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Abstract

Explanations of model decisions are important
for building trust in machine learning systems,
especially in high-stakes areas like healthcare.
However, existing post-hoc explanation meth-
ods often suffer from instability, producing in-
consistent results for similar inputs and thereby
undermining their reliability. In this paper,
we conduct a systematic investigation into the
factors contributing to this instability across
different model architectures and explanation
methods. Our analysis reveals that model type,
rather than hyperparameters, is the primary
driver of stability, with transformer models ex-
hibiting greater instability compared to archi-
tectures like LSTMs, regardless of model size.
We also explore the role of sparsity in trans-
former models, finding that while sparse pre-
trained transformers improve the stability of
gradient-based explanations, similar benefits
are not observed with perturbation-based meth-
ods. Furthermore, our findings suggest that a
portion of the disagreement between different
explanation methods can be traced back to this
instability, highlighting the importance of sta-
ble model explanations for developing more
reliable and interpretable Al systems.

1 Introduction

Explanations allow us to understand possible ratio-
nales behind complex model decisions, and decide
when to rely on these predictions. These explana-
tions can guide future choices; for instance, one
might reject a model’s recommendation after un-
derstanding its reasoning. As explanations are in-
creasingly relied upon in critical sectors such as
healthcare (Elshawi et al., 2019), law (Whitmore
et al., 2016), and finance (Ibrahim et al., 2019),
the explanations must be stable to draw reliable
conclusions.

Several methods have been proposed to generate
explanations post hoc or after a model has been
trained. Post hoc explanations are practical, do not

° Original explanation

impasse over north korea’s nuclear
program , iraq , terrorism and other
matters , the state department said

e Slight change in data

gridlock over north korea’s nuclear
agenda , iraq , terrorism and other
matters , the state department said

e Change in explanation parameters

standoff over north korea’s nuclear
program , iraq , terrorism and other
matters , the state department said

Figure 1: The same model and explanation method
can yield different explanations for nearly identical in-
puts, with differences in the input highlighted in bold.
Moreover, in example C), altering the internal SHAP hy-
perparameter (number of feature permutations) diverges
the explanation further

necessitate access to model internals, and are well-
established methods that are straightforward to use.
Yet, prior work indicates that local post-hoc expla-
nations often exhibit instability (Ghorbani et al.,
2018; Alvarez-Melis and Jaakkola, 2018a), suscep-
tibility to perturbation attacks (Sinha et al., 2021),
and vulnerability to deliberate adversarial manipu-
lations (Slack et al., 2020). This fragility is evident
in instances where similar inputs yield divergent
explanations as seen in Figure 1, or a single input
produces conflicting interpretations. Furthermore,
there is a notable lack of consensus among different
explanation techniques (Krishna et al., 2022) where
the explanations between different methods offer
conflicting results. Such inconsistency in explana-
tions can erode trust in the model, amplify discord
among methods, and potentially lead to erroneous



decision-making.

This paper investigates the factors influencing
explanation stability across different model archi-
tectures and explanation methods. Our findings
indicate that model type is the primary determinant
of stability, with hyperparameters playing a sec-
ondary role. While transformer models generally
exhibit higher instability in explanations, this in-
stability is not necessarily related to the number
of parameters; for instance, DistilBERT, a larger
transformer model, proved to be more stable than
the smaller bert-tiny. Interestingly, even LSTMs
with more parameters than transformers produce
more stable explanations. We demonstrate that
using sparse pretrained models can improve the
stability of gradient-based explanations like Inte-
grated Gradients, whereas fine-tuning for sparsity
offers little to no benefit. Finally, we explore the
downstream effects of instability, revealing that sta-
ble setups reduce disagreements between different
explanation methods, suggesting that a portion of
these disagreements stems from instability in the
explanations themselves.

