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Abstract

Automated data augmentation (ADA) techniques have played an important role
in boosting the performance of deep models. Such techniques mostly aim to opti-
mize a parameterized distribution over a discrete augmentation space. Thus, are
restricted by the discretization of the search space which normally is handcrafted.
To overcome the limitations, we take the first step to constructing a continuous
mapping from Rd to image transformations (an augmentation space). Using this
mapping, we take a novel approach where 1) we pose the ADA as a continuous
optimization problem over the parameters of the augmentation distribution; and 2)
use Stochastic Gradient Langevin Dynamics to learn and sample augmentations.
This allows us to potentially explore the space of infinitely many possible augmen-
tations, which otherwise was not possible due to the discretization of the space.
This view of ADA is radically different from the standard discretization based
view of ADA , and it opens avenues for utilizing the vast efficient gradient-based
algorithms available for continuous optimization problems. Results over multiple
benchmarks demonstrate the efficiency improvement of this work compared with
previous methods.

1 Introduction

Data augmentation [22] is one of the advanced techniques or recipes that proliferate the success of
deep learning. The crux behind data augmentation is to make a model invariant towards various input
transformations that we expect to observe during inference, thus, improves the generalization of the
model. Since it is not clear which transformations would benefit most, manual design is difficult. Thus,
there has been a growing interest in automatically learning such augmentations, a new thriving subarea
of data augmentation known as the Automated Data Augmentation (ADA) [5, 16, 21, 20, 19, 28].

ADA is generally formulated as a bilevel optimization problem over a discrete search space, and aims
to find an optimal augmentation policy. For example, the search space used in AutoAugment [5],
the very first promising work in this topic, contains several augmentation candidates, e.g., rota-
tion/blurring/brightening with different discrete magnitudes, and the augmentation policy is defined
as a parameterized discrete distribution over this space. Such approach has been shown to provide
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far more superior performances over several datasets and tasks compared against the traditional
handcrafted augmentation counterparts. This, however, comes at the expense of a high computational
budget, taking far more time than model training, resulting in an untenable training procedure in
the presence of real-world large-scale datasets. While several approaches have been proposed to
address the efficiency issue [20, 16, 21, 19], the compromise in performance due to such efficiency
measures was nontrivial; some of the current state-of-art remains computationally expensive [28].
The contradiction between performance and efficiency has raised a key challenge in this field.

Another major limitation of such approaches is due to the discretized search space which limits
the diversity of the learnable policy. In fact, the discretization results in augmentations that do not
always represent the variations in the real world sufficiently. In the real world, the data is collected
with a great range of freedom such as varying camera viewpoint and lighting conditions. However,
the discrete augmentation would only be able to produce transformed data with specific types and
magnitudes. Furthermore, quantization of augmentation search space introduces extra manual design,
which is contrary to the aim of ADA.

In this paper, we resolve the aforementioned issues of discretization by constructing a continuous and
differentiable mapping φ which maps an augmentation vector α ∈ Rd to an image transformation
function tα ∈ T that transforms an image I to tα(I). Specifically, we group basic augmentations
into three categories: Color Adjustment that adjusts the color values, Image Filtering like blurring
or sharpening, and Image Warping which represents the geometric transformation. We then split
the augmentation vector α to three sub-vectors (αCA, αIF and αIW), each of which would map to a
specific transformation (tαCA , tαIF or tαIW ). We finish the construction by regard tα as the composite
transformation, i.e., tα = tαIW ◦ tαIF ◦ tαCA , as visualized in Fig. 1. Based on this construction,
we pose ADA as learning an augmentation distribution in the continuous augmentation space. This
gives us the freedom to search over the entire continuous space in order to obtain the optimal
augmentations. For optimization and inference, we use the well-known Stochastic Gradient Langevin
Dynamics (SGLD) and propose a pseudo one-step approximation that allows us to efficiently learn
the underlying augmentation distribution and sample augmentations from it. On a wide range of
experiments involving state-of-the-art architectures on multiple image classification benchmarks, we
show that our approach not only provides results at par with existing ADA methods, it also is orders
of magnitude faster than them.

Our main contributions can be summarized as:

1. We propose a continuous augmentation mapping and first pose ADA as a continuous
optimization problem, thus, avoiding the pitfalls of the discrete augmentation space.

2. We develop a gradient-based approach to learn the augmentation distribution in the continu-
ous space that allows for highly efficient sampling of augmentations, offering a favorable
speed-performance trade-off.

