Under review as a conference paper at ICLR 2025

ADAPTIVE SECOND-ORDER STOCHASTIC OPTIMIZA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

As a much possible way of improving first-order stochastic optimization (FSO),
the role of second-order information in stochastic optimization is receiving an in-
creasing attention especially for solving the model with large-scale datasets in re-
cent years, resulting in various second-order stochastic optimization (S§SQO) meth-
ods, e.g., the stochastic Newton (SN) method, the stochastic quasi-Newton (SQN)
method, etc. However, the question of how to set an appropriate update rule of the
learning rate for SSO methods is still an extremely intractable task, and surpris-
ingly there is quite less literature to tackle this issue. To bridge the gap between
the SSO methods and the learning rate, this work develops a class of adaptive SSO
methods from the perspective of adaptive gradient methods. Concretely, a general
adaptive gradient (GAG) method with the quasi-hyperbolic momentum (QHM)
strategy that encompasses Adam, AdaGrad, RMSProp, etc., as the special case of
GAG, is incorporated into SN and SQN, respectively, which leads to two methods:
SN-GAG and SQN-GAG. In addition, we establish a unified analysis for different
adaptive SSO methods, covering their convergence behavior and computational
complexity for different backgrounds, such as the strongly convex (SC) case and
the Polyak-FL.ojasiewicz (PL) case, where, particularly, the latter is missing in cur-
rent studies. Finally, numerical tests on different applications of machine learning
demonstrate the superiority and the robustness of the resulting methods.

1 INTRODUCTION

Considering the stochastic optimization problem shown below which has the most broadly type in
large-scale machine learning (ML), natural language processing (NLP), artificial intelligence (AR),
etc.,
min F(z) = E[f(z,¢)], (D)
zER
where f : R? — R is continuously but possibly non-convex, ¢ represents a random variable with
distribution P, and E[] represents the expectation taken with respect to £. In general, the objec-
tive function f(-, &) is not given explicitly or the distribution P is unknown, making it difficult to
compute the function value and its gradient. Practically, one often approximates the model by
the empirical risk minimization problem (Huang & Pul 2022} |Vlaski & Sayed, 2022 Nemeth &
Fearnhead, [2021; [Bonnabell, [2013)),

min F(z) = %Z fi(x), (2)
i=1

r€R4

where f; : R? — R is the loss function that corresponds to the ith data sample selected from a
collection of independent and identically distributed samples, and n denotes the number of data
samples which is supposed to be extremely large.

Gradient descent (GD)-based optimization methods are a popular type of methods to solve model
(2), where it often employs the following iterative scheme as shown in (3). Nevertheless, the e-
valuation of full gradient, VF (z) = Y1 | 1V f;(z), is expensive especially for large-scale model,
where n is huge. It is necessary to use stochastic optimization methods (also familiar with stochastic
approximation methods) to address model (2), which was firstly developed by the pioneering work

Under review as a conference paper at ICLR 2025

of Robbins and Monro (Robbins & Monrol [1951). The leading methodology in different applica-
tions of ML, NLP, AR, etc., advocates utilizing stochastic gradient descent (SGD) methods (Bottou),
2012). In the kth update step, SGD selects a subset S C {1,2,--- ,n} with B samples and then
evaluates the stochastic gradient estimator V Fs(zy,) as described in ,

_ | VF(zy) = %EL Vfi(zk), (GD)
Tk4+1 = Tk — NGk, Gk = { VFS(gk) — % Zzis vfz(l;k), (SGD) (3)

where 7, > 0 denotes the kth learning rate. V Fs(xy) is usually an unbiased estimator of the
gradient of F'(z) at zy, that is E[VFs(xy)] = VF (). If we adopt B = 1, the iterative scheme (3]
falls into vanilla SGD.

SGD usually converges slowly and is greatly sensitive to hyper-parameter settings due to high vari-
ance. Many techniques, including but not limited to momentum, second-order information, im-
portance sampling, variance reduction, and adaptive learning rates, have been proposed to solve
worse performance of SGD. Among these techniques, SGD with momentum is broadly employed,
especially in deep learning. Via automatically acquiring the learning rate for SGD, adaptive learn-
ing rates, such as the Barzilai-Borwein technique (Barzilai & Borwein, |1988)), the Polyak learning
rate (Ren et al.| 2022)), the hyper-gradient descent technique (Baydin et al.,|2018)), AdaGrad (Duchi
et al., 2011), Adam (Kingma, 2014), RMSProp (Tieleman et al., |2012), AMSGRAD (Redd1 et al.,
2018)), are another continually being discussed and updated technique. From the side of manipulat-
ing variance of stochastic optimization methods, stochastic variance reduction methods, involving
SAG (Roux et al.l [2012), SAGA (Defazio et al., [2014), SVRG (Johnson & Zhang, 2013, SARAH
(Nguyen et al.,[2017a)), SPIDER (Fang et al., 2018)), SCSG (Lei et al., 2017), etc., attain a linear con-
vergence rate for the strongly convex (SC) model. In contrast, SGD with second-order information
shows its superiority on highly nonlinear and ill-conditional problems by adapting to the curvature
of the problem.

