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Abstract

Graph Neural Networks (GNNs) have proven to be highly effective for link and1

edge prediction across domains ranging from social networks to drug discovery.2

However, processing extremely large graphs with millions of densely connected3

nodes poses significant challenges in terms of computational efficiency, learning4

speed, and memory management. Thus making Graph Foundational Model very5

computationally expensive. In this work, we present a reinforcement learning (RL)6

assisted dynamic graph learning algorithm that addresses these scalability issues,7

making Graph Foundational Model computationally feasible for many use cases.8

Our approach provides new perspectives in Advanced Graph Machine Learning by9

employing an RL agent to strategically sparsify large graphs by preserving only10

the most salient edges for downstream applications like node classification. We11

demonstrate the effectiveness of our framework on an academic network containing12

papers, authors, and their affiliations. Our method first partitions the network into13

two components: a core graph of papers and a satellite graph of authors and14

affiliations. The RL agent then selectively merges these components by identifying15

and maintaining only the most informative connections between papers and authors16

for the node classification task. Experimental results show that our approach17

achieves comparable performance to baseline methods while reducing memory18

requirements and accelerating the learning process.19

1 Introduction20

Graph Neural Networks (GNNs) have demonstrated remarkable capabilities in learning meaning-21

ful representations from graph-structured data and have been successfully adapted for various22

heterogeneous networks, including academic collaborations, knowledge graph, and drug discov-23

ery [4, 2, 14, 15, 10]. However, their practical application is often hindered by the scale of real-world24

graphs, which can contain millions of nodes and billions of edges. Training GNNs on the entirety of25

such graphs is often infeasible due to prohibitive computational costs and memory demands. The26

naive inclusion of all connections can introduce further noise, degrading the model’s learning quality.27

A pragmatic approach to manage this complexity is to partition the graph based on semantic rele-28

vance [16, 8, 13]. We formalize this by defining a core graph, which contains the primary entities29

and their most critical relationships, and one or more satellite graphs, which house auxiliary nodes30

and their relations. In an academic network, for example, paper-citation links form the core graph,31

while author collaborations, institutional affiliations, and fields of study constitute satellite graphs.32

While this partitioning is efficient, it introduces a new challenge: how to strategically merge satellite33

information to enrich the core graph without reintroducing computational bottlenecks.34
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Reinforcement learning (RL) has proven effective for various GNN optimizations, in learning35

sampling or topology adaptation policies [5, 9, 12]. Existing RL-based methods primarily focus on36

single unified graphs, rarely addressing partitioned architectures. Similarly, while graph pruning37

methods – ranging from random edge dropping to structural sparsification – can reduce memory38

costs, they lack adaptive policies for selecting meaningful connections.39

In this work, we propose an RL-based framework to dynamically construct an optimal graph for GNN40

training,where RL’s objective is to solve the combinatorial optimization problem of merging two41

graphs (core and satellite) for downstream task. Our method learns a selective merging policy that42

identifies and integrates only the most salient connections from satellite graphs, thereby discovering43

valuable high-order relationships while adhering to a computational budget. This advances beyond44

conventional pruning techniques to address the challenges of large-scale graph learning through core45

and satellite graph framework.46

2 Related Work47

2.1 Graph Pruning and Sparsification48

Simple heuristics has been widely adopted such as Forest Fire [7] and edge dropping to control graph49

size. Network theories later inspired more sophisticated methods including subgraph extraction, motif50

sampling, and spectral or structure-preserving pruning strategies to retain informative local context51

for GNN training while drastically reducing neighborhood size, such as layer-wise sampling through52

GraphSAGE [3], DropEdge [11], and topological sparsification [6]. Recent advances integrate53

reinforcement learning as a mechanism for learning graph sampling or augmentation policies [5],54

including node and edge selection for mini-batch construction [9], or active subgraph expansion [12].55

These methods succeed at local scalability and dynamic adaptation, but are typically designed for56

complete (i.e., single-partition) graph that do not address scenarios where efficient graph analytics57

demand on-demand resource-aware merging across independently stored components.58

3 Problem Statement59

3.1 Core and Satellite Graphs60

Let G = (V,E) represent a heterogeneous graph. We decompose G into:61

• Core graph Gcore = (Vcore, Ecore): contains primary nodes and their direct relations62

• Satellite graph Gsat = (Vsat, Esat): contains auxiliary nodes and their remaining relations63

For each primary core node vp ∈ Vcore, we define its target set T (vp) ⊆ Vsat as directly connected64

satellite nodes to the core node. These targets serve as entry points for satellite graph queries.65

3.2 Merged Graph66

Given a target τ ∈ T (vp), a K-hop query retrieves the edges in satellite graph within the distance of67

