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Abstract

State-of-the-art LiDAR-camera 3D object detectors usually focus on feature fusion.1

However, they neglect the factor of depth while designing the fusion strategy. In2

this work, we for the first time point out that different modalities play different roles3

as depth varies via statistical analysis and visualization. Based on this finding, we4

propose a Depth-Aware Hybrid Feature Fusion (DH-Fusion) strategy that guides the5

weights of point cloud and RGB image modalities by introducing depth encoding6

at both global and local levels. Specifically, the Depth-Aware Global Feature7

Fusion (DGF) module adaptively adjusts the weights of image Bird’s-Eye-View8

(BEV) features in multi-modal global features via depth encoding. Furthermore,9

to compensate for the information lost when transferring raw features to the BEV10

space, we propose a Depth-Aware Local Feature Fusion (DLF) module, which11

adaptively adjusts the weights of original voxel features and multi-view image12

features in multi-modal local features via depth encoding. Extensive experiments13

on the nuScenes dataset demonstrate that our DH-Fusion method surpasses previous14

state-of-the-art methods w.r.t. NDS. Moreover, our DH-Fusion is more robust to15

various kinds of corruptions, outperforming previous methods on nuScenes-C w.r.t.16

both NDS and mAP.17

1 Introduction18

3D object detection has a wide range of applications in the fields of autonomous driving and robotics.19

A large number of previous works have successfully focused on using a single modality, such as point20

cloud or images, to design efficient 3D object detectors. However, the performance of these detectors21

reaches a bottleneck due to the limitations of modality characteristics. For instance, the point cloud22

modality can only provide rich geometric information while lacks detailed semantic information;23

the image modality can only provide rich texture information while lacks three-dimensional spatial24

information. To address the aforementioned issues, we are highly motivated to obtain comprehensive25

information that represents objects by designing a LiDAR-camera 3D object detector.26

In recent years, LiDAR-camera 3D object detection develops rapidly. Some works [1, 4, 28, 33, 67]27

propose effective methods to integrate information from two modalities at the feature level. However,28

they all overlook an important factor of depth in their fusion strategies. To understand how point29

cloud and image information vary with depth, we first conduct statistical and visualization analysis30

on the nuScenes-mini dataset [3], and find that: (1) The number of points representing objects at31

near range is relatively large, which allows us to accurately determine the object’s location, size, and32

category, even without the aid of images. As shown in Fig. 1a, there is an average of 163.7 points per33

object within 0-10 meters, which is a substantial number. We also visualize a car at 6.8 meters in34

Fig. 1b ① and find it encompasses a considerable number of points, well representing the shape. In35

contrast, some background noise in the image may interfere with detection (Fig. 1b ②). (2) As the36
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Figure 1: Statistical and visualization analysis on the nuScenes-mini dataset. (a) The average numbers
of points and pixels for each object at different depths. (b) Examples of near-range and long-range
objects in images and point cloud. Points within the bounding boxes are colored red for observation.

depth increases, the number of points representing objects decreases rapidly. As shown in Fig. 1a,37

the number of points within 30-50 meters falls below one per object, meaning that many objects are38

even not represented by any points, such as the object at 42.1 meters in Fig. 1b ③. In contrast, the39

complete objects may still be observed on the image, as in Fig. 1b ④, where the image information40

becomes more important. To address the above problems, we propose a feature fusion strategy that41

adaptively adjusts the importance of the two modalities based on depth.42

Specifically, we propose a novel method for multi-modal 3D object detection, namely Depth-Aware43

Hybrid Feature Fusion (DH-Fusion). The innovation lies in adaptively adjusting the weights of44

features by introducing depth encoding to hybrid feature fusion at both global and local levels. The45

fusion strategy consists of two crucial components: Depth-Aware Global Feature Fusion (DGF)46

module and Depth-Aware Local Feature Fusion (DLF) module. In DGF, we take point cloud Bird’s-47

Eye-View (BEV) features and image BEV features as inputs, and dynamically adjust the weights of48

image BEV features based on depth during fusion by utilizing a global-fusion transformer encoder49

with a depth encoder. To compensate for the information lost when transforming raw features to50

BEV space, we enhance the fused BEV features at a lower cost by utilizing the original instance51

features. In DLF, we obtain 3D boxes by utilizing a Region Proposal Network (RPN). Then, the52

3D boxes are projected into both LiDAR voxel features and multi-view image features to crop out53

corresponding local instance features with more detailed information. Afterward, we take these as54

inputs and dynamically adjust the weights of local multi-view image features and local LiDAR voxel55

features based on depth through the use of a local-fusion transformer encoder with the depth encoder.56

In the end, we update local features for each object on the global feature map to enhance the detailed57

instance information of multi-modal global features for detection.58

Our contributions are summarized as follows.59

1. We for the first time point out that depth is an important factor to consider while fusing LiDAR60

point cloud features and RGB image features for 3D object detection. From our statistical and61

visualization analysis, we can see that image features play different roles as depth varies.62

2. We propose a depth-aware hybrid feature fusion strategy that dynamically adjusts the weights of63

features during feature fusion by introducing depth encoding at both global and local levels. The64

above strategy can obtain high-quality features for detection, fully leveraging the advantages of65

different modalities at various depths.66

3. Our method is evaluated on the nuScenes [3] dataset and a more challenging nuScenes-C [13]67

dataset, outperforming previous multi-modal methods and being robust to various kinds of data68

corruptions.69

2 Related Work70

Since our method is based on conducting 3D object detection using data from multiple modalities,71

including point cloud and images, we briefly review recent works in the following fields: LiDAR-72

based 3D object detection, camera-based 3D object detection, and LiDAR-camera 3D object detection.73
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2.1 LiDAR-based 3D Object Detection74

LiDAR-based 3D object detectors only take the point cloud as input. Based on their different data75

representations, they can be divided into point-based [44–46, 64, 65], voxel-based [12, 22, 61, 68, 71],76

and point-voxel-based [17, 42, 43] methods. The feature extraction networks of point-based methods77

typically extract features directly from the point cloud through a point-based backbone [40], such as78

