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Abstract

Agents need to be on their toes when interact-
ing with competitive others in order to avoid be-
ing duped. Too much vigilance out of context
can, however, be detrimental and produce para-
noia. Here, we offer a formal account of this
phenomenon through the lens of theory of mind.
We simulate agents of different depths of men-
talization and show how, if aligned well, deep
recursive mentalisation gives rise to both success-
ful deception as well as reasonable skepticism.
However, we also show how, if theory of mind is
too sophisticated, agents become paranoid, losing
trust and reward in the process. We discuss our
findings in light of computational psychiatry and
Al safety.

1. Introduction

Looking over your shoulder can be pragmatic — if somebody
is out to get you. When that’s not the case, however, looking
behind wastes precious energy, and might even make you
miss what’s right in front of you. Here, we offer an exemplar
of the ramifications of being overly vigilant in contexts that
do not require it. Through simulations employing Interactive
Partially Observable Markov Decision Processes (IPOMDP;
Gmytrasiewicz & Doshi, 2004), we show how reasoning
about the intentions of others (theory of mind; Ho et al.,
2022; Premack & Woodruff, 1978; Devaine et al., 2014b)
can be a protective factor against exploitation. However,
we also demonstrate how this can go grossly awry: Agents
that over-interpret the intentions behind each other’s actions
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become unnecessarily paranoid, resulting in breakdowns of
trust and the loss of reward.

Our work offers lessons to several fields: To the computa-
tional cognitive science, and psychiatry communities, we
offer a computational account of a process contributing
to paranoia, and a possible factor underlying general psy-
chopathology (Sharp et al., 2011). To the Al community,
we show how theory of mind needs careful calibration to
foster a working and trusting partnership between agents.
This calibration is particularly important for systems that
act in an increasingly social manner, like LLMs - whose
capacity for theory of mind is being actively debated (Sap
et al., 2023; Ullman, 2023; Kosinski, 2023; Le et al., 2019).
As aresult, our work has key implications for Al safety and
human-computer interaction.

1.1. Background and Related Work

To determine whether somebody is out to get us, and thus
act appropriately, we need to take into account their beliefs,
desires and intentions. This is true for humans and many
other animals. For example, corvids that have previously
stolen end up hiding their own food caches from the eyes of
other birds (Clayton et al., 2007; Emery & Clayton, 2001).
The cognitive process underlying such behaviour is called
a theory of mind (ToM) - an agent’s ability to reason about
latent characteristics of others; what they know, want or
plan (Dennett, 1989; Premack & Woodruff, 1978).

Signatures of ToM are widely present in the behavior of
humans and some other animals, and have captured the at-
tention of machine learning research. In cognitive science,
for example, ToM has been suggested as underlying how
humans choose what to say or teach, and how we infer what
others like (Goodman & Frank, 2016; Barnett et al.) and
detecting deceptions in various situations (Oey et al., 2023;
O’Grady et al., 2015; Ransom et al., 2019). ToM has also
been suggested as underlying behavior in more competitive
settings. For example, it allows agents to hide information
from others strategically, and use their inference process
against them (Alon et al., 2022), for example in warfare
(Crawford, 2003). In machine learning, ToM shares com-
monalities with inverse reinforcement learning, an algorithm
which tries to glean agents’ value functions and belief states
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Figure 1. Task and Agent Summary: In the Ultimatum Game, a sender (orange) chooses how much of an endowment to send to a
receiver (blue). The receiver then has a chance to either accept or reject this offer. If the receiver accepts they both get to keep their portion
of the endowment. If the receiver rejects, both get nothing. In our simulations, we included two types of sender and two types of receiver.
The first type of sender has a Depth of Mentalisation of -1 (DoM(—1)) - it possesses no Theory of Mind and is simply reactive to the
receiver’s actions. The other type of sender and both receivers contain Theory of Mind along a continuum of DoM(0 — 2). This enables
these agents to model their partners recursively. Each sender could be one of two policy types: random, or with a threshold of 0.1

from their actions (Ng et al., 2000; Jara-Ettinger, 2019; Ray
et al., 2008).