K from the targeted node τ as follows:68

Query(τ,K) = {(v1, v2) | dist(v1, τ) ≤ K, dist(v2, τ) ≤ K, v1, v2 ∈ Vsat} (1)

The merged graph Gmerge combines core graph with queried satellite graph expansions:69

Gmerge = (Vcore ∪ Vexp, Ecore ∪ Eexp) (2)

where expanded edges are aggregated through:70

Eexp =
⋃

vp∈Vcore

⋃
τ∈T (vp)

Query(τ,K) (3)

This query-based framework allows controlled integration of relevant satellite information into the71

core graph by expanding only within specified K-hop neighborhoods of target nodes.72
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Figure 1: Overview of graph merging in the ogbn-mag dataset. In author-centric satellites, for
paper 2 (yellow), we query target node author 2 (blue), which adds valuable institutional connections.
Author 3 (red) is not queried due to lack of connectivity gain. Similarly, in topic-centric satellites,
paper 4 has a target that queries field of study 2 but skips field of study 1 based on connectivity value.
Blue edges show connections added to the core graph, while red edges are excluded from the merge.

4 Methodology73

We propose different ways to merge core and satellite graphs through static and dynamic approaches.74

Figure 2 illustrates our three proposed merging techniques.75

4.1 Static Graph Merging (Heuristics-based Approach)76

For each core node vp, we define its set of potential targets T (vp) that can be queried to expand the77

graph through satellite connections. We compare two baseline merging strategies:78

• Complete Merging: Queries all targets τ ∈ T (vp) for each core node vp79

• Partial Merging: Queries only the first target τ1 ∈ T (vp) for each core node vp80

Complete merging provides maximum information but is computationally expensive and may include81

redundant connections. Partial merging is efficient but may miss important relationships. These82

heuristic approaches serve as baselines for evaluating more sophisticated merging strategies.83

4.2 Dynamic Graph Merging (RL-based approach)84

The core graph alone may miss important connections that exist through satellite relationships. For85

example, in academic networks, papers that should be related may not have direct citations but86

share strong connections through author collaborations or institutional ties. We define these indirect87

relationships as high-order connections – paths between core nodes that are formed through satellite88

nodes (e.g., paper1 connecting to paper2 via paper1→ author1→ institution1→ author2→ paper2).89

We formalize the process of learning such high-order connections as a RL-based search problem. As90

shown in Figure 1, the agent evaluates target nodes (e.g., authors) based on their potential to form91

valuable high-order connections. Some targets (green) may enable important paths through institu-92

tional affiliations or collaborations, while others (red) may not contribute meaningful connections93

and are thus skipped during the merging process.94
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Figure 2: Merging approaches illustrated: primary node (yellow) with queried target (blue) and
skipped target (red). Blue edges indicate satellite connections. Three approaches compared: complete
(querying all targets), partial (querying first target only), and RL-based (selective target querying).

The RL agent follows the trajectory for graph merging with the following components:95

State: At time step t, the state comprises the current merged graph structure, the core node being96

processed, the index of the candidate target node for querying, and the remaining query budget.97

Action: For each target node (e.g., an author of a paper), the agent decides to either: 1) query: merge98

K-hop satellite edges into the current merged graph, or 2) skip: maintain the current merged graph.99

Reward captures the number of newly discovered high-order connections when the agent queries a100

target and combines the satellite connections to the merged graph. The reward function is defined as:101

R(st, at) =

{
α · (number of high-order connections) if high-order connection found
−β otherwise

where α weights the influence of high-order connections and β penalizes queries that yield no new102

connections.103

The agent learns a policy πθ to maximize expected cumulative reward under budget constraint B:104

max
πθ

Eπθ

[
B∑
t=1

Rt

]

This framework enables the agent to strategically identify and query targets that establish valuable105

high-order connections while maintaining the specified budget constraints for the number of queries.106

Note, here the action of the RL agent solves the problem of merging two graphs (core and satellite) in107

an efficient way such that only meaningful connections are added. Since, input state to the RL agent108

is representation of local sub-graph, and thus it helps the RL agent’s policy to implicitly learn to map109

these local sub-graphs representation to actions such as whether to query additional neighbors for a110

specific target node in satellite graph. Without RL, a naive approach would generate an exponentially111

large search space, as each target node from the satellite graph becomes a potential candidate for112

addition or removal. Alternatively, heuristic-based methods tend to produce sub-optimal results, often113

leading to only partial merging. While a complete and accurate merge is theoretically possible, it114

would be prohibitively expensive in terms of memory and computational resources.115

5 Experiment116

5.1 Heterogeneous Graph Dataset117

We use the ogbn-mag dataset [4], a large-scale Microsoft academic network. As shown in Table 1,118

the dataset comprises four types of nodes (paper, author, field of study, and institution) connected119

through four types of edges (citations, authorship, affiliation, and topic relationships).120
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Table 1: Statistics of the ogbn-mag dataset. Edges are marked as directed (→) or undirected (↔).