2 Background

Local post-hoc explanations provide insights into
individual predictions, aiding in understanding spe-
cific decisions and debugging. Local post-hoc
perturbation-based methods work by altering the
input data (e.g., removing, masking, or substituting
inputs) and observing the model’s reaction to these
changes, measuring the difference from the original
output. These methods are model-agnostic as they
do not require access to the model’s internals. They
compute feature attributions by training a simpler
local model around a point of interest. Examples
include LIME (Ribeiro et al., 2016a), SHAP (Lund-
berg and Lee, 2017), and BayesLIME (Zhao et al.,
2020). Gradient-based methods, suitable for neu-
ral networks, rely on backpropagation to calculate
the attribution of all input features in a single for-
ward and backward pass. They compute the partial
derivatives of the output concerning each input fea-
ture, resulting in a saliency map in applications like
computer vision. Examples include Input Gradient
(Hechtlinger), Integrated Gradients (Sundararajan
et al., 2017a), Grad-CAM (Selvaraju et al., 2016),
and SmoothGrad (Smilkov et al., 2017).

Previous work has shown that these local post
hoc methods are unstable (Adebayo et al., 2020;
Alvarez-Melis and Jaakkola, 2018a) even when the

underlying model is stable. To address issues of
instability, previous work has attempted averaging
explanations (Lee et al., 2019), removing random
perturbations from LIME (Zafar and Khan, 2019),
creating credible intervals for feature attributions
(Zhao et al., 2020), and introducing a regularization
parameter during training (Lakkaraju et al., 2020;
Chalasani et al., 2018). Agarwal et al. (2023a)
evaluates the stability and faithfulness of different
explanations across multiple datasets and finds that
a model’s stability and faithfulness vary depending
on the dataset and task. Despite these challenges,
working on local explanations is still worthwhile.
Local explanations are pertinent for debugging in-
dividual predictions, understanding model behavior
on a case-by-case basis, and ensuring fairness in
specific instances. Unlike previous studies that fo-
cus on individual methods or specific aspects of
model behavior, we conduct a large-scale analysis.

2.1 Defining an Explanation

Explainability is intrinsically tied to a problem,
domain, and audience (Ehsan et al., 2023). The ex-
planation for a machine learning practitioner is not
the explanation for a healthcare professional. De-
pending on the context, explanations can vary from
assigning feature importance scores to generating
free-text rationalizations for a model’s behavior
(Slack et al., 2022; Shen et al., 2023; Lakkaraju
et al., 2022). In this study, we use feature impor-
tance by highlighting tokens that drive a model’s
predictions, similar to saliency maps for images.
This approach provides users with insights into the
model’s decision-making process and helps ver-
ify if the model focuses on relevant data features.
These extractive explanations, while not fully trans-
parent, offer plausible rationales for model pre-
dictions and are widely used in critical domains
like healthcare (Elshawi et al., 2019) and finance
(Ibrahim et al., 2019). They can be effective if they
meaningfully correlate with the model’s predictions
(Wiegreffe and Pinter, 2019), despite the gap be-
tween these explanations and human understanding
(Kaur et al., 2020; Shen and Huang, 2020). Such
explanations also help practitioners calibrate their
models (Ye and Durrett, 2022). When deployed,
extractive explanations should adhere to the prin-
ciple of stability (Sundararajan et al., 2017b). Our
research examines the causes of instability and pro-
poses mitigation strategies, extending applicability
across explanatory frameworks. Additionally, more
recent dialogue-based explanations (Slack et al.,



Method Parameter Values
LIME # of samples of the original model used to train the surrogate interpretable model [100, 1000, 5000]
SHAP # of feature permutations tested [25, 100, 1000]

Integrated Gradients

# of steps used by the approximation method

[50, 500]

Table 1: Comparison of hyperparameters for different explanation methods

2022; Shen et al., 2023) rely on feature-based ex-
planations, and improving the stability of local post
hoc explanations can enhance these interactive ex-
planations.

3 Isolating Instability

There are known causes of instability in explana-
tions. For instance, using too few perturbed sam-
ples for methods such as LIME can hinder fitting a
local model (Zhao et al., 2020). Similarly, the inher-
ent limitations of linear methods in capturing the
complexities of non-linear relationships they aim
to mirror (Ribeiro et al., 2016b). In the third exam-
ple in Figure 1, the observed increase in variation
among token attributions in the original explana-
tions is attributed to the use of a smaller number
of samples in the SHAP method. While factors
contributing to instability have been identified, the
extent of their impact on the stability of explana-
tions remains unclear. Understanding the relative
influence of each factor provides insight into cre-
ating stable explanations. Our investigation con-
centrates on the following hypotheses: instability
is driven by hyperparameter selection of the expla-
nation method, the complexity of the individual
data point being explained, or the complexity of
the model itself in terms of parameter size. Each
hypothesis highlights a different aspect of the inter-
action between methods, models, and data in pro-
ducing variable explanations. We acknowledge that
these components do not operate in isolation and
that each explanation method introduces unique
considerations.