2 Related Work

Recent automated augmentation methods have been proposed that optimize data augmentation
policies on different datasets and tasks [5, 16, 21, 20, 19, 28]. AutoAugment [5] provides a discrete
augmentation search space and an RNN controller to parameterize the augmentation distribution.
Reinforcement learning is then employed to search for the augmentation strategy. Subsequent
work focuses more on searching efficiently in the same space. To this end, OHL [21] proposed an
online reinforcement learning pipeline to reduce the computation complexity. PBA [16] proposed a
population based search strategy to obtain the augmentation distribution with fitness selection also in
an online manner. Fast AutoAugment [20] proposed a different objective function that applies data
augmentation at test time. AWS [28] investigates the effectiveness of a weight-sharing paradigm,
yielding superior performance on various datasets. The most related work, DADA [19] take a
continuous relaxation to the discrete augmentation distribution by Gumbel-softmax to obtain better
approximation. Our work eliminated such approximation tricks when computing the gradient thanks
to the continuous nature of the proposed search space.

Markov Chain Monte Carlo (MCMC) is a popular sampling method for approximating the pos-
terior distribution in large-scale Bayesian modeling. MCMC draws samples from high-dimensional
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Figure 1: Schematic representation of the continuous image augmentation mapping φ : α 7→ tα. tα is
the composite transformation of color adjustment tαCA (red in the figure), image filtering tαIF (blue), and image
warping tαIW (green). Notably, the augmentation process is fully differentiable w.r.t. α (explained in Sec. 3.2).

probability distributions in the construction of a Markov chain. A broad category of recent MCMC
methods, namely Stochastic Gradient MCMC (SG-MCMC) [3, 1, 9, 30], comes from the traditional
stochastic gradient optimization and thus inherits the efficiency of Stochastic Gradient Descent (SGD).
To cast a stochastic optimization process to a sampling procedure, artificial noise needs to be added
to the gradients. A typical example of gradient MCMC methods is Stochastic Gradient Langevine
Dynamics (SGLD) [30], which injects Gaussian noise into the parameter gradients, pushing the
optimization trajectory to asymptotically converge to the actual posterior distribution. In practice,
some of these algorithms are also used in combination with several heuristic approximations, such as
constant step sizes or diagonal approximations to the Hessian for the sake of simplicity or efficiency
[25]. In Sec. 4.2 of this paper, we also use the simple SGLD with constant noise to optimize our
augmentation distribution.

3 A Continuous and Differentiable Mapping

3.1 Preliminaries

Let the mapping φ : α 7→ tα map a d-dimensional vector α ∈ Rd to an image augmentation
transformation tα ∈ T , where the augmentation tα(·) maps an image I to its transformed one tα(I).
For convenience, we introduce the notation tα to denote the transformation function in T for which
tα = φ(α). In other words, α could be regarded as the parameter of the transformation function tα,
and φ is the realization function.

3.2 Constructing The Mapping

We start by developing a taxonomy of image augmentation transformations. Popular basic augmen-
tations can be grouped into three categories: Color Adjustment that adjusts the color values pixel
by pixel, Image Filtering like blurring or sharpening the whole picture, and Image Warping which
applies geometric transformations to the image. Now we discuss how to construct a continuous and
differential mapping for each augmentation categories respectively:

Color Adjustment is defined as a transformation in the spatial domain that is equally applied to
each pixel. Let n be the image size. For every location (x, y) with pixel vector Ixy = [hxy sxy vxy]

T,
it would be adjusted to I ′xy =

[
h′xy s′xy v′xy

]T
. The augmentation can be described as:

I ′ = tαCA(I), where I ′xy =

h′xy
s′xy
v′xy

 =

αh + (1 + βh)(hxy)γh

αs + (1 + βs)(sxy)γs

αv + (1 + βv)(vxy)γv

 (∀ x, y that 1 ≤ x, y ≤ n),

(1)
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where the nine-dimensional vector αCA = [αh βh γh αs βs γs αv βv γv]T maps to a Color
Adjustment augmentation tαCA(·). The first three values control the hue, the next three would
change the saturation, and the last three control the brightness. This representation is motivated
by the Power law (Gamma) transformation function [24]. As shown in Equ. (1), this augmentation
family is differential w.r.t. all α, β, γ since it can be expressed as power functions of them and both
RGB-to-HSV and HSV-to-RGB conversions are known to be continuous and differentiable [26, 29].