PointRCNN [44]. The voxel-based methods first convert the point cloud into voxels and then extract79

voxel features through a 3D sparse convolution network [14], such as VoxelNet [71]. Point-voxel-80

based methods like PV-RCNN [42] combine the above two methods to extract and fuse point and81

voxel features. The purpose of these approaches is to capture the geometric spatial information of the82

point cloud. However, point cloud is sparse and incomplete, lacking detailed texture information,83

which greatly limits the detection performance.84

2.2 Camera-based 3D Object Detection85

Camera-based 3D object detectors only take images as inputs. Depending on the form of inputs,86

they can be divided into monocular [2, 24, 32, 41, 47, 55], stereo [6, 25, 30, 48, 70], and multi-view87

[19, 27, 56, 62] 3D object detectors. Early works like FCOS3D [55] input a monocular image and88

utilize 2D object detectors to directly predict 3D bounding boxes, but these approaches have limited89

capability in capturing spatial information. Subsequently, stereo and multi-view 3D object detectors90

are proposed to obtain more precise depth information by constructing spatial relationships among91

multiple images, such as Stereo RCNN [25] and BEVDet [19]. These methods successfully achieve92

purely visual 3D object detection, but they do not perform as well as LiDAR-based methods, because93

the spatial depth information provided by images is not as direct and precise as that provided by point94

cloud.95

2.3 LiDAR-Camera 3D Object Detection96

LiDAR-camera 3D object detectors take point cloud and images as inputs, and can be classified97

into early-fusion-based [50, 52, 57, 59, 69], intermediate-fusion-based [1, 4, 28, 33, 67], and late-98

fusion-based [37, 38] 3D object detectors based on the location of multi-modal information fusion99

[36].100

Early-fusion-based methods perform at the point level, where the typical approach involves enhancing101

the raw point cloud with semantic information extracted from images. PointPainting [50] and Fu-102

sionPainting [59] decorate the raw point cloud with semantic scores from 2D semantic segmentation.103

Similarly, PointAugmenting [52] enhances the raw point cloud using features extracted from a 2D104

semantic segmentation network. However, early-fusion-based methods are sensitive to alignment105

errors between the two modalities.106

Intermediate-fusion-based methods perform at the feature level. Transfusion [1] first proposes to107

utilize the transformer for fine-grained fusion from LiDAR BEV features and multi-view image108

features. FUTR3D [5] encode each modality using deformable attention [73] in its own coordinate109

and concatenate them for fusion. BEVFusion [28, 33] projects both point cloud and images to BEV110

space for BEV feature fusion. SparseFusion [58] extracts instance-level features from both two111

modalities separately, and fuse them to perform detection. Similarly, ObjectFusion [4] utilizes 3D112

proposals from LiDAR modality to extract instance-level features for fusion. CMT [60] proposes113

the simultaneous interaction between the object queries and multi-modal features in the transformer114

encoder and decoder. IS-Fusion [67] proposes feature fusion at both the instance level and scene115

level. The intermediate-fusion-based methods gradually become a mainstream approach due to the116

diversity of fusion strategies.117

Late-fusion-based methods perform at the bounding box level. Typically, CLOCs [37] obtains 2D and118

3D bounding boxes by separately using 2D and 3D object detectors, and then combine them to achieve119

more accurate 3D bounding boxes. However, the interaction between modalities in late-fusion-based120

methods is very limited, which constrains model performance.121

These multi-modal methods successfully outperform single-modal methods. However, their feature122

fusion methods do not take depth into account. In contrast, our approach introduces depth information123

to guide the hybrid feature fusion, boosting the performance of the detector.124

3



Multi-view Images

LiDAR Point Cloud

3D Encoder

2D Encoder

…

…

…

Decoder

Detection

HeadGlobal Feature Fusion Local Feature Fusion

Depth Encoder

Input Encoding Depth-Aware Global Feature Fusion Depth-Aware Local Feature Fusion Decoding

G

O

Select

Select

Project

Project

View 

Transfer

Compress

G

O

G

B

G

B L

O

G

B
L

B

L

O

G

B
ˆ

G

B

M
Select

Depth Encoder

Depth Encoder

M

Sine and 

Cosine

De

Figure 2: Overview of our method. It introduces depth encoding in both global and local feature
fusion to obtain depth-adaptive multi-modal representations for detection. is the multiplication
operation, and M is the merge operation.

3 Methodology125

In this section, we first give an overview of our proposed multi-modal 3D object detector, and then126

provide a detailed introduction to our proposed feature fusion method.127

3.1 Overview128

We propose a multi-modal 3D object detection method via Depth-Aware Hybrid Feature Fusion129

(DH-Fusion). As illustrated in Fig. 2, our approach consists of two important feature fusion modules:130

Depth-Aware Global Feature Fusion (DGF) and Depth-Aware Local Feature Fusion (DLF). In the131

following, we briefly describe the detection pipeline.132

Inputs. First, we take the point cloud P and multi-view images I as inputs, where point cloud133

consists of a set of points: P = {P1, P2, · · · , PNl
}, and each point has four dimensions: X-axis,134

Y-axis, Z-axis, and intensity; the multi-view images comprise Nc images: I = {I1, I2, · · · , INc},135

each image captured by its corresponding camera.136

Input Encoding. For the point cloud P , we use a 3D encoder to extract raw global voxel features137

VG
O ; for the multi-view images I , we use a 2D encoder to extract image features of all views IG

O .138

Hybrid Feature Fusion. Then, for voxel features VG
O , we compress the height dimension to obtain139

point cloud BEV features VG
B ; for image features IG

O , we transform their perspective view to bird’s140

eye view to obtain image BEV features IG
B . To fully leverage the features from two modalities, we141

design a DGF module that aims to dynamically adjust the weights of image BEV features based142

on depth values during feature fusion. Please refer to Sec. 3.2 for more details. To compensate143

for the information lost when transforming raw features to BEV space, we propose a DLF module144

that, based on depth, utilizes the raw features to enhance the detailed information of each object145

instance in global multi-modal features. It consists of three processes: local feature selection, local146

feature fusion, and merging local features into global features. First, we obtain the local multi-modal147

BEV features FL
B , local voxel features VL

O, and local multi-view image features IL
O, by cropping the148

corresponding global features based on the 3D boxes obtained from an RPN; then, it dynamically149

and individually adjusts the weights of each local feature of VL
O and IL

O based on depth values during150

feature fusion; finally, we update local features for each object on the global feature map. Please151

refer to Sec. 3.3 for more details. In this way, we obtain enhanced multi-modal global features for152

detection.153

Decoding. Based on the enhanced multi-modal global features F̂G
B that contain rich semantic and154

spatial information, we utilize a transformer decoder and a detection head to predict the object155

categories and 3D bounding boxes.156
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3.2 Depth-Aware Global Feature Fusion157