Explanation Method Hyperparameters Slack
et al. (2021) propose modeling uncertainty in local
post-hoc explanations as credible intervals, demon-
strating that optimizing hyperparameters leads to
decreased intervals of uncertainty. For instance, in
the case of LIME, increasing the number of sam-
ples provides the local model with more data to
fit, these models tend to converge on a more con-
sistent explanation. Similarly, (Zhou et al., 2021)
proposes S-LIME which uses a hypothesis-testing
framework to determine the number of perturbation

points needed to guarantee stability in LIME. This
suggests that by carefully selecting and optimiz-
ing hyperparameters, we can reduce uncertainty in
the explanation methods and enhance the overall
stability of the explanations. This hypothesis under-
scores the importance of hyperparameter selection
in improving the reliability and robustness of local
post-hoc explanation methods.

Model Complexity The second hypothesis con-
siders that instability emerges from the complexity
of the model being explained. As the number of pa-
rameters increases, explanation methods may fail
to capture the underlying relationships accurately,
leading to increased variation in stability. Ribeiro
et al. (2016b) acknowledge that local explanations
provided by methods like LIME often fail to reflect
the global behavior of complex models, resulting
in discrepancies. This hypothesis posits that local
surrogate models, which fit linear models to the lo-
cal feature space, struggle to represent the intricate
relationships in high-parameter models, leading to
less reliable explanations. As the dimensionality
and complexity of the model increase, the explana-
tions provided by post-hoc methods become more
variable.

Data Complexity Agarwal et al. (2023b) bench-
mark six explanation methods on two datasets, find-
ing that the stability of each method varied depend-
ing on the dataset, even when other factors are held
constant. This leads to the hypothesis that as the
complexity of input data increases, so does the vari-
ation in token attribution. For example, longer texts
or inputs with higher perplexity tend to produce
more unstable explanations. Moreover, Alvarez-
Melis and Jaakkola (2018b) notes that instability
can be observed even when the underlying model
is stable.

3.1 Quantifying Stability

Here stability refers to the consistency of explana-
tions across slightly varied inputs. The intuition is
that nearly identical inputs should receive similar

explanations, a concept well-grounded in previous
literature (Bhatt et al., 2020; Yeh et al., 2019; Dai



LIME SHAP IG

Model Type
.———\ —_— —o— LSTM

0.95 < —
—_— — —e— 2-Layer NN
0.90 —e— bert-tiny
> —e— distilbert
=085
Ke)
Sos0 /
(0] —_— %
— .
0.75 ‘\/
100.0 1000.0 5000.0 25.0 100.0 1000.0 50.0 500.0
n_samples n_samples n_steps
Hyperparameter

Figure 2: Stability of each explanation method as a function of a key hyperparameter. LIME’s stability improves by
up to 8% with more samples, while the number of approximation steps for Integrated Gradients has minimal impact.
Across methods, model type significantly influences stabilit

et al., 2022). For extractive explanations, an effec-
tive stability metric should focus on the consistency
of the top-ranked features, which are the weights
assigned to each token measuring its importance
in driving a prediction. These top-ranked features
have an outsized impact on model decisions. Ad-
ditionally, the stability metric should be designed
to compare different explanation methods, even
when they use different units and should be easy to
interpret.

Alvarez-Melis and Jaakkola (2018a) measures
stability by introducing a local Lipschitz metric,
which evaluates the sensitivity of explanations to
small changes in input by quantifying the maxi-
mum rate at which the explanation can change. Es-
sentially, this metric captures how much the expla-
nation can vary in response to minor perturbations
in the input. A smaller Lipschitz constant indicates
greater stability, as the explanation changes more
slowly with respect to input variations. However,
the Lipschitz metric has some limitations. It pro-
duces a unitless ratio, making it difficult to interpret
practically. This ambiguity makes it challenging
to determine what constitutes a "good" or "bad"
stability score. Additionally, calculating the Lips-
chitz constant is not straightforward, as it requires
evaluating the maximum change over all possible
perturbations of the input, which can be computa-
tionally intensive.

