem 4.14. To find an ε-suboptimal solution, the
iteration complexity of Algorithm 1 is

K = O
(
Ltr(W)

µ
log

1

ε

)
. (28)

Remark 4.16. In the case of a special setting of the insepa-
rable regularization term structure, that is, Assumption 2.3
holds, our algorithm can also achieve a linear convergence
rate. Eq. (28) demonstrates that Algorithm 1 attains an itera-
tion complexity of K = O

(
Ltr(W)

µ log 1
ε

)
. This indicates

that the convergence rate of our Algorithm 1 is determined
by the rank of the projection matrix W. The smaller the
rank of the projection matrix is, the faster the convergence
rate of our Algorithm 1 will be. Thus, our Algorithm 1 can
exploit the special structure of the regularization term to
obtain a faster convergence rate.

5. Experiments
We have provided a comprehensive theoretical analysis of
our Algorithm 1 in the preceding sections. This section
is dedicated to the empirical validation of our algorithm’s
effectiveness and superiority. Our experiments will focus on
the quadratic minimization problem, whose objective func-
tion adheres to the form delineated in Eq. (1), characterized
by

min
x∈Rd

F (x) =
1

2
xTMx− bTx+ φ(x), (29)

where φ(x) is divided into two cases, the first situation is
φ(x) = 0, the other situation is φ(x) is an indicator function
of the unit ball intersected with Range(W). In the second
case, we will reveal that the special structure of the insep-
arable regularization term can accelerate our Algorithm 1
through experimental results. It can be observed that the
quadratic function part in Eq. (29) exhibits both µ-strong
convexity and smoothness if we properly choose M. Si-
multaneously, φ(x) is convex but may be non-differentiable.
Therefore, the experimental setup is consistent with our
theoretical analysis. At the same time, the quadratic mini-
mization problem fulfills all assumptions required for our
Algorithm 1.

The parameters of the quadratic function which we construct
as follows: the dimension of feature vector x is 500. We set

M
def
= UΣUT , (30)

where U obtained from QR decomposition of random ma-
trix with independent entries from N(0, 1) and Σ is set as
Table 1 and b is a random vector with independent entries
drawn from N(0, 1). For each problem, the starting point
was chosen to be a vector with independent entries from
N(0, 1).

In the first experiment, we compare our GSGDwith the Coor-
dinate sketching version of SEGA algorithm (Hanzely et al.,
2018) for problems with φ(x) = 0. In the experiment, we
properly choose the step sizes of these two algorithms. Ac-
cording to the theoretical results of our algorithm and SEGA,
step sizes of these two algorithms should be proportional to
O(1/tr(M)) and O(1/(dλ(M))), respectively. We report
the experiment results in Figure 1. We can observe that in
the first three experiments, our algorithm is significantly
faster than the Coordinate sketching version of the SEGA
algorithm. This is because the iteration complexity of our
algorithm is linear to tr(M)/µ, while the iteration com-
plexity of the Coordinate sketching version of the SEGA
algorithm is linear to dL/µ. At the same time, the first three
experimental settings has the properties that the Σ matrices
guarantee tr(M)/µ is much less than dL/µ. This result
matches our theoretical analysis in Corollary 4.4. In the
forth experiment, our algorithm has a similar performance
to SEGA. This is because it holds that tr(M)/µ ≈ dL/µ
in the case that the diagonal elements of M matrix obey
uniform distribution.
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(b) The comparison on the second type diagonal matrix of Table 1
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(c) The comparison on the third type diagonal matrix of Table 1
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(d) The comparison on the fourth type diagonal matrix of Table 1

Figure 1. Comparison of both our algorithm and the Coordinate sketching version of the SEGA algorithm with uniform sampling.

The second experiment compares the performance of our
algorithm for various W when φ(x) is an indicator function
of the unit ball intersected with Range(W). We conduct
experiments under the condition that the rank of the projec-
tion matrix is 500, 300, 100. According to the theoretical
result of our algorithm, the step size should be proportional
to 1/(Ltr(W)), respectively. Figure 2 shows the result. We
can find that the smaller Rank(W) is, the faster the conver-
gence of our algorithm is in the great majority of cases. This
experimental result is consistent with our theoretical proof.
Specifically, in the first experiment and the third experiment,
with the decrease of the rank of the projection matrix W,
the acceleration effect of our algorithm is more obvious, and
this matches our theoretical analysis. The acceleration effect
of the second experiment is more obvious when the rank of
W decreases from 500 to 300. However, this acceleration
is not obvious when the rank of W decreases from 300 to
100. And the acceleration effect of the fourth experiment is

not obvious at all. Combining the common characteristics
of the parameter settings of the second experiment and the
fourth experiment, it can be concluded that tr(M) is very
small and the characteristic coefficients are dispersed very
uniformly may cause this poor result.