As shown in Fig. 3, the DGF module consists of a global-fusion transformer with a depth encoder. In158

the following, we provide a detailed explanation of each component.159

3.2.1 Depth Encoder160

We introduce depth encoding (DE) in feature fusion to dynamically adjust the weights of image BEV161

features during fusion. First, we build a depth matrix M to store the depth value of each position162

element pk represented as:163

pk = {(xk, yk) : dk}, k ∈ [1, n], (1)

where (xk, yk) are the positional coordinates, dk is the depth value, and n is the number of elements.164

Then, we use Euclidean distance to calculate the distance between every element’s spatial location165

(xk, yk) and the ego coordinate element’s location (xn
2
, yn

2
):166

dk = E((xk, yk), (xn
2
, yn

2
)), k ∈ [1, n], (2)

where we denote E(·) as the Euclidean distance calculation. The depth matrix M serves as a lookup167

table to avoid redundant computation of depth values. Since the size of the BEV features is large and168

the depth distribution is simple, to avoid introducing additional parameters, the depth encoding De is169

obtained by applying sine and cosine functions [49] to the depth matrix.170

3.2.2 Global-Fusion Transformer171

In the global-fusion transformer, we take the point cloud BEV features VG
B ∈ RW×H×C and image172

BEV features IG
B ∈ RW×H×C as inputs, and integrate the depth encoding obtained above by multi-173

plying it with the point cloud BEV features, forming the query QG
V = N(VG

B × Conv(De)), where174

Conv(·) is a convolution operation to align with the channels of VG
B , and N(·) is a normalization175

layer. The image BEV features are queried as the corresponding key KG
I and value V G

I . We utilize176

the multi-head cross attention to achieve the interacted feature V̂G
B based on depth:177

V̂G
B = CA(QG

V ,K
G
I , V G

I ), (3)

where CA(·) indicates the multi-head cross attention. Afterward, we aggregate the information from178

both modalities to obtain the fused features FG
B :179

FG
B = N(FFN(N(V̂G

B + VG
B )) +N(V̂G

B + VG
B )), (4)
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where N(·) is a normalization layer; FFN(·) specifies a feed-forward network containing two180

convolution operations. In this way, we obtain fused features in which the image features play181

different roles as the depth varies.182

3.3 Depth-Aware Local Feature Fusion183

As shown in Fig. 4, the DLF module consists of a local feature selection and a local-fusion transformer184

with the depth encoder. In the following, we provide a detailed explanation of each component.185

3.3.1 Local Feature Selection186

To compensate for the information lost when transforming point cloud features and image features to187

BEV space, we enhance the instance details of fused BEV features FG
B using instance features from188

raw voxel features VG
O and multi-view image features IG

O . Specifically, we utilize an RPN to regress189

t 3D boxes based on the BEV features FG
B . We directly crop the global fused BEV features FG

B190

based on the regressed 3D boxes to obtain the local fused BEV features FL
B ∈ Rc×t. On the other191

hand, we project the 3D boxes onto the raw voxel features and multi-view image features to obtain192

their corresponding local features before global fusion, preserving richer information for each object193

instance. Specifically, we utilize the voxel pooling operation [12], followed by a 3D convolution194

operation and a linear layer, to extract local voxel features VL
O ∈ Rc×t; we transform the 3D boxes195

from bird’s eye view to perspective view, and utilize the RoI Align operation [15], followed by a196

linear layer, to extract instance image features IL
O ∈ Rc×t. By doing this, we obtain the hybrid197

(before & after global fusion) local features, which will be sent to the subsequent fusion module.198

3.3.2 Local-Fusion Transformer199

In the local-fusion transformer, the weights of each local raw feature are dynamically adjusted based200

on depth values during feature fusion, and we update local features for each object on the global201

feature map. Specifically, we take the local multi-modal BEV features FL
B , local voxel features VL

O,202

and local multi-view image features IL
O as inputs, and integrate the depth encoding by multiplying203

it with the local multi-modal BEV features, forming the query QL
F . The local multi-view image204

features and local voxel features are respectively queried as the corresponding key KL
I , KL

V and value205

V L
I , V L

V . The two multi-head cross-attention modules are utilized to achieve the interacted features206

Q̂L
F , Q̂

L
F
′. Note that the computation process of multi-head cross attention is similar to that described207

in Sec. 3.2.2 and is omitted here. Afterward, we aggregate the above features:208

F̂L
B = Conv(Cat(Q̂L

F + FL
B , Q̂

L
F
′
+ FL

B

′
)), (5)

where Cat(·) is the concatenation operation; Conv(·) is used to align with the feature channels of209

global fused BEV features FG
B . As a result, we obtain enhanced local features by dynamically calling210

back rich information in raw modalities at various depths. Afterward, we update the global features211

FG
B by inserting the enhanced local features at corresponding locations.212

4 Experiments213

In this section, we will first introduce the dataset and evaluation metrics, followed by the implementa-214

tion details. Then, we will compare our method with the state-of-the-art methods on nuScenes and215

also present results on a more challenging dataset of nuScenes-C with data corruptions. Finally, we216

will show the ablation studies and qualitative results. More experiments are provided in Appendix217

A.2.218

4.1 Experimental Setup219

Datasets and evaluation metrics. We evaluate our proposed DH-Fusion on the nuScenes benchmark220

[3] and a more challenging dataset of nuScenes-C [13] with data corruptions. nuScenes dataset221

provides 700 scene sequences for training, 150 scene sequences for validation, and 150 scene222

sequences for testing. Each sequence contains 40 frames of 32-beam LiDAR data, and each frame223
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has six corresponding images covering a 360-degree field of view. It offers calibration matrices that224

facilitate accurate projection of 3D points onto 2D pixels, and contains 10 object categories that are225

commonly encountered within autonomous driving. nuScenes-C dataset provides 27 corruptions226

with 5 severities on the nuScenes validation set, including corruptions at the weather, sensor, motion,227

object, and alignment level. We use the nuScenes detection scores (NDS) and mean Average Precision228

