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Abstract001

Explanations of model decisions are important002
for building trust in machine learning systems,003
especially in high-stakes areas like healthcare.004
However, existing post-hoc explanation meth-005
ods often suffer from instability, producing in-006
consistent results for similar inputs and thereby007
undermining their reliability. In this paper,008
we conduct a systematic investigation into the009
factors contributing to this instability across010
different model architectures and explanation011
methods. Our analysis reveals that model type,012
rather than hyperparameters, is the primary013
driver of stability, with transformer models ex-014
hibiting greater instability compared to archi-015
tectures like LSTMs, regardless of model size.016
We also explore the role of sparsity in trans-017
former models, finding that while sparse pre-018
trained transformers improve the stability of019
gradient-based explanations, similar benefits020
are not observed with perturbation-based meth-021
ods. Furthermore, our findings suggest that a022
portion of the disagreement between different023
explanation methods can be traced back to this024
instability, highlighting the importance of sta-025
ble model explanations for developing more026
reliable and interpretable AI systems.027

1 Introduction028

Explanations allow us to understand possible ratio-029

nales behind complex model decisions, and decide030

when to rely on these predictions. These explana-031

tions can guide future choices; for instance, one032

might reject a model’s recommendation after un-033

derstanding its reasoning. As explanations are in-034

creasingly relied upon in critical sectors such as035

healthcare (Elshawi et al., 2019), law (Whitmore036

et al., 2016), and finance (Ibrahim et al., 2019),037

the explanations must be stable to draw reliable038

conclusions.039

Several methods have been proposed to generate040

explanations post hoc or after a model has been041

trained. Post hoc explanations are practical, do not042

Figure 1: The same model and explanation method
can yield different explanations for nearly identical in-
puts, with differences in the input highlighted in bold.
Moreover, in example C), altering the internal SHAP hy-
perparameter (number of feature permutations) diverges
the explanation further

necessitate access to model internals, and are well- 043

established methods that are straightforward to use. 044

Yet, prior work indicates that local post-hoc expla- 045

nations often exhibit instability (Ghorbani et al., 046

2018; Alvarez-Melis and Jaakkola, 2018a), suscep- 047

tibility to perturbation attacks (Sinha et al., 2021), 048

and vulnerability to deliberate adversarial manipu- 049

lations (Slack et al., 2020). This fragility is evident 050

in instances where similar inputs yield divergent 051

explanations as seen in Figure 1, or a single input 052

produces conflicting interpretations. Furthermore, 053

there is a notable lack of consensus among different 054

explanation techniques (Krishna et al., 2022) where 055

the explanations between different methods offer 056

conflicting results. Such inconsistency in explana- 057

tions can erode trust in the model, amplify discord 058

among methods, and potentially lead to erroneous 059
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decision-making.060