6. Conclusion and Future Work
In this paper, we first propose a novel algorithm called
GSGD. When the objective function without any regulariza-
tion term that is φ(x) = 0, the iteration complexity of GSGD
is O

(
tr(M)

µ log 1
ε

)
. Compared with the Coordinate sketch-

ing version of SEGA, it can achieve a faster convergence
rate without importance sampling. Furthermore, we prove
that our algorithm can still achieve a linear convergence
rate with an inseparable regularization term, and its iteration
complexity is O

(
dL
µ log 1

ε

)
. Moreover, if the regulariza-

8
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(c) The comparison on the third type diagonal matrix of Table 1
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(d) The comparison on the fourth type diagonal matrix of Table 1

Figure 2. Comparison of our algorithm performance for W with different rank

tion term also satisfies some special structure, specifically,
satisfying Assumption 2.3, our GSGD can also exploit the
special structure of the the regularization term to obtain
faster convergence rate. Finally, the effectiveness and ef-
ficiency of our algorithm for different settings have been
validated by our experiments.

In the future work, there are the following aspects can be
studied. The first is the relationship between our accelera-
tion scheme and the sparsity of the solution. It is undoubt-
edly exciting when we want to obtain a sparse solution while
also obtaining a good acceleration effect. Secondly, it is
significant to try to apply our acceleration scheme to the
finite difference representation of the real gradient when
computing and storing gradient is difficult. Finally, further
exploring the influence of tr(M) on the acceleration effect
of our algorithm is also meaningful.
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Richtárik, P. and Takáč, M. Iteration complexity of random-
ized block-coordinate descent methods for minimizing
a composite function. Mathematical Programming, 144
(1-2):1–38, 2014.
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A. Several Useful Lemmas
The following lemma shows that the expectation of the product of two quadratic forms of the random Gaussian vector is
related to the trace of the corresponding matrix.
Lemma A.1 ((Magnus et al., 1978)). Let A and B be two symmetric matrices, and u obeys the Gaussian distribution, that
is, u ∼ N(0, Id). Define z = u⊤Au · u⊤Bu. The expectation of z is

Eu[z] = (trA)(trB) + 2(trAB). (31)

Lemma A.2. If we have a positive definite matrix B defined as weighted inner product, for all x ∈ Rd, we can obtain the
following inequality

∥x∥2B ≤ tr(B) ∥x∥2 . (32)

Proof. For a positive definite matrix B, there must exist an orthogonal matrix T such that B is similar to a diagonal matrix
whose elements are eigenvalues of matrix B. We denote λi be the i-th eigenvalue of matrix B, then, we can obtain an
equation as follows

B = Tdiag {λ1, λ2, · · · , λd}T−1. (33)

Then, we can easily prove this Lemma,

∥x∥2B =⟨Bx, x⟩ = xTBx
(33)
= xTTdiag {λ1, λ2, · · · , λd}T−1x

≤xTT
d∑

i=1

λi · IdT−1x = tr(B) ∥x∥2 .

We can learn that the regularization term includes two parts under Assumption 2.3, one is the ordinary regularization term,
and the other is the indicator function of the Range(W). The second part of the inseparable regularization term implies
that we need to project the iteration point into the column space of the matrix W in the process of iteration. Since W is a
projection matrix, we have the following hold.
Lemma A.3. Let the current iteration point be xk. Since xk ∈ Range(W) under Assumption 2.3, we can obtain the
following relation

xk = Wxk. (34)

Proof. We can use the idempotence and symmetry of the projection matrix to prove this Lemma easily,

xk = W(WTW)†WTxk

= W(W2)†Wxk

= W(W)†Wxk

= Wxk.

B. Proof of Important Lemmas
In this section, we give some details of proof about some important Lemmas.

B.1. Proof of Lemma 4.1

Proof.