Given these challenges, we choose to use the
Normalized Discounted Cumulative Gain (NDCG)
metric (Jarvelin and Kekilédinen, 2000), a standard
from the field of Information Retrieval, to quan-
tify stability. NDCG assesses the ranking quality
by considering both the position and relevance of
items in a list, offering a measure of how well the

ranking preserves the importance of all features,
particularly the top features. This metric captures
the essence of what we seek in a stable explanation:
that the most influential factors remain consistently
identified and ranked the same, even with minor
variations in input. Our methodology involves com-
paring the attributions generated for the original in-
put text to those generated for inputs that have been
slightly modified. The stability is then calculated
as the minimum NDCG value from the perturbed
samples:

Stability = min NDCG

Where m is the number of perturbed samples de-
faulting to 10. This minimum represents the "worst-
case" deviation in explanations between the origi-
nal and slightly modified examples. By adopting
the minimum NDCG value from the perturbed sam-
ples, our stability metric captures the largest devia-
tion in explanations among a set of highly similar
inputs. Following the principles in Sundararajan
et al. (2017b), we measure the absolute value of
changes in explanations, highlighting shifts regard-
less of their direction. This approach focuses on
preserving the order and relevance of top features,
with the NDCG score ranging from O to 1, where 1
signifies perfect stability.

To create the slightly modified inputs, we per-
turb 10% of the input tokens by selecting synonyms
from the embedding space using cosine similarity
following (Garg and Ramakrishnan, 2020). On av-
erage, the perturbed inputs maintain a 95% cosine
similarity evaluated with the all-MiniLM-L6-v2
sentence transformer to the original text, imply-
ing their explanations should be closely aligned.
This approach ensures that the stability metric ef-



fectively measures the consistency of explanations,
focusing on the most critical features.

4 Instability Experiments

In this section, we explore the factors contributing
to instability in model explanations by systemati-
cally varying explanation method hyperparameters,
model complexity, and data complexity. Our aim
is to understand how these factors affect the con-
sistency and reliability of generated explanations,
with the ultimate goal of identifying why certain
models or configurations are more prone to insta-
bility, thereby guiding the development of more
trustworthy Al systems.

4.1 Experimental Setup

Similar to previous explanation research (Krishna
et al., 2022; Wiegreffe and Pinter, 2019; Treviso
and Martins, 2020), our experiments use the AG’s
News Corpus (Zhang et al., 2015), which contains
120,000 training and 7,600 test examples. The
task involves classifying articles into four cate-
gories: world news, sports, business, and science
and technology, based on their titles and descrip-
tions. We evaluate four different model architec-
tures: a 2-layer neural network, a vanilla long
short-term memory (LSTM) network, and two pre-
trained transformer variants, bert-tiny (Bhargava
et al., 2021) and DistilBERT (Sanh et al., 2019).
For each model type, we explore a range of training
configurations, including undertraining, overtrain-
ing, and variations in embedding sizes, to assess
the impact of model complexity on explanation sta-
bility. To ensure robustness in our findings, we
train 30 models for each configuration, resulting
in a total of approximately 2,000 models. For ex-
planation methods, we use LIME and SHAP for
perturbation-based approaches and Integrated Gra-
dients for a gradient-based approach, generating all
explanations using the Captum library (Kokhlikyan
et al., 2020). To measure stability, we randomly
select 300 points from the test set and generate 10
perturbed versions of each, ensuring 95% semantic
similarity to the original inputs, and compute the
minimum NDCG score to obtain stability.

Explanation Methods Hyperparameters To ex-
amine the impact of hyperparameters on explana-
tion stability, we select a key hyperparameter for
each of the three explanation methods: the number
of samples for LIME, the number of feature permu-
tations for SHAP, and the number of approximation

steps for Integrated Gradients. As expected, our
results as seen in 2 show that perturbation methods
generally benefit from a higher number of samples,
with LIME showing up to an 8% improvement
in stability as the number of samples increases
to 5,000. However, the number of approximation
steps for Integrated Gradients has less of an impact.
Across all three explanation methods, model types
appeared in the same order of stability, with the
2-layer neural network at the top, followed by the
LSTM, and lastly bert-tiny and DistilBERT. This
indicates that while hyperparameters are important,
model type is the primary driver of stability.
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Figure 3: Stability of explanations across model com-
plexities, showing that LSTM and 2-layer neural net-
works are more stable than transformers, regardless of
parameter count. Notably, DistilBERT, which is larger
than bert-tiny, also demonstrates greater stability. This
underscores that model type, rather than size, is the pri-
mary driver of stability.

