
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADAPTIVE SECOND-ORDER STOCHASTIC OPTIMIZA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

As a much possible way of improving first-order stochastic optimization (FSO),
the role of second-order information in stochastic optimization is receiving an in-
creasing attention especially for solving the model with large-scale datasets in re-
cent years, resulting in various second-order stochastic optimization (SSO) meth-
ods, e.g., the stochastic Newton (SN) method, the stochastic quasi-Newton (SQN)
method, etc. However, the question of how to set an appropriate update rule of the
learning rate for SSO methods is still an extremely intractable task, and surpris-
ingly there is quite less literature to tackle this issue. To bridge the gap between
the SSO methods and the learning rate, this work develops a class of adaptive SSO
methods from the perspective of adaptive gradient methods. Concretely, a general
adaptive gradient (GAG) method with the quasi-hyperbolic momentum (QHM)
strategy that encompasses Adam, AdaGrad, RMSProp, etc., as the special case of
GAG, is incorporated into SN and SQN, respectively, which leads to two methods:
SN-GAG and SQN-GAG. In addition, we establish a unified analysis for different
adaptive SSO methods, covering their convergence behavior and computational
complexity for different backgrounds, such as the strongly convex (SC) case and
the Polyak-Łojasiewicz (PŁ) case, where, particularly, the latter is missing in cur-
rent studies. Finally, numerical tests on different applications of machine learning
demonstrate the superiority and the robustness of the resulting methods.

1 INTRODUCTION

Considering the stochastic optimization problem shown below which has the most broadly type in
large-scale machine learning (ML), natural language processing (NLP), artificial intelligence (AR),
etc.,

min
x∈Rd

F (x) = E[f(x, ξ)], (1)

where f : Rd → R is continuously but possibly non-convex, ξ represents a random variable with
distribution P , and E[·] represents the expectation taken with respect to ξ. In general, the objec-
tive function f(·, ξ) is not given explicitly or the distribution P is unknown, making it difficult to
compute the function value and its gradient. Practically, one often approximates the model (1) by
the empirical risk minimization problem (Huang & Pu, 2022; Vlaski & Sayed, 2022; Nemeth &
Fearnhead, 2021; Bonnabel, 2013),

min
x∈Rd

F (x) =
1

n

n∑
i=1

fi(x), (2)

where fi : Rd → R is the loss function that corresponds to the ith data sample selected from a
collection of independent and identically distributed samples, and n denotes the number of data
samples which is supposed to be extremely large.

Gradient descent (GD)-based optimization methods are a popular type of methods to solve model
(2), where it often employs the following iterative scheme as shown in (3). Nevertheless, the e-
valuation of full gradient, ∇F (x) =

∑n
i=1

1
n∇fi(x), is expensive especially for large-scale model,

where n is huge. It is necessary to use stochastic optimization methods (also familiar with stochastic
approximation methods) to address model (2), which was firstly developed by the pioneering work

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

of Robbins and Monro (Robbins & Monro, 1951). The leading methodology in different applica-
tions of ML, NLP, AR, etc., advocates utilizing stochastic gradient descent (SGD) methods (Bottou,
2012). In the kth update step, SGD selects a subset S ⊂ {1, 2, · · · , n} with B samples and then
evaluates the stochastic gradient estimator∇FS(xk) as described in (3),

xk+1 = xk − ηkgk, gk =

{
∇F (xk) = 1

n

∑n
i=1∇fi(xk), (GD)

∇FS(xk) = 1
B

∑
i∈S ∇fi(xk), (SGD)

(3)

where ηk > 0 denotes the kth learning rate. ∇FS(xk) is usually an unbiased estimator of the
gradient of F (x) at xk that is E[∇FS(xk)] = ∇F (xk). If we adopt B = 1, the iterative scheme (3)
falls into vanilla SGD.

SGD usually converges slowly and is greatly sensitive to hyper-parameter settings due to high vari-
ance. Many techniques, including but not limited to momentum, second-order information, im-
portance sampling, variance reduction, and adaptive learning rates, have been proposed to solve
worse performance of SGD. Among these techniques, SGD with momentum is broadly employed,
especially in deep learning. Via automatically acquiring the learning rate for SGD, adaptive learn-
ing rates, such as the Barzilai-Borwein technique (Barzilai & Borwein, 1988), the Polyak learning
rate (Ren et al., 2022), the hyper-gradient descent technique (Baydin et al., 2018), AdaGrad (Duchi
et al., 2011), Adam (Kingma, 2014), RMSProp (Tieleman et al., 2012), AMSGRAD (Reddi et al.,
2018), are another continually being discussed and updated technique. From the side of manipulat-
ing variance of stochastic optimization methods, stochastic variance reduction methods, involving
SAG (Roux et al., 2012), SAGA (Defazio et al., 2014), SVRG (Johnson & Zhang, 2013), SARAH
(Nguyen et al., 2017a), SPIDER (Fang et al., 2018), SCSG (Lei et al., 2017), etc., attain a linear con-
vergence rate for the strongly convex (SC) model. In contrast, SGD with second-order information
shows its superiority on highly nonlinear and ill-conditional problems by adapting to the curvature
of the problem.

Second-order stochastic optimization (SSO) methods solve the impractical of evaluating gradient
and Hessian matrix exactly in second-order deterministic optimization methods especially for large-
scale optimization. For instance, Xu et al. (2020) proposed the trust region method with inexact
Hessian, where the second-order information was approximated via the subsampled Hessian matrix,
but the gradient was still evaluated exactly. Kohler & Lucchi (2017) developed a stochastic version
of adaptive regularization using cubics (ARC), yet they need a much stronger assumption in both
gradient and Hessian approximation. Other well-known second-order stochastic optimization (S-
SO) methods are the stochastic Newton (SN) method, the stochastic quasi-Newton (SQN) method
and their variants. The iterative scheme of stochastic version of Newton-like methods is generally
reformulated as:

xk+1 = xk − ηB−1
k gk, (4)

where (4) is obtained by evaluating the minimizer of a second-order Taylor series approximation as
follows:

FSH (x) = FSH (xk) +∇FSH (xk)T (x− xk) +
1

2
(x− xk)TB(x− xk), (5)

where SH ⊆ [n] with |SH | = BH . If B = Bk = ∇2FSH (xk), (4) turns to the canonical SN
method. In contrast, if B = Bk is some approximation generated basing on stochastic gradient, (4)
falls to the SQN method. More specifically, if B = Bk = I, (4) goes to vanilla SGD.

1.1 RELATED WORK

Conventional SSO Methods. The work in the literature (Schraudolph et al., 2007; Yousefian
et al., 2016; Mokhtari & Ribeiro, 2014; Byrd et al., 2016) developed various SQN-type methods,
but have not been entirely successful, where the convergence rate of early stages of SQN-type algo-
rithmic framework is only sub-linear. Obviously, the theoretical performance of stochastic version
of Newton-like algorithms is not better than that of SGD. The works in (Yousefian et al., 2016;
Mokhtari & Ribeiro, 2014) considered the stochastic version of the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) framework. In the work (Chen et al., 2019), the authors discussed the stochas-
tic version of the BFGS framework and the limited Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
framework simultaneously. In contrast, the studies in (Schraudolph et al., 2007; Byrd et al., 2016)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

adopted L-BFGS framework. Bach & Moulines (2013) developed the two-stage online Newton
technique, where the first stage executed average SGD with the learning rate of order O

(
1√
k

)
, and

the second stage optimized a quadratic model of the loss function with a constant learning rate. By
combining stochastic semismooth Newton steps and stochastic proximal gradient steps, Milzarek
et al. (2019) developed a globalized stochastic semismooth Newton method for addressing stochas-
tic optimization problems involving smooth non-convex and non-smooth convex functions.

Variance Reduction for SSO Methods. Based on variance-reduced techniques, various faster
SQN-type methods have been developed, including the incremental quasi-Newton (IQN) method
(Mokhtari et al., 2018), the stochastic limited Broyden-Fletcher-Goldfarb-Shanno (SLBFGS)
method (Moritz et al., 2016), VR-MZ-SQN (Chen & Feng, 2023), the linear time stochastic second-
order algorithm (LiSSA) (Agarwal et al., 2017), SpiderSQN (Zhang et al., 2021), and the stochastic
variance-reduced cubic regularized Newton method (SVRC) (Zhou et al., 2018). Particularly, Moritz
et al. (2016) showed the linear convergence rate of SLBFGS on large-scale convex and non-convex
optimization problems. In addition, Gower et al. (2016) developed a stochastic block L-BFGS
method with variance reduction and demonstrated its linear convergence rate. Zhang et al. (2023)
developed a general framework that introduced decentralized SQN with variance reduction to realize
fast convergence. Kasai et al. (2019) developed a Riemannian SQN method with variance reduction.
Zhu et al. (2020) developed a new variance reduction and quasi-Newton preconditioning framework
for particle-based variational inference methods.

Momentum Techniques for SSOMethods. The role of momentum in SSO methods has been in-
vestigated by many studies. To improve the practical performance of SpiderSQN, Zhang et al. (2021)
incorporated different momentum schemes into SpiderSQN. Yasuda et al. (2019) put forward the
stochastic variance-reduced Nesterov’s accelerated quasi-Newton methods in full and limited mem-
ory forms. Similarly, Indrapriyadarsini et al. (2020) developed the SQN method with Nesterov’s
accelerated gradient (NAG) in both its full and limited memory forms for dealing with large-scale
non-convex optimization problems in neural networks. Makmuang et al. (2023) came up with the
regularized stochastic Nesterovs accelerated quasi-Newton method to effectively accelerate the con-
vergence rate and avoid the near-singularity problem of the Hessian update in the stochastic BFGS
method.