Eu

[
∥gk∥2M

]
=Eu

[∥∥hk + uu⊤(∇f(xk)− hk)
∥∥2
M

]
=Eu

[
∥hk∥2M + 2⟨hk, uu⊤(∇f(xk)− hk)⟩M +

∥∥uu⊤(∇f(xk)− hk)
∥∥2
M

]
= ∥hk∥2M + 2⟨hk,∇f(xk)− hk⟩M + Eu

[∥∥uu⊤(∇f(xk)− hk)
∥∥2
M

]
.

12
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Using the (31), we can compute the last term to get the following

Eu

[∥∥uu⊤(∇f(xk)− hk)
∥∥2
M

]
=Eu

[
(∇f(xk)− hk)

⊤uu⊤M⊤uu⊤(∇f(xk)− hk)
]

=Eu

[
tr((∇f(xk)− hk)

⊤uu⊤M⊤uu⊤(∇f(xk)− hk))
]

=Eu

[
tr(u⊤M⊤uu⊤(∇f(xk)− hk)(∇f(xk)− hk)

⊤u)
]

(31)
= tr(M)tr((∇f(xk)− hk)(∇f(xk)− hk)

⊤)

+2tr((∇f(xk)− hk)
⊤)M⊤(∇f(xk)− hk)

=tr(M) ∥∇f(xk)− hk∥2 + 2 ∥∇f(xk)− hk∥2M . (35)

Plugging this into the equation with which we started the proof, we deduce

Eu

[
∥gk∥2M

]
= ∥hk∥2M + 2⟨hk,∇f(xk)− hk⟩M + tr(M) ∥∇f(xk)− hk∥2 + 2 ∥∇f(xk)− hk∥2M
≤∥hk∥2M + 2 ∥∇f(xk)∥2M − 2⟨∇f(xk), hk⟩M + 2tr(M)(∥∇f(xk)∥2 + ∥hk∥2)

≤2 ∥hk∥2M + 3 ∥∇f(xk)∥2M + 2tr(M)(∥∇f(xk)∥2 + ∥hk∥2)
(32)
≤ 4tr(M) ∥hk∥2 + 5tr(M) ∥∇f(xk)∥2 . (36)

B.2. Proof of Lemma 4.2

Proof.

Eu

[
∥hk+1∥2

]
=Eu

[∥∥∥∥hk +
uu⊤

d+ 2
(∇f(xk)− hk)

∥∥∥∥2
]

=Eu

[
∥hk∥2 +

2

d+ 2
⟨hk, uu⊤(∇f(xk)− hk)⟩+

1

(d+ 2)2
∥∥uu⊤(∇f(xk)− hk)

∥∥2]
= ∥hk∥2 +

2

d+ 2
⟨hk, (∇f(xk)− hk)⟩+

1

(d+ 2)2
Eu

[∥∥uu⊤(∇f(xk)− hk)
∥∥2] .

Using the (31), we can also compute the last term

Eu

[∥∥uu⊤(∇f(xk)− hk)
∥∥2] =Eu

[
(∇f(xk)− hk)

⊤uu⊤uu⊤(∇f(xk)− hk)
]

=Eu

[
tr((∇f(xk)− hk)

⊤uu⊤uu⊤(∇f(xk)− hk))
]

=Eu

[
tr(u⊤uu⊤(∇f(xk)− hk)(∇f(xk)− hk)

⊤u)
]

(31)
= d · tr((∇f(xk)− hk)(∇f(xk)− hk)

⊤)

+2tr((∇f(xk)− hk)
⊤)(∇f(xk)− hk)

=(d+ 2) ∥∇f(xk)− hk∥2 .

Plugging this into the above equation, we can deduce

Eu

[
∥hk+1∥2

]
= ∥hk∥2 +

2

d+ 2
⟨hk, (∇f(xk)− hk)⟩+

1

d+ 2
∥∇f(xk)− hk∥2

=

(
1− 1

d+ 2

)
∥hk∥2 +

1

d+ 2
∥∇f(xk)∥2 . (37)
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B.3. Proof of Lemma 4.6

Proof.

Eu

[
∥gk −∇f(x∗)∥2

]
=Eu

[∥∥hk −∇f(x∗) + uu⊤(∇f(xk)− hk)
∥∥2]

= ∥hk −∇f(x∗)∥2 + 2⟨hk −∇f(x∗),∇f(xk)− hk⟩+ Eu

[∥∥uu⊤(∇f(xk)− hk)
∥∥] .