This paper investigates the factors influencing061

explanation stability across different model archi-062

tectures and explanation methods. Our findings063

indicate that model type is the primary determinant064

of stability, with hyperparameters playing a sec-065

ondary role. While transformer models generally066

exhibit higher instability in explanations, this in-067

stability is not necessarily related to the number068

of parameters; for instance, DistilBERT, a larger069

transformer model, proved to be more stable than070

the smaller bert-tiny. Interestingly, even LSTMs071

with more parameters than transformers produce072

more stable explanations. We demonstrate that073

using sparse pretrained models can improve the074

stability of gradient-based explanations like Inte-075

grated Gradients, whereas fine-tuning for sparsity076

offers little to no benefit. Finally, we explore the077

downstream effects of instability, revealing that sta-078

ble setups reduce disagreements between different079

explanation methods, suggesting that a portion of080

these disagreements stems from instability in the081

explanations themselves.082

2 Background083

Local post-hoc explanations provide insights into084

individual predictions, aiding in understanding spe-085

cific decisions and debugging. Local post-hoc086

perturbation-based methods work by altering the087

input data (e.g., removing, masking, or substituting088

inputs) and observing the model’s reaction to these089

changes, measuring the difference from the original090

output. These methods are model-agnostic as they091

do not require access to the model’s internals. They092

compute feature attributions by training a simpler093

local model around a point of interest. Examples094

include LIME (Ribeiro et al., 2016a), SHAP (Lund-095

berg and Lee, 2017), and BayesLIME (Zhao et al.,096

2020). Gradient-based methods, suitable for neu-097

ral networks, rely on backpropagation to calculate098

the attribution of all input features in a single for-099

ward and backward pass. They compute the partial100

derivatives of the output concerning each input fea-101

ture, resulting in a saliency map in applications like102

computer vision. Examples include Input Gradient103

(Hechtlinger), Integrated Gradients (Sundararajan104

et al., 2017a), Grad-CAM (Selvaraju et al., 2016),105

and SmoothGrad (Smilkov et al., 2017).106

Previous work has shown that these local post107

hoc methods are unstable (Adebayo et al., 2020;108

Alvarez-Melis and Jaakkola, 2018a) even when the109

underlying model is stable. To address issues of 110

instability, previous work has attempted averaging 111

explanations (Lee et al., 2019), removing random 112

perturbations from LIME (Zafar and Khan, 2019), 113

creating credible intervals for feature attributions 114

(Zhao et al., 2020), and introducing a regularization 115

parameter during training (Lakkaraju et al., 2020; 116

Chalasani et al., 2018). Agarwal et al. (2023a) 117

evaluates the stability and faithfulness of different 118

explanations across multiple datasets and finds that 119

a model’s stability and faithfulness vary depending 120

on the dataset and task. Despite these challenges, 121

working on local explanations is still worthwhile. 122

Local explanations are pertinent for debugging in- 123

dividual predictions, understanding model behavior 124

on a case-by-case basis, and ensuring fairness in 125

specific instances. Unlike previous studies that fo- 126

cus on individual methods or specific aspects of 127

model behavior, we conduct a large-scale analysis. 128

2.1 Defining an Explanation 129

Explainability is intrinsically tied to a problem, 130

domain, and audience (Ehsan et al., 2023). The ex- 131

planation for a machine learning practitioner is not 132

the explanation for a healthcare professional. De- 133

pending on the context, explanations can vary from 134

assigning feature importance scores to generating 135

free-text rationalizations for a model’s behavior 136

(Slack et al., 2022; Shen et al., 2023; Lakkaraju 137

et al., 2022). In this study, we use feature impor- 138

tance by highlighting tokens that drive a model’s 139

predictions, similar to saliency maps for images. 140

This approach provides users with insights into the 141

model’s decision-making process and helps ver- 142

ify if the model focuses on relevant data features. 143

These extractive explanations, while not fully trans- 144

parent, offer plausible rationales for model pre- 145

dictions and are widely used in critical domains 146

like healthcare (Elshawi et al., 2019) and finance 147

(Ibrahim et al., 2019). They can be effective if they 148

meaningfully correlate with the model’s predictions 149

(Wiegreffe and Pinter, 2019), despite the gap be- 150

tween these explanations and human understanding 151

(Kaur et al., 2020; Shen and Huang, 2020). Such 152

explanations also help practitioners calibrate their 153

models (Ye and Durrett, 2022). When deployed, 154

extractive explanations should adhere to the prin- 155

ciple of stability (Sundararajan et al., 2017b). Our 156

research examines the causes of instability and pro- 157

poses mitigation strategies, extending applicability 158

across explanatory frameworks. Additionally, more 159

recent dialogue-based explanations (Slack et al., 160
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Method Parameter Values

LIME # of samples of the original model used to train the surrogate interpretable model [100, 1000, 5000]
SHAP # of feature permutations tested [25, 100, 1000]
Integrated Gradients # of steps used by the approximation method [50, 500]