Model Complexity Next, we explore the hypoth-
esis that models with more parameters are harder
to explain. To test this, we adjust the number of
parameters in each model architecture. For the 2-
layer neural network, we vary the embedding size;
for the LSTM, we vary the embedding size and hid-
den dimension size; and for the transformers, we
compared bert-tiny and DistilBERT, which have
4 million and 66 million parameters, respectively.
We use the explanation methods with the optimal
hyperparameter values identified in the prior anal-
ysis to minimize instability from the explanation
method. Our results, shown in 3, plot the number
of parameters against the average stability across
LIME, SHAP, and Integrated Gradients. Surpris-
ingly, even when the number of parameters in the 2-
layer network and LSTM exceeded that of bert-tiny,
their explanations are still more stable. Similarly,
despite having significantly more parameters, Dis-



tilBERT is more stable on average than bert-tiny.
This finding reinforces that model type, rather than
the number of parameters, is the main driver of
stability. A complete list of model configurations
can be found in the supplementary materials B.
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Figure 4: Stability comparison across model types for
high and low perplexity texts, showing minimal differ-
ences and indicating that input complexity has little
impact on explanation stability.

Data Complexity Lastly, to investigate whether
the complexity of input data impacts the stability of
explanations, we analyze samples categorized by
their perplexity scores, using GPT-2 as a reference.
We define "hard" texts as those in the top 25% of
perplexity scores (above 100) and "easy" texts as
those in the bottom 25% (below 50). We then com-
pare the average stability of explanations generated
for these two categories. As illustrated in Figure
4, the stability of explanations shows minimal vari-
ation between the "hard" and "easy" texts across
different model types. This finding indicates that
input complexity has a negligible effect on explana-
tion stability. Instead, it highlights that the type of
model, rather than the complexity of the input data,
is the predominant factor influencing the stability
of explanations.

5 Transformer Stability

In the previous section, we found that Transformer
architectures exhibit greater instability in expla-
nations, regardless of the explanation method or
model size. This section delves into the possible
reasons behind this instability. Previous research
(Chen et al., 2020; Correia et al., 2019; Treviso and
Martins, 2020) indicates that sparse models—those
that focus on fewer input features—can enhance
interpretability. We aim to determine whether
sparse models also provide more stable explana-

tions than their dense counterparts and whether they
consistently identify the same key features. Our
hypothesis is that the instability in Transformer
models arises from over-parameterization or the
effects of heterogeneous learning processes typ-
ical in ensemble methods. To test this, we ex-
periment with Transformer models under differ-
ent conditions, including applying sparsity during
fine-tuning and using pretrained sparse models. By
reducing the number of active parameters (address-
ing over-parameterization) and promoting more fo-
cused learning (potentially mitigating the effects of
heterogeneity), we seek to determine whether these
adjustments can lead to more stable and consistent
model explanations.

5.1 Experimental Setup

To examine the impact of sparsity on Transformer
models, we conduct experiments under two condi-
tions: sparsity introduced during fine-tuning and
sparsity inherent in a pretrained model. These ex-
periments are performed on three datasets: the AG
News Corpus (Zhang et al., 2015) for text classifica-
tion, the SST2 dataset (Socher et al., 2013) for sen-
timent analysis, and the MNLI dataset (Williams
et al., 2018) for recognizing textual entailment. We
select the best-performing hyperparameter settings
identified in earlier sections for each explanation
method. From the pool of models used in the previ-
ous section, we sample 10 DistilBERT models and
apply the two sparsity strategies. The first strategy
involves introducing sparsity during fine-tuning us-
ing the sparsemax function (Martins and Astudillo,
2016), which generates sparse probability distribu-
tions by assigning zero probabilities to certain out-
puts, unlike the traditional softmax function. This
method aims to create a more focused attention
mechanism, potentially improving stability. The
second strategy uses a pretrained sparse version of
DistilBERT (Zafrir et al., 2021), which combines
weight pruning and model distillation to achieve
high sparsity while maintaining performance. To
assess stability, we randomly select 300 samples
from each test set, generate 10 perturbations for
each, ensuring 95% semantic similarity, and mea-
sure the maximum deviation in the NDCG score as
before.