Crucially, ToM can act at different depths of mentalization
(DoM) - the degree of recursion we apply to social predic-
tions (Barnby et al., 2023; Camerer et al., 2004; O’Grady
et al., 2015). At the simplest, most shallow level, an agent
simply considers what another agent is thinking based on
their past behaviour, or based on an easily accessible heuris-
tic. This can be extended to deeper levels in a recursive
manner: You can think about what I think you think I think
(what you think, etc.). It is this recursive capacity that gives
rise to more complex behaviours, such as deception, skepti-
cism, and strategies to overcome these.

With ToM'’s outsized role in our interactions (Devaine et al.,
2014a), it is unsurprising that failures of theory of mind have
been suggested (at least in part) as the basis for a number of
psychiatric disorders (McLaren et al., 2022b). These include
Autism (Frith & Happé, 1994; Yoshida et al., 2010; Chiu
et al., 2008) and personality disorders (Sharp et al., 2011;
Hula et al., 2015) which are characterized by an impairment
in theory of mind: patients can fail to take into account
others’ perspectives and thoughts, and this prevents accurate
inference of intentions (Hula et al., 2018).

However, we can also infer too deeply about others in the
cognitive hierarchy: When humans attribute an excessively
high level of intentionality, the risk of over-interpreting be-
haviour increases. This over-mentalisation (also known as
hyper-mentalisation) of others has been suggested to give
rise to other psychiatric symptoms (McLaren et al., 2022a;b),
such as paranoia, a core, frequent, and debilitating symp-
tom within psychosis. In these cases, nefarious, complex

explanations of an other’s intentions, gathered from sparse
social data lead to a breakdown in trust. Over-mentalization
is also one of the most prevalent distorted thoughts within
anxiety disorders, where patients worry about what others
think of them and whether their actions are directed at them.

2. Paradigm and Agents

To illustrate the advantages and risks of high DoM, we
simulate a mixed-motive task, the iterated Ultimatum Game
(IUG) (see Figure 1). Summarizing this task briefly: Two
agents, a sender (S) and a receiver (R), interact over a
known series of (here, 10) trials. On each trial ¢, the sender
first gets an endowment of 1. It then offers the receiver a
portion of this endowment, or offer, 0§ € [0, 1]. In this task
the offers are discretized into 0.05 bins (i.e. 21 potential
offers). If the receiver accepts (alt2 = 1) this offer, the
receiver gets o} and the sender gets to keep the remainder
1 — of. If the receiver rejects (ay = 0) the offer, both
parties get 0. The IUG is often thought to be analogous to a
negotiation or haggling scenario where one party makes a
suggestion, for example about a price, and the other party
can accept the deal, or not. Here, we let the agents play the
IUG for a known fixed number T = 10 of iterations. Both
agents seek to maximize their cumulative, discounted utility
with discount factor, 7y, or more formally: Zle ute(tlog),
The receiver’s utility on each trial is simply the offer it
receives
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Crucially, we consider three different sender types, 6. Two
of those sender types have their trial utility u§ determined
by a threshold 7 on the amount of money they retain. That
is, if the receiver accepts, then:

Ug(oéaﬁ) =1- Og -1n with ne {']-7 5} (2

We can think about 7 as a sender’s wholesale price: If
the offer is lower than the wholesale price, a seller would
make a loss. Note how this wholesale price remains stable
across the entire interaction. As we will see later, one of the
receiver’s top priorities is thus to figure out the sender’s 7.

Critically, we also introduce a random sender that lacks a
threshold, but simply sends offers (which we write as ot@)
drawn from a uniform distribution, like a seller who doesn’t
care about its profit.

0§,@ ~ u[o,l] 3)

As we will see, this makes the random sender on average
benevolent compared with either threshold sender.