Second-order stochastic optimization (SSO) methods solve the impractical of evaluating gradient
and Hessian matrix exactly in second-order deterministic optimization methods especially for large-
scale optimization. For instance, Xu et al.| (2020) proposed the trust region method with inexact
Hessian, where the second-order information was approximated via the subsampled Hessian matrix,
but the gradient was still evaluated exactly. |Kohler & Lucchi| (2017) developed a stochastic version
of adaptive regularization using cubics (ARC), yet they need a much stronger assumption in both
gradient and Hessian approximation. Other well-known second-order stochastic optimization (S-
SO) methods are the stochastic Newton (SN) method, the stochastic quasi-Newton (SQN) method
and their variants. The iterative scheme of stochastic version of Newton-like methods is generally
reformulated as:

Trt1 = T — 1By gk, “4)

where (4)) is obtained by evaluating the minimizer of a second-order Taylor series approximation as
follows:

Fsy(z) = Fs,, (xk) + Vs (x1)" (x — 2x) + %(a? —ap)" Bz — xy), (5)

where Sy C [n] with |Sy| = By. If B = By = V?Fs,, (2x), @) turns to the canonical SN
method. In contrast, if B = By, is some approximation generated basing on stochastic gradient,
falls to the SQN method. More specifically, if B = By, = I, {) goes to vanilla SGD.

1.1 RELATED WORK

Conventional SSO Methods. The work in the literature (Schraudolph et al.l 2007} [Yousefian
et al., |2016; [Mokhtari & Ribeiro) 2014} Byrd et al.| |2016) developed various SQN-type methods,
but have not been entirely successful, where the convergence rate of early stages of SQN-type algo-
rithmic framework is only sub-linear. Obviously, the theoretical performance of stochastic version
of Newton-like algorithms is not better than that of SGD. The works in (Yousefian et al., 2016
Mokhtari & Ribeiro, 2014) considered the stochastic version of the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) framework. In the work (Chen et al.l 2019), the authors discussed the stochas-
tic version of the BFGS framework and the limited Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
framework simultaneously. In contrast, the studies in (Schraudolph et al., |2007; Byrd et al.l [2016)

Under review as a conference paper at ICLR 2025

adopted L-BFGS framework. Bach & Moulines| (2013 developed the two-stage online Newton

technique, where the first stage executed average SGD with the learning rate of order O (ﬁ), and

the second stage optimized a quadratic model of the loss function with a constant learning rate. By
combining stochastic semismooth Newton steps and stochastic proximal gradient steps, Milzarek
et al. (2019) developed a globalized stochastic semismooth Newton method for addressing stochas-
tic optimization problems involving smooth non-convex and non-smooth convex functions.

Variance Reduction for SSO Methods. Based on variance-reduced techniques, various faster
SQN-type methods have been developed, including the incremental quasi-Newton (IQN) method
(Mokhtari et al.l 2018]), the stochastic limited Broyden-Fletcher-Goldfarb-Shanno (SLBFGS)
method (Moritz et al.,[2016), VR-MZ-SQN (Chen & Feng| [2023)), the linear time stochastic second-
order algorithm (LiSSA) (Agarwal et al.,|2017), SpiderSQN (Zhang et al.,|2021)), and the stochastic
variance-reduced cubic regularized Newton method (SVRC) (Zhou et al.,[2018). Particularly, Moritz
et al.|(2016)) showed the linear convergence rate of SLBFGS on large-scale convex and non-convex
optimization problems. In addition, |Gower et al.| (2016) developed a stochastic block L-BFGS
method with variance reduction and demonstrated its linear convergence rate. [Zhang et al.|(2023)
developed a general framework that introduced decentralized SQN with variance reduction to realize
fast convergence. Kasai et al.|(2019) developed a Riemannian SQN method with variance reduction.
Zhu et al.|(2020) developed a new variance reduction and quasi-Newton preconditioning framework
for particle-based variational inference methods.

Momentum Techniques for SSO Methods. The role of momentum in SSO methods has been in-
vestigated by many studies. To improve the practical performance of SpiderSQN,|Zhang et al.|(2021)
incorporated different momentum schemes into SpiderSQN. |Yasuda et al.[(2019) put forward the
stochastic variance-reduced Nesterov’s accelerated quasi-Newton methods in full and limited mem-
ory forms. Similarly, Indrapriyadarsini et al.| (2020) developed the SQN method with Nesterov’s
accelerated gradient (NAG) in both its full and limited memory forms for dealing with large-scale
non-convex optimization problems in neural networks. Makmuang et al.| (2023) came up with the
regularized stochastic Nesterovs accelerated quasi-Newton method to effectively accelerate the con-
vergence rate and avoid the near-singularity problem of the Hessian update in the stochastic BFGS
method.