Table 1: Comparison of hyperparameters for different explanation methods

2022; Shen et al., 2023) rely on feature-based ex-161

planations, and improving the stability of local post162

hoc explanations can enhance these interactive ex-163

planations.164

3 Isolating Instability165

There are known causes of instability in explana-166

tions. For instance, using too few perturbed sam-167

ples for methods such as LIME can hinder fitting a168

local model (Zhao et al., 2020). Similarly, the inher-169

ent limitations of linear methods in capturing the170

complexities of non-linear relationships they aim171

to mirror (Ribeiro et al., 2016b). In the third exam-172

ple in Figure 1, the observed increase in variation173

among token attributions in the original explana-174

tions is attributed to the use of a smaller number175

of samples in the SHAP method. While factors176

contributing to instability have been identified, the177

extent of their impact on the stability of explana-178

tions remains unclear. Understanding the relative179

influence of each factor provides insight into cre-180

ating stable explanations. Our investigation con-181

centrates on the following hypotheses: instability182

is driven by hyperparameter selection of the expla-183

nation method, the complexity of the individual184

data point being explained, or the complexity of185

the model itself in terms of parameter size. Each186

hypothesis highlights a different aspect of the inter-187

action between methods, models, and data in pro-188

ducing variable explanations. We acknowledge that189

these components do not operate in isolation and190

that each explanation method introduces unique191

considerations.192

Explanation Method Hyperparameters Slack193

et al. (2021) propose modeling uncertainty in local194

post-hoc explanations as credible intervals, demon-195

strating that optimizing hyperparameters leads to196

decreased intervals of uncertainty. For instance, in197

the case of LIME, increasing the number of sam-198

ples provides the local model with more data to199

fit, these models tend to converge on a more con-200

sistent explanation. Similarly, (Zhou et al., 2021)201

proposes S-LIME which uses a hypothesis-testing202

framework to determine the number of perturbation203

points needed to guarantee stability in LIME. This 204

suggests that by carefully selecting and optimiz- 205

ing hyperparameters, we can reduce uncertainty in 206

the explanation methods and enhance the overall 207

stability of the explanations. This hypothesis under- 208

scores the importance of hyperparameter selection 209

in improving the reliability and robustness of local 210

post-hoc explanation methods. 211

Model Complexity The second hypothesis con- 212

siders that instability emerges from the complexity 213

of the model being explained. As the number of pa- 214

rameters increases, explanation methods may fail 215

to capture the underlying relationships accurately, 216

leading to increased variation in stability. Ribeiro 217

et al. (2016b) acknowledge that local explanations 218

provided by methods like LIME often fail to reflect 219

the global behavior of complex models, resulting 220

in discrepancies. This hypothesis posits that local 221

surrogate models, which fit linear models to the lo- 222

cal feature space, struggle to represent the intricate 223

relationships in high-parameter models, leading to 224

less reliable explanations. As the dimensionality 225

and complexity of the model increase, the explana- 226

tions provided by post-hoc methods become more 227

variable. 228

Data Complexity Agarwal et al. (2023b) bench- 229

mark six explanation methods on two datasets, find- 230

ing that the stability of each method varied depend- 231

ing on the dataset, even when other factors are held 232

constant. This leads to the hypothesis that as the 233

complexity of input data increases, so does the vari- 234

ation in token attribution. For example, longer texts 235

or inputs with higher perplexity tend to produce 236

more unstable explanations. Moreover, Alvarez- 237

Melis and Jaakkola (2018b) notes that instability 238

can be observed even when the underlying model 239

is stable. 240

3.1 Quantifying Stability 241

Here stability refers to the consistency of explana- 242

tions across slightly varied inputs. The intuition is 243

that nearly identical inputs should receive similar 244

explanations, a concept well-grounded in previous 245

literature (Bhatt et al., 2020; Yeh et al., 2019; Dai 246
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Figure 2: Stability of each explanation method as a function of a key hyperparameter. LIME’s stability improves by
up to 8% with more samples, while the number of approximation steps for Integrated Gradients has minimal impact.
Across methods, model type significantly influences stabilit