Image Filtering is a typical image enhancement in the frequency domain. Here we consider using
filters to blur or sharpen images. Let a single value s denote the degree of sharpening or smoothing.
Let Gk be a sharpness filter obtained by zero-mean normalizing a k × k discrete Gaussian filter, and
Ck be a k × k identity filter which has an unique non-zero value 1.0 at its center. The sharpening or
smoothing process that transforms an image I to I ′ is:

I ′ = tαIF(I) = I ∗ (s ·Gk + Ck), (2)

where the asterisk ∗ means convolution and tαIF(·) is the Image Filtering function. If s is greater than
zero, it represents sharpening. Otherwise, it is equivalent to blurring. Thus, a one-dimensional vector
[αIF]T could map to an Image Filtering transformation.

Image filtering is differentiable w.r.t s by nature. However, the computation grows fast with respect
to the filter size k. When k is close to the image size n, a better implementation for computing the
convolution would be applying discrete Fast Fourier Transform (FFT) and multiplying the frequencies,
which achieve a complexity of O(n2 log n). In this work, we take direct convolution since we pick
k � n for simplicity.

Image Warping refers to a geometric distortion on an image where pixels are moved to other
locations without changing their pixel values. Perspective transformation (also known as projective
transformation) is a popular warping method, which can be uniquely represented by a 3× 3 matrix
H called homography [2]. Each point in the original image (x, y) would move to (x′, y′) with the
perspective transformation. This Image Warping can be described as:

I ′ = tαIW(I)

⇐⇒ I ′x′y′ = Ixy, where


x′ =

H11x+ H12y + H13

H31x+ H32y + H33
,

y′ =
H21x+ H22y + H23

H31x+ H32y + H33
,

(∀ x, y that 1 ≤ x, y ≤ n),
(3)

where tαIW(·) denotes the Image Warping augmentation via perspective transformation, and αIW =
[H11 H12 H13 H21 H22 H23 H31 H32 H33]T could represent an Image Warping augmentation.
Rotations, translations, shearing, scaling, as well as more single geometric transformations and any
combinations of them are all special cases of perspective transformation. Perspective transformation
is originally non-differentiable to each element in the homography H since index x, y take discrete
values. However, we can leverage interpolation between pixels and inverse warping to make the
transformation differentiable [17, 11, 27].

In summary, an augmentation vector α = [αT
CA αT

IF αT
IW]T lies in continuous real space with

d = 9 + 1 + 9 = 19 dimensions could map to a specific augmentation transformation tα =
tαIW ◦ tαIF ◦ tαCA . Although composite order matters, for simplicity, leave the matter to future work.
One can easily verify that many commonly used augmentation transforms [5, 6, 20, 16, 21, 19, 28],
such as brightening, blurring, and rotation, are all discrete samples in the augmentation function
space T of our mapping. Last but not least, practical constraint functions (tanh, exp) and clamp
function are used before and after applying augmentations respectively, to ensure all augmentations
are valid and all augmented pixels are in [0, 1]. The overview of this space is illustrated in Fig. 1.
More details on the augmentation process of this figure are provided in Supplementary A.
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3.3 An Example Random Augmentation Policy

An example random augmentation policy in our continuous augmentation space is provided here
to evaluate the space by comparing this policy with other policies in discrete space. This random
policy is based on a multivariate Gaussian distribution g(α) over α with zero means and diagonal
covariance. The according augmentation distribution is denoted as prand(tα), where tα = φ(α) and
α ∼ g(α). This policy is one of the simplest continuous random policy one could define.

Table 1: Comparison between our example random policies in continuous augmentation space and
others based on discrete space. Top-1 errors of Wide-ResNet-40-2 on CIFAR-10 are reported. Lower is better.

Method
Example Policy

(random,
std=0.5)

Example Policy
(random,
std=1.0)

AutoAugment
(random,
our impl.)

AutoAugment
(searched,
from [5])

DADA
(searched,
from [19])

Error 3.25 3.34 4.08 3.7 3.5

In Tab. 1 we compare the example random policy with both random and optimized policies in discrete
augmentation space to show the advance of continuity. Note that DADA [19] basically follows the
same discrete space of AutoAugment’s [5]. Two example policies with different standard deviations
(0.5 and 1.0) are evaluated for better comparison.