5.2 Results

We assess the stability of explanations across three
datasets: the AG News Corpus, the SST2 dataset,
and the MNLI dataset. The results, summarized in
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Figure 5: Comparison of explanation stability without sparsity, with sparsity introduced during fine-tuning, and
using a pretrained sparse model. Pretrained sparsity consistently improves the stability of Integrated Gradients
across three datasets, while perturbation-based methods like LIME and SHAP show no improvement.

Figure 5, show that using a sparse pretrained model
consistently enhances the stability of explanations
generated by Integrated Gradients, regardless of
the dataset. For example, in the case of AG News,
there is a 6% boost in average stability. This im-
provement is likely due to the reduction of noise
in the gradient flow, enabling the model to focus
more precisely on the most relevant features. As
a result, the explanations become more consistent.
These results support the hypothesis that sparsity
enhances the stability of gradient-based methods
by making the internal gradients more predictable
and concentrated on critical inputs.

In contrast, perturbation-based methods like
LIME and SHAP do not show benefits from spar-
sity. Likely because these methods are more in-
fluenced by the inherent randomness in their per-
turbation process and the model’s sensitivity to
input variations, which is not effectively mitigated
through sparsity. Moreover, introducing sparsity
during fine-tuning with the sparsemax function did
not improve stability for any of the explanation
methods tested. This suggests that applying spar-
sity during fine-tuning is insufficient to enhance
the stability of explanations and suggests that the
benefits of sparsity are more effectively realized
when integrated during the pretraining phase.

5.3 Discussion

Our exploration into Transformer stability high-
lights that sparse models can enhance the stability
of gradient-based explanations such as Integrated
Gradients. Yet, sparsity does not help the stabil-
ity of perturbation-based methods like LIME and

SHAP. While versatile, perturbation-based meth-
ods exhibit greater variability due to their inher-
ent reliance on random perturbations of input data.
This randomness can lead to inconsistent expla-
nations, a challenge that methods like D-LIME
(Zafar and Khan, 2019) and S-LIME (Zhou et al.,
2021) mitigate by controlling for variability in the
perturbation process. Interestingly, adding spar-
sity during fine-tuning using sparsemax (Martins
and Astudillo, 2016) dud not improve the stability
of gradient-based explanations. Our results sug-
gest that the advantages of sparsity are more pro-
nounced when it is incorporated during the pretrain-
ing phase rather than applied later.

Furthermore, while sparsity can help focus at-
tention and improve stability in certain methods,
it is not universally beneficial across all explana-
tion techniques. Meister et al. (2021) shows that
sparse attention does not necessarily correspond to
a sparse set of influential inputs. Instead, induc-
ing sparsity can lead to increased contextualization
within intermediate representations, making atten-
tion distributions less reflective of the actual impor-
tance of individual inputs. This issue is separate
from the stability of an explanation and points to
a more complex interaction between sparsity and
interpretability. Despite these challenges, our study
demonstrates that sparse pretrained transformers,
when combined with gradient-based explanations,
can strike a balance between explanation stability
and model performance. While simpler models are
often recommended for more reliable explanations,
our findings suggest that sparse transformers offer



a viable alternative, particularly in scenarios where
performance is critical.

6 Stability and Disagreement

Machine learning practitioners often rely on mul-
tiple explanation methods to interpret model de-
cisions (Krishna et al., 2022). However, these
methods can sometimes provide conflicting expla-
nations, making it challenging to understand and
trust the model’s behavior. This section investi-
gates whether some of these disagreements are due
to instability in the explanations themselves.
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Figure 6: Higher stability setups show increased agree-
ment between explanation methods, indicating that im-
proving stability can reduce disagreement in feature
identification

6.1 Experimental Setup

To explore this, we analyze how frequently dif-
ferent setups—combinations of model configu-
rations, explanation methods, and hyperparame-
ters—identify the same top three tokens in their
explanations following Krishna et al. (2022). We
use the 180 DistilBERT models previously trained
on the AG’s News Corpus. Each setup is assigned a
stability score based on the average stability across
all data points and grouped into one of eight stabil-
ity bins using the Fischer-Jenks algorithm, where
Bin O represents the least stable setup. We then cal-
culate the average feature agreement within each
stability bin, measuring how consistently the top
three features are identified across different setups.
The goal is to determine if more stable setups result
in higher agreement between different explanation
methods. The cutoffs for these bins are detailed in
the Appendix 6.