1.2 MAIN CONTRIBUTIONS

For first-order stochastic optimization (FSO) algorithms, various update rules of the learning rate
have been proposed as mentioned above. Surprisingly, the research on the role of the learning rate
in SSO methods is quite limited. The existing SSO algorithms usually work with a scalar constant
learning rate, or a diminishing learning rate (Zhang et al., 2021; Zhu et al., 2020). Also, the line
search technique is also considered in SSO algorithms to obtain the learning rate (Guo et al., 2023;
Wills & Schön, 2021; Byrd et al., 2012; Schraudolph et al., 2007). However, most of them are time
consuming or impractical for large-scale models. In addition, we found that Duchi et al. (2011)
applied AdaGrad to compute the learning rate for SQN. Instead of using the line search technique,
Zhou et al. (2017) proposed using the properties of self-concordant functions to compute an adaptive
learning rate for BFGS and thereby avoided executing line searches. To bridge the gap between SSO
methods and the learning rate, this work equips second-order stochastic optimization methods with
an adaptive update rule of the learning rate. For clarity, we summarize our main contributions as
follows:

(1) We develop a class of adaptive second-order stochastic optimization methods by utilizing
a general adaptive gradient (GAG) method to compute the learning rate for SSO methods,
where GAG encompasses most of existing adaptive gradient methods, such as AdaGrad,
RMSProp, Adam, etc. Specifically, we incorporate such the learning rate into classical SN
method and the SQN method, respectively, leading to two novel SSO methods, referred to
as SN-GAG and SQN-GAG.

(2) Further, we establish a unified analysis for SN-GAG and SQN-GAG under different back-
grounds, involving the strongly convex (SC) objective function and the Polyak-Łojasiewicz
(PŁ) objective function. Particularly, under mild conditions, we prove that the resulting SN-
GAG and SQN-GAG methods have a linear convergence rate and recover the well-known
oracle complexity for models with the SC and PŁ constraints respectively.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(3) Finally, our empirical analysis on different machine learning tasks demonstrates that the
resulting algorithms perform better in contrast to classical adaptive gradient methods, state-
of-the-art FSO methods, and SSO methods. Moreover, various numerical tests show the
robustness of our methods to different key hyper-parameters.

2 PRELIMINARIES

2.1 BASIC NOTATIONS

Throughout this work, for a vector x, xT denotes its transpose, while ‖x‖ represents the Euclidean
vector norm that is ‖x‖ =

√
xTx. We denote x∗ = arg minF (x). We denote the identity matrix by

I. We write E[z] as the expectation of the random variable z and denote [n] = {1, · · · , n}. We write
∇FS(x) = 1

B

∑
i∈S ∇fi(x) and ∇FSH (x) = 1

BH

∑
i∈SH ∇fi(x), where [S] = {1, 2, . . . ,S}

with B samples and [SH] = {1, 2, . . . ,SH} with BH samples. We write ∇F (x) and ∇2F (x)
as the gradient and Hessian matrix of the objective function F (x), respectively. Considering two
sequences, {an} and {bn}, if there exists a constant C > 0 such that an ≤ Cbn, we remark
an = O(bn). For two matrices A, B of the same dimensions, we use A � 0 to indicate A is positive
definite; A ≺ B to indicate that B −A � 0.

2.2 ADAPTIVE GRADIENT METHODS

To better understand this paper, we, here, introduce several popular adaptive gradient methods. The
first one, we will introduce, is AdaGrad, where it is proposed by (Duchi et al., 2011) and adopts the
following iterative scheme:

AdaGrad :

 mk = gk,
uk = uk−1 + g2

k,
xk+1 = xk − ηkmk/(

√
uk + ε),

(6)

where ε ≥ 0. Note that, for clarity and convenience, we call ηk in an adaptive gradient method the
base learning rate and ηk/

√
uk the effective learning rate. While AdaGrad confirmed effectively

for sparse optimization problems, experiments showed that AdaGrad-type methods perform worse
when the objective function is non-convex and gradients of the objective function are dense.

To deal with the issue in AdaGrad-type methods, RMSProp proposed using an exponential moving
average rather than a cumulative sum, where the iterative scheme of RMSProp is formulated as

RMSProp :

 mk = gk,
uk = βuk−1 + (1− β)g2

k,
xk+1 = xk − ηkmk/(

√
uk + ε),

(7)

where β ∈ (0, 1).

Further, utilizing the idea of RMSProp and adding the heavy-ball like momentum into the first
moment estimate, Kingma (2014) proposed Adam, working with the iterative scheme below:

Adam :

 mk = β1mk−1 + (1− β1)gk,
uk = β2uk−1 + (1− β2)g2

k,
xk+1 = xk − ηkmk/(

√
uk + ε),

(8)

where β1 ∈ (0, 1) and β2 ∈ (0, 1).

For most of existing adaptive gradient methods, only partial convergence results are established.
More specifically, since several studies (Rubio, 2017; Reddi et al., 2018) pointed out the issues in
the proof of Adam (shown in (Kingma, 2014)), many authors pay much attention to the convergence
behavior of adaptive gradient methods. In contrast, this work provides a theoretical guarantee for
SSO methods with different adaptive gradient methods.

2.3 ASSUMPTIONS

In this work, we study adaptive SSO methods for the model with the SC and PŁ constraints, re-
spectively. We now provide some assumptions that are necessary in this work.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Assumption 1. The loss function F (x) and its gradient, in model (2) satisfy the following proper-
ties:

(a) (Lipschitz Continuous) F (x) : Rd → R is continuously differentiable and has L-lipschitz
gradient, i.e., for ∀x, y ∈ Rd

‖∇F (y)−∇F (x)‖ ≤ L‖y − x‖ (9)

(b) (PŁ Condition) The objective function F (x) satisfies PŁ condition if ∃δ > 0, for ∀x ∈ Rd,
such that

F (x)− F (x∗) ≤ δ‖∇F (x)‖2, (10)

where x∗ = arg minF (x).

(c) (Bound) For any iteration k, we have

E
[
‖∇fi(xk)‖2

]
≤ γ2, (11)

E
[
‖∇FS(xk)−∇F (xk))‖2

]
≤ σ2

B
, (12)

where σ > 0 denotes the noise level of the gradient estimator and S ⊂ [n] with B samples.

Assumption 2. There exist two positive constants λ and Λ such that for ∀x ∈ Rd

λI ≺ ∇2FSH (x) ≺ ΛI, (13)

where SH ⊂ [n] with BH samples.

The result in (13) implies that the function F (x) in model (2) keeps the following conclu-
sion:

λI ≺ ∇2F (x) ≺ ΛI (14)

For the L-smooth objective function F (x), it admits the following equivalent form, for all ∀x, y ∈
Rd,

F (y) ≤ F (x) + 〈∇F (x), y − x〉+
L

2
‖y − x‖2. (15)

We also establish the convergence guarantee of the methods for the SC case, i.e., the objective
function satisfies the following assumption:

Assumption 3. (SC Condition) A differential objective functionF (x) is µ-strongly convex if ∀x, y ∈
Rd

F (y) ≥ F (x) + 〈∇F (x), y − x〉+
µ

2
‖y − x‖2. (16)

According to the strong convexity of the objective function F (w), we have that for ∀x ∈ Rd

2µ[F (x)− F (x∗)] ≤ ‖∇F (x)‖2, (17)

where x∗ = arg minF (x).

3 STOCHASTIC NEWTON ALGORITHMS WITH GENERAL ADAPTIVE
GRADIENT

This section considers the classical SN method with GAG for solving model (2), involving the SC
case and the PŁ case. We first introduce our SN-GAG method in subsection 3.1. Subsequently, we
provide a theoretical guarantee of our SN-GAG method in subsection 3.2 for different cases.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.1 SN-GAG

The details of GAG are discussed here. GAG introduces the quasi-hyperbolic momentum (QHM)
technique (Gitman et al., 2019) into adaptive gradient methods, where the update scheme of QHM
is shown in (18).

QHM :

{
mt = βmt−1 + (1− β)gt,
xt = xt−1 − η[ξmt + (1− ξ)gt], (18)

where ξ ∈ [0, 1]. We establish the relationship between QHM and the several existing momentum
techniques. For example, if ξ = β, QHM falls into NAG. While if ξ = 1, QHM becomes heavy-ball
momentum (HBM) (Polyak, 1964). Additionally, if ξ = 0, the update scheme (18) turns to plain
SGD.

Algorithm 1 describes the details of our first adaptive SSO method, SN-GAG.

Algorithm 1 SN-GAG
Require: base learning rate η, outer loop size S, inner loop size K, batch sample B, the preconditioned

parameters ε, η, α1, α2, β1, and β2

Initialize: x̃0, G0
0 = 0, and U0

0 = 0
for s = 1 to S do

x̃ = xs0 = x̃s−1

gs = ∇F (x̃)
for k = 1 to K do

Select a sample S ⊂ [n], with |S| = B, and Compute first-order stochastic gradient estimator, V sk ,
V sk = ∇FS(xsk−1)−∇FS(x̃) + gs

Select SH ⊂ [n], with |SH | = BH , and update the Newton direction by using Hessian matrix,
∇2FSH (xsk),

if k < 1 then
V sND = V sk

else
V sND = (∇2FSH (xsk))−1V sk

end if
Compute momentum

Gsk = β1G
s
k−1 + (1− β1)V sND

Compute adaptive learning rate
Usk = β2U

s
k−1 + (1− β2)(∇FS(xsk−1))2

Update parameters
xsk = xsk−1 − η ·

α1G
s
k+(1−α1)V s

ND√
α2U

s
k

+(1−α2)(∇FS(xs
k−1

))2+ε

end for
x̃s = xsK

end for

Remark 1: For SN-GAG (Algorithm 1), we have the following remarks:

(1) In SN-GAG (Algorithm 1), the SVRG gradient estimator, V sk = ∇FS(xsk−1)−∇FS(x̃) +
1
n

∑n
i ∇fi(x̃), is employed. For the SVRG gradient estimator, we have that it is an un-

biased stochastic gradient estimator due to E[V sk] = ∇F (xsk−1). Actually, other types of
stochastic gradient estimators, such as SARAH, SAG, SAGA, SPIDER, etc., can also be
introduced into SN-GAG (Algorithm 1).

(2) SN-GAG (Algorithm 1) has some certain connections with most of existing adaptive gradi-
ent methods. For instance, if α1 = 0 and α2 = 1, we equip the RMSProp-like method into
SN. While if α1 = α2 = 1, we introduce the Adam-like method into SN. Additionally, if
α1 = 1 and α1 = β1, the NAdam-like method is incorporated into SN.