Let M=Id, we can turn (35) into the following form

Eu

[∥∥uu⊤(∇f(xk)− hk)
∥∥2] = (d+ 2) ∥∇f(xk)− hk∥2 . (38)

Plugging this into the above equation, we can deduce

Eu

[
∥gk −∇f(x∗)∥2

]
= ∥hk −∇f(x∗)∥2 + 2⟨hk −∇f(x∗),∇f(xk)−∇f(x∗) +∇f(x∗)− hk⟩

+ (d+ 2) ∥∇f(xk)−∇f(x∗) +∇f(x∗)− hk∥2

=2⟨hk −∇f(x∗),∇f(xk)−∇f(x∗)⟩ − ∥hk −∇f(x∗)∥2 + (d+ 2) ∥∇f(xk)−∇f(x∗)∥2

+ 2(d+ 2)⟨∇f(xk)−∇f(x∗),∇f(x∗)− hk⟩+ (d+ 2) ∥∇f(x∗)− hk∥2

≤2(d+ 2) ∥hk −∇f(x∗)∥2 + ∥∇f(xk)−∇f(x∗)∥2 + 2(d+ 2) ∥∇f(xk)−∇f(x∗)∥2

≤2(d+ 2) ∥hk −∇f(x∗)∥2 + 2(d+ 3) ∥∇f(xk)−∇f(x∗)∥2 . (39)

B.4. Proof of Lemma 4.7

Proof.

Eu

[
∥hk+1 −∇f(x∗)∥2

]
=Eu

[∥∥∥∥hk +
uu⊤

d+ 2
(∇f(xk)− hk)−∇f(x∗))

∥∥∥∥2
]

= ∥hk −∇f(x∗)∥2 + 2

d+ 2
⟨∇f(xk)− hk, hk −∇f(x∗)⟩

+
1

(d+ 2)2
Eu

[∥∥uu⊤(∇f(xk)− hk)
∥∥2]

(38)
= ∥hk −∇f(x∗)∥2 + 2

d+ 2
⟨∇f(xk)−∇f(x∗) +∇f(x∗)− hk, hk −∇f(x∗)⟩

+
1

d+ 2
∥∇f(xk)−∇f(x∗) +∇f(x∗)− hk∥2

=

(
1− 1

d+ 2

)
∥hk −∇f(x∗)∥2 + 1

d+ 2
∥∇f(xk)−∇f(x∗)∥2 . (40)

B.5. Proof of Lemma 4.13

Proof.

Eu

[
∥gk −∇f(x∗)∥2W

]
=Eu

[∥∥hk −∇f(x∗) + uu⊤(∇f(xk)− hk)
∥∥2
W

]
= ∥hk −∇f(x∗)∥2W + 2⟨hk −∇f(x∗),∇f(xk)− hk⟩W + Eu

[∥∥uu⊤(∇f(xk)− hk)
∥∥
W

]
.

Let M=W, we can turn (35) into the following form

Eu

[∥∥uu⊤(∇f(xk)− hk)
∥∥2
W

]
= tr(W) ∥∇f(xk)− hk∥2 + 2 ∥∇f(xk)− hk∥2W . (41)

14
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Plugging this into the above equation, we can deduce

Eu

[
∥gk −∇f(x∗)∥2W

]
=2⟨hk −∇f(x∗),∇f(xk)−∇f(x∗)⟩W − ∥hk −∇f(x∗)∥2W
+ tr(W) ∥∇f(xk)− hk∥2 + 2 ∥∇f(xk)− hk∥2W

=2⟨hk −∇f(x∗),∇f(xk)−∇f(x∗)⟩W − ∥hk −∇f(x∗)∥2W
+ tr(W)

[
∥∇f(xk)−∇f(x∗)∥2 + ∥∇f(x∗)− hk∥2 + 2⟨∇f(xk)−∇f(x∗), f(x∗)− hk⟩

]
+ 2

[
∥∇f(xk)−∇f(x∗)∥2W + ∥∇f(x∗)− hk∥2W + 2⟨∇f(xk)−∇f(x∗), f(x∗)− hk⟩W

]
≤4 ∥hk −∇f(x∗)∥2W + 5 ∥∇f(xk)−∇f(x∗)∥2W
+ 2tr(W)