4 Automatic Augmentation Design using φ

4.1 ADA Problem formulation

Let t(·) denotes the augmentation function. ADA aims to find the optimal distribution of aug-
mentations q(t), which improves the generalization of the model. Let Dt = {(xi,yi)}Nt

i=1 and
Dv = {(x̃i, ỹi)}Nv

i=1 be the training and validation datasets, respectively. Training a deep network fθ
parameterized by θ is the process of minimizing a loss L(·, ·), which is cross-entropy in this work.
We use pθ(y|xi) to refer to the probability distribution over labels by fθ for xi, i.e., the output of fθ
followed by a softmax function. In general, ADA aims at solving the following bilevel optimization:

arg min
q(t)

∑
(x̃i,ỹi)∈Dv

L(fθ∗(x̃i), ỹi), (4)

s.t. θ∗ = arg min
θ

∑
(xi,yi)∈Dt,
t∼q(t)

L(fθ(t(xi),yi), (5)

where q(t) is the distribution of augmentations, t(xi) denotes the augmented data of xi. The goal is
to minimize the outer-level validation loss of a network fθ∗ in (4) that is trained by minimizing the
inner-level training loss using augmented training data in (5).

Notably, by writing the cross-entropy explicitly, we will have:

L(fθ(x), y) = − log(pθ(y|x)), (6)

for any model parameter θ, and any labed data pair (x, y).

4.2 Gradient-Based ADA in Continuous Augmentation Space via SGLD

ADA in continuous space. Previous work mostly defines q(t) as a parameterized categorical
distribution or a discrete uniform distribution. In this work, given the proposed continuous mapping
φ : Rd → T where T is the set of augmentations, we are now able to relate the augmentation
distribution q(t) for t ∈ T to a continuous distribution p(α) for α ∈ Rd by t = tα = φ(α). Thus
we can reform the bilevel optimization (4)(5) by substituting the target distribution q(t) with p(α)
and apply the realized transformation tα to training data xi then get (7)(8):
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arg min
p(α)

∑
(x̃i,ỹi)∈Dv

L(fθ∗(x̃i), ỹi), (7)

s.t. θ∗ = arg min
θ

∑
(xi,yi)∈Dt,
α∼p(α)

L(fθ(tα(xi),yi). (8)

One-step simplified inner-level. Notably, directly solving the bilevel optimization in (7)(8) would
be prohibitive since it requires hundreds or thousands of full model training and validation. Thus, we
refer to the successful augmentation-wise weight-sharing [28] and one-step meta learning [4, 10, 23]
techniques to make this problem more tractable.

Specifically, we begin with an augmentation-wise shared parameter θs on Dt using the random
augmentation policy prand(α) introduced in Sec. 3.3. We replace the inner optimization (8) with a
pseudo one-step update: a single gradient step for a batch of training samples Bt = {(xi,yi)}Mi=1
augmented by a given tα is taken to get θ̄s that approximates the θ∗, where M is the batch size. The
inner optimization in (8) now becomes:

θ∗ ≈ θ̄s = θs − λ
∑

(xi,yi)∈Bt

∇θsL(fθs(tα(xi),yi). (9)

Bayesian formulation for ADA. In this setup, ADA boils down to a continuous distribution
optimization problem (7)(9). In order to apply gradient-based methods, we drive a new Bayesian
formulation for distribution optimization in ADA . Let pprior(α) be the prior distribution and p(α|Dv)
be the posterior distribution. The optimization in (7) for obtaining the target distribution p(α) is
modeled in our Bayesian formulation by inferring the posterior distribution p(α|Dv) as follows:

p(α|Dv) ∝ pprior(α)

Nv∏
i=1

p
(

(x̃i, ỹi)|α
)
, (10)

where
∏Nv

i=1 p
(

(x̃i, ỹi)|α
)

is the data likelihood of the validation set given a fixed augmentation

parameter α. After obtaining θ̄s using Equ. (9) for a given α, this likelihood now can be computed
efficiently as

∏Nv

i=1 pθ̄s(ỹi|x̃i). Note that the inner-level optimization is efficient as we always start
with the same θs and then take a single gradient step over the given batch under the augmentation
tα = φ(α) to obtain θ̄s. Assuming uniform prior pprior(α), the posterior in (10) can be computed as:

p(α|Dv) ∝
Nv∏
i=1

pθ̄s(ỹi|x̃i). (11)