(3) In general, the Hessian matrix, ∇sFSH (xsk), is sometimes nearly singular, especially
when the sample size is quite small. To avoid this case, the update direction, V sND =
(∇2FSH

(xsk))−1V sk , in SN-GAG (Algorithm 1) is replaced by VsND = (∇2FSH
(xsk) +

ξI)−1V sk in practice, where ξ is a positive constant.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.2 CONVERGENCE ANALYSIS FOR SN-GAG

The theoretical guarantee of SN-GAG (Algorithm 1) for the SC case and the PŁ case is established
in this segment. Concretely, the theoretical result of SN-GAG (Algorithm 1) for the SC case is
provided in subsection 3.2.1. The main theoretical result of SN-GAG (Algorithm 1) for the PŁ case
is offered in subsection 3.2.2, respectively.

3.2.1 CONVERGENCE PROPERTY ON THE SC CASE

The theoretical result of SN-GAG (Algorithm 1) for the SC objective function is established in
Theorem 1.
Theorem 1. Let Assumption 1(a), Assumption 1(c), and Assumption 2 hold and x∗ =
arg minx∈Rd F (x). Choose S ⊆ [n] with B samples and SH ⊆ [n] with BH samples, set
η = 1

2L(1−α1β1) , where α1 ∈ [0, 1] and β1 ∈ (0, 1) and assume that K, α1, β1 are further picked up
so that

ρ =
2L(1− α1β1)

µK
< 1. (19)

Then SN-GAG (Algorithm 1) attains a linear convergence speed in expectation with rate ρ:

E
[
‖∇F (x̃S)‖2

]
≤ ρS‖∇F (x̃0)‖2. (20)

Proof. Technical proofs are available in Appendix B.1.

Note that in order to acquire a linear convergence rate, it is necessary to execute S = O(log(1/ε))
outer loop sizes. Additionally, to keep ρ < 1, one needs to ask for K = 2L(1 − α1β1)/µ. As a
result, we have the overall gradient complexity of SN-GAG (Algorithm 1) for the model with the
SC constraint is (n+ (2B +BH)K)S, i.e.,

O

(
(n+ 2κ(2B +BH)(1− α1β1)) log

(
1

ε

))
, (21)

where κ = L/µ usually denotes the condition number.

To follow this result easily, we point out the complexity of modernFSOmethods and SSOmethods
for dealing with models with the SC constraint. For instance, in order to solve the model (2) with
the SC constraint, SVRG, SARAH, SAG, and SAGA (variants of FSO methods) require

O

(
(n+ κ) log

(
1

ε

))
(22)

gradient computations in finding an ε-accurate solution.

For SSO methods, utilizing the SVRG-like gradient estimator, Lucchi et al. (2015) proposed the
variance-reduced stochastic Newton method (coined VITE) and showed that the gradient complexity
of VITE is

O

(
(n+ (B +BH)K) log

(
1

ε

))
. (23)

Similarly, utilizing the SVRG-like gradient estimator, Zhang et al. (2023) designed two fully decen-
tralized SQN methods, the damped regularized limited-memory Davidon-Fletcher-Powell (DFP)
and the damped limited-memory BFGS, where they showed that the complexity of these two SSO-
like methods for solving the model (2) with the SC constraint is

O

((
m+

Bκ2κ2
H log κκH

1−Λ2

(1− Λ2)2

)
log

(
1

ε

))
, (24)

where m denotes the number of local samples, κH = M1/M2 denotes the number of the Hessian
inverse approximation, and 1− Λ2 denotes the connectedness of the network.

Therefore, we safely summarize that apart from the linear convergence rate, the computational com-
plexity of SN-GAG (Algorithm 1) is comparable to that of modern FSO and SSO methods.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

3.2.2 CONVERGENCE PROPERTY ON THE PŁ CASE

Further, the convergence behavior of SN-GAG (Algorithm 1) for the model (2) with the PŁ objective
function is provided in Theorem 2.
Theorem 2. Let Assumption 1 hold and x∗ = arg minx∈Rd F (x). Choose S ⊆ [n] with B samples
and SH ⊆ [n] with BH samples, adopt η = 1

2L(1−α1β1) , where α1 ∈ [0, 1] and β1 ∈ (0, 1), and
assume that K, α1, β1 are further selected so that

ρ̂ =
4Lδ(1− α1β1)

K
< 1. (25)

Then SN-GAG (Algorithm 1) converges linearly in expectation with rate ρ̂:

E
[
‖∇F (x̃S)‖2

]
≤ ρ̂S‖∇F (x̃0)‖2. (26)

Proof. Technical proofs are available in Appendix B.2.

Similarly, we easily obtain that the gradient complexity of SN-GAG (Algorithm 1) for the PŁ case
is

O

(
(n+ (8B + 4BH)Lδ(1− α1β1)) log

(
1

ε

))
. (27)

To the best of our knowledge, there are quite less studies to discuss the performance of SSOmethods
for the model (2) with the PŁ constraint. In contrast, for FSO methods, Reddi et al. (2016) proved
that SVRG required

O

((
n+ n2/3δ

)
log

(
1

ε

))
(28)

gradient evaluations to acquire an ε-approximate stationary point. In addition, Nguyen et al. (2017b)
showed that the overall complexity of SARAH for solving the PŁ case is

O

((
n+ L2δ2

)
log

(
1

ε

))
. (29)

The results among (27), (28), and (29) demonstrate that with appropriate B, BH , α1, and β1, SN-
GAG (Algorithm 1) attain a lower computational complexity than advanced FSO methods for the
PŁ case.

4 STOCHASTIC QUASI-NEWTON ALGORITHMS WITH GENERAL ADAPTIVE
GRADIENT

This section develops our second adaptive SSO method, SQN-NAG. Like the above section, we
describe our SQN-GAG method in subsection 4.1. Further, the main theoretical results of SQN-
GAG for the SC case and the PŁ case are established in subsection 4.2.

4.1 SQN-GAG

The most broadly employed stochastic version of quasi-Newton method, the BFGS-like method
(Byrd et al., 2016; Wang et al., 2017; Zhang et al., 2021), renews Bk via

Bk = Bk−1 +
yk−1y

T
k−1

sTk−1yk−1
−
Bk−1sk−1s

T
k−1Bk−1

sTk−1Bk1sk−1
, (30)

where sk−1 = xk−xk−1 and yk−1 = ∇FS(xk)−∇FS(xk−1). By virtue of utilizing the Sherman-
Morrison-Woodbury formula, one derives that the equivalent update to Hk = B−1

k is

Hk = (I − ρk−1sk−1y
T
k−1)Hk−1(I − ρk−1yk−1s

T
k−1) + ρk−1sk−1s

T
k−1, (31)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Algorithm 2 SQN-GAG
Require: base learning rate η, outer loop size S, inner loop size K, batch sample B, the preconditioned

parameters ε, α1, α2, β1, and β2

Initialize: x̃0, G0
0 = 0, U0

0 = 0, and H0 = Id
for s = 1 to S do

x̃ = xs0 = x̃s−1

gs = ∇F (x̃)
for k = 1 to K do

Select a sample S ⊂ [n], with S = B, and Compute first-order stochastic gradient estimator, V sk
V sk = ∇FS(xsk−1)−∇FS(x̃) + gs

Select SH ⊂ [n], with |SH | = BH , and update the Newton direction by using the approximate
information of Hessian matrix, Hs

k ≈ (∇2FSH (xsk))−1 (defined by equation 31)
if k < 1 then

V̄ sND = V sk
else

V̄ sND = Hs
kV

s
k

end if
Compute momentum

Gsk = β1G
s
k−1 + (1− β1)V̄ sND

Compute adaptive learning rate
Usk = β2U

s
k−1 + (1− β2)(∇FS(xsk−1))2

Update parameters
xsk = xsk−1 − η ·

α1G
s
k+(1−α1)V̄ s

ND√
α2U

s
k

+(1−α2)(∇FS(xs
k−1

))2+ε

end for
x̃s = xsK

end for

where ρk−1 = 1/(sTk−1yk−1).

We show the algorithmic framework of our SQN-GAG method in Algorithm 2.

Remark 2: Review SN-GAG (Algorithm 1) carefully, we easily observe that the only difference
between SN-GAG (Algorithm 1) and SQN-GAG (Algorithm 2) is that the latter uses an approxima-
tion of real Hessian matrix. More generally, it is easy to find the connections between SQN-GAG
(Algorithm 2) and the most of existing adaptive gradient methods. To avoid redundancy, we, here,
do not show more details of the relationships between SQN-GAG (Algorithm 2) and the existing
adaptive gradient methods. Actually, we can also incorporate GAG into the L-BFGS framework to
obtain another novel SSO method.

4.2 CONVERGENCE ANALYSIS FOR SQN-GAG

In order to finish the proof of SQN-GAG (Algorithm 2), the following lemmas are required.

According to the work (Byrd et al., 2016; Chen & Feng, 2023), we have the following result about
the Hessian approximate generated by SQN-GAG (Algorithm 2)

Lemma 1. Let Assumption 1 and Assumption 2 hold. There exist constants 0 < M1 ≤ M2 such
that for k = 1, 2, . . ., the Hessian approximations {Hs

k} resulting from SQN-GAG (Algorithm 2)
satisfy the inequality:

M1I ≺ Hs
k ≺M2I. (32)

Following, Lemma 2 establishes the bound of V̄ sND in SQN-GAG (Algorithm 2) .