et al., 2022). For extractive explanations, an effec-247

tive stability metric should focus on the consistency248

of the top-ranked features, which are the weights249

assigned to each token measuring its importance250

in driving a prediction. These top-ranked features251

have an outsized impact on model decisions. Ad-252

ditionally, the stability metric should be designed253

to compare different explanation methods, even254

when they use different units and should be easy to255

interpret.256

Alvarez-Melis and Jaakkola (2018a) measures257

stability by introducing a local Lipschitz metric,258

which evaluates the sensitivity of explanations to259

small changes in input by quantifying the maxi-260

mum rate at which the explanation can change. Es-261

sentially, this metric captures how much the expla-262

nation can vary in response to minor perturbations263

in the input. A smaller Lipschitz constant indicates264

greater stability, as the explanation changes more265

slowly with respect to input variations. However,266

the Lipschitz metric has some limitations. It pro-267

duces a unitless ratio, making it difficult to interpret268

practically. This ambiguity makes it challenging269

to determine what constitutes a "good" or "bad"270

stability score. Additionally, calculating the Lips-271

chitz constant is not straightforward, as it requires272

evaluating the maximum change over all possible273

perturbations of the input, which can be computa-274

tionally intensive.275

Given these challenges, we choose to use the276

Normalized Discounted Cumulative Gain (NDCG)277

metric (Järvelin and Kekäläinen, 2000), a standard278

from the field of Information Retrieval, to quan-279

tify stability. NDCG assesses the ranking quality280

by considering both the position and relevance of281

items in a list, offering a measure of how well the282

ranking preserves the importance of all features, 283

particularly the top features. This metric captures 284

the essence of what we seek in a stable explanation: 285

that the most influential factors remain consistently 286

identified and ranked the same, even with minor 287

variations in input. Our methodology involves com- 288

paring the attributions generated for the original in- 289

put text to those generated for inputs that have been 290

slightly modified. The stability is then calculated 291

as the minimum NDCG value from the perturbed 292

samples: 293

Stability =
m
min
j=1

NDCGj 294

Where m is the number of perturbed samples de- 295

faulting to 10. This minimum represents the "worst- 296

case" deviation in explanations between the origi- 297

nal and slightly modified examples. By adopting 298

the minimum NDCG value from the perturbed sam- 299

ples, our stability metric captures the largest devia- 300

tion in explanations among a set of highly similar 301

inputs. Following the principles in Sundararajan 302

et al. (2017b), we measure the absolute value of 303

changes in explanations, highlighting shifts regard- 304

less of their direction. This approach focuses on 305

preserving the order and relevance of top features, 306

with the NDCG score ranging from 0 to 1, where 1 307

signifies perfect stability. 308

To create the slightly modified inputs, we per- 309

turb 10% of the input tokens by selecting synonyms 310

from the embedding space using cosine similarity 311

following (Garg and Ramakrishnan, 2020). On av- 312

erage, the perturbed inputs maintain a 95% cosine 313

similarity evaluated with the all-MiniLM-L6-v2 314

sentence transformer to the original text, imply- 315

ing their explanations should be closely aligned. 316

This approach ensures that the stability metric ef- 317
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fectively measures the consistency of explanations,318

focusing on the most critical features.319

4 Instability Experiments320

In this section, we explore the factors contributing321

to instability in model explanations by systemati-322

cally varying explanation method hyperparameters,323

model complexity, and data complexity. Our aim324

is to understand how these factors affect the con-325

sistency and reliability of generated explanations,326

with the ultimate goal of identifying why certain327

models or configurations are more prone to insta-328

bility, thereby guiding the development of more329

trustworthy AI systems.330

4.1 Experimental Setup331

Similar to previous explanation research (Krishna332

et al., 2022; Wiegreffe and Pinter, 2019; Treviso333

and Martins, 2020), our experiments use the AG’s334

News Corpus (Zhang et al., 2015), which contains335

120,000 training and 7,600 test examples. The336

task involves classifying articles into four cate-337

gories: world news, sports, business, and science338

and technology, based on their titles and descrip-339

tions. We evaluate four different model architec-340

tures: a 2-layer neural network, a vanilla long341

short-term memory (LSTM) network, and two pre-342

trained transformer variants, bert-tiny (Bhargava343

et al., 2021) and DistilBERT (Sanh et al., 2019).344

For each model type, we explore a range of training345

configurations, including undertraining, overtrain-346

ing, and variations in embedding sizes, to assess347

the impact of model complexity on explanation sta-348

bility. To ensure robustness in our findings, we349

train 30 models for each configuration, resulting350

in a total of approximately 2,000 models. For ex-351

planation methods, we use LIME and SHAP for352

perturbation-based approaches and Integrated Gra-353

dients for a gradient-based approach, generating all354

explanations using the Captum library (Kokhlikyan355

et al., 2020). To measure stability, we randomly356

select 300 points from the test set and generate 10357

perturbed versions of each, ensuring 95% semantic358

similarity to the original inputs, and compute the359

minimum NDCG score to obtain stability.360

Explanation Methods Hyperparameters To ex-361

amine the impact of hyperparameters on explana-362

tion stability, we select a key hyperparameter for363

each of the three explanation methods: the number364

of samples for LIME, the number of feature permu-365

tations for SHAP, and the number of approximation366

steps for Integrated Gradients. As expected, our 367

results as seen in 2 show that perturbation methods 368

generally benefit from a higher number of samples, 369

with LIME showing up to an 8% improvement 370

in stability as the number of samples increases 371

to 5,000. However, the number of approximation 372

steps for Integrated Gradients has less of an impact. 373

Across all three explanation methods, model types 374

appeared in the same order of stability, with the 375

2-layer neural network at the top, followed by the 376

LSTM, and lastly bert-tiny and DistilBERT. This 377

indicates that while hyperparameters are important, 378

model type is the primary driver of stability. 379
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Figure 3: Stability of explanations across model com-
plexities, showing that LSTM and 2-layer neural net-
works are more stable than transformers, regardless of
parameter count. Notably, DistilBERT, which is larger
than bert-tiny, also demonstrates greater stability. This
underscores that model type, rather than size, is the pri-
mary driver of stability.