[
∥∇f(xk)−∇f(x∗)∥2 + ∥hk −∇f(x∗)∥2

]
(32)
≤ 6tr(W) ∥hk −∇f(x∗)∥2 + 7tr(W) ∥∇f(xk)−∇f(x∗)∥2 . (42)

C. Proof of Main Theorems
In this section, we give some details of proof about our main Theorems.

C.1. Proof of Theorem 4.3

Proof. Firstly, we can deduce the expectation of f(xk+1),

Eu [f(xk+1)]
(2)
≤f(xk) + Eu

[
⟨∇f(xk), xk+1 − xk⟩+

1

2
∥xk+1 − xk∥2M

]
(9)
=f(xk)− η1⟨∇f(xk),Eu [gk]⟩+

η21
2
Eu

[
∥gk∥2M

]
.

=f(xk)− η1 ∥∇f(xk)∥2 +
η21
2
Eu

[
∥gk∥2M

]
.

Combining it into the expectation of Lyapunov function Φk+1,

Eu

[
Φk+1

]
≤f(xk)− f(x∗)− η1 ∥∇f(xk)∥2 +

η21
2
Eu

[
∥gk∥2M

]
+ η1α1(d+ 2) · tr(M)Eu

[
∥hk+1∥2

]
(36)+(37)

≤ f(xk)− f(x∗)− η1 ∥∇f(xk)∥2 + 5η21tr(M) ∥∇f(xk)∥2

+ η1α1 · tr(M) ∥∇f(xk)∥2 + 4η21tr(M) ∥hk∥2 + η1α1(d+ 2)

(
1− 1

d+ 2

)
· tr(M) ∥hk∥2

=f(xk)− f(x∗)− η1 (1− 5η1tr(M)− α1tr(M)) ∥∇f(xk)∥2

+ η1α1(d+ 2)

(
1− 1

d+ 2
+

4η1
α1(d+ 2)

)
· tr(M) ∥hk∥2

(15)
= f(xk)− f(x∗)− 1

80tr(M)
∥∇f(xk)∥2 + η1α1(d+ 2) · tr(M)

(
1− 3

5(d+ 2)

)
∥hk∥2 .

By the µ-strongly convexity, we can obtain that

−∥∇f(xk)∥2 ≤ −2µ(f(xk)− f(x∗)).

15
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Thus, we can obtain that

Eu

[
Φk+1

]
≤
(
1− µ

40tr(M)

)(
f(xk)− f(x∗)

)
+ η1α1(d+ 2) · tr(M)

(
1− 3

5(d+ 2)

)
∥hk∥2

≤max

{
1− µ

40tr(M)
, 1− 3

5(d+ 2)

}(
f(xk)− f(x∗) + η1α1(d+ 2) · tr(M) ∥hk∥2

)
(16)
≤ ck+1Φ0.

C.2. Proof of Theorem 4.9

Proof. Firstly, we can deduce the expectation of ∥xk+1 − x∗∥2,

Eu

[
∥xk+1 − x∗∥2

]
(8)+(20)
= Eu

[
∥Proxαφ (xk − η2gk)− Proxαφ (x∗ − η2∇f(x∗))∥2

]
(24)
≤Eu

[
∥xk − x∗ − η2(gk −∇f(x∗))∥2

]
= ∥xk − x∗∥2 − 2η2⟨∇f(xk)−∇f(x∗), xk − x∗⟩+ η22Eu

[
∥gk −∇f(x∗)∥2

]
(4)
≤∥xk − x∗∥2 − 2η2

(
f(xk)− f(x∗)− ⟨∇f(x∗), xk − x∗⟩+ µ

2
∥xk − x∗∥2

)
+ η22Eu

[
∥gk −∇f(x∗)∥2

]
=(1− η2µ) ∥xk − x∗∥2 − 2η2 (f(xk)− f(x∗)− ⟨∇f(x∗), xk − x∗⟩) + η22E

[
∥gk −∇f(x∗)∥2

]
.