Lemma 2. Suppose the Assumption 1(c) and Lemma 1 hold, and θ > 0. We have the bound of the
update direction, V̄ sND, shown in SQN-GAG (Algorithm 2),

‖V̄ sND‖2 ≥
(

2θM1 −
θ2

2
−M2

1

)
‖∇F (xsk−1)‖2 −

(
2θM1 −

θ2

2
−M2

1

)
4σ2

B
. (33)

Proof. The proof of Lemma 2 can follow from that of Lemma 3.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.2.1 CONVERGENCE PROPERTY ON THE SC CASE

Theorem 3 provides the main theoretical result of SNG-GAG (Algorithm 2) for the SC case.
Theorem 3. Let model (2) satisfy Assumption 1(a), Assumption 1(c), Assumption 3 and x∗ =
arg minx∈Rd F (x). Choose S ⊆ [n] with B samples and SH ⊆ [n] with BH samples, set
η = 1

2L(1−α1β1) , where α1 ∈ [0, 1] and β1 ∈ (0, 1) and assume that K, α1, β1 are further cho-
sen so that

ρ =
2L(1− α1β1)

µK
< 1. (34)

Then SQN-GAG (Algorithm 2) also attains a linear convergence speed in expectation with rate ρ:
E
[
‖∇F (x̃S)‖2

]
≤ ρS‖∇F (x̃0)‖2. (35)

Additionally, the complexity of SQN-GAG (Algorithm 2) for the SC objective function is

O

(
(n+ 2κ(2B + 2BH)(1− α1β1)) log

(
1

ε

))
. (36)

4.2.2 CONVERGENCE PROPERTY ON THE PŁ CASE

The main theoretical results of SQN-GAG (Algorithm 2) for the PŁ case are provided in Theorem
4.
Theorem 4. Let model (2) satisfy Assumptions 1-2 and x∗ = arg minx∈Rd F (x). Choose S ⊆ [n]
with B samples and SH ⊆ [n] with BH samples, set η = 1

2L(1−α1β1) , where α1 ∈ [0, 1] and
β1 ∈ (0, 1) and assume that K, α1, β1 are further selected so that

ρ̂ =
4Lδ(1− α1β1)

K
< 1. (37)

Then SQN-GAG (Algorithm 2) attains a linear convergence speed in expectation with rate ρ̂:
E
[
‖∇F (x̃S)‖2

]
≤ ρ̂S‖∇F (x̃0)‖2. (38)

Moreover, the complexity of SQN-GAG (Algorithm 2) for the PŁ objective function is

O

(
(n+ 4Lδκ(2B + 2BH)(1− α1β1)) log

(
1

ε

))
. (39)

The results in Theorem 3 and Theorem 4 imply that SQN-GAG (Algorithm 2) have similar theoreti-
cal properties to SN-GAG (Algorithm 1). This is the indeed case, since SN-GAG (Algorithm 1) and
SQN-GAG (Algorithm 2) adopt the similar algorithmic framework, apart from the way of acquiring
Hessian matrix. More specifically, the proof of Theorem 3 and Theorem 4 can easily follow from
the proof of Theorem 1 and Theorem 2, respectively.

5 CONCLUSION

Motivated by the gap between the SSO methods and the learning rate, this work developed a class
of adaptive SSO methods from the perspective of adaptive gradient methods. More generally, we
proposed to use a GAG method, encompassing most of existing adaptive gradient method (e.g.,
Adam, AdaGrad, RMSProp, etc.), to automatically compute the learning rate for SSO methods.
Specifically, we applied GAG into two stochastic versions of Newton-like methods, SN and SQN,
leading to two new methods: SN-GAG (Algorithm 1) and SQN-GAG (Algorithm 2). We theoretical-
ly understood the role of GAG in SSO methods. Concretely, we proved that SN-GAG (Algorithm
1) and SQN-GAG (Algorithm 2) converged linearly under different backgrounds (a.k.a. the SC case
and the PŁ case) and showed that the computational complexities of the resulting SSO methods
were comparable to state-of-the-art FSO methods and SSO methods, where the property of SSO
methods under the PŁ case was lacking in existing literature. The applications of SN-GAG (Algo-
rithm 1) and SQN-GAG (Algorithm 2) in different machine learning tasks confirmed their efficacy
by comparing with adaptive gradient methods, first-order stochastic methods and second-order s-
tochastic methods. Further, a large number of numerical experiments demonstrated the robustness
of the resulting algorithms.

Statement. The research conducted in the paper conform, in every respect, with the ICLR Code of
Ethics https://iclr.cc/public/CodeOfEthics.

10

https://iclr.cc/public/CodeOfEthics

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for machine
learning in linear time. Journal of Machine Learning Research, 18(1):4148–4187, 2017.

Francis Bach and Eric Moulines. Non-strongly-convex smooth stochastic approximation with con-
vergence rate o (1/n). In International Conference on Neural Information Processing Systems, pp.
773–781, 2013.

Jonathan Barzilai and Jonathan M Borwein. Two-point step size gradient methods. IMA Journal of
Numerical Analysis, 8(1):141–148, 1988.

Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark W Schmidt, and Frank D
Wood. Online learning rate adaptation with hypergradient descent. In International Conference
on Learning Representations, 2018.

Silvere Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE Transactions on
Automatic Control, 58(9):2217–2229, 2013.

Léon Bottou. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade: Second
Edition, pp. 421–436. Springer, 2012.

Richard H Byrd, Gillian M Chin, Jorge Nocedal, and Yuchen Wu. Sample size selection in opti-
mization methods for machine learning. Mathematical Programming, 134(1):127–155, 2012.

Richard H Byrd, Samantha L Hansen, Jorge Nocedal, and Yoram Singer. A stochastic quasi-newton
method for large-scale optimization. SIAM Journal on Optimization, 26(2):1008–1031, 2016.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM trans-
actions on intelligent systems and technology (TIST), 2(3):1–27, 2011.

Huiming Chen, Ho-Chun Wu, Shing-Chow Chan, and Wong-Hing Lam. A stochastic quasi-newton
method for large-scale nonconvex optimization with applications. IEEE transactions on Neural
Networks and Learning Systems, 31(11):4776–4790, 2019.

Xiaoxuan Chen and Haishan Feng. A modified stochastic quasi-newton algorithm for summing
functions problem in machine learning. Journal of Applied Mathematics and Computing, 69(2):
1491–1506, 2023.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradien-
t method with support for non-strongly convex composite objectives. In International Conference
on Neural Information Processing Systems, pp. 1646–1654, 2014.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. SPIDER: Near-optimal non-convex
optimization via stochastic path-integrated differential estimator. In Advances in Neural Informa-
tion Processing Systems, pp. 689–699, 2018.

Igor Gitman, Hunter Lang, Pengchuan Zhang, and Lin Xiao. Understanding the role of momentum
in stochastic gradient methods. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems, pp. 9633–9643, 2019.

Robert Gower, Donald Goldfarb, and Peter Richtárik. Stochastic block bfgs: Squeezing more cur-
vature out of data. In International Conference on Machine Learning, pp. 1869–1878. PMLR,
2016.

Tian-De Guo, Yan Liu, and Cong-Ying Han. An overview of stochastic quasi-newton methods
for large-scale machine learning. Journal of the Operations Research Society of China, 11(2):
245–275, 2023.

Kun Huang and Shi Pu. Improving the transient times for distributed stochastic gradient methods.
IEEE Transactions on Automatic Control, 68(7):4127–4142, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

S Indrapriyadarsini, Shahrzad Mahboubi, Hiroshi Ninomiya, and Hideki Asai. A stochastic quasi-
newton method with nesterovs accelerated gradient. In Machine Learning and Knowledge Dis-
covery in Databases: European Conference, ECML PKDD 2019, Würzburg, Germany, September
16–20, 2019, Proceedings, Part I, pp. 743–760. Springer, 2020.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In International Conference on Neural Information Processing Systems, pp. 315–323,
2013.

Hiroyuki Kasai, Pratik Jawanpuria, and Bamdev Mishra. Riemannian adaptive stochastic gradient
algorithms on matrix manifolds. In International Conference on Machine Learning, pp. 3262–
3271, 2019.

DP Kingma. Adam: a method for stochastic optimization. In International Conference on Learning
Representations, 2014.

Jonas Moritz Kohler and Aurelien Lucchi. Sub-sampled cubic regularization for non-convex opti-
mization. In International Conference on Machine Learning, pp. 1895–1904. PMLR, 2017.

Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I Jordan. Non-convex finite-sum optimization via
scsg methods. International Conference on Neural Information Processing Systems, 30, 2017.

Aurelien Lucchi, Brian McWilliams, and Thomas Hofmann. A variance reduced stochastic newton
method. arXiv preprint arXiv:1503.08316, 2015.

Dawrawee Makmuang, Siwakon Suppalap, and Rabian Wangkeeree. The regularized stochastic
nesterovs accelerated quasi-newton method with applications. Journal of Computational and
Applied Mathematics, 428:115190, 2023.

Andre Milzarek, Xiantao Xiao, Shicong Cen, Zaiwen Wen, and Michael Ulbrich. A stochastic
semismooth newton method for nonsmooth nonconvex optimization. SIAM Journal on Optimiza-
tion, 29(4):2916–2948, 2019.

Aryan Mokhtari and Alejandro Ribeiro. Res: Regularized stochastic bfgs algorithm. IEEE Trans-
actions on Signal Processing, 62(23):6089–6104, 2014.

Aryan Mokhtari and Alejandro Ribeiro. Stochastic quasi-newton methods. Proceedings of the IEEE,
108(11):1906–1922, 2020.

Aryan Mokhtari, Mark Eisen, and Alejandro Ribeiro. Iqn: An incremental quasi-newton method
with local superlinear convergence rate. SIAM Journal on Optimization, 28(2):1670–1698, 2018.

Philipp Moritz, Robert Nishihara, and Michael Jordan. A linearly-convergent stochastic l-bfgs al-
gorithm. In Artificial Intelligence and Statistics, pp. 249–258. PMLR, 2016.

Christopher Nemeth and Paul Fearnhead. Stochastic gradient markov chain monte carlo. Journal of
the American Statistical Association, 116(533):433–450, 2021.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. SARAH: A novel method for ma-
chine learning problems using stochastic recursive gradient. In International Conference on Ma-
chine Learning-Volume 70, pp. 2613–2621, 2017a.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Stochastic recursive gradient algo-
rithm for nonconvex optimization. arXiv preprint arXiv:1705.07261, 2017b.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr compu-
tational mathematics and mathematical physics, 4(5):1–17, 1964.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic variance
reduction for nonconvex optimization. In International Conference on Machine Learning, pp.
314–323, 2016.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of ADAM and beyond. In
International Conference on Learning Representations, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tongzheng Ren, Fuheng Cui, Alexia Atsidakou, Sujay Sanghavi, and Nhat Ho. Towards statistical
and computational complexities of polyak step size gradient descent. In International Conference
on Artificial Intelligence and Statistics, pp. 3930–3961. PMLR, 2022.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

Nicolas L Roux, Mark Schmidt, and Francis R Bach. A stochastic gradient method with an exponen-
tial convergence rate for finite training sets. In International Conference on Neural Information
Processing Systems, pp. 2663–2671, 2012.