We model the interaction as a multi-agent reinforcement
learning task using the [POMDP framework (Gmytrasiewicz
& Doshi, 2004). In essence, IPOMDP endows reward-
maximizing agents with recursive theory of mind, allowing
them to make inferences about, and plan through, others’
beliefs and desires, as well as their inferences, and planning
processes.

Here, we simulate agents at different depths of mentalisation
(DoM), describing the depth of this cognitive recursion. We
consider k-level reasoning (Camerer et al., 2004), in which
the inferring agent (say the sender) models its counterpart
(the receiver) as exactly one cognitive level beneath it. The
sender’s inference about the receiver includes inferring the
receiver’s characteristics, that is, any parameter governing
the receiver’s behaviour, as well as the receiver’s beliefs
(which may include the receiver’s beliefs about the sender’s
own beliefs; Figure 1). Each agent computes the Q-values of
the possible actions and acts according to a SoftMax policy
with a commonly known inverse temperature. Given their
reciprocal actions, the sender’s and receiver’s DoM alternate
(see also Hula et al. 2015; Alon et al. 2022): The sender’s
DoM level is odd while the receiver’s DoM level is even.

The first class of agents we consider are what we call
DoM(—1) senders. Crucially, these agents do not model
their opponent. Instead, they merely react and adapt their
policy to other agents’ actions as a single-agent reinforce-
ment learner would in a (non-stationary) environment. Here,
we model the DoM(—1) policy as a conservative bound
search, in which a rejection of an offer signals that the offer
is too low, and so needs to be increased, while an acceptance
means that the offer exceeded the bound, and hence the con-
secutive offer can be reduced. Since the agent is reward

maximizing, it prefers offers that exceed its threshold as
they yield a positive reward.

Let L, U denote the running lower and upper bounds of
the offers, set to L' = 0,U' = 1. As the game unfolds
these bounds are updated according to the following update
rule:

L'=0L-(1—ak)+L" " ak 4)
Ut =0k -ab+ U™ (1 —ab)

In addition, lacking any opponent model, these agents do
not plan. Instead their reactive policy is based on their
immediate utility (equation 2), and are myopic, not taking
into account potential future earnings:

QS:—I(Og|n7Lt7 Ut) = u§(0§7n) ! 1o§e(Lt,Ut) )
P (0k|n, L, U") o exp{BQs——1(0k|n, L', U")}

where 1,:¢(e vy is 1 if the potential offer is within the
bounds and zero elsewhere and /3 represents the inverse
softmax temperature.

As previewed, the policy of the random sender () is a uni-
form probability for each offer. It does not react to its the
receiver’s response.

Sitting at the bottom of the theory of mind hierarchy,
the DoM(0) receiver models its counterpart sender as
a DoM(—1) sender. As we previewed, it needs to up-
date its beliefs about the sender’s fype (Harsanyi, 1967)
6 € {0,m = 01,72 = 0.5}. The receiver does so
via Bayesian inverse reinforcement learning, inverting the
model that it has of the receiver to compute a posterior prob-
ability over the policy type of the sender. Upon observing
the offer, the receiver uses the opponent models to compute
the probability that the offer was made by each policy type -
either random or with a certain threshold. After it selects a
response, it updates the mental model’s bounds ﬁt, Ut (Eq.
4). Let 0 denote the type of the sender:

blt(:O (0) = pf{:O (9|O§» IA/tv 0t) o

t t Tt rrtypt—1 (6)

Ps__1 (050, L*,U")bg_(0)
Given the updated belief, the DoM(0) computes the Q-
values using the Expectimax algorithm which computes the
best response when playing against a stochastic adversary,
by averaging over its expected actions.