Node Type Count Edge Type (Relationship) Count
Paper 736,389 Paper→ Paper (Citation) 5,416,271
Field of Study 59,965 Paper↔ Field of Study (Topic) 7,505,078
Author 1,134,649 Paper↔ Author (Authorship) 7,145,660
Institution 8,740 Author↔ Institution (Affiliation) 1,043,998

5.2 Core and Satellite Graph Setup121

We define papers and their citation edges serve as our core graph, and we construct two satellite122

graphs based on two available targets (1) author and (2) field of study (i.e., topic). These satellite123

graphs are used to show query strategies to explore alternative connection patterns between papers.124

• Satellite Graph 1 (Author-Centric): This graph is composed of author, institution, and125

paper nodes, linked by ‘Affiliation’ and ‘Authorship’ relationships. A query on a target126

author retrieves their 3-hops, including institutions, authors and their papers.127

• Satellite Graph 2 (Topic-Centric): This graph contains paper and field of study nodes,128

connected by the ‘Topic’ and ‘Authorship’ relationship. A query on a target field of study129

expands 1-hop to retrieve all papers associated with that field of study.130

5.3 Downstream Task Setup131

The ogbn-mag dataset presents a transductive multi-class node classification task for academic papers,132

split temporally into pre-2018 training (∼630K nodes), 2018 validation (∼65K nodes), and 2019133

testing (∼42K nodes) to predict which of the 349 possible venues published each paper. In our134

experiments, we maintain this classification task but operate on our merged graph rather than the135

original heterogeneous structure, with those labels hidden for validation and test sets during training.136

5.4 Graph Merging Performance137

Table 2 demonstrates the results of merging with the topic-centric satellite graph. We implemented a138

Soft Actor-Critic (SAC) algorithm with discrete actions [1] to navigate the space of possible queries,139

utilizing its entropy maximization for exploration and its effectiveness in continuous action spaces.140

The RL agent uses the primary core nodes in the training set to find the high-order connections during141

the training time and applied to every core node during the inference time.142

The RL-based merging shows distinct characteristics in how it compresses the graph. It reduces143

nodes by 62% while maintaining most edge connections, with only a 12% edge reduction. In contrast,144

Partial Merging reduces nodes by 87% and edges by 76%. These numbers suggest that the RL-based145

Merging tends to preserve targets that connect to multiple papers, resulting in a more connections146

compared to Partial Merging, while still achieving meaningful node reduction.147

Table 2: Statistical comparison of merged graphs using ogbn-mag dataset, showing only the number
of nodes and edges from the topic-centric satellite graph. Percentages marked with ↓ indicate
reduction rate in nodes and edges compared to the complete graph merging.

Merged Graph #Satellite Graph Nodes #Satellite Graph Edges
Complete Merging 59,965 7,505,078
RL-based Merging 22,814 (↓ 62%) 6,579,314 (↓ 12%)

Partial Merging 7,706 (↓ 87%) 1,767,273 (↓ 76%)

5.5 Node Classification Performance148

We selected GraphSAGE [3] as our graph learning framework’s foundation, leveraging its computa-149

tional efficiency with large-scale graphs and its inductive capabilities for generating embeddings of150

unseen nodes through neighborhood aggregation. While the Complete Merging approach achieves151
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optimal test accuracy at 34.07, this comes with substantial computational overhead. Our proposed152

RL-based Merging strategy attains a comparable test accuracy of 32.96, while operating on a signifi-153

cantly reduced graph structure compared to the fully merged graph. In contrast, the Partial Merging154

approach yields notably inferior results with a test accuracy of 24.02. These findings substantiate155

our hypothesis that an intelligent, selective merging policy can effectively capture the essential156

information required for downstream tasks while maintaining computational efficiency. The results157

demonstrate that intelligently incorporating satellite information improves classification performance.158

Table 3: Node classification accuracy on ogbn-mag dataset. The result is based on the merged graph
that only contains and edges from the core and topic-centric satellite graph. Percentages marked with
↓ indicate reduction rate in accuracy compared to the complete graph merging.