David Martınez Rubio. Convergence analysis of an adaptive method of gradient descent. University
of Oxford, Oxford, M. Sc. thesis, 2017.

Nicol N Schraudolph, Jin Yu, and Simon Günter. A stochastic quasi-newton method for online
convex optimization. In Artificial intelligence and statistics, pp. 436–443. PMLR, 2007.

Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31,
2012.

Stefan Vlaski and Ali H Sayed. Second-order guarantees of stochastic gradient descent in nonconvex
optimization. Ieee Transactions On Automatic Control, 67(12):6489–6504, 2022.

Xiao Wang, Shiqian Ma, Donald Goldfarb, and Wei Liu. Stochastic quasi-newton methods for
nonconvex stochastic optimization. SIAM Journal on Optimization, 27(2):927–956, 2017.

Adrian G Wills and Thomas B Schön. Stochastic quasi-newton with line-search regularisation.
Automatica, 127:109503, 2021.

Peng Xu, Fred Roosta, and Michael W Mahoney. Newton-type methods for non-convex optimization
under inexact hessian information. Mathematical Programming, 184(1):35–70, 2020.

Sota Yasuda, Shahrzad Mahboubi, S Indrapriyadarsini, Hiroshi Ninomiya, and Hideki Asai. A
stochastic variance reduced nesterov’s accelerated quasi-newton method. In 2019 18th IEEE In-
ternational Conference On Machine Learning And Applications (ICMLA), pp. 1874–1879. IEEE,
2019.

Farzad Yousefian, Angelia Nedić, and Uday V Shanbhag. Stochastic quasi-newton methods for
non-strongly convex problems: convergence and rate analysis. In 2016 IEEE 55th Conference on
Decision and Control (CDC), pp. 4496–4503. IEEE, 2016.

Jiaojiao Zhang, Huikang Liu, Anthony Man-Cho So, and Qing Ling. Variance-reduced stochastic
quasi-newton methods for decentralized learning. IEEE Transactions on Signal Processing, 71:
311–326, 2023.

Qingsong Zhang, Feihu Huang, Cheng Deng, and Heng Huang. Faster stochastic quasi-newton
methods. IEEE Transactions on Neural Networks and Learning Systems, 33(9):4388–4397, 2021.

Chaoxu Zhou, Wenbo Gao, and Donald Goldfarb. Stochastic adaptive quasi-newton methods for
minimizing expected values. In International Conference on Machine Learning, pp. 4150–4159,
2017.

Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic variance-reduced cubic regularized newton
methods. In International Conference on Machine Learning, pp. 5990–5999. PMLR, 2018.

Michael Zhu, Chang Liu, and Jun Zhu. Variance reduction and quasi-newton for particle-based vari-
ational inference. In International Conference on Machine Learning, pp. 11576–11587. PMLR,
2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 NUMERICAL EXPERIMENTS

This section will present an experimental evaluation for SN-GAG (Algorithm 1) and SQN-GAG
(Algorithm 2). We first numerically compare the convergence properties of SN-GAG (Algorithm 1)
and SQN-GAG (Algorithm 2) with classical adaptive gradient methods, state-of-the-art SSO meth-
ods and first-order stochastic methods for strongly-convex and non-convex optimization problems
respectively in subsection A.3. Further, we investigate the effect of several crucial parameters in
both SN-GAG (Algorithm 1) and SQN-GAG (Algorithm 2) in subsection A.4.

A.2 EXPERIMENTAL DETAILS

Two common machine learning tasks, the logistic regression (LR) model with the `2 regulariza-
tion term and the non-convex squared hinge loss support vector machine (SVM) model with the `2
regularization term, are used, i.e.,

(LR) min
x∈Rd

F (x) =
1

n

n∑
i=1

log(1 + exp(−biaTi x)) +
λ

2
‖x‖2, (40)

(SVM) min
x∈Rd

F (x) =
1

n

n∑
i=1

([
1− biaTi x

]
+

)2

+
λ

2
‖x‖2, (41)

where ai ∈ Rd is the ith data point and bi ∈ ±1 denotes the corresponding label. In our experiments,
we adopt the value of λ = 10−2.

We implement all numerical experiments on four public datasets from the LIBSVM Chang & Lin
(2011), where these datasets, a8a, ijcnn1, covtype, and w8a, are summarized in Table 1. Without
otherwise specified, in all figures, the x-axis represents the number of effective passes and the y-axis
denotes the objective gap, F (x̃s)− F (x∗).

Table 1: Descriptions of DataSets

Dataset Sample size (n) Dimension (d)

a8a 22,696 123
covtype 581,012 54
ijcnn1 49,990 22
w8a 49,749 300

A.3 COMPARISON WITH OTHER RELATED METHODS

We compare SN-GAG (Algorithm 1) and SQN-GAG (Algorithm 2) with the related methods, con-
taining AdaGrad Duchi et al. (2011), Adam Kingma (2014), RMSProp Tieleman et al. (2012), AMS-
GRAD Reddi et al. (2018), SVRG Johnson & Zhang (2013), SARAH Nguyen et al. (2017a), and
SLBFGS Mokhtari & Ribeiro (2020). AdaGrad, Adam, RMSProp, and AMSGRAD are four classi-
cal adaptive gradient methods. Specifically, AMSGRAD is a variant of Adam, depending on long-
term memory of historical gradients and converging with higher probability than Adam. SVRG and
SARAH are two popular first-order stochastic methods and converge linearly for the SC objective
function. SLBFGS introduces the SVRG-like gradient estimator into LBFGS.

The parameter settings for different comparative methods are described here. When executing RM-
SProp, the parameter β is set to be β = 0.9. We perform Adam and AMSGRAD with β1 = 0.9
and β2 = 0.999 for different datasets. SVRG, SARAH and SLBFGS work with a constant learning
rate, where we select the learning rate for SVRG, SARAH, and SLBFGS from multiple learning
rates which make them behave better. When executing SN-GAG (Algorithm 1) and SQN-GAG
(Algorithm 2), we set α1 = 0.9, α2 = 0.9, β1 = 0.9, β2 = 0.9, and ε = 1 for all datasets.

We show the experimental results among these methods on LR and SVM models on four datasets
in Fig. 1. For clarity, the performance of different methods on the LR model and the SVM model

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

is reported in the first line of Fig. 1 and the second line of Fig. 1, respectively. Fig. 1 demonstrates
that SN-GAG (Algorithm 1) and SQN-GAG (Algorithm 2) converges linearly on different datasets.
Moreover, Fig. 1 confirms that for different models, on almost all datasets, SN-GAG (Algorithm
1) and SQN-GAG (Algorithm 2) attain the fastest convergence rate than state-of-the-art stochas-
tic methods. In addition, the comparison results among SN-GAG (Algorithm 1) and SQN-GAG
(Algorithm 2), SLBFGS, and the original SVRG method validate the positive role of second-order
information in modifying first-order stochastic methods.

0 5 10 15 20 25 30
10-10

10-8

10-6

10-4

10-2

AdaGrad
RMSProp
Adam
AMSGRAD
SVRG
SARAH
SLBFGS
SN-GAG
SQN-GAG

(a) a8a

0 5 10 15 20 25 30
10-10

10-8

10-6

10-4

10-2

AdaGrad
RMSProp
Adam
AMSGRAD
SVRG
SARAH
SLBFGS
SN-GAG
SQN-GAG

(b) covtype

0 5 10 15 20 25 30
10-10

10-8

10-6

10-4

10-2

AdaGrad
RMSProp
Adam
AMSGRAD
SVRG
SARAH
SLBFGS
SN-GAG
SQN-GAG

(c) ijcnn1

0 5 10 15 20 25 30
10-10

10-8

10-6

10-4

10-2

100

AdaGrad
RMSProp
Adam
AMSGRAD
SVRG
SARAH
SLBFGS
SN-GAG
SQN-GAG

(d) w8a

0 5 10 15 20 25 30
10-12

10-10

10-8

10-6

10-4

10-2

100

AdaGrad
RMSProp
Adam
AMSGRAD
SVRG
SARAH
SLBFGS
SN-GAG
SQN-GAG

(e) a8a

0 5 10 15 20 25 30

10-10

10-5

100

AdaGrad
RMSProp
Adam
AMSGRAD
SVRG
SARAH
SLBFGS
SN-GAG
SQN-GAG

(f) covtype

0 5 10 15 20 25 30
10-12

10-10

10-8

10-6

10-4

10-2

AdaGrad
RMSProp
Adam
AMSGRAD
SVRG
SARAH
SLBFGS
SN-GAG
SQN-GAG

(g) ijcnn1

0 5 10 15 20 25 30
10-12

10-10

10-8

10-6

10-4

10-2

100

AdaGrad
RMSProp
Adam
AMSGRAD
SVRG
SARAH
SLBFGS
SN-GAG
SQN-GAG

(h) w8a

Figure 1: First row: performance comparison for solving the LR model among different methods on
a8a, covtype, ijcnn1, and w8a. Second row: performance comparison for solving the SVM model
among different methods on a8a, covtype, ijcnn1, and w8a.

A.4 THE EFFECT OF DIFFERENT HYPER-PARAMETERS

The exploration of the resulting adaptive SSO methods with different hyper-parameters is discussed
here. Note that, for convenience but without loss generality, in the following, we will perform SN-
GAG (Algorithm 1) in the first line of all figures and perform SQN-GAG (Algorithm 2) in the second
line of all figures. Moreover, we fastened other hyper-parameters when discussing the impact of one
of these hyper-parameters in the resulting algorithms.

Effect of β1. We start this part from investing the effect of β1 in SN-GAG (Algorithm 1) and SQN-
GAG (Algorithm 2) by performing them on different datasets and show the results in Fig. 2. The
behavior of SN-GAG (Algorithm 1) and SQN-GAG (Algorithm 2) we consider is under the case
that β1 is chosen from {0.1, 0.3, 0.5, 0.7, 0.9}. For other parameters, we set α1 = 0.9, α2 = 0.9,
β2 = 0.9 on all datasets. As Fig. 2 shows, both SN-GAG (Algorithm 1) and SQN-GAG (Algorithm
2) are insensitive to β1 on different datasets.