(mAP) to evaluate our detection results, where NDS is a comprehensive metric in nuScenes that229

combines object translation, scale, orientation, velocity, and attribute errors.230

Implementation details. We implement the proposed DH-Fusion with PyTorch [39] under the231

open-source framework MMDetection3D [10]. Specifically, for the LiDAR branch, we use VoxelNet232

[71] with FPN [61] as the 3D encoder. The voxel size is set to [0.075m, 0.075m, 0.1m], and the range233

of point cloud is [-54m, 54m] along the X-axis, [-54m, 54m] along the Y-axis, and [-3m, 5m] along234

the Z-axis. For the image branch, we use the ResNet18 [16], ResNet50 [16], and SwinTiny [34] with235

FPN [29] as the 2D image encoder of DH-Fusion-light, -base, -large, respectively. Correspondingly,236

the resolution of input images is resized to 256 × 704, 320 × 800, and 384 × 1056. Additionally, we237

utilize BEVPoolV2 [18] to obtain image BEV features. Following [33], the feature size W ×H is set238

to 180 × 180, the channel C is set to 128, and the channel c is also set to 128. The multi-head cross239

attention is implemented with 8 heads, and the FFN contains 2 MLP layers with a hidden dimension240

of 128. Following [58], the number of regressed 3D boxes t is set to 200. More implementation241

details are provided in Appendix A.1.242

4.2 Comparison to the State of the Art243

Aiming for a fair comparison, we categorize previous methods based on the types of 2D backbones244

into ResNet50-based, SwinTiny-based, and others, and provide three versions of our proposed method,245

named DH-Fusion-light, DH-Fusion-base, and DH-Fusion-large. The results are shown in Tab. 1.246

(1) Compared with the ResNet50-based methods, our DH-Fusion-base outperforms the top method247

FocalFormer3D [7] by up to 1 pp w.r.t. NDS under the same configuration. Specifically, we reach248

74.0% w.r.t. NDS and 71.2% w.r.t. mAP on the validation set, and 74.7% w.r.t. NDS and 71.7%249

w.r.t. mAP on the test set, while maintaining comparable inference speed of 8.7 FPS on a 3090 GPU.250

(2) Compared with the SwinTiny-based methods and others, our DH-Fusion-large outperforms the251

top method IS-Fusion [67] under the same configuration, and runs 2x faster than it. Specifically, we252

reach 74.4% w.r.t. NDS on the validation set, and 75.4% w.r.t. NDS on the test set, while achieving a253

faster inference speed of 5.7 FPS on a 3090 GPU, indicating that our proposed method is both more254

effective and efficient. (3) Furthermore, our DH-Fusion-light surpasses the typical BEVFusion [33]255

by up to 1 pp w.r.t. all metrics using a lighter 2D backbone, and achieves a real-time inference speed256

of 13.8 FPS. Overall, our method achieves higher detection accuracy and faster inference speed.257

4.3 Robustness to Corruptions258

We further implement some experiments on the nuScenes-C [13] dataset to evaluate the model’s259

robustness under various corruptions, including changes in weather, data loss or temporal-spatial260

misalignment in multi-modal inputs, etc. The results for different kinds of corruptions are shown261

in Tab. 2, and more detailed results for each fine-grained corruption are shown in Appendix A.2.3.262

We find that our DH-Fusion-light still achieves an average performance of 68.67% w.r.t. NDS and263

63.07% w.r.t. mAP under various corruptions, which only decreases by 4.63 pp w.r.t. NDS and264

6.68 pp w.r.t. mAP, compared to its performance without corruptions. Performance drop is smaller265

than that observed with previous methods including BEVFusion [28] across all kinds of corruptions,266

indicating that our DH-Fusion-light possesses superior robustness. Furthermore, we observe that our267

DH-Fusion-light is particularly robust against weather and object corruptions, where the performance268

drop is less than 3pp. The more stable performance indicates that our method is more friendly to269

practical applications, where data corruption may occur.270

4.4 Ablation Studies271

We conduct ablation studies to first demonstrate the effect of each component of DH-Fusion, then272

to demonstrate the effect of depth encoding in DGF and DLF, and finally to assess the impact of273

multiplying depth encoding. All method variants are implemented on the nuScenes validation dataset.274
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Table 1: Comparisons with the state of the art on the nuScenes validation and test sets. FPS is
measured on a 3090 GPU by default, and * denotes the inference speed on an A100 GPU referred
from the original paper. Note that all results are obtained without any model ensemble or test time
augmentation.

Methods Present at Image Size - 2D Backbone FPS Validation Test
NDS mAP NDS mAP

Image Backbone: ResNet50[16]
Trainsfusion [1] CVPR’22 320 × 800-ResNet50 6.5 71.3 67.5 71.7 68.9

DeepInteraction [66] NeurIPS’22 448 × 800-ResNet50 1.9 72.4 69.9 73.4 70.8
MSMDFusion [21] CVPR’23 448 × 800- ResNet50 2.1 72.1 69.7 74.0 71.5
FocalFormer3D [7] ICCV’23 320 × 800-ResNet50 9.2* 73.1 70.1 73.9 71.6

DH-Fusion-base (Ours) - 320 × 800-ResNet50 8.7 74.0 71.2 74.7 71.7
Image Backbone: SwinTiny[31]

BEVFusion [28] NeurIPS’22 448 × 800-SwinTiny 0.7* 71.0 67.9 71.8 69.2
BEVFusion [33] ICRA’23 256 × 704- SwinTiny 9.6 71.4 68.5 72.9 70.2
ObjectFusion [4] ICCV’23 256 × 704- SwinTiny - 72.3 69.8 73.3 71.0

SparseFusion [58] ICCV’23 256 × 704- SwinTiny 4.4 72.8 70.5 73.8 72.0
IS-Fusion [67] CVPR’24 384 × 1056-SwinTiny 3.2* 74.0 72.8 75.2 73.0

Image Backbone: Others
AutoAlignV2 [8] ECCV’22 640 × 1280-CSPNet [51] 4.8* 71.2 67.1 72.4 68.4

UVTR [26] NeurIPS’22 640 × 1280-ResNet101 [16] 1.8 70.2 65.4 71.1 67.1
FUTR3D [5] CVPR’23 900 × 1600-VOVNet [23] 3.3* 68.0 64.2 72.1 69.4
UniTR [54] ICCV’23 256 × 704-DSVT [53] 9.3* 73.3 70.5 74.5 70.9
CMT [60] ICCV’23 640 × 1600-VOVNet 6.0* 72.9 70.3 74.1 72.0