In turn, the DoM(1) sender models receivers as DoM(0).
Like the DoM(—1), these agents also have thresholds. Us-
ing its mental model, this sender updates its own belief
about the receiver’s belief about the sender: ZA)EZO (0). The
sender then plans through these beliefs using a variant of
the POMCP algorithm (Silver & Veness, 2010) for multi-
agent RL, IPOMCP (Hula et al., 2015). During planning,
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Figure 2. Results summary: The rise of deception as well as rational and irrational paranoia is captured by three results: (A) Sending
high initial offers is a signature of the random agents. In contrast, DoOM(—1) senders with thresholds send lower initial offers. This
signature is exploited by higher DoM senders which essentially masquerade as random agents by sending higher initial offers and as
a result trick the receiver into accepting lower offers later on. (B) Sophisticated receivers are aware of this, taking a lot longer to be
convinced that they are playing with a random source (We plot the average number of trials until a receiver has reached 99% certainty
that it is playing with a random source when it is playing with a random source). (C) While this is prudent when the DoM(2) receiver
plays with a deceptive DoM(1) sender (see Figure 4A), it is irrationally paranoid when it plays with DoM(—1) random agent, causing the
DoM(2) to sustain losses. Throughout these plots, we show the means and standard errors of the mean.

the DoM(1) sender simulates a game against an opponent,
updating the various nested beliefs and possible responses
as the game unfolds to compute its Q-values for each offer:
QS:I (Oé |777 bf{:()) = E'er:o(?;ﬁ:O) [ug (O.tS'a 77)
- 7
+ymax{Qs—1 (05" [B4(0)))] @
Os

Ps—1(05]n, by—o) o exp{B(Qs=1(0s]1, br—0))}
where Eﬂn:o(i?.é:o) [']
DoM(0) receiver’s policy and bg'% () is the updated
DoM(0) belief after observing the sent offer of. The opti-
mal action is selected via the softMax policy Eq.7. Note
that the Q-values depend on the beliefs of the DoM(0). This
is central to deeper DoM - an agent’s own value depends on
its ability to shape the beliefs of others; something that it
thinks it can predict accurately using a nested model of its
partner.

is the expected utility given the

The DoM(2) receiver models its counterpart as a DoM(1)
sender. Additionally, it considers the possibility of a random
agent. The DoM(2) thereby follows the same inference pro-
cess as the DoM(0) of equation 6, replacing the DoM(—1)
policy with that of a DoM(1) - equation 7. Notably, the zero-
order beliefs by_(0) are doubly-nested, that is, these are
the beliefs that the DoM(2) receiver believes the DoM(1)
sender believes the DoM(0) possesses given their current
history. This agent also solves the planning problem using
the [IPOMCP algorithm. When simulating the game tree, it
updates the doubly-nested beliefs and simulates potential

offers to compute the Q-values for each action.

2.1. Simulation details

We simulate dyads of agents at different DoM playing with
each other. We consider both aligned DoM pairs (k + 1
versus k) as well as those that are unaligned (DoM(2) vs
DoM(—1)). Each simulation lasts for 10 trials and we sam-
ple 20 seeds per combination.

3. Results

The interactions between agents of different depths of men-
talization can give rise to complex patterns. Here, we will
first outline key results using summary statistics and show
the rise of deception, skepticism, and paranoia. We then
unpack their dynamics in more details

3.1. Emerging deception, skepticism, and paranoia

Three key summary statistics of our simulations showcase
the emergence of deception, skepticism, and paranoia.

First, we consider the senders’ average initial offer which we
plot in Figure 2A. This can be between 0 and 1. We begin
by observing the random senders’ offers: Because they
sample their offers uniformly in this range, their average
is simply the mean of the distribution, at 0.5. In contrast,
the DoM(—1) senders with thresholds will begin with low
offers. They do so, naively trying to turn a profit early.
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Figure 3. Example dynamics of deception: (A,B) Example sender offers and receiver responses for different types and both sender
DoM. Notice how the DoM(1) threshold senders masquerade as random senders by sending initially high offers. (C,D) Example DoM(0)
receiver beliefs about the agent with which they are playing. Playing against the lower-sophistication DoM(—1), the DoM(0) converges
to the correct belief (C), but playing with the deceptive DoM(1), it is tricked into believing it plays with the random agent, and so accepts

all offers (as is also visible in panel B)