Effect of β2. Further, Fig. 3 explores the performance of SN-GAG (Algorithm 1) and SQN-GAG
(Algorithm 2) with different β2, where β2 is also selected from the set {0.1, 0.3, 0.5, 0.7, 0.9}. For
other parameters, we adopt α1 = 0.9, α2 = 0.9, and β1 = 0.4 when performing the resulting meth-
ods on different datasets. Obviously, Fig. 3 demonstrates the robustness of SN-GAG (Algorithm 1)
and SQN-GAG (Algorithm 2) to β2.

Effect of α1. Fig. 4 explores how the parameter α1 influences SN-GAG (Algorithm 1) and SQN-
GAG (Algorithm 2). The parameter α1 is considered in {0, 0.2, 0.4, 0.6, 0.8, 1}. The other param-
eters are fixed to be β1 = 0.9, β2 = 0.9, α2 = 0.9, respectively. The results in Fig. 4 imply the
insensitivity of SN-GAG (Algorithm 1) and SQN-GAG (Algorithm 2) to α1.

Effect of α2. Finally, in Fig. 5, we show numerical properties of the resulting methods with different
α2, where α2 is considered in {0, 0.2, 0.4, 0.6, 0.8, 1} as well. The other parameters are set to be
β1 = 0.9, β2 = 0.9, α1 = 0.9 for different datasets. Obviously, Fig. 5 demonstrates that SN-GAG
(Algorithm 1) and SQN-GAG (Algorithm 2) are insensitive to α2.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8
10-10

10-8

10-6

10-4

10-2
SN-GAG:

1
=0.1

SN-GAG:
1
=0.3

SN-GAG:
1
=0.5

SN-GAG:
1
=0.7

SN-GAG:
1
=0.9

(a) a8a

0 2 4 6 8 10 12 14 16 18 20
10-10

10-8

10-6

10-4

10-2

100

SN-GAG:
1
=0.1

SN-GAG:
1
=0.3

SN-GAG:
1
=0.5

SN-GAG:
1
=0.7

SN-GAG:
1
=0.9

(b) covtype

0 5 10 15 20 25 30
10-10

10-8

10-6

10-4

10-2
SN-GAG:

1
=0.1

SN-GAG:
1
=0.3

SN-GAG:
1
=0.5

SN-GAG:
1
=0.7

SN-GAG:
1
=0.9

(c) ijcnn1

0 5 10 15 20 25
10-10

10-8

10-6

10-4

10-2

SN-GAG:
1
=0.1

SN-GAG:
1
=0.3

SN-GAG:
1
=0.5

SN-GAG:
1
=0.7

SN-GAG:
1
=0.9

(d) w8a

0 2 4 6 8 10 12
10-10

10-8

10-6

10-4

10-2
SQN-GAG:

1
=0.1

SQN-GAG:
1
=0.3

SQN-GAG:
1
=0.5

SQN-GAG:
1
=0.7

SQN-GAG:
1
=0.9

(e) a8a

1 2 3 4 5 6 7 8 9 10
10-10

10-8

10-6

10-4

10-2

SQN-GAG:
1
=0.1

SQN-GAG:
1
=0.3

SQN-GAG:
1
=0.5

SQN-GAG:
1
=0.7

SQN-GAG:
1
=0.9

(f) covtype

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10-10

10-8

10-6

10-4

10-2

SQN-GAG:
1
=0.1

SQN-GAG:
1
=0.3

SQN-GAG:
1
=0.5

SQN-GAG:
1
=0.7

SQN-GAG:
1
=0.9

(g) ijcnn1

0 2 4 6 8 10 12 14
10-10

10-8

10-6

10-4

10-2

SQN-GAG:
1
=0.1

SQN-GAG:
1
=0.3

SQN-GAG:
1
=0.5

SQN-GAG:
1
=0.7

SQN-GAG:
1
=0.9

(h) w8a

Figure 2: First row: performance comparison for addressing LR with different selections of β1 in
SN-GAG (Algorithm 1) on a8a, covtype, ijcnn1, and w8a. Second row: performance comparison
for addressing SVM with different selections of β1 in SQN-GAG (Algorithm 2) on a8a, covtype,
ijcnn1, and w8a. Specifically, we select the hyper-parameter β1 from {0.1, 0.3, 0.5, 0.7, 0.9}.

1 2 3 4 5 6 7 8 9
10-10

10-8

10-6

10-4

10-2
SN-GAG:

2
=0.1

SN-GAG:
2
=0.3

SN-GAG:
2
=0.5

SN-GAG:
2
=0.7

SN-GAG:
2
=0.9

(a) a8a

0 2 4 6 8 10 12 14 16 18 20
10-10

10-8

10-6

10-4

10-2

100

SN-GAG:
2
=0.1

SN-GAG:
2
=0.3

SN-GAG:
2
=0.5

SN-GAG:
2
=0.7

SN-GAG:
2
=0.9

(b) covtype

0 5 10 15 20 25 30
10-10

10-8

10-6

10-4

10-2
SN-GAG:

2
=0.1

SN-GAG:
2
=0.3

SN-GAG:
2
=0.5

SN-GAG:
2
=0.7

SN-GAG:
2
=0.9

(c) ijcnn1

0 5 10 15 20 25 30
10-10

10-8

10-6

10-4

10-2

SN-GAG:
2
=0.1

SN-GAG:
2
=0.3

SN-GAG:
2
=0.5

SN-GAG:
2
=0.7

SN-GAG:
2
=0.9

(d) w8a

1 2 3 4 5 6 7 8 9 10 11
10-10

10-8

10-6

10-4

10-2 SQN-GAG:
2
=0.1

SQN-GAG:
2
=0.3

SQN-GAG:
2
=0.5

SQN-GAG:
2
=0.7

SQN-GAG:
2
=0.9

(e) a8a

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10-10

10-8

10-6

10-4

10-2 SQN-GAG:
2
=0.1

SQN-GAG:
2
=0.3

SQN-GAG:
2
=0.5

SQN-GAG:
2
=0.7

SQN-GAG:
2
=0.9

(f) covtype

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10-10

10-8

10-6

10-4

10-2
SQN-GAG:

2
=0.1

SQN-GAG:
2
=0.3

SQN-GAG:
2
=0.5

SQN-GAG:
2
=0.7

SQN-GAG:
2
=0.9

(g) ijcnn1

0 2 4 6 8 10 12 14
10-10

10-8

10-6

10-4

10-2

SQN-GAG:
2
=0.1

SQN-GAG:
2
=0.3

SQN-GAG:
2
=0.5

SQN-GAG:
2
=0.7

SQN-GAG:
2
=0.9

(h) w8a

Figure 3: First row: performance comparison for addressing LR with different selections of β2 in
SN-GAG (Algorithm 1) on a8a, covtype, ijcnn1, and w8a. Second row: performance comparison
for addressing SVM with different selections of β2 in SQN-GAG (Algorithm 2) on a8a, covtype,
ijcnn1, and w8a. Specifically, we select the hyper-parameter β2 from {0.1, 0.3, 0.5, 0.7, 0.9} as
well.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8
10-10

10-8

10-6

10-4

10-2
SN-GAG:

1
=0

SN-GAG:
1
=0.2

SN-GAG:
1
=0.4

SN-GAG:
1
=0.6

SN-GAG:
1
=0.8

SN-GAG:
1
=1

(a) a8a

0 2 4 6 8 10 12 14 16 18 20
10-10

10-8

10-6

10-4

10-2

100

SN-GAG:
1
=0

SN-GAG:
1
=0.2

SN-GAG:
1
=0.4

SN-GAG:
1
=0.6

SN-GAG:
1
=0.8

SN-GAG:
1
=1

(b) covtype

0 5 10 15 20 25 30
10-10

10-8

10-6

10-4

10-2
SN-GAG:

1
=0

SN-GAG:
1
=0.2

SN-GAG:
1
=0.4

SN-GAG:
1
=0.6

SN-GAG:
1
=0.8

SN-GAG:
1
=1

(c) ijcnn1

0 5 10 15 20 25
10-10

10-8

10-6

10-4

10-2

SN-GAG:
1
=0

SN-GAG:
1
=0.2

SN-GAG:
1
=0.4

SN-GAG:
1
=0.6

SN-GAG:
1
=0.8

SN-GAG:
1
=1

(d) w8a

0 2 4 6 8 10 12
10-10

10-8

10-6

10-4

10-2 SQN-GAG:
1
=0

SQN-GAG:
1
=0.2

SQN-GAG:
1
=0.4

SQN-GAG:
1
=0.6

SQN-GAG:
1
=0.8

SQN-GAG:
1
=1

(e) a8a

0 2 4 6 8 10 12 14
10-10

10-8

10-6

10-4

10-2

SQN-GAG:
1
=0

SQN-GAG:
1
=0.2

SQN-GAG:
1
=0.4

SQN-GAG:
1
=0.6

SQN-GAG:
1
=0.8

SQN-GAG:
1
=1

(f) covtype

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10-10

10-8

10-6

10-4

10-2

SQN-GAG:
1
=0

SQN-GAG:
1
=0.2

SQN-GAG:
1
=0.4

SQN-GAG:
1
=0.6

SQN-GAG:
1
=0.8

SQN-GAG:
1
=1

(g) ijcnn1

0 2 4 6 8 10 12 14
10-10

10-8

10-6

10-4

10-2

SQN-GAG:
1
=0

SQN-GAG:
1
=0.2

SQN-GAG:
1
=0.4

SQN-GAG:
1
=0.6

SQN-GAG:
1
=0.8

SQN-GAG:
1
=1

(h) w8a

Figure 4: First row: performance comparison for addressing LR with different selections of α1 in
SN-GAG (Algorithm 1) on a8a, covtype, ijcnn1, and w8a. Second row: performance comparison
for addressing SVM with different selections of α1 in SQN-GAG (Algorithm 2) on a8a, covtype,
ijcnn1, and w8a. Specifically, we select the hyper-parameter α1 from {0, 0.2, 0.4, 0.6, 0.8, 1}.