Because f is L-smooth, we can obtain

f(xk)− f(x∗)− ⟨∇f(x∗), xk − x∗⟩ ≥ 1

2L
∥∇f(xk)−∇f(x∗)∥2 . (43)

Plugging this into above inequation, we can obtain

Eu

[
∥xk+1 − x∗∥2

]
≤ (1− η2µ) ∥xk − x∗∥2 − η2

L
∥∇f(xk)−∇f(x∗)∥2 + η22Eu

[
∥gk −∇f(x∗)∥2

]
. (44)

Then, we can deduce the expectation of Ψk+1, It is easy to check that the first element in c2 is greater than the second one.

Eu

[
Ψk+1

]
=Eu

[
∥xk+1 − x∗∥2 + α2 ∥hk+1 −∇f(x∗)∥2

]
(44)
≤ (1− η2µ) ∥xk − x∗∥2 − η2

L
∥∇f(xk)−∇f(x∗)∥2 + η22Eu

[
∥gk −∇f(x∗)∥2

]
+ α2Eu

[
∥hk+1 −∇f(x∗)∥2

]
(39)+(40)

≤ (1− η2µ) ∥xk − x∗∥2 −
(
η2
L

− 2(d+ 3)η22 −
α2

d+ 2

)
∥∇f(xk)−∇f(x∗)∥2

+

(
1− 1

d+ 2
+

2η22(d+ 2)

α2

)
α2 ∥hk −∇f(x∗)∥2

(21)
≤

(
1− µ

2(3d+ 7)L

)
∥xk − x∗∥2 +

(
1− 1

2(d+ 2)

)
α2 ∥hk −∇f(x∗)∥2

≤max

{
1− µ

2(3d+ 7)L
, 1− 1

2(d+ 2)

}(
∥xk − x∗∥2 + α2 ∥hk −∇f(x∗)∥2

)
(22)
≤ ck+1

2 Ψ0.

Note that during the proof of the theorem, it is easy to check that the first element in max
{
1− µ

2(3d+7)L , 1−
1

2(d+2)

}
is

greater than the second element.
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C.3. Proof of Theorem 4.14

Proof. Firstly, we can also deduce the expectation of ∥xk+1 − x∗∥2,

Eu

[
∥xk+1 − x∗∥2

]
(8)+(20)
= Eu

[
∥Proxαφ (xk − η3gk)− Proxαφ (x∗ − η3∇f(x∗))∥2

]
(24)
≤Eu

[
∥xk − x∗ − η3(gk −∇f(x∗))∥2W

]
= ∥xk − x∗∥2W − 2η3⟨∇f(xk)−∇f(x∗), xk − x∗⟩W + η23Eu

[
∥gk −∇f(x∗)∥2W

]
(4)+(34)
≤ ∥xk − x∗∥2 − 2η3

(
f(xk)− f(x∗)− ⟨∇f(x∗), xk − x∗⟩+ µ

2
∥xk − x∗∥2

)
+ η23Eu

[
∥gk −∇f(x∗)∥2W

]
=(1− η3µ) ∥xk − x∗∥2 − 2η3 (f(xk)− f(x∗)− ⟨∇f(x∗), xk − x∗⟩) + η23E

[
∥gk −∇f(x∗)∥2W

]
.

Because f is M-smooth, we can obtain the next equality by Proposition 2.4

f(xk)− f(x∗)− ⟨∇f(x∗), xk − x∗⟩ ≥ 1

2
∥∇f(xk)−∇f(x∗)∥2M−1 . (45)

Plugging this into above inequation, we can deduce the expectation of Υk+1,

Eu

[
Υk+1

]
=Eu

[
∥xk+1 − x∗∥2 + α3 ∥hk+1 −∇f(x∗)∥2

]
(45)
≤ (1− η3µ) ∥xk − x∗∥2 − η3 ∥∇f(xk)−∇f(x∗)∥2M−1 + η23Eu

[
∥gk −∇f(x∗)∥2W

]
+ α3Eu

[
∥hk+1 −∇f(x∗)∥2

]
(40)+(42)

≤ (1− η3µ) ∥xk − x∗∥2 + ∥∇f(xk)−∇f(x∗)∥2[(7η2
3tr(W)+

α3
d+2 )·I−η3M−1]

+

(
1− 1

d+ 2
+

6η23tr(W)

α3

)
α3 ∥hk −∇f(x∗)∥2

(26)
≤

(
1− µ

19Ltr(W)

)
∥xk − x∗∥2 +

(
1− 1

2(d+ 2)

)
α3 ∥hk −∇f(x∗)∥2

≤max

{
1− µ

19Ltr(W)
, 1− 1

2(d+ 2)

}(
∥xk − x∗∥2 + α3 ∥hk −∇f(x∗)∥2

)
(27)
≤ ck+1

3 Υ0.