Careful DoM(0) receivers realise this behavior and adapt:
If they know that they are faced with a random sender, they
can accept any offer, no matter how low or high; there is
no way to change the random behavior. In contrast, they
will refuse the initially low offers from DoM(0) threshold
senders, cornering them into sending higher offers. To do
so, however, the receiver needs to know whether a sender is
random or has a threshold. In order to achieve that, it starts
by looking at the initial offers. As we saw, a random agent
will on average produce offers significantly higher than the
threshold agents, making it straightforward to distinguish
the types. As we note below, after the receiver has iden-
tified the random agent via these high initial offers it will
transition to simply accepting all offers.

Senders higher up the cognitive hierarchy will deceptively
abuse this phenomenon, as we can see in the same plot
but focusing on the higher DoM(1) sender: The DoM(1)
threshold agents initially masquerade as a random agent,
sending high initial offers relative to its DoM(—1) counter-
parts. This results in the DoM(0) receiver mistaking it for
a random agent and falling into a trap: Once the DoM(0)
(mistakenly) believes it is playing with a random agent it
moves to accept any offer. As we will discuss in more detail

below, the DoM(1) sender abuses this by later lowering its
offers and squeezing a profit out of the unaware receiver.

To note, receivers are not completely lost against this de-
ceptive behavior, and only need to climb the DoM ladder
themselves. We see this in Figure 2B where we plot how
many trials receivers at different DoM took to be convinced
that they were playing with a random agent (when they in
fact were). Essentially, this shows how the DoM(2) receiver
becomes skeptical: It takes significantly longer to be confi-
dent (here, defined as 95% posterior probability) that it is
playing with a random sender.

Such skeptical and defensive behavior is adaptive when
playing against the actually deceptive DoM(1) sender but is
harmful when it is miscalibrated. We see this in Figure 2C
where we plot the total reward of a DoM(0) and DoM(2)
receiver playing against the two threshold DoM(—1) agents.
Here, the low trust of the DoM(2) is misplaced, making
it lose significant amounts of reward compared to the less
sophisticated, but non-paranoid, DoM(0)
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3.2. Dynamics of deception, sequences of skepticism,
and the perils of paranoia

Having established these signatures of deception, skepticism
and paranoia, we now unpack their dynamics in more detail.

3.2.1. NAIVE DOM(—1) AND DOM(0) BEHAVIOR AND
DECEPTION IN DOM(1)

We first do so by investigating the offer-acceptance/rejection
dynamics of the two agents. We show this in Figure 3 with
example games of DoM(—1) offers in panel A and of a
more deceptive DoM(1) in panel B. In both cases, we show
an interaction with a DoM(0) receiver.

As we previewed, the DoM(—1) sender’s initial offer is
revelatory about its policy type (panel A). Whereas random
senders sample the distribution uniformly, senders with non-
random thresholds begin with initially low offers. In turn,
the DoM(0) takes this into account: If the sender has sent it
an initially high offer, the receiver quickly gains certainty
that it is playing with a random agent. Since the receiver
cannot affect the random agent, the optimal policy is to
accept each offer from the sender - which it duly does (see
the constant receiver acceptance highlighted with squares in
panel A, barring decision noise as in trial 4).

We show the DoM(0) receiver’s accompanying belief dy-
namics in panel C where we indicate the posterior proba-
bilities assigned by the sender after each trial to the three
different sender types. In the rightmost sub-panel, we show
the random sender from panel A: Its initially high offer(s)
lead to speedy convergence by the DoM(0) receiver.