Merged Graph Validation Test
Complete Merging 38.18 34.07
RL-based Merging 37.78 (↓ 1%) 32.96 (↓ 3%)

Partial Merging 28.35 (↓ 26%) 24.02 (↓ 29%)

6 Conclusion159

We proposed a novel reinforcement learning framework for dynamic graph construction that ef-160

fectively addresses the scalability challenges inherent in large-scale graph learning. Our approach161

introduces a principled method for selectively incorporating auxiliary information from satellite162

graphs into a core graph structure, resulting in an optimized and computationally efficient represen-163

tation. Through our experiments on the ogbn-mag dataset, we demonstrated that this selective164

merging strategy can achieve near-competitive performance with complete graph processing while165

significantly reducing computational overhead.166

Specifically, our RL-based graph merging achieved a test accuracy of 32.96, approaching the 34.07167

benchmark of complete merging while operating on a substantially reduced graph structure. This168

performance validates our core hypothesis that intelligent, policy-driven graph construction can effec-169

tively capture essential relationships while maintaining computational efficiency. The framework’s170

ability to construct crucial high-order connections while eliminating redundant information presents171

a promising direction for scaling GNN applications to massive real-world networks.172

Looking ahead, this work establishes a foundation for future research in resource-aware graph173

learning, particularly in scenarios where processing complete graph structures becomes prohibitively174

expensive. The core-satellite framework we have introduced offers a flexible architecture that could be175

adapted to various domains and tasks where selective information integration is crucial for balancing176

performance and computational constraints.177
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Appendix220

RL Agent Setups221

Our implementation of SAC focuses on citation graph exploration. The observation space is defined222

as a 66-dimensional vector that encodes 128 features representing the main core node, a binary223

indicator for available fields to query, and the remaining query budget which is initialized to 100.224

The RL agent’s trajectory follows a standard Markov Decision Process (MDP) cycle with the225

following components:226

1. STATE st: At each timestep t, the state st contains the core graph with its current set of227

nodes and connections.228

2. ACTION at: Given state st, the agent selects an action at from a continuous space [−1, 1],229

which is discretized to make binary decisions about which nodes to query. These queries230

establish new satellite connections to the core graph.231

3. REWARD R(st, at): The reward function evaluates action effectiveness by measuring232

the in-degree of new connections to the core graph. Successful connections yield positive233

rewards based on their in-degree, while unsuccessful queries incur a penalty of −3.234

4. NEXT STATE st+1: The environment transitions to state which contains the newly updated235

merged graph. When the episode ends, we utilize the merged graph of the last state.236
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The architecture employs a 64-dimensional MLP feature extractor, with both policy and Q-networks237

consisting of two hidden layers (64 units each). The training process runs for 100,000 episodes with238

key parameters including a learning rate of 5× 10−4, replay buffer size of 10,000, batch size of 256,239

discount factor of 0.99, and soft update coefficient of 0.005. We employ automatic entropy tuning240

where the temperature parameter is learned to maintain a target entropy. The model updates occur241

every 10 steps with 10 gradient steps per update, and learning begins after an initial 1,000 steps.242

GraphSAGE Model Setups243

Our GraphSAGE implementation uses a two-layer architecture with hidden dimension of 256, taking244

128-dimensional paper features from ogbn-mag as input and outputting class probabilities. The model245

employs SAGEConv with mean aggregation, ReLU activation, and dropout rate of 0.5. Training is246

performed over 2000 epochs using Adam optimizer with a learning rate of 0.01 and cross-entropy247

loss.248

Pseudocode for RL-based Dynamic Graph Merging249

Algorithm 1 RL-based Dynamic Graph Merging for Large Scale Graph Learning
Require:

1: Gcore : Core citation graph
2: Gsat : Satellite citation graph
3: K : K-hop expansion limit
4: B : Query budget

Ensure:
5: Gmerged : Merged citation graph

6: Initialize Gmerged ← Gcore

7: for vp in Vcore do ▷ Training episodes
8: H ← ∅ ▷ History of queried targets
9: b← B ▷ Initialize budget

10: while b > 0 and HasSkippedTargets(vp) do
11: T ← GetAvailableTargets(vp) \H ▷ Get all available targets
12: st ← (vp, t,H, b) where t ∈ T ▷ State for each target
13: at ← Qθ(st)
14: if at is query then
15: Pdiscovered ← SatelliteQuery(Gsat, target, K)
16: Cnew ← FilterCitingPapers(Pdiscovered, vp)
17: if |Cnew|/|Pdiscovered| > 0 then
18: Gmerged ←MergeConnections(Gmerged, Cnew)
19: rt ← α · |Cnew|/|Pdiscovered| ▷ Reward for high-order connection
20: else
21: rt ← −β ▷ Penalty for redundant query
22: end if
23: b← b− 1 ▷ Decrease query budget
24: else
25: rt ← 0 ▷ No reward for skip action
26: end if
27: H ← H∪ {target}
28: st+1 ← (vp, T ,H, b)
29: end while
30: end for

return Gmerged
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