Use gradients to search for augmentation policy. With the Bayesian formulation and the pro-
posed differentiable mapping φ, Gradient-MCMC methods like Stochastic Gradient Langevin Dy-
namics (SGLD) is now applicable to find the target distribution by sampling. Recall Equ. (6), the j-th
iteration of SGLD sampling on the validation batch Bv = {(x̃i, ỹi)}Mi=1 can be described as:

α(j+1) = α(j) + η +
ε

2

M

Nv

∑
(x̃i,ỹi)∈Bv

∇α(j) log pθ̄s(ỹi|x̃i) (12)

= α(j) + η +
εMλ

2Nv

∑
(x̃i,ỹi)∈Bv

∑
(xk,yk)∈Bt

∂L(fθ̄s(x̃i), ỹi)

∂θ̄s

∂2L(fθs(tα(j)(xk),yk))

∂θs∂α(j)
, (13)

where ε is the step size of SGLD and η ∼ N (0, ε) is the Gaussian noise.
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Figure 2: Augmentation search phase of a simplified MCMC-Aug. Suppose α ∈ R2 (d = 2) and the
two augmentations are brightening and rotation for simplicity. Left: we collect the samples of α(j) (where
j = 1, 2, · · · ) along the SGLD trajectory. Right: how to perform the augmentation.

In practice, one can use finite difference [13, 23] to compute the second-order derivative in (13) more
efficiently. By iterating Equ. (13), samples of α can be collected and SGLD would asymptotically
converge to the posterior distribution p(α|Dv) [32], which is the resulted augmentation policy.

The overview. The whole search pipeline of our method (MCMC-Aug) is summarized in Alg. 1.
The augmentation search phase of a simplified (suppose d = 2) MCMC-Aug is also visualized in
Fig. 2. The samples {α(1),α(2), · · · ,α(Nj)} collected by SGLD form the resulted augmentation
policy. When using the policy to train a new model, one would pick randomly from these samples
to augment each training image. In Sec. 5 and Supplementary E. we will evaluate and visualize the
searched policy in detail.

Algorithm 1 A Reference Method for ADA : MCMC-Aug

Inputs: Training set Dt, validation set Dv , pretrained weights θs, samples of the augmentation vector S;
Hyperparameters: Number of updates Nj , mini batch size M , model learning rate λ, SGLD step size ε;
Initiate: S := ∅; α(0);
for j = 0, 1, 2, · · · , Nj − 1 do

Sample bastches Bt and Bv;
Perform pseudo one-step update in Equ. (9) to obtain θ̄s;
Perform SGLD update in Equ. (13) to get α(j+1);
S := S ∪ {α(j+1)};

end for
return S;

5 Experiments

5.1 Implementation Details

We evaluate our method on CIFAR-10/100 [18] and ImageNet [7]. For each datasets, a validation set
is split from the training set and the testing set is only used for evaluating the final performance (not
involved in the search phase). For ImageNet, a reduced ImageNet-120 is used for fair comparison
[5, 20, 16, 19]. All batch sizes for augmentation search mentioned in this work are set to 256 for
CIFARs and 1024 for ImageNet as standard. More details are included in Supplementary. B.

Search. Following prior work, we search policy for two base models, which are Wide-ResNet-40-2
[31] and ResNet-50 [15] on CIFARs and ImageNet respectively. Before we start, an instance of
each base model is pretrained (CIFARs/ImageNet) using the random policy introduced in Sec. 3.3 to
obtain the shared weights θs in Equ. (9). This procedure lasts 200 epochs for CIFARs and 120 epochs
for ImageNet. Then we run our MCMC-Aug with 200 epochs, the same as [16] over the training set.
Step size and noise scale of SGLD is set according to [25]. The experiments reported have a fixed 0.4
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step size, and a noise rate of 2× 10−5. Further analysis on the choice of hyperparameters could be
found in Supplementary D., where we provide a sensitivity analysis as well as a guideline for tuning
SGLD. On CIFAR-100 and ImageNet, the same SGLD hyperparameters are adopted without any
modification.

Table 2: Test error rates on ImageNet. Top-1 /
Top-5 errors are reported. Lower is better.