On the other hand, the DoM(—1) threshold senders start
out with initially low offers, trying to extract profit as early
as possible. The cannier DoM(0) receiver realises this and
begins declining the offers. We see this in both panel Figure
3A and in the two rightmost subpanels of Figure 3B. The low
offers convince the DoM(0) that it is playing with one of the
threshold agents (subpanels B) although it remains initially
uncertain about which exactly. Here, the receiver’s optimal
policy turns out to be straightforward: It begins by rejecting
the senders’ offers, making them increase their share trial-
by-trial. Only after about half the trials does the DoM(0)
receiver shift this strategy, having pushed the senders’ offers
high enough. This satisfactory level is determined by the
planning horizon and time remaining in the game.

As we previewed, the DoM(0) receiver’s “submissiveness”
to the random agent is deceptively exploited by the DoM(1)
sender — which, recall, models the DoM(0) when it decides
which offers to make. Specifically, it abuses the DoM(0)
tendency to identify a random agent via initially high offers
and essentially fakes generosity earlier on. This is shown
in Figure 3B, which highlights the hockey stick-like nature
of the DoM(0) threshold sender offers: On the first trial, of-

fers are significantly higher than DoM(—1) threshold offers,
even eclipsing the random agent. In turn, this makes the
unsuspecting receiver fall into the "random” trap, as shown
in its posterior beliefs in the two rightmost Figure 3D sub-
panels. Caught in its belief that it is playing with a random
agent (because all consequent sequences are equally likely),
the DoM(0) then accepts any offer; this is exploited by the
DoM(1) threshold agents, which keep their later offers low.

3.2.2. SKEPTICISM AND PARANOIA IN DOM(2)

The DoM(2) sender is privy to the DoM(1)’s randomness
ruse because it models the DoM(1)’s planning process as
part of its inference. This means it will become more
skeptical towards high offers than its DoM(0) counterpart.
Specifically, as we previewed, whereas the DoM(0) con-
verges quickly to the belief that it is playing with a ran-
dom agent, the DoM(2) remains skeptical for significantly
longer. We plot this in dynamic detail in Figure 4A where
we show belief trajectories of the DoM(2) compared to
the DoM(0) when playing against a random agent. How-
ever, the skepticism of DoM(2) agents pay off when faced
with the DoM(1) agents with thresholds, as we can see in
figure 4B. There, we plot beliefs averaged over seeds for
DoM(2) and the DoM(0) beliefs against the canny DoM(1)
threshold senders. For accessibility, we summarize the two
thresholds into one, plotting the sum over the beliefs. As
we have seen before, the DoM(0) falls into the DoM(1)’s
trap and ends up mistaking the threshold DoM(1) agents
for random senders - which the senders then duly exploit.
In contrast, the DoM(2) is able to identify that it is playing
with a thresholds agent. We note that even in this case, the
highly sophisticated DoM(2) will still assign a low percent-
age to the possibility that it is playing with a random agent.
This is because the DoM(1) ruse is essentially heavily rely-
ing on random patterns that do not always guarantee strong
signals of intentionality.

While the DoM(2) generally is able to make correct infer-
ences and realise that it is being duped, how it models its
DoM(1) sender equally traps it when it comes to its pol-
icy. That is, because it believes that it is only playing with
a DoM(1), it thinks that it has no agency over the sender.
Specifically, the DoM(2) knows that the DoM(1) always
executes its plan to cajole the DoM(0) and cannot be pushed
around to send higher offers. That is due to the fact that
DoM(1) can only be affected via inferences that it would
make about the DoM(0), which would never react in a re-
jecting manner. Consequently, while the DoM(2) realizes it
is playing with threshold agents, it also realizes that it cannot
do anything about the ongoing exploitation. This, in turn,
means that the DoM(2) will have a simple policy: Trapped
in the (correct) belief that it is either playing with a random
or a DoM(1) threshold agent, it always accepts all the offers
— because there is nothing it can do to shape the offers of
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Figure 4. Higher depth of mentalization agents become skeptical and turn docile: (A-B) DoM(2) and DoM(0) beliefs when faced
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playing with one, taking longer to converge and mistaking it longer for a cunning threshold sender. (B) In turn, this skepticism shields the
DoM(2) from being duped by the DoM(1). We show the summed beliefs that a DoM(2) or DoM(1) holds over a threshold agent when
faced with the deceptive DoM(1). The DoM(0) falls for the trap, believing it is playing with a random agent, whereas the DoM(2) is
aware of the ruse. (C-E) DoM(2) is cornered into always accepting the DoM(1) because it believes it cannot shape its decisions. This is
the case across different sender types and in stark contrast to the DoM(0) which first aims to corner the DoM(—1) into higher offers.
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increase its offers. (B) This triggers it to lose cumulative rewards.