Model Complexity Next, we explore the hypoth- 380

esis that models with more parameters are harder 381

to explain. To test this, we adjust the number of 382

parameters in each model architecture. For the 2- 383

layer neural network, we vary the embedding size; 384

for the LSTM, we vary the embedding size and hid- 385

den dimension size; and for the transformers, we 386

compared bert-tiny and DistilBERT, which have 387

4 million and 66 million parameters, respectively. 388

We use the explanation methods with the optimal 389

hyperparameter values identified in the prior anal- 390

ysis to minimize instability from the explanation 391

method. Our results, shown in 3, plot the number 392

of parameters against the average stability across 393

LIME, SHAP, and Integrated Gradients. Surpris- 394

ingly, even when the number of parameters in the 2- 395

layer network and LSTM exceeded that of bert-tiny, 396

their explanations are still more stable. Similarly, 397

despite having significantly more parameters, Dis- 398
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tilBERT is more stable on average than bert-tiny.399

This finding reinforces that model type, rather than400

the number of parameters, is the main driver of401

stability. A complete list of model configurations402

can be found in the supplementary materials B.403

2-Layer NN LSTM bert-tiny distilbert
Stability

0.0
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M
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Figure 4: Stability comparison across model types for
high and low perplexity texts, showing minimal differ-
ences and indicating that input complexity has little
impact on explanation stability.