6.2 Results

Our results, depicted in the heatmap of Figure 6, in-
dicate that more stable setups lead to higher agree-
ment between explanation methods. The most sta-
ble setups (in the higher bins) showed up to an
11% increase in agreement compared to the least
stable ones. This suggests that a portion of the
disagreement between explanation methods is due
to instability in the explanations themselves. Al-
though overall feature agreement is relatively low
due to averaging across all three methods, improv-
ing stability appears to be a promising strategy for
reducing disagreement, leading to more reliable
and interpretable Al systems.

7 Conclusion

This work addresses the question of what factors
contribute to instability in model explanations and
how to mitigate them. Our investigation reveals
that while hyperparameter tuning can enhance sta-
bility in some explanation methods like LIME, the
model type plays a more significant role, partic-
ularly in complex architectures like transformers.
We demonstrate that transformer models exhibit
greater instability compared to simpler models
like LSTMs, which are not driven by parameter
count, and that sparsity, especially when introduced
during pretraining, can improve the stability of
gradient-based explanations. However, this ben-
efit does not extend to perturbation-based methods.
Furthermore, our analysis shows that instability
contributes to the disagreement between different
explanation methods, suggesting that efforts to en-
hance stability can reduce this discord and lead to
more reliable and interpretable Al systems. Fu-
ture work may focus on extending the reliability
of explanation stability to natural text explanations,
which present unique challenges, such as maintain-
ing stability when multiple valid free-text rationales
are possible. Addressing these challenges could
lead to more robust and trustworthy Al systems in
domains where textual explanations are critical.



8 Limitations

A limitation of our study is its focus on a single
dataset, the AG News Corpus, for text classifica-
tion. This choice was made in alignment with prior
studies (Krishna et al., 2022; Agarwal et al., 2023a)
that have documented issues of disagreement and
variable stability within this text classification task.
To conduct this large-scale analysis, we trained
and evaluated 2,000 models across three explana-
tion methods. For each stability calculation, we
required a minimum of 10 similar examples, result-
ing in 11 explanations per calculation. With 300
test points, this totals 3,300 explanations per model,
leading to approximately 20 million explanations
overall. This scale of computation demanded sig-
nificant GPU resources, raising concerns about
the ecological impact and sustainability of such
research practices. The intensive use of computa-
tional resources highlights the need for future stud-
ies to consider more sustainable approaches, partic-
ularly as the environmental costs of large-scale Al
research become increasingly important. Moreover,
It is important to recognize that explanations do not
solve the underlying issues of bias or unbalanced
representation. Heavier emphasis should be placed
on data collection and curation, label choice for
model optimization, and the use of inherently trans-
parent models. As previously stated, we choose to
focus on feature rankings as an explanation when
there is a known gap between feature weight and
interpretability, Kaur et al. (2020); Shen and Huang
(2020) show attributions are often misused or mis-
understood. Yet, extractive explanations provide a
targeted, albeit not fully transparent, insight into
Al decision-making processes, critical in domains
such as healthcare and finance, while also highlight-
ing the challenges and necessary improvements in
explanation stability and quality across various ex-
planatory frameworks.
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A Explanation Methods

A.1 LIME

LIME explanations were generated using

the captum.attr.LimeBase class from

the Captum library. The LimeBase class

was configured with a Lasso linear model

(SkLearnLasso (alpha=le-5, random_state

to serve as the interpretable surrogate model. To

generate explanations, a cosine similarity function

was used to measure the similarity between the

original text embeddings and those of the perturbed
versions, based on the model’s embedding layers.