either. We show this in detail in Figure 4C and D where
we plot the percentage of accepted offers by the DoM(2)
receiver compared to the DoM(0) receiver: Whereas the

DoM(0) receiver believes it has agency over the DoM(0)

sender and so mainly rejects the initial offers, the DoM(2)
is essentially caught in the DoM(1)’s headlights and accepts
almost every single offer (barring noise).
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The DoM(2) docile acceptance behavior is optimal when
faced with our canny DoM(1) sender but falls apart when
the “trapped” DoM(2) is faced with a simpler DoM(—1).
This is an example of a model misspecification and is not
unlike aspects of paranoia: Paranoid individuals who er-
roneously believe others are out to get them, sometimes
develop depression-like symptoms, withdrawing and freez-
ing (Freeman, 2016). Essentially, those caught in paranoia
over time often feel that they lack agency over their ability
to change their persecution, as by definition, it may not truly
exist. We show the consequences of this in Figure 5. There,
in panel A, we show an example game of the DoM(2) agent
playing against a DoM(—1) random agent (background) and
a DoM(—1) threshold agent. This clearly shows the poor
consequences of the DoM(2) paranoid acceptance policy
when it is playing with a simpler agent: The DoM(2) fails
to push the DoM(—1) towards making higher offers.

The dire consequences of paranoia for the DoM(2) pay-offs
are plotted in Figure 5B where we show the rewards of a
DoM(2) and a DoM(0) receiver, both playing against the
random and the threshold DoM(—1). Both DoM(0) and
DoM(2) accept essentially all of the random offers (recall
how the DoM(0) is able to identify this type quickly) and so
gain roughly equivalent rewards. In contrast, when playing
with the DoM(—1) threshold agents, the less sophisticated,
but also better calibrated DoM(0) gains significantly more
reward, because it is able to affect the DoM(—1)’s offers
through its earlier rejections.

4. Discussion

This work shows that theory of mind is a double-edged
sword. Through analysing in some detail pairs of RL agents
endowed with theory of mind with different depths of men-
talization in a mixed-motive game, we highlight how deeper
mentalisation can protect agents, allowing them to act ap-
propriately against deceptive partners. On the other hand,
we also show how a higher level of theory of mind can be
maladaptive when miscalibrated: Agents with deep recur-
sive theory of mind, thinking three steps into the cognitive
hierarchy, become skeptical against even random behavior
and are trapped in a hypermentalised policy, believing they
are surrounded by others that are out to get them.

Our work highlights how ToM-induced paranoia and its
detrimental consequences are not only a function of the
agent’s own ToM but also of its environment and other
agents. This is consistent with venerable observations (Si-
mon, 1990; Bhui et al., 2021; Huys et al., 2015), and is
relevant for the maladaptive behavior of machines (Schulz
& Dayan, 2020). It also shows how complex phenomena
like skepticism can arise even from optimal Bayesian infer-
ence (Bhui & Gershman, 2020; Alon et al., 2022) and how
what an agent might think of as optimal Bayesian inference

can go awry given confusion about the decision problem or
an unfortunate environment (Huys et al., 2015)