Data Complexity Lastly, to investigate whether404

the complexity of input data impacts the stability of405

explanations, we analyze samples categorized by406

their perplexity scores, using GPT-2 as a reference.407

We define "hard" texts as those in the top 25% of408

perplexity scores (above 100) and "easy" texts as409

those in the bottom 25% (below 50). We then com-410

pare the average stability of explanations generated411

for these two categories. As illustrated in Figure412

4, the stability of explanations shows minimal vari-413

ation between the "hard" and "easy" texts across414

different model types. This finding indicates that415

input complexity has a negligible effect on explana-416

tion stability. Instead, it highlights that the type of417

model, rather than the complexity of the input data,418

is the predominant factor influencing the stability419

of explanations.420

5 Transformer Stability421

In the previous section, we found that Transformer422

architectures exhibit greater instability in expla-423

nations, regardless of the explanation method or424

model size. This section delves into the possible425

reasons behind this instability. Previous research426

(Chen et al., 2020; Correia et al., 2019; Treviso and427

Martins, 2020) indicates that sparse models—those428

that focus on fewer input features—can enhance429

interpretability. We aim to determine whether430

sparse models also provide more stable explana-431

tions than their dense counterparts and whether they 432

consistently identify the same key features. Our 433

hypothesis is that the instability in Transformer 434

models arises from over-parameterization or the 435

effects of heterogeneous learning processes typ- 436

ical in ensemble methods. To test this, we ex- 437

periment with Transformer models under differ- 438

ent conditions, including applying sparsity during 439

fine-tuning and using pretrained sparse models. By 440

reducing the number of active parameters (address- 441

ing over-parameterization) and promoting more fo- 442

cused learning (potentially mitigating the effects of 443

heterogeneity), we seek to determine whether these 444

adjustments can lead to more stable and consistent 445

model explanations. 446

5.1 Experimental Setup 447

To examine the impact of sparsity on Transformer 448

models, we conduct experiments under two condi- 449

tions: sparsity introduced during fine-tuning and 450

sparsity inherent in a pretrained model. These ex- 451

periments are performed on three datasets: the AG 452

News Corpus (Zhang et al., 2015) for text classifica- 453

tion, the SST2 dataset (Socher et al., 2013) for sen- 454

timent analysis, and the MNLI dataset (Williams 455

et al., 2018) for recognizing textual entailment. We 456

select the best-performing hyperparameter settings 457

identified in earlier sections for each explanation 458

method. From the pool of models used in the previ- 459

ous section, we sample 10 DistilBERT models and 460

apply the two sparsity strategies. The first strategy 461

involves introducing sparsity during fine-tuning us- 462

ing the sparsemax function (Martins and Astudillo, 463

2016), which generates sparse probability distribu- 464

tions by assigning zero probabilities to certain out- 465

puts, unlike the traditional softmax function. This 466

method aims to create a more focused attention 467

mechanism, potentially improving stability. The 468

second strategy uses a pretrained sparse version of 469

DistilBERT (Zafrir et al., 2021), which combines 470

weight pruning and model distillation to achieve 471

high sparsity while maintaining performance. To 472

assess stability, we randomly select 300 samples 473

from each test set, generate 10 perturbations for 474

each, ensuring 95% semantic similarity, and mea- 475

sure the maximum deviation in the NDCG score as 476

before. 477

5.2 Results 478

We assess the stability of explanations across three 479

datasets: the AG News Corpus, the SST2 dataset, 480

and the MNLI dataset. The results, summarized in 481
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Figure 5: Comparison of explanation stability without sparsity, with sparsity introduced during fine-tuning, and
using a pretrained sparse model. Pretrained sparsity consistently improves the stability of Integrated Gradients
across three datasets, while perturbation-based methods like LIME and SHAP show no improvement.

Figure 5, show that using a sparse pretrained model482

consistently enhances the stability of explanations483

generated by Integrated Gradients, regardless of484

the dataset. For example, in the case of AG News,485

there is a 6% boost in average stability. This im-486

provement is likely due to the reduction of noise487

in the gradient flow, enabling the model to focus488

more precisely on the most relevant features. As489

a result, the explanations become more consistent.490

These results support the hypothesis that sparsity491

enhances the stability of gradient-based methods492

by making the internal gradients more predictable493

and concentrated on critical inputs.494

In contrast, perturbation-based methods like495

LIME and SHAP do not show benefits from spar-496

sity. Likely because these methods are more in-497

fluenced by the inherent randomness in their per-498

turbation process and the model’s sensitivity to499

input variations, which is not effectively mitigated500

through sparsity. Moreover, introducing sparsity501

during fine-tuning with the sparsemax function did502

not improve stability for any of the explanation503

methods tested. This suggests that applying spar-504

sity during fine-tuning is insufficient to enhance505

the stability of explanations and suggests that the506

benefits of sparsity are more effectively realized507

when integrated during the pretraining phase.508

5.3 Discussion509

Our exploration into Transformer stability high-510

lights that sparse models can enhance the stability511

of gradient-based explanations such as Integrated512

Gradients. Yet, sparsity does not help the stabil-513

ity of perturbation-based methods like LIME and514

SHAP. While versatile, perturbation-based meth- 515

ods exhibit greater variability due to their inher- 516

ent reliance on random perturbations of input data. 517

This randomness can lead to inconsistent expla- 518

nations, a challenge that methods like D-LIME 519

(Zafar and Khan, 2019) and S-LIME (Zhou et al., 520

2021) mitigate by controlling for variability in the 521

perturbation process. Interestingly, adding spar- 522

sity during fine-tuning using sparsemax (Martins 523

and Astudillo, 2016) dud not improve the stability 524

of gradient-based explanations. Our results sug- 525

gest that the advantages of sparsity are more pro- 526

nounced when it is incorporated during the pretrain- 527

ing phase rather than applied later. 528

Furthermore, while sparsity can help focus at- 529

tention and improve stability in certain methods, 530

it is not universally beneficial across all explana- 531

tion techniques. Meister et al. (2021) shows that 532

sparse attention does not necessarily correspond to 533

a sparse set of influential inputs. Instead, induc- 534

ing sparsity can lead to increased contextualization 535

within intermediate representations, making atten- 536

tion distributions less reflective of the actual impor- 537

tance of individual inputs. This issue is separate 538

from the stability of an explanation and points to 539

a more complex interaction between sparsity and 540

interpretability. Despite these challenges, our study 541

demonstrates that sparse pretrained transformers, 542

when combined with gradient-based explanations, 543

can strike a balance between explanation stability 544

and model performance. While simpler models are 545

often recommended for more reliable explanations, 546

our findings suggest that sparse transformers offer 547
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a viable alternative, particularly in scenarios where548

performance is critical.549

6 Stability and Disagreement550

Machine learning practitioners often rely on mul-551

tiple explanation methods to interpret model de-552

cisions (Krishna et al., 2022). However, these553

methods can sometimes provide conflicting expla-554

nations, making it challenging to understand and555

trust the model’s behavior. This section investi-556

gates whether some of these disagreements are due557

to instability in the explanations themselves.558
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Figure 6: Higher stability setups show increased agree-
ment between explanation methods, indicating that im-
proving stability can reduce disagreement in feature
identification