UniPAD [63] CVPR’24 900 × 1600-ConvNeXtS [34] - 73.2 69.9 73.9 71.0
DH-Fusion-large (Ours) - 384 × 1056-SwinTiny 5.7 74.4 72.3 75.4 72.8
DH-Fusion-light (Ours) - 256 × 704-ResNet18 13.8 73.3 69.8 74.2 70.9

Table 2: Robustness experiments on nuScenes-C. Numbers are NDS / mAP.
Methods Corruption AverageNone Weather Sensor Motion Object Alignment

FUTR3D [5] 68.05 / 64.17 62.75 / 55.51 63.66 / 56.83 53.16 / 44.43 65.45 / 61.04 62.83 / 57.60 62.82↓5.23 / 56.99↓7.18

TransFusion [1] 69.82 / 66.38 65.42 / 59.37 66.17 / 59.82 51.52 / 41.47 68.28 / 64.38 61.98 / 54.94 63.74↓6.08 / 58.73↓7.65

BEVFusion [33] 71.40 / 68.45 67.54 / 61.87 67.59 / 61.80 55.19 / 47.30 68.01 / 65.14 63.94 / 58.71 66.06↓5.34 / 61.03↓7.42

DH-Fusion-light (Ours) 73.30 / 69.75 72.19 / 67.48 69.16 / 62.87 57.07 / 47.52 71.01 / 67.11 67.24 / 62.38 68.67↓4.63 / 63.07↓6.68

Effect of DGF and DLF. To demonstrate the effect of DGF and DLF, we conduct experiments by275

integrating the components one by one into the baseline, BEVFusion [33]. The results are shown276

in Tab. 3. We find that our DGF improves the baseline performance by 1.0 pp w.r.t. NDS and 0.9277

pp w.r.t. mAP. This demonstrates that dynamically adjusting the weights of the image BEV features278

during fusion is effective for 3D object detection. Additionally, our DLF improves the baseline279

performance by 1.3 pp w.r.t. NDS and 0.8 pp w.r.t. mAP, which indicates that dynamically adjusting280

the weights of the local raw instance features based on depth during fusion effectively compensates281

for the information loss caused by the transformation of global features into the BEV feature space.282

The results of integrating both components show an improvement of 1.9 pp w.r.t. NDS and 1.3 pp283

w.r.t. mAP, well verifying the benefits of dynamically fusing global and local hybrid features based284

on depth.285

Effect of depth encoding in DGF and DLF. To evaluate the effectiveness of our depth encoding,286

we conduct experiments where the depth encoding is removed from the DGF and DLF modules,287

respectively. The results are shown in Tab. 4. When removing the depth encoding from Baseline+DGF,288

the performance drops by 0.6 pp w.r.t. NDS and 0.4 pp w.r.t. mAP. Similarly, when removing the289

depth encoding from Baseline+DLF, the performance also decreases by 1.1 pp w.r.t. NDS and 0.9 pp290

w.r.t. mAP. These results indicate that our depth encoding is effective. Furthermore, we observe that291

removing the depth encoding from the DLF module results in a larger performance drop, suggesting292

that depth encoding plays a more crucial role in local feature fusion.293

Impact of different operations for depth encoding. We conduct experiments with different294

operations of depth encoding, including concatenation, summation, and multiplication. The results295

in Tab. 5, show that the multiplication operation consistently outperforms the summation and296

concatenation operations w.r.t. both metrics. The superior performance of multiplication can be297

attributed to its ability to more effectively modulate the feature maps based on depth information.298

Unlike summation, which simply shifts the feature values, or concatenation, which increases the299

dimensionality without direct interaction, multiplication allows for more interaction between the300

8



Table 3: Ablation studies of each
proposed module.

Baseline DGF DLF NDS mAP
! 71.4 68.5
! ! 72.4↑1.0 69.4↑0.9

! ! 72.7↑1.3 69.3↑0.8

! ! ! 73.3↑1.9 69.8↑1.3

Table 4: Ablation studies of depth
encoding (DE) in DGF and DLF.

Methods NDS mAP
Baseline + DGF 72.4 69.4

w/o DE 71.8↓0.6 69.0↓0.4

Baseline + DLF 72.7 69.3
w/o DE 71.6↓1.1 68.4↓0.9

Table 5: Ablation studies
of different operations for
depth encoding.

Methods NDS mAP
Summation 72.8 69.2

Concatenation 72.5 68.7
Multiplication 73.3 69.8

(a) Attention weights (b) Average map

Figure 5: Attention weights applied on
BEV image features in DGF vary with
depth.

Point Cloud BEV Feature

BEVFusion

DH-Fusion

（Ours）

Left Front Image

Figure 6: Qualitative detection results and BEV fea-
tures of BEVFusion and ours. We show the ground
truth boxes in green, and the prediction boxes in blue.

depth encoding and features, leading to better feature representation and ultimately improving the301

detection performance.302

4.5 Qualitative Results303

To better understand how depth encoding affects the feature fusion, in Fig. 5, we plot a curve to304

observe how the attention weights applied on the image BEV features in our DGF module vary with305

depth, and visualize the average attention map. It is evident that the weights of the image BEV306

features stay low in near range, but go up significantly as depth increases when the depth is larger307

than 40 meters. This trend supports our hypothesis that the image modality would become more308

important as depth increases. In this way, our depth encoding allows the model to dynamically adjust309

the weights of image BEV features based on depth.310

We also compare the detection results of our DH-Fusion method with the baseline BEVFusion [33]311

in Fig. 6, where we clearly find that our method better localizes those distant objects compared to312

BEVFusion. These results demonstrate that our proposed multi-modal fusion strategy based on depth313

is more effective for detection. Besides, we exhibit the corresponding BEV feature maps, where314

our method shows a stronger feature response for the foreground objects, especially for distant ones.315