Method ResNet-50 ResNet-200

Baseline 23.7 / 6.9 21.5 / 5.8
AA 22.4 / 6.2 20.0 / 5.0
FAA 22.4 / 6.3 19.4 / 4.7
RA 22.4 / 6.2 −
OHL 21.07 / 5.68 −
AWS 20.61 / 5.49 18.64 / 4.67
DADA 22.5 / 6.5 −
MCMC 20.98 / 5.60 18.87 / 4.62

Evaluation. We evaluate MCMC-Aug by mea-
suring the performance of a reinitialized model
trained with augmentation from the SGLD samples
{tα(1) , tα(2) , · · · , tα(Nj)}. Theoretically, SGLD will
be in its Langevin dynamics phase and sampling ap-
proximately from the posterior distribution when its
sample threshold statistic is much smaller than 1.0
[30]. However, in practice, we found that collecting
samples of α from the later half of the SGLD tra-
jectory is sufficient to obtain good performance. We
run SGLD only for base models, and the collected
samples could be used to retrain other models to as-
sess the transferability. Thus Wide-ResNet-{40-2,
28-10} [31], Shake-Shake (26 2×32d) [12], Pyramid-
Net+ShakeDrop [14] are retrained on CIFARs, and
ResNet-{50, 200} on ImageNet. Each of experiments
is repeated four times and the mean value is reported, see Supplementary B. for the error bar. Other
hyperparameters not mentioned here are directly imported from [28], provided in Supplementary C.

5.2 Comparison with State-of-the-Arts

Summary. We conducted comprehensive comparisons with state-of-the-art augmentation methods
that includes Cutout [8], AutoAugment (AA) [5], Fast AutoAugment (FAA) [20], Rand Augment
(RA) [6], Population Based Augmentation (PBA) [16], and OHL-AutoAug (OHL) [21]. Furthermore,
we compare MCMC-Aug with two of the latest ADA methods: 1) AWS-AutoAug (AWS) [28],
which is currently the best-performing ADA method reported; 2) Differentiable Automatic Data
Augmentation (DADA) [19], which is currently the fastest method that applies a continual relaxation
to the discrete search space using Gumbel-softmax.

Performance comparison. The performance of MCMC-Aug and other methods are compared in
Tab. 2 and Tab. 3. The performance of the other methods is directly obtained from the corresponding
papers. We use dashes wherever the results are not reported. Following prior work [5, 19], “Baseline”
in the tables refers to a model trained using only default pre-processing like normalization and basic
augmentations such as random cropping and random horizontal flipping. The same pre-processing
and basic augmentations are also uniformly applied to all the methods. Cutout is used in all the ADA
methods on CIFAR datasets.

Table 3: Top-1 test errors on two CIFAR datasets. Lower is better. “MCMC” represents MCMC-Aug.

Model Baseline Cutout AA FAA RA DADA OHL PBA AWS MCMC

CIFAR-10
WRN-40-2 5.3 4.1 3.7 3.7 − 3.5 − − − 2.96
WRN-28-10 3.87 3.08 2.6 2.7 2.7 2.6 2.61 2.58 1.95 1.97
Shake-Shake 2.86 2.56 2.0 1.9 2.0 2.0 − 2.03 1.65 1.53
PyramidNet 2.67 2.31 1.5 1.7 1.5 1.7 − 1.46 1.31 1.29

CIFAR-100
WRN-40-2 26.0 25.2 20.7 20.6 − 20.9 − − − 19.07
WRN-28-10 18.8 18.4 17.1 17.3 16.7 17.5 − 16.73 15.28 15.64
Shake-Shake 17.1 16.0 14.3 14.6 − 15.3 − 15.31 14.07 13.98
PyramidNet 13.99 12.19 10.7 11.7 − 11.2 − 10.94 10.40 10.48
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Figure 3: Efficiency vs. performance among ADA methods. Some points are for full CIFAR-10 and the
others are for reduced CIFAR-10.

Tab. 2 and Tab. 3 show that MCMC-Aug significantly reduces the error rates over the baseline and
Cutout on a variety of network architectures, demonstrating the effectiveness and transferability of
the resulted policies. Compared with other ADA methods, MCMC-Aug performs on par with AWS
while outperforming the others, even though we did not conduct any comprehensive parameter tuning.
Moreover, in Sec. 5.3, we show that increasing the number of searching epochs (proportional to Nj
in Alg. 1) brings extra performance gains. Since we had only trained for 200 epochs for efficiency,
we believe there is still room for improvements.

Efficiency comparison. We compare the computational cost of MCMC-Aug with others to check
if MCMC-Aug inherits the efficiency of gradient-based optimization. Results on both the reduced
and the full CIFAR-10 dataset are reported to ensure fairness, since previous work had reported
efficiency of their methods on one or both of the datasets. We used the same reduced CIFAR-10
subset in [5, 20, 16, 19], which consists of 4,000 images from the training set. We kept the same
hyperparameters except for a smaller number of epochs in searching (five) and linearly scaled batch
size and learning rate (four times). The results are summarized in Tab. 4 and visualized in Fig. 3.