6.1 Experimental Setup559

To explore this, we analyze how frequently dif-560

ferent setups—combinations of model configu-561

rations, explanation methods, and hyperparame-562

ters—identify the same top three tokens in their563

explanations following Krishna et al. (2022). We564

use the 180 DistilBERT models previously trained565

on the AG’s News Corpus. Each setup is assigned a566

stability score based on the average stability across567

all data points and grouped into one of eight stabil-568

ity bins using the Fischer-Jenks algorithm, where569

Bin 0 represents the least stable setup. We then cal-570

culate the average feature agreement within each571

stability bin, measuring how consistently the top572

three features are identified across different setups.573

The goal is to determine if more stable setups result574

in higher agreement between different explanation575

methods. The cutoffs for these bins are detailed in576

the Appendix 6.577

6.2 Results 578

Our results, depicted in the heatmap of Figure 6, in- 579

dicate that more stable setups lead to higher agree- 580

ment between explanation methods. The most sta- 581

ble setups (in the higher bins) showed up to an 582

11% increase in agreement compared to the least 583

stable ones. This suggests that a portion of the 584

disagreement between explanation methods is due 585

to instability in the explanations themselves. Al- 586

though overall feature agreement is relatively low 587

due to averaging across all three methods, improv- 588

ing stability appears to be a promising strategy for 589

reducing disagreement, leading to more reliable 590

and interpretable AI systems. 591

7 Conclusion 592

This work addresses the question of what factors 593

contribute to instability in model explanations and 594

how to mitigate them. Our investigation reveals 595

that while hyperparameter tuning can enhance sta- 596

bility in some explanation methods like LIME, the 597

model type plays a more significant role, partic- 598

ularly in complex architectures like transformers. 599

We demonstrate that transformer models exhibit 600

greater instability compared to simpler models 601

like LSTMs, which are not driven by parameter 602

count, and that sparsity, especially when introduced 603

during pretraining, can improve the stability of 604

gradient-based explanations. However, this ben- 605

efit does not extend to perturbation-based methods. 606

Furthermore, our analysis shows that instability 607

contributes to the disagreement between different 608

explanation methods, suggesting that efforts to en- 609

hance stability can reduce this discord and lead to 610

more reliable and interpretable AI systems. Fu- 611

ture work may focus on extending the reliability 612

of explanation stability to natural text explanations, 613

which present unique challenges, such as maintain- 614

ing stability when multiple valid free-text rationales 615

are possible. Addressing these challenges could 616

lead to more robust and trustworthy AI systems in 617

domains where textual explanations are critical. 618
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8 Limitations619

A limitation of our study is its focus on a single620

dataset, the AG News Corpus, for text classifica-621

tion. This choice was made in alignment with prior622

studies (Krishna et al., 2022; Agarwal et al., 2023a)623

that have documented issues of disagreement and624

variable stability within this text classification task.625

To conduct this large-scale analysis, we trained626

and evaluated 2,000 models across three explana-627

tion methods. For each stability calculation, we628

required a minimum of 10 similar examples, result-629

ing in 11 explanations per calculation. With 300630

test points, this totals 3,300 explanations per model,631

leading to approximately 20 million explanations632

overall. This scale of computation demanded sig-633

nificant GPU resources, raising concerns about634

the ecological impact and sustainability of such635

research practices. The intensive use of computa-636

tional resources highlights the need for future stud-637

ies to consider more sustainable approaches, partic-638

ularly as the environmental costs of large-scale AI639

research become increasingly important. Moreover,640

It is important to recognize that explanations do not641

solve the underlying issues of bias or unbalanced642

representation. Heavier emphasis should be placed643

on data collection and curation, label choice for644

model optimization, and the use of inherently trans-645

parent models. As previously stated, we choose to646

focus on feature rankings as an explanation when647

there is a known gap between feature weight and648

interpretability, Kaur et al. (2020); Shen and Huang649

(2020) show attributions are often misused or mis-650

understood. Yet, extractive explanations provide a651

targeted, albeit not fully transparent, insight into652

AI decision-making processes, critical in domains653

such as healthcare and finance, while also highlight-654

ing the challenges and necessary improvements in655

explanation stability and quality across various ex-656

planatory frameworks.657
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A Explanation Methods889