An exponential function was then applied to this

similarity to create weights, enabling the inter-

pretable model to make meaningful comparisons

between the original and perturbed inputs per the

Captum documentation. The perturbations were

generated by randomly selecting each word in the

input text with a 50% chance, using a Bernoulli

distribution. Finally, these perturbed texts were
adjusted to match the original input structure by

adding necessary padding. Full code available

upon release.

A.2 SHAP

EMBEDDING_SIZE | MAX_EPOCHS | LR
16 1 0.001
16 1 0.01
16 1 0.1
16 5 0.001
16 5 0.01
16 5 0.1

=1)) 16 10 0.001
16 10 0.01
16 10 0.1
64 1 0.001
64 1 0.01
64 1 0.1
64 5 0.001
64 5 0.01
64 5 0.1
64 10 0.001
64 10 0.01
64 10 0.1
128 1 0.001
128 1 0.01
128 1 0.1
128 5 0.001
128 5 0.01
128 5 0.1
128 10 0.001
128 10 0.01
128 10 0.1

The SHAP explanations were generated using the
captum.attr.ShapleyValueSampling

class from the Captum library. To generate
explanations, the ShapleyValueSampling

Table 2: 2-Layer NN model variations

method from Captum was employed, which

EMBEDDING_AND_HIDDEN_DIM

MAX_EPOCHS

LR

16

0.001

calculates SHAP values by sampling various

16

0.01

subsets of input features and estimating their

16

0.1

contributions to the model’s predictions. In this

16

0.001

16

0.01

setup, the baselines were set to None, meaning

16

0.1

that zero baselines were used by default, and the

16

0.001

16

0.01

feature_mask was also set to None, treating

16

0.1

each scalar as an independent feature.

64

0.001

64

0.01

A.3 Integrated Gradients

64

0.1

64

0.001

64

0.01

The explanations were generated using the

64

0.1

captum.attr.LayerIntegratedGradients

64

0.001

64

0.01

class from the Captum library. To generate expla-

64

0.1

nations, we applied the IG method to the model

128

0.001

embedding layer, using <unk> as the reference

128

0.01

128

0.1

token for baseline comparisons. This method

128

0.001

128

0.01

calculates attributions by integrating the gradients

128

0.1

of the model’s output with respect to its input

128

0.001

tokens, summed across the embedding dimensions,

128

0.01

128

0.1

and normalized for consistency..

B Models
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Table 3: LSTM model variations




MAX_EPOCHS | LR Pretrained Model
1 0.001 prajjwall/bert-tiny
1 0.001 | distilbert-base-uncased
1 0.01 prajjwall/bert-tiny
1 0.01 | distilbert-base-uncased
1 0.1 prajjwall/bert-tiny
1 0.1 distilbert-base-uncased
5 0.001 prajjwall/bert-tiny
5 0.001 | distilbert-base-uncased
5 0.01 prajjwall/bert-tiny
5 0.01 | distilbert-base-uncased
5 0.1 prajjwall/bert-tiny
5 0.1 distilbert-base-uncased
10 0.001 prajjwall/bert-tiny
10 0.001 | distilbert-base-uncased
10 0.01 prajjwall/bert-tiny
10 0.01 | distilbert-base-uncased
10 0.1 prajjwall/bert-tiny
10 0.1 distilbert-base-uncased

Table 4: Transformer model variations
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C Experiments

C.1 Sparsity

Epochs
5

Learning Rate
0.1
0.01
0.001
0.01
0.01
0.01
0.01
0.001
0.01
0.1

—| | = =] W] | D] WD W

Table 5: DistilBERT configurations sampled for sparsity
experiments

C.2 Disagreement

0.28
~- 021

6

0.26

5

-0.24

4

3

-0.22

Stability Bin 1

1 2

0

Stability Bin 2

Figure 7: Average feature agreement across all 3 expla-
nation methods for the top 5 tokens

15

0.39

0.38

6

-0.37

5

4

-0.36

3

-0.35

Stability Bin 1

2

1

0

Figure 8: Average feature agreement across all 3 expla-
nation methods for the top 10 tokens

Fisher-Jenks Bin
0.70
0.73
0.75
0.77
0.78
0.80
0.82
0.84
0.89

Index

o

0| QNN | W —

Table 6: Fischer Jenks Stability bins for the DistilBERT
models
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