That is why our feature fusion strategy can provide higher-quality detection results. More qualitative316

results can be found in Appendix A.3.317

5 Conclusion318

In this paper, we for the first time point out that different modalities play different roles as depth varies319

via statistical analysis and visualization. Based on this finding, we propose a feature fusion strategy320

for multi-modal 3D object detection, namely Depth-Aware Hybrid Feature Fusion (DH-Fusion), that321

dynamically adjusts the weights of features during feature fusion by introducing depth encoding at322

both global and local levels. Extensive experiments on the nuScenes dataset demonstrate that our323

DH-Fusion method surpasses previous state-of-the-art methods w.r.t. NDS. Moreover, our DH-Fusion324

is more robust to various kinds of corruptions, outperforming previous methods on the nuScenes-C325

dataset w.r.t. both NDS and mAP. Our method uses an attention-based approach to interact with326

the two modalities, making the detection results sensitive to modality loss. We plan to further327

explore feature fusion methods that are robust to modality loss. Although our method improves328

detection performance, emergency plans still need to be implemented in practical applications to329

ensure personnel safety.330
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either be a way to access this model for reproducing the results or a way to reproduce581

the model (e.g., with an open-source dataset or instructions for how to construct582

the dataset).583

(d) We recognize that reproducibility may be tricky in some cases, in which case584

authors are welcome to describe the particular way they provide for reproducibility.585

In the case of closed-source models, it may be that access to the model is limited in586
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some way (e.g., to registered users), but it should be possible for other researchers587

to have some path to reproducing or verifying the results.588

5. Open access to data and code589

Question: Does the paper provide open access to the data and code, with sufficient instruc-590

tions to faithfully reproduce the main experimental results, as described in supplemental591

material?592

Answer: [No]593

Justification: We release the experimental details in the paper, and the code will be released594

after the paper is accepted.595

Guidelines:596

• The answer NA means that paper does not include experiments requiring code.597

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/598

public/guides/CodeSubmissionPolicy) for more details.599

• While we encourage the release of code and data, we understand that this might not be600

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not601

including code, unless this is central to the contribution (e.g., for a new open-source602

benchmark).603

• The instructions should contain the exact command and environment needed to run to604

reproduce the results. See the NeurIPS code and data submission guidelines (https:605

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.606

• The authors should provide instructions on data access and preparation, including how607

to access the raw data, preprocessed data, intermediate data, and generated data, etc.608

• The authors should provide scripts to reproduce all experimental results for the new609

proposed method and baselines. If only a subset of experiments are reproducible, they610

should state which ones are omitted from the script and why.611

• At submission time, to preserve anonymity, the authors should release anonymized612

versions (if applicable).613

• Providing as much information as possible in supplemental material (appended to the614

paper) is recommended, but including URLs to data and code is permitted.615

6. Experimental Setting/Details616

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-617

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the618

results?619

Answer: [Yes]620

Justification: We provide a detailed experimental setup in the paper, and the training and621

testing details are provided in the supplementary material.622

Guidelines:623

• The answer NA means that the paper does not include experiments.624

• The experimental setting should be presented in the core of the paper to a level of detail625

that is necessary to appreciate the results and make sense of them.626

• The full details can be provided either with the code, in appendix, or as supplemental627

material.628

7. Experiment Statistical Significance629

Question: Does the paper report error bars suitably and correctly defined or other appropriate630

information about the statistical significance of the experiments?631

Answer: [Yes]632

Justification: We provide data explanations and statistical methods for obtaining statistical633

results in the paper.634

Guidelines:635

• The answer NA means that the paper does not include experiments.636
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-637

dence intervals, or statistical significance tests, at least for the experiments that support638

the main claims of the paper.639

• The factors of variability that the error bars are capturing should be clearly stated (for640

example, train/test split, initialization, random drawing of some parameter, or overall641

run with given experimental conditions).642

• The method for calculating the error bars should be explained (closed form formula,643

call to a library function, bootstrap, etc.)644

• The assumptions made should be given (e.g., Normally distributed errors).645

• It should be clear whether the error bar is the standard deviation or the standard error646

of the mean.647

• It is OK to report 1-sigma error bars, but one should state it. The authors should648

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis649

of Normality of errors is not verified.650

• For asymmetric distributions, the authors should be careful not to show in tables or651

figures symmetric error bars that would yield results that are out of range (e.g. negative652

error rates).653

• If error bars are reported in tables or plots, The authors should explain in the text how654

they were calculated and reference the corresponding figures or tables in the text.655

8. Experiments Compute Resources656

Question: For each experiment, does the paper provide sufficient information on the com-657

puter resources (type of compute workers, memory, time of execution) needed to reproduce658

the experiments?659

Answer: [Yes]660

Justification: We provide hardware computer resources for training and testing.661

Guidelines:662

• The answer NA means that the paper does not include experiments.663

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,664

or cloud provider, including relevant memory and storage.665

• The paper should provide the amount of compute required for each of the individual666

experimental runs as well as estimate the total compute.667

• The paper should disclose whether the full research project required more compute668

than the experiments reported in the paper (e.g., preliminary or failed experiments that669

didn’t make it into the paper).670

9. Code Of Ethics671

Question: Does the research conducted in the paper conform, in every respect, with the672

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?673

Answer: [Yes]674

Justification: The research conducted in our paper complies with NeurIPS ethical standards675

in all aspects.676

Guidelines:677

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.678

• If the authors answer No, they should explain the special circumstances that require a679

deviation from the Code of Ethics.680

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-681

eration due to laws or regulations in their jurisdiction).682

10. Broader Impacts683

Question: Does the paper discuss both potential positive societal impacts and negative684

societal impacts of the work performed?685

Answer: [Yes]686

Justification: We discuss that although our method has good performance, practical applica-687

tions need to ensure personnel safety.688
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Guidelines:689

• The answer NA means that there is no societal impact of the work performed.690

• If the authors answer NA or No, they should explain why their work has no societal691

impact or why the paper does not address societal impact.692

• Examples of negative societal impacts include potential malicious or unintended uses693

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations694

(e.g., deployment of technologies that could make decisions that unfairly impact specific695

groups), privacy considerations, and security considerations.696

• The conference expects that many papers will be foundational research and not tied697

to particular applications, let alone deployments. However, if there is a direct path to698

any negative applications, the authors should point it out. For example, it is legitimate699

to point out that an improvement in the quality of generative models could be used to700

generate deepfakes for disinformation. On the other hand, it is not needed to point out701

that a generic algorithm for optimizing neural networks could enable people to train702

models that generate Deepfakes faster.703

• The authors should consider possible harms that could arise when the technology is704

being used as intended and functioning correctly, harms that could arise when the705

technology is being used as intended but gives incorrect results, and harms following706

from (intentional or unintentional) misuse of the technology.707

• If there are negative societal impacts, the authors could also discuss possible mitigation708

strategies (e.g., gated release of models, providing defenses in addition to attacks,709