1 2 3 4 5 6 7 8
10-10

10-8

10-6

10-4

10-2
SN-GAG:

2
=0

SN-GAG:
2
=0.2

SN-GAG:
2
=0.4

SN-GAG:
2
=0.6

SN-GAG:
2
=0.8

SN-GAG:
2
=1

(a) a8a

0 2 4 6 8 10 12 14 16 18
10-10

10-8

10-6

10-4

10-2

100

SN-GAG:
2
=0

SN-GAG:
2
=0.2

SN-GAG:
2
=0.4

SN-GAG:
2
=0.6

SN-GAG:
2
=0.8

SN-GAG:
2
=1

(b) covtype

0 5 10 15 20 25 30
10-10

10-8

10-6

10-4

10-2
SN-GAG:

2
=0

SN-GAG:
2
=0.2

SN-GAG:
2
=0.4

SN-GAG:
2
=0.6

SN-GAG:
2
=0.8

SN-GAG:
2
=1

(c) ijcnn1

0 5 10 15 20 25 30
10-10

10-8

10-6

10-4

10-2

SN-GAG:
2
=0

SN-GAG:
2
=0.2

SN-GAG:
2
=0.4

SN-GAG:
2
=0.6

SN-GAG:
2
=0.8

SN-GAG:
2
=1

(d) w8a

1 2 3 4 5 6 7 8 9 10
10-10

10-8

10-6

10-4

10-2 SQN-GAG:
2
=0

SQN-GAG:
2
=0.2

SQN-GAG:
2
=0.4

SQN-GAG:
2
=0.6

SQN-GAG:
2
=0.8

SQN-GAG:
2
=1

(e) a8a

1 2 3 4 5 6 7
10-10

10-8

10-6

10-4

10-2
SQN-GAG:

2
=0

SQN-GAG:
2
=0.2

SQN-GAG:
2
=0.4

SQN-GAG:
2
=0.6

SQN-GAG:
2
=0.8

SQN-GAG:
2
=1

(f) covtype

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10-10

10-8

10-6

10-4

10-2

SQN-GAG:
2
=0

SQN-GAG:
2
=0.2

SQN-GAG:
2
=0.4

SQN-GAG:
2
=0.6

SQN-GAG:
2
=0.8

SQN-GAG:
2
=1

(g) ijcnn1

0 5 10 15
10-10

10-8

10-6

10-4

10-2

SQN-GAG:
2
=0

SQN-GAG:
2
=0.2

SQN-GAG:
2
=0.4

SQN-GAG:
2
=0.6

SQN-GAG:
2
=0.8

SQN-GAG:
2
=1

(h) w8a

Figure 5: First row: performance comparison for addressing LR with different selections of α2 in
SN-GAG (Algorithm 1) on a8a, covtype, ijcnn1, and w8a. Second row: performance comparison
for addressing SVM with different selections of α2 in SQN-GAG (Algorithm 2) on a8a, covtype,
ijcnn1, and w8a. Specifically, we select the hyper-parameter α2 from {0, 0.2, 0.4, 0.6, 0.8, 1}.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Summarily, all results in Fig. 2, Fig. 3, Fig. 4, and Fig. 5 confirm the robustness of our methods, SN-
GAG (Algorithm 1) and SQN-GAG (Algorithm 2), to crucial hyper-parameters, which significantly
reduce the difficulty of the practitioners in setting these key hyper-parameters.

B PROOFS FOR SN-GAG

We begin this part with some useful lemmas for SN-GAG (Algorithm 1) below.
Lemma 3. Suppose the Assumption 1(c) holds. We obtain the bound of the update direction, V sND,
shown in SN-GAG (Algorithm 1), i.e.,

‖V sND‖2 ≥
(
θ2

4
+

1

2Λ
− θ

2

)
‖∇F (xsk−1)‖2 −

(
θ2

2
+

1

Λ
− θ
)

4σ2

B
, (42)

where θ > 0.

Proof. The fact ‖x‖2 ≥ 1
2‖y‖

2 − ‖y − x‖2 and the definition V sND = (∇2FSH (xsk))−1V sk in SN-
GAG (Algorithm 1) ensure

‖V sND‖2 =
1

2
‖θV sk ‖2 − ‖θV sk − (∇2FSH (xsk))−1V sk ‖2

=
1

2
‖θV sk ‖2 − ‖(θI − (∇2FSH (xsk))−1)V sk ‖2

≥ θ2

2
‖V sk ‖2 − ‖V sk ‖2‖θI − (∇2FSH (xsk))−1‖2

= ‖V sk ‖2
(
θ2

2
− ‖θI − (∇2FSH (xsk))−1‖2

)
≥
(

2θ

Λ
− θ2

2
− 1

Λ2

)
‖V sk ‖2

where the first inequality holds due to the Cauchy-Schwarts inequality, |xT y| ≤ ‖x‖ · ‖y‖.
Further, combining the definition V sk = ∇FS(xsk−1) − ∇FS(x̃) + 1

n

∑n
i=1∇fi(x̃) in SN-GAG

(Algorithm 1) and ‖x‖2 ≥ 1
2‖y‖

2 − ‖y − x‖2 , we ascertain

‖V sND‖2 ≥
(

2θ

Λ
− θ2

2
− 1

Λ2

)(
1

2
‖∇F (xsk−1)‖2 − ‖∇F (xsk−1)

−∇FS(xsk−1) +∇FS(x̃)−∇F (x̃)‖2
)

≥
(

2θ

Λ
− θ2

2
− 1

Λ2

)(
1

2
‖∇F (xsk−1)‖2 − 4σ2

B

)
=

(
θ

Λ
− θ2

4
− 1

2Λ2

)
‖∇F (xsk−1)‖2 −

(
2θ

Λ
− θ2

2
− 1

Λ2

)
4σ2

B
,

where the second inequality uses the fact ‖x+ y‖2 ≤ 2‖x‖2 + 2‖y‖2 and Assumption 1(c).

Lemma 4. Suppose Assumption 1(c) holds. For Usk , defined in SN-GAG (Algorithm 1), we have the
following conclusion:∥∥∥√α2Usk + (1− α2)(∇FS(xsk−1))2 + ε

∥∥∥2

≤ 2α2(1− βK
2)γ2 + 2(1− α2)γ2 + 2ε2, (43)

where β2 ∈ (0, 1) and α2 ∈ [0, 1].

Proof. According to SN-GAG (Algorithm 1), we obtain∥∥∥√α2Usk + (1− α2)(∇FS(xsk−1)2 + ε
∥∥∥2

≤ 2
∥∥∥√α2Usk + (1− α2)(∇FS(xsk−1))2

∥∥∥2

+ 2ε2

≤ 2‖α2U
s
k‖+ 2‖(1− α2)(∇FS(xsk−1))2‖+ 2ε2

(44)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

where the first inequality uses the condition (a+b)2 ≤ 2a2 +2b2 and the second inequality employs
the triangle inequality ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
The definition Usk = β2U

s
k−1 + (1− β2)(∇FS(xsk−1))2 in SN-GAG (Algorithm 1) makes us have

Usk = (1− β2)

K∑
i=1

βK−i
2

(
∇FS(xsk−1)

)2
. (45)

Combining the results in (44) and (45), we derive
2‖α2U

s
k‖+ 2‖(1− α2)(∇FS(xsk−1))2‖+ 2ε2

= 2α2(1− β2)

∥∥∥∥∥
K∑
i=1

βK−i
2 (∇FS(xsk−1))2

∥∥∥∥∥+ 2(1− α2)‖(∇FS(xsk−1))2‖+ 2ε2

≤ 2α2(1− β2)
[
βK−1

2 ‖∇FS(xs1)‖2 + βK−2
2 ‖∇FS(xs2)‖2 + · · ·+ ‖∇FS(xsm)‖2

]
+ 2‖(1

− α2)(∇FS(xsk−1))2‖+ 2ε2

(11)

≤ 2α2(1− β2)
(
βK−1

2 γ2 + βK−2
2 γ2 + · · ·+ γ2

)
+ 2(1− α2)γ2 + 2ε2

≤ 2α2(1− βK
2)γ2 + 2(1− α2)γ2 + 2ε2, (46)

where the first inequality keeps due to the triangle inequality and the second inequality holds due to
the condition in (11).

B.1 PROOF OF THEOREM 1

Here, we offer the technical proofs of Theorem 1 and Theorem 2.

Proof. The L-smooth property of the function and the definition, xsk = xsk−1 −

η

[
α1G

s
k+(1−α1)V s

ND√
α2Us

k+(1−α2)(∇Fnk
(xs

k−1))2+ε

]
in SN-GAG (Algorithm 1), ensure

E[F (xsk)] ≤ E
[
F (xsk−1) + 〈∇F (xsk−1), xsk − xsk−1〉+

L

2
‖xsk − xsk−1‖2

]
= E

[
F (xsk−1)− ηα1

〈
∇F (xsk−1),

Gsk√
α2Usk + (1− α2)(∇FS(xsk−1))2 + ε

〉
− η(1− α1)

〈
∇F (xsk−1),

V sND√
α2Usk + (1− α2)(∇FS(xsk−1))2 + ε

〉
+
Lη2

2

·
∥∥∥∥ α1G

s
k + (1− α1)V sND√

α2Usk + (1− α2)(∇FS(xsk−1))2 + ε

∥∥∥∥2]
. (47)

The definition, Gsk = β1G
s
k−1 + (1− β1)V sND, in SN-GAG (Algorithm 1), makes us further obtain

F (xsk) ≤ F (xsk−1)− ηα1β1

〈
∇F (xsk−1),

Gsk−1√
α2Usk + (1− α2)(∇FS(xsk−1))2 + ε

〉

− η(1− α1β1)

〈
∇F (xsk−1),

V sND√
α2Usk + (1− α2)(∇FS(xsk−1))2 + ε

〉

+
Lη2

2

∥∥∥∥ α1β1G
s
k−1 + (1− α1β1)V sND√

α2Usk + (1− α2)(∇FS(xsk−1))2 + ε

∥∥∥∥2

. (48)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The use of the facts (i) 〈a, b〉 = 1
2