Note that during the proof of the theorem, it is easy to check that the first element in max
{
1− µ

19Ltr(W) , 1−
1

2(d+2)

}
is

greater than the second element.

D. Proof of Main Corollaries
We prove the iteration complexity in the main case in this part. Before we prove several important Corollaries, we introduce
an important inequality first.

Lemma D.1. In general, the variable K represents the number of iterations, the variable x represents a small positive
number (0<x<1) . When K is large, we can get the following inequality

(1− x)K ≤ e−xK . (46)

Proof. We first construct an auxiliary function,

m(x) = 1− x− e−x. (47)

17
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Then, we can easily calculate the derivative function and get the range of the derivative function

m
′
(x) = e−x − 1 ≤ 0. (48)

Next, we can obtain an inequality from the derivative function

1− x− e−x = m(x) ≤ m(0) = 0. (49)

Therefore, the original inequality is proved.

D.1. Proof of Corollary 4.4

Proof. By Theorem 4.3, we can obtain that

f(xK)− f(x∗) + η1α1(d+ 2) · tr(M) ∥hK∥2

≤
(
1− µ

40tr(M)

)K(
f(x0)− f(x∗) + η1α1(d+ 2) · tr(M) ∥h0∥2

)
(46)
≤ exp

(
− µ

40tr(M)
K
)(
f(x0)− f(x∗) + η1α1(d+ 2) · tr(M) ∥h0∥2

)
.

Thus, in order to achieve ε-suboptimal solution, K is required to be

K =
40tr(M)

µ

(
log

1

ε
+ log

(
f(x0)− f(x∗) + η1α1(d+ 2) · tr(M) ∥h0∥2

))
=O

( tr(M)

µ
log

1

ε

)
.

D.2. Proof of Corollary 4.10

Proof. By Theorem 4.9, we can obtain that

∥xK − x∗∥2 + α2 ∥hK −∇f(x∗)∥2

≤
(
1− µ

2(3d+ 7)L

)K (
∥x0 − x∗∥2 + α2 ∥h0 −∇f(x∗)∥2

)
(46)
≤ exp

(
− µ

2(3d+ 7)L
K
)(

∥x0 − x∗∥2 + α2 ∥h0 −∇f(x∗)∥2
)
.

Thus, in order to achieve ε-suboptimal solution, K is required to be

K =
2(3d+ 7)L

µ

(
log

1

ε
+ log

(
∥x0 − x∗∥2 + α2 ∥h0 −∇f(x∗)∥2

))
=O

(dL
µ

log
1

ε

)
.

D.3. Proof of Corollary 4.15

Proof. The similar with D.2, in order to achieve ε-suboptimal solution, K is required to be

K =
19Ltr(W)

µ

(
log

1

ε
+ log

(
∥x0 − x∗∥2 + α3 ∥h0 −∇f(x∗)∥2

))
=O

(Ltr(W)

µ
log

1

ε

)
.
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E. Additional experiment
In this section we will test the advantages of our algorithm over the Coordinate sketching version of the SEGA on a
real-world data set. We present performance comparison results for a linear regression task with φ(x) = 0 on the dataset
called Appliances Energy Prediction. This data set has 29 features and 19735 records. In the experiment, we properly
choose the step sizes of these two algorithms. According to the theoretical results of our algorithm and SEGA, step sizes of
these two algorithms should be proportional to O(1/tr(M)) and O(1/(dλ(M))), respectively.

0 50000 100000 150000 200000 250000 300000
iterations

106

107

108

109

f(x
k )-

f(x
* )

GSGD
SEGA_coor

Figure 3. Comparison of both our algorithm and the Coordinate sketching version of the SEGA algorithm with uniform sampling on linear
regression task.

We report the experiment result in Figure 3. We can observe that, our algorithm is significantly faster than the Coordinate
sketching version of the SEGA. This is because tr(M) ≪ dL on this task. But the overall convergence speed is slow because
the condition number of this task is large. We would like to remind again here that GSGD is better than SEGA when the
eigenvalues of the Hessian matrix are very different (tr(M) ≪ dL).
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