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from710

feedback over time, improving the efficiency and accessibility of ML).711

11. Safeguards712

Question: Does the paper describe safeguards that have been put in place for responsible713

release of data or models that have a high risk for misuse (e.g., pretrained language models,714

image generators, or scraped datasets)?715

Answer: [NA]716

Justification: The model of the paper dos not address the issues mentioned in the guidelines.717

Guidelines:718

• The answer NA means that the paper poses no such risks.719

• Released models that have a high risk for misuse or dual-use should be released with720

necessary safeguards to allow for controlled use of the model, for example by requiring721

that users adhere to usage guidelines or restrictions to access the model or implementing722

safety filters.723

• Datasets that have been scraped from the Internet could pose safety risks. The authors724

should describe how they avoided releasing unsafe images.725

• We recognize that providing effective safeguards is challenging, and many papers do726

not require this, but we encourage authors to take this into account and make a best727

faith effort.728

12. Licenses for existing assets729

Question: Are the creators or original owners of assets (e.g., code, data, models), used in730

the paper, properly credited and are the license and terms of use explicitly mentioned and731

properly respected?732

Answer: [Yes]733

Justification: We have annotated the cited papers and datasets in our paper.734

Guidelines:735

• The answer NA means that the paper does not use existing assets.736

• The authors should cite the original paper that produced the code package or dataset.737

• The authors should state which version of the asset is used and, if possible, include a738

URL.739

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.740
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• For scraped data from a particular source (e.g., website), the copyright and terms of741

service of that source should be provided.742

• If assets are released, the license, copyright information, and terms of use in the743

package should be provided. For popular datasets, paperswithcode.com/datasets744

has curated licenses for some datasets. Their licensing guide can help determine the745

license of a dataset.746

• For existing datasets that are re-packaged, both the original license and the license of747

the derived asset (if it has changed) should be provided.748

• If this information is not available online, the authors are encouraged to reach out to749

the asset’s creators.750

13. New Assets751

Question: Are new assets introduced in the paper well documented and is the documentation752

provided alongside the assets?753

Answer: [NA]754

Justification: The paper does not release new assets755

Guidelines:756

• The answer NA means that the paper does not release new assets.757

• Researchers should communicate the details of the dataset/code/model as part of their758

submissions via structured templates. This includes details about training, license,759

limitations, etc.760

• The paper should discuss whether and how consent was obtained from people whose761

asset is used.762

• At submission time, remember to anonymize your assets (if applicable). You can either763

create an anonymized URL or include an anonymized zip file.764

14. Crowdsourcing and Research with Human Subjects765

Question: For crowdsourcing experiments and research with human subjects, does the paper766

include the full text of instructions given to participants and screenshots, if applicable, as767

well as details about compensation (if any)?768

Answer: [NA]769

Justification: The paper does not involve crowdsourcing nor research with human subjects.770

Guidelines:771

• The answer NA means that the paper does not involve crowdsourcing nor research with772

human subjects.773

• Including this information in the supplemental material is fine, but if the main contribu-774

tion of the paper involves human subjects, then as much detail as possible should be775

included in the main paper.776

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,777

or other labor should be paid at least the minimum wage in the country of the data778

collector.779

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human780

Subjects781

Question: Does the paper describe potential risks incurred by study participants, whether782

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)783

approvals (or an equivalent approval/review based on the requirements of your country or784

institution) were obtained?785

Answer: [NA]786

Justification: The paper does not involve crowdsourcing nor research with human subjects.787

Guidelines:788

• The answer NA means that the paper does not involve crowdsourcing nor research with789

human subjects.790
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• Depending on the country in which research is conducted, IRB approval (or equivalent)791

may be required for any human subjects research. If you obtained IRB approval, you792

should clearly state this in the paper.793

• We recognize that the procedures for this may vary significantly between institutions794

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the795

guidelines for their institution.796

• For initial submissions, do not include any information that would break anonymity (if797

applicable), such as the institution conducting the review.798
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A Appendix799

A.1 Additional Implementation Details800

During training, we adopt a one-stage strategy like DAL [20]. The whole pipeline is trained for a801

total of 20 epochs with the AdamW optimizer [35] loading from the pre-trained weights from the802

ImageNet [11] classification task only. Meanwhile, we use CBGS [72] to resample the training data,803

and the one-cycle learning policy with a maximum learning rate of 2.0× 10−4. The batch size is set804

to 8 on 4 3090 RTX GPUs. We adopt random flipping along both X and Y-axis, the random scaling in805

[0.95, 1.05], and random rotation in [-π/8, π/8] to augment the LiDAR data, and the random rotation806

in [-5.4◦, 5.4◦] and random resizing in [-0.06, 0.44] to augment the images. During evaluation, we807

test a single model without any data augmentation on a single 3090 RTX GPU.808

A.2 Additional Experiments809

A.2.1 3D Multi-Object Tracking Experiments810

We evaluate our DH-Fusion on the nuScenes tracking benchmark for 3D multi-object tracking (MOT)811

task. Following ObjectFusion [4], we adopt the same tracking-by-detection algorithm that uses812

velocity-based closest point distance matching, which is more effective than 3D Kalman filter [9].813

For fair comparisons, we report the results of our DH-Fusion-light capable of real-time detection814

on the nuScenes validation set, as shown in Tab. 6. We find that our DH-Fusion-light outperforms815

BEVFusion [33] and ObjectFusion [4] by 2.0 pp and 0.6 pp w.r.t. AMOTA. These results demonstrate816

that our DH-Fusion provides 3D detection boxes of higher quality, benefiting the downstream task of817

3D MOT.818

Table 6: Comparisons on nuScenes validation set for 3D multi-object tracking.
Methods AMOTA ↑ AMOTP ↓ IDS ↓

TransFusion [1] 71.8 60.3 694
BEVFusion [33] 72.8 59.4 764
ObjectFusion [4] 74.2 54.3 611