[
‖a‖2 + ‖b‖2 − ‖a − b‖2

]
and (ii) ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2

further make us ascertain

F (xsk)
(i)

≤
(ii)

F (xsk−1)− ηα1β1

2

[
‖∇F (xsk−1)‖2 +

∥∥∥∥ Gsk−1√
α2Usk + (1− α2)(∇FS(xsk−1))2 + ε

∥∥∥∥2

−
∥∥∥∥∇F (xsk−1)−

Gsk−1√
α2Usk + (1− α2)(∇FS(xsk−1))2 + ε

∥∥∥∥2]
− η(1− α1β1)

2

[
‖∇F (xsk−1)‖2

+

∥∥∥∥ V sND√
α2Usk + (1− α2)(∇FS(xsk−1))2 + ε

∥∥∥∥− ∥∥∥∥∇F (xsk−1)− V sND√
α2Usk + (1− α2)(∇FS(xsk−1))2 + ε

∥∥∥∥2]

+
Lη2α2

1β
2
1‖Gsk−1‖2 + Lη2(1− α1β1)2‖V sND‖2∥∥√α2Usk + (1− α2)(∇FS(xsk−1))2 + ε

∥∥2

= F (xsk−1)− η

2
‖∇F (xk−1)s‖2 − ηα1β1

2
·
∥∥∥∥ Gsk−1√

α2Usk + (1− α2)(∇FS(xsk−1))2 + ε

∥∥∥∥2

+
ηα1β1

2

·
∥∥∥∥∇F (xsk−1)−

Gsk−1√
α2Usk + (1− α2)(∇FS(xsk−1))2 + ε

∥∥∥∥2

− η(1− α1β1)

2

∥∥∥∥ V sND√
α2Usk + (1− α2)(∇FS(xsk−1))2 + ε

∥∥∥∥2

+
η(1− α1β1)

2

∥∥∥∥∇F (xsk−1)

− V sND√
α2Usk + (1− α2)(∇FS(xsk−1))2 + ε

∥∥∥∥2

+
Lη2α2

1β
2
1‖Gsk−1‖2 + Lη2(1− α1β1)2‖V sND‖2∥∥√α2Usk + (1− α2)(∇FS(xsk−1))2 + ε

∥∥2
.

(49)

To satisfy the inequality (49), it is enough to keep the following condition

F (xsk) ≤ F (xsk−1)− η

2
‖∇F (xsk−1)‖2 −

[
η(1− α1β1)

2
− Lη2(1− α1β1)2

]
·
∥∥∥∥ V sND√

α2Usk + (1− α2)(∇FS(xsk−1))2 + ε

∥∥∥∥2

. (50)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Considering the results in Lemma 3 and Lemma 4, we have

F (xsk)
Lemma 4
≤ F (xsk−1)− η

2
‖∇F (xsk−1)‖2 −

[
η(1− α1β1)

2

− Lη2(1− α1β1)2

]
‖V sND‖2

2α2(1− βm2)γ2 + 2(1− α2)γ2 + 2ε2

Lemma 3
≤ F (xsk−1)− η

2
‖∇F (xsk−1)‖2

− η(1− α1β1)− 2Lη2(1− α1β1)

4α2(1− βK
2)γ2 + 4(1− α2)γ2 + 4ε2

[(
θ

Λ
− θ2

4
− 1

2Λ2

)
· ‖∇F (xsk−1)‖2 −

(
2θ

Λ
− θ2

2
− 1

Λ2

)
4σ2

B

]
= F (xsk−1)−

[
η

2
+

η(1− α1β1)− 2Lη2(1− α1β1)2

4α2(1− βm2)γ2 + 4(1− α2)γ2 + 4ε2

·
(
θ

Λ
− θ2

4
− 1

2Λ2

)]
‖∇F (xsk−1)‖2 +

(
θ

Λ
+
θ2

2
− 1

Λ2

)
4σ2

B

· η(1− α1β1)− 2Lη2(1− α1β1)2

4α2(1− βK
2)γ2 + 4(1− α2)γ2 + 4ε2

. (51)

Telescoping the inequality (51) over k = 1, · · · ,K, we have

F (xsk) ≤ F (xs0)−
[
η

2
+

η(1− α1β1)− 2Lη2(1− α1β1)2

4α2(1− βK
2)γ2 + 4(1− α2)γ2 + 4ε2

·
(
θ

Λ
− θ2

4
− 1

2Λ2

)] K∑
k=1

‖∇F (xsk−1)‖2 +

(
2θ

Λ
− θ2

2
− 1

Λ2

)
4σ2K

B

· η(1− α1β1)− 2Lη2(1− α1β1)2

4α2(1− βK
2)γ2 + 4(1− α2)γ2 + 4ε2

. (52)

Rearranging the inequality (52), we further have the following inequality

K∑
k=1

‖∇F (xsk−1)‖2 ≤ [4α2(1− βK
2)γ2 + 4(1− α2)γ2 + 4ε2]4Λ2

R
[F (xs0)− F (x∗)]

+
[η(1− α1β1)− 2Lη2(1− α1β1)2](4θΛ− θ2Λ2 − 2)8Kσ2

BR
, (53)

where we set R = 2ηΛ2[4α2(1 − βK
2)γ2 + 4(a − α2)γ2 + 4ε2] + [η(1 − α1β1) − 2Lη2(1 −

α1β1)2](4θΛ−θ2Λ2−2). Additionally, the above inequality also uses the fact x∗ = arg minF (x).

Since E[‖∇F (xsK)‖2] = 1
K

∑K
k=1 ‖∇F (xsk)‖2, we have

E[‖∇F (xsK)‖2] ≤ [4α2(1− βK
2)γ2 + 4(1− α2)γ2 + 4ε2]4Λ2

RK
[F (xs0)− F (x∗)]

+
[η(1− α1β1)− 2Lη2(1− α1β1)2](4θΛ− θ2Λ2 − 2)8σ2

BR
. (54)

According to the SC property of the function (a.k.a. Assumption 3), we easily have the following
result

E[‖∇F (xsK)‖2] ≤ [4α2(1− βK
2)γ2 + 4(1− α2)γ2 + 4ε2]2Λ2

µRK
‖∇F (xs0)‖2

+
[η(1− α1β1)− 2Lη2(1− α1β1)2](4θΛ− θ2Λ2 − 2)8σ2

BR
. (55)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Further, as defined in SN-GAG (Algorithm 1), x̃s = xsK and x̃s−1 = xs0, we have

E[‖∇F (x̃s)‖2] ≤ [4α2(1− βK
2)γ2 + 4(1− α2)γ2 + 4ε2]2Λ2

µRK
‖∇F (x̃s−1)‖2

+
[η(1− α1β1)− 2Lη2(1− α1β1)2](4θΛ− θ2Λ2 − 2)8σ2

BR
. (56)

In addition, when K is slightly large, we have βK → 0. Therefore, the following result is obtained

E[‖∇F (x̃s)‖2] ≤ [4γ2 + 4ε2]2Λ2

µK(4γ2 + 4ε2)2ηΛ2 + µKQ
‖∇F (x̃s−1)‖2

+
[η(1− α1β1)− 2Lη2(1− α1β1)2](θ2Λ− 2θΛ + 2)16σ2

ηB(4γ2 + 4ε2)4Λ +BQ
, (57)

where Q = [η(1− α1β1)− 2Lη2(1− α1β1)2](4θΛ− θ2Λ2 − 2).

Finally, setting η = 1
2L(1−α1β1) , ρ = 2L(1−α1β1)

µK , and applying the inequality (57) recursively, we
obtain the desired results, i.e., E

[
‖∇F (x̃S)‖2

]
≤ ρS‖∇F (x̃0)‖2.

B.2 PROOF OF THEOREM 2

Following the proof of Theorem 1, we can complete the proof of SN-GAG (Algorithm 2) for the PŁ
case.

The result in the inequality (54) and Assumption 1(b) result in the following inequality

E[‖∇F (xsK)‖2] ≤ [4α2(1− βK
2)γ2 + 4(1− α2)γ2 + 4ε2]4Λ2δ

RK
‖∇F (xs0)‖2

+
[η(1− α1β1)− 2Lη2(1− α1β1)2](4θΛ− θ2Λ2 − 2)8σ2

BR
. (58)

Similarly, considering x̃s = xsK, and x̃s−1 = xs0, we further derive

E[‖∇F (x̃s)‖2] ≤ [4α2(1− βK
2)γ2 + 4(1− α2)γ2 + 4ε2]4Λ2δ

RK
‖∇F (x̃s−1)‖2

+
[η(1− α1β1)− 2Lη2(1− α1β1)2](4θΛ− θ2Λ2 − 2)8σ2

BR
. (59)

The condition βK
2 → 0 makes the following result be inferred

E[‖∇F (x̃s)‖2] ≤ (4γ2 + 4ε2)4Λ2δ

K(4γ2 + 4ε2)2Λ2 + KQ
‖∇F (x̃s−1)‖2

+
[η(1− α1β1)− 2Lη2(1− α1β1)2](4θΛ− θ2Λ2 − 2)8σ2

2ηB(4γ2 + 4ε2)Λ2 +BQ
. (60)

Finally, when adopting η = 1
2L(1−α1β1) , ρ̂ = 4Lδ(1−α1β1)

K , and applying the inequality (60) recur-
sively, the desired results were obtained.

22

	Introduction
	Related Work
	Main Contributions

	Preliminaries
	Basic Notations
	Adaptive Gradient Methods
	Assumptions

	Stochastic Newton Algorithms with general adaptive gradient
	SN-GAG
	Convergence Analysis for SN-GAG
	Convergence Property on the SC Case
	Convergence Property on the PŁ Case

	Stochastic quasi-Newton Algorithms with general adaptive gradient
	SQN-GAG
	Convergence Analysis for SQN-GAG
	Convergence Property on the SC case
	Convergence Property on the PŁ case

	Conclusion
	Appendix
	Numerical Experiments
	Experimental Details
	Comparison with Other Related Methods
	The Effect of Different Hyper-parameters

	Proofs for SN-GAG
	Proof of Theorem 1
	Proof of Theorem 2