Our work has particular relevance for computational psy-
chiatry: Overly vigilant behavior is hypothesised as a gen-
erative factor in psychiatric symptoms, such as paranoia or
anxiety (McLaren et al., 2022b; Sharp et al., 2011). Those
suffering from these symptoms display hyper-mentalisation,
inferring nefarious, complex intentions from sparse data.
Our work offers a computational simulacrum of these phe-
nomena, formalising recursive theory-of-mind and showing
how paranoia can arise in purely reward-maximising, inter-
active agents with minor miscalibrations. Extreme, clini-
cally relevant cases such as paranoia are likely to involve
a combination of theory of mind going awry as well as
inflexible priors on the general population (Barnby et al.,
2022b;a). In our paradigm, these priors may be operational-
ized by holding biased beliefs that a partner is non-random.
However, a singular focus on biased priors (that a partner is
non-random) within an explanatory model would represent
an implicit belief that others are more sophisticated than
they appear. Such an explanation would still need to account
for how this view of the world became reified. Our simula-
tions take the first steps in measuring this development in a
more tractable manner, offering crisp, testable, predictions.

Our simulations rely on a well-established game, and rela-
tively simplistic agents. We did this to focus on exemplar
emergent behaviors, but this naturally introduces limitations.
First, this model assumes a strict k-level model. Future work
might do away with a k-level model in favour of a more
fluid DoM that allows adaptation to a partner (Camerer
et al., 2004); this is an important direction for the future.
A plausible prediction is that after learning a partner is not
attempting to deceive, one’s own DoM levels might reduce
to fit the context (although the potential sophistication of the
agent remains constant). This attenuation may be slower for
those with high versus low psychiatric symptoms. In other
cases, agents might use DoM as an intentional variable —
something that they manipulate explicitly as part of utility
maximization. Second, as we show, our skeptical DoM(2)
agents are stuck in their overly defensive behavior. This is
because they know they are powerless to cajole the DoM(1)
into ’taking off its mask’ and increasing its offers. This
might be alleviated by imbuing receivers with thresholds
of their own, which the DoM(2) might then be able to use
to devise alternative strategies, such as manipulation of the
DoM(1) into believing that its threshold is higher than is
(much like the DoM(1) belief manipulation schema). Last,
we use simple, fixed thresholds to determine the utility type
of the sender. Replacing these egocentric utilities with social
orientation utilities, like the Fehr-Schmidt (Fehr & Schmidt,
1999) inequality aversion, may yield other non-trivial effects
of hypermentalization.
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Another naturalistic extension of our model may also incor-
porate sophistication detection: the ability for an agent to
recognise when it is up against a more sophisticated partner,
even if it cannot change its own mentalisation depth. This is
relevant in a number of real-world scenarios. For example,
humans, particularly those who are paranoid, can believe
that they are being confronted with agents who are in fact
smarter than them and so whose actions lack a transparent ra-
tionale — one can sense a plot is afoot but not be able to fully
conceptualise it. Such an extension would allow an agent to
make heuristic responses, such as threats to exit a context,
if they could not out-manoeuvre their partner strategically
by increasing their mentalisation depth (Hertwig & Engel,
2016; Hula et al., 2018). A necessity of this modification
requires a metacognitive understanding of the limitations
of one’s social cognition. Such metacognition might also
be employed to make other decisions prior to drastic action,
e.g., gathering more information about opponents (Schulz
et al., 2023).

Finally, our work has relevance to Large Language Models
(LLMs). Recent work has debated whether LLMs possess a
theory of mind (Sap et al., 2023; Ullman, 2023; Kosinski,
2023) and preliminary work has investigated how LLMs
might use its notional theory of mind in iterated games
(Akata et al., 2023). This work has shown that LLMs can
make such inferences, although strictly at inferences consis-
tent with DoM(0). Our work suggests the merits of investi-
gating deeper DoM in the context of LLMs: This is both for
its deceptive potential and to avoid potentially misplaced
paranoia in and between humans and artificial systems.
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