A.1 LIME890

LIME explanations were generated using891

the captum.attr.LimeBase class from892

the Captum library. The LimeBase class893

was configured with a Lasso linear model894

(SkLearnLasso(alpha=1e-5, random_state=1))895

to serve as the interpretable surrogate model. To896

generate explanations, a cosine similarity function897

was used to measure the similarity between the898

original text embeddings and those of the perturbed899

versions, based on the model’s embedding layers.900

An exponential function was then applied to this901

similarity to create weights, enabling the inter-902

pretable model to make meaningful comparisons903

between the original and perturbed inputs per the904

Captum documentation. The perturbations were905

generated by randomly selecting each word in the906

input text with a 50% chance, using a Bernoulli907

distribution. Finally, these perturbed texts were908

adjusted to match the original input structure by909

adding necessary padding. Full code available910

upon release.911

A.2 SHAP912

The SHAP explanations were generated using the913

captum.attr.ShapleyValueSampling914

class from the Captum library. To generate915

explanations, the ShapleyValueSampling916

method from Captum was employed, which917

calculates SHAP values by sampling various918

subsets of input features and estimating their919

contributions to the model’s predictions. In this920

setup, the baselines were set to None, meaning921

that zero baselines were used by default, and the922

feature_mask was also set to None, treating923

each scalar as an independent feature.924

A.3 Integrated Gradients925

The explanations were generated using the926

captum.attr.LayerIntegratedGradients927

class from the Captum library. To generate expla-928

nations, we applied the IG method to the model929

embedding layer, using <unk> as the reference930

token for baseline comparisons. This method931

calculates attributions by integrating the gradients932

of the model’s output with respect to its input933

tokens, summed across the embedding dimensions,934

and normalized for consistency..935

B Models936

EMBEDDING_SIZE MAX_EPOCHS LR
16 1 0.001
16 1 0.01
16 1 0.1
16 5 0.001
16 5 0.01
16 5 0.1
16 10 0.001
16 10 0.01
16 10 0.1
64 1 0.001
64 1 0.01
64 1 0.1
64 5 0.001
64 5 0.01
64 5 0.1
64 10 0.001
64 10 0.01
64 10 0.1
128 1 0.001
128 1 0.01
128 1 0.1
128 5 0.001
128 5 0.01
128 5 0.1
128 10 0.001
128 10 0.01
128 10 0.1

Table 2: 2-Layer NN model variations

EMBEDDING_AND_HIDDEN_DIM MAX_EPOCHS LR
16 1 0.001
16 1 0.01
16 1 0.1
16 5 0.001
16 5 0.01
16 5 0.1
16 10 0.001
16 10 0.01
16 10 0.1
64 1 0.001
64 1 0.01
64 1 0.1
64 5 0.001
64 5 0.01
64 5 0.1
64 10 0.001
64 10 0.01
64 10 0.1
128 1 0.001
128 1 0.01
128 1 0.1
128 5 0.001
128 5 0.01
128 5 0.1
128 10 0.001
128 10 0.01
128 10 0.1

Table 3: LSTM model variations
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MAX_EPOCHS LR Pretrained Model
1 0.001 prajjwal1/bert-tiny
1 0.001 distilbert-base-uncased
1 0.01 prajjwal1/bert-tiny
1 0.01 distilbert-base-uncased
1 0.1 prajjwal1/bert-tiny
1 0.1 distilbert-base-uncased
5 0.001 prajjwal1/bert-tiny
5 0.001 distilbert-base-uncased
5 0.01 prajjwal1/bert-tiny
5 0.01 distilbert-base-uncased
5 0.1 prajjwal1/bert-tiny
5 0.1 distilbert-base-uncased

10 0.001 prajjwal1/bert-tiny
10 0.001 distilbert-base-uncased
10 0.01 prajjwal1/bert-tiny
10 0.01 distilbert-base-uncased
10 0.1 prajjwal1/bert-tiny
10 0.1 distilbert-base-uncased

Table 4: Transformer model variations
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C Experiments937

C.1 Sparsity938

Epochs Learning Rate
5 0.1
5 0.01
5 0.001
5 0.01
5 0.01
5 0.01
1 0.01
1 0.001
5 0.01
1 0.1

Table 5: DistilBERT configurations sampled for sparsity
experiments

C.2 Disagreement939
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Figure 7: Average feature agreement across all 3 expla-
nation methods for the top 5 tokens
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Figure 8: Average feature agreement across all 3 expla-
nation methods for the top 10 tokens

Index Fisher-Jenks Bin
0 0.70
1 0.73
2 0.75
3 0.77
4 0.78
5 0.80
6 0.82
7 0.84
8 0.89

Table 6: Fischer Jenks Stability bins for the DistilBERT
models
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