As shown in Tab. 4, OHL, FAA and DADA are much faster than AA, but at the expense of accuracy.
AWS achieves the best performance, but is much more computationally expensive. Like PBA,
MCMC-Aug strikes a good balance between accuracy and efficiency, but yields much better accuracy.
We also note that there is a noticeable gap between MCMC-Aug’s performance on the full and
reduced dataset, showing the potential for further performance gains when more computational
budget becomes available. Overall, our results show that MCMC-Aug is the best in class when
considering the need to balance performance and efficiency.

Table 4: Comparison of the efficiency (GPU hours). Top-1 test error changes of Wide-ResNet-28-10 relative
to AA are listed. −: not reported. †: approximated, from [19]. ↑ : error increased. ↓ : error decreased.

Method AA AWS PBA OHL FAA DADA MCMC

GPU Device P100 V100 TitanXP V100† V100 TitanXP V100

Reduced CIFAR-10
GPU Hours 5000 − 5 − 3.5 0.1 0.05
Error Changes (normalized) 0.0% − ↓ 0.8% − ↑ 3.9% ↑ 5.0% ↓ 16.15%

Full CIFAR-10
GPU Hours − 125 − 83.3† 45† 7.5† 5
Error Changes (normalized) − ↓ 25.0% − ↑ 0.4% ↑ 3.9% ↑ 1.5% ↓ 24.2%

5.3 Ablation Study

Space decomposition. To show the necessity of three base catogories of augmentation mapping, we
remove two categories of transformation in turns, after which we look at the change in test accuracy.
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As reported in Tab. 5, the performance of Wide-ResNet-40-2 on CIFAR-10 would dramatically
decrease, which suggests that each of them is indispensable.

SGLD early-stopping. To investigate the optimization behavior of the SGLD, we stop collecting
the SGLD samples at 25%, 50%, and 75% of the total epochs and evaluate the corresponding
performance respectively. As listed in Tab. 6, we see that the errors of the distributions arising from
early-stopping gradually increase. It shows the performance gain along with the SGLD procedue.
This also suggests that increasing the number of searching epochs of our approach might bring extra
performance gains.

Table 5: Ablation study on the importance of
different augmentation categories.

Remaining
Category Error

All 2.96
Color Adjustment 3.32(↑0.36)
Image Warping 3.45(↑0.49)
Image Filtering 3.61(↑0.65)

Table 6: Ablation study on the effectiveness
of SGLD.

SGLD Early-
Stopping at Error

100% (original) 2.96
75% 3.06(↑0.10)
50% 3.15(↑0.19)
25% 3.20(↑0.24)

For the sensitivity of hyperparameters and more details on the searched distribution, please see
Supplementary D. and E.

6 Limitation

Non-differentiable augmentations that do not belong to any categories of the three are a clear
limitation. However, an interpolation between the original image and its augmented counterpart could
be made to bypass this issue. Suppose we have an image I and a non-differentiable transformation t,
we can introduce a continuous parameter λ and create a new augmentation t′ via t′(I) = λ t(I) +
(1− λ) I . t′ is a surrogate augmentation which ensures the differentiability.

The presence of a clean validation set is vital to our MCMC-aug as well as other automated data
augmentation algorithms. This is because the loss or accuracy on validation set is a common criteria
for searching the augmentation policy. We expect to see a better approach to reduce the dependency
on validation set in the future. It is a valuable direction and ought to be further explored.

7 Conclusion

A continuous mapping to model a continuous space of augmentation is proposed. The continuous
mapping can be applied to many augmentation design tasks (e.g., instance discrimination contrastive
learning, image alignment, and domain adaptation). We apply this mapping to pose ADA as a
continuous augmentation search problem. Furthermore, we setup a Bayesian formulation for ADA to
enable the application of efficient gradient-based MCMC, presenting a new way to conduct ADA
search via posterior sampling. Comprehensive comparison and studies verify its efficiency and
effectiveness. Both source codes and checkpoints will be released to the public, and future work may
concern more image modalities like infrared/X-rays/ultrasound imaging, more diverse augmentations,
or wider applicants, e.g., in other computer vision areas or the times-series processing.
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