DH-Fusion-light (Ours) 74.8 50.3 539

A.2.2 Evaluation at Different Depths819

Since our fusion strategy is depth-aware, it is necessary to validate our method at different depths.820

Following [4], we categorize annotation and prediction ego distances into three groups: Near (0-821

20m), Middle (20-30m), and Far (>30m). As shown in Tab. 7, compared to ObjectFusion [4], our822

DH-Fusion-light consistently improves performance across all depth ranges. Specifically, our method823

achieves a 47.1 mAP in the long range (>30m), surpassing ObjectFusion by 5.5 pp w.r.t. mAP. These824

results indicate that our method is more effective across different depths, especially in detecting825

distant objects.826

Table 7: Comparisons on nuScenes validation set at different depths. The numbers are mAP.
Methods Near Middle Far

TransFusion-L [1] 77.5 60.9 34.8
BEVFusion [33] 79.4 64.9 40.0
ObjectFusion [4] 79.7 65.4 41.6

DH-Fusion-light (Ours) 80.3 66.5 47.1

A.2.3 Detailed Results on the nuScenes-C827

We further provide the detailed results of each fine-grained corruption on nuScenes-C in Tab. 8. The828

results are highly consistent with the average values of each kind of data corruption.829

A.3 More Visualization830

As an extension of Fig. 6 in the manuscript, we provide additional examples of 3D object detection831

results and BEV features from our baseline, BEVFusion [33], and our DH-Fusion. In various832

samples, our method consistently achieves higher accuracy and recall in 3D detection results, with833
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stronger feature responses for distant objects compared to BEVFusion. These results demonstrate the834

effectiveness of the proposed method in dynamically adjusting the weights of features based on depth835

during fusion at both global and local levels.836

Table 8: Comparisons for each corruption level on the nuScenes-C. Corruptions exist in both
modalities by default. (L) means that only the point cloud modality has corruptions, and (C) means
that only the image modality has corruptions. Numbers are NDS / mAP.

Corruption FUTR3D TransFusion BEVFusion DH-Fusion
None 68.5 / 64.17 69.82 / 66.38 71.40 / 68.45 73.30 / 69.75

Weather

Snow 61.52 / 52.73 68.29 / 63.30 68.33 / 62.84 71.47 / 65.98
Rain 64.47 / 58.40 69.40 / 65.35 70.14 / 66.13 72.05 / 67.32
Fog 61.20 / 53.19 62.62 / 53.67 62.73 / 54.10 72.13 / 67.24

Sunlight 63.61 / 57.70 61.36 / 55.14 68.95 / 64.42 73.18 / 69.44

Sensor

Density 67.58 / 63.72 69.42 / 65.77 71.01 / 67.79 72.94 / 69.15
Cutout 66.91 / 62.25 68.30 / 63.66 70.09 / 66.18 71.99 / 67.45

Crosstalk 67.17 / 62.66 68.83 / 64.67 70.72 / 67.32 73.23 / 69.55
FOV Lost 45.66 / 26.32 47.89 / 24.63 48.65 / 27.17 43.41 / 20.78

Gaussian (L) 64.10 / 58.94 62.32 / 55.10 65.99 / 60.64 69.04 / 63.51
Uniform (L) 67.28 / 63.21 68.68 / 64.72 70.18 / 66.81 72.54 / 68.79
Impulse (L) 67.47 / 63.42 69.06 / 65.51 70.63 / 67.54 72.75 / 68.91
Gussian (C) 62.92 / 54.96 68.94 / 64.52 69.35 / 64.44 71.55 / 66.16
Uniform (C) 64.43 / 57.61 69.33 / 65.26 70.06 / 65.81 72.46 / 67.99
Impulse (C) 63.07 / 55.16 68.89 / 64.37 69.25 / 64.30 71.66 / 66.41

Motion
Compensation 39.62 / 31.87 25.69 / 9.01 36.76 / 27.57 32.51 / 15.99
Moving Obj. 56.41 / 45.43 60.03 / 51.01 59.42 / 51.63 68.12 / 60.62
Motion Blur 63.44 / 55.99 68.85 / 64.39 69.38 / 64.74 70.58 / 65.95

Object

Local Density 67.62 / 63.60 69.34 / 65.65 70.77 / 67.42 72.48 / 68.87
Local Cutout 66.45 / 61.85 67.97 / 63.33 68.11 / 63.41 69.62 / 64.17

Local Gaussian 66.85 / 62.94 67.96 / 63.76 68.32 / 64.34 71.32 / 67.14
Local Uniform 67.92 / 64.09 69.67 / 66.20 70.68 / 67.58 71.34 / 66.03
Local Impulse 67.89 / 64.02 69.64 / 66.29 70.93 / 67.91 71.83 / 68.15

Shear 61.15 / 55.42 66.43 / 62.32 62.95 / 60.72 68.41 / 65.23
Scale 62.00 / 56.79 67.81 / 64.13 66.00 / 64.57 71.40 / 68.90

Rotation 63.67 / 59.64 67.42 / 63.36 66.31 / 65.13 71.62 / 68.35

Alignment Spatial 67.75 / 63.77 69.72 / 66.22 71.35 / 68.39 71.95 / 69.52
Temporal 57.91 / 51.43 54.23 / 43.65 56.62 / 49.02 62.53 / 55.24

Average 62.82 / 56.99 64.71 / 58.73 66.06 / 61.03 68.67 / 63.07
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Figure 7: More examples of 3D object detection results and BEV features from BEVFusion
and ours. We show the ground truth boxes in green, and the prediction boxes in blue. We
use red circles to highlight the comparisons of ours with BEVFusion.

23


	Introduction
	Related Work
	LiDAR-based 3D Object Detection
	Camera-based 3D Object Detection
	LiDAR-Camera 3D Object Detection

	Methodology
	Overview
	Depth-Aware Global Feature Fusion
	Depth Encoder
	Global-Fusion Transformer

	Depth-Aware Local Feature Fusion
	Local Feature Selection
	Local-Fusion Transformer


	Experiments
	Experimental Setup
	Comparison to the State of the Art
	Robustness to Corruptions
	Ablation Studies
	Qualitative Results

	Conclusion
	Appendix
	Additional Implementation Details
	Additional Experiments
	3D Multi-Object Tracking Experiments
	Evaluation at Different Depths
	Detailed Results on the nuScenes-C

	More Visualization