1.2 MAIN CONTRIBUTIONS

For first-order stochastic optimization (FSO) algorithms, various update rules of the learning rate
have been proposed as mentioned above. Surprisingly, the research on the role of the learning rate
in SSO methods is quite limited. The existing SSO algorithms usually work with a scalar constant
learning rate, or a diminishing learning rate (Zhang et all 2021} Zhu et al., 2020). Also, the line
search technique is also considered in SSO algorithms to obtain the learning rate (Guo et al., [2023;
Wills & Schonl 2021} [Byrd et al., |2012; |Schraudolph et al.,2007). However, most of them are time
consuming or impractical for large-scale models. In addition, we found that |Duchi et al.| (2011])
applied AdaGrad to compute the learning rate for SQN. Instead of using the line search technique,
Zhou et al.|(2017) proposed using the properties of self-concordant functions to compute an adaptive
learning rate for BFGS and thereby avoided executing line searches. To bridge the gap between SSO
methods and the learning rate, this work equips second-order stochastic optimization methods with
an adaptive update rule of the learning rate. For clarity, we summarize our main contributions as
follows:

(1) We develop a class of adaptive second-order stochastic optimization methods by utilizing
a general adaptive gradient (GAG) method to compute the learning rate for SSO methods,
where GAG encompasses most of existing adaptive gradient methods, such as AdaGrad,
RMSProp, Adam, etc. Specifically, we incorporate such the learning rate into classical SN
method and the SQN method, respectively, leading to two novel SSO methods, referred to
as SN-GAG and SQN-GAG.

(2) Further, we establish a unified analysis for SN-GAG and SQN-GAG under different back-
grounds, involving the strongly convex (SC) objective function and the Polyak-Lojasiewicz
(PL) objective function. Particularly, under mild conditions, we prove that the resulting SN-
GAG and SQN-GAG methods have a linear convergence rate and recover the well-known
oracle complexity for models with the SC and PL constraints respectively.

Under review as a conference paper at ICLR 2025

(3) Finally, our empirical analysis on different machine learning tasks demonstrates that the
resulting algorithms perform better in contrast to classical adaptive gradient methods, state-
of-the-art FSO methods, and SSO methods. Moreover, various numerical tests show the
robustness of our methods to different key hyper-parameters.

2 PRELIMINARIES

2.1 BASIC NOTATIONS

Throughout this work, for a vector =, 7 denotes its transpose, while ||z|| represents the Euclidean
vector norm that is ||z|| = VT z. We denote x, = arg min F'(x). We denote the identity matrix by
I. We write]ELz] as the expectation of the random variable z and denote [n] = {1,--- ,n}. We write
VFs(z) = 5 X ies VSi(z) and VFs, (z) = 5,5, Vfi(z), where [S] = {1,2,...,8}
with B samples and [Sy] = {1,2,...,Sy} with By samples. We write VF(x) and V2F(z)
as the gradient and Hessian matrix of the objective function F'(z), respectively. Considering two
sequences, {a,} and {b,}, if there exists a constant C' > 0 such that a,, < Cb,, we remark
a, = O(by,). For two matrices A, B of the same dimensions, we use A > 0 to indicate A is positive
definite; A < B to indicate that B — A > 0.

2.2 ADAPTIVE GRADIENT METHODS

To better understand this paper, we, here, introduce several popular adaptive gradient methods. The
first one, we will introduce, is AdaGrad, where it is proposed by (Duchi et al.;,2011) and adopts the
following iterative scheme:

mg = gk,
AdaGrad : { up =ux_1+ g,%, (6)
Thy1 = Tp — M/ (Vur + ¢€),

where € > 0. Note that, for clarity and convenience, we call 7, in an adaptive gradient method the
base learning rate and 7, /./uy the effective learning rate. While AdaGrad confirmed effectively
for sparse optimization problems, experiments showed that AdaGrad-type methods perform worse
when the objective function is non-convex and gradients of the objective function are dense.

To deal with the issue in AdaGrad-type methods, RMSProp proposed using an exponential moving
average rather than a cumulative sum, where the iterative scheme of RMSProp is formulated as

mg = gk,
RMSProp :{ u, = Bup—1 + (1 — B8)g7, (7
Tpt1 = T — Memk/ (/uk + €),
where 8 € (0, 1).
Further, utilizing the idea of RMSProp and adding the heavy-ball like momentum into the first
moment estimate, Kingma| (2014) proposed Adam, working with the iterative scheme below:
my = Bimg—1 + (1 — B1)gr,
Adam :{ wuy = Boug—1 + (1 — B2)g3, (8)
Tpt1 = Tk — e/ (Vug + €),
where 31 € (0,1) and 83 € (0, 1).
For most of existing adaptive gradient methods, only partial convergence results are established.
More specifically, since several studies (Rubiol [2017; Reddi et al.| 2018)) pointed out the issues in
the proof of Adam (shown in (Kingma, |[2014)), many authors pay much attention to the convergence

behavior of adaptive gradient methods. In contrast, this work provides a theoretical guarantee for
SSO methods with different adaptive gradient methods.

2.3 ASSUMPTIONS

In this work, we study adaptive SSO methods for the model with the SC and PL constraints, re-
spectively. We now provide some assumptions that are necessary in this work.

Under review as a conference paper at ICLR 2025

Assumption 1. The loss function F(x) and its gradient, in model (2)) satisfy the following proper-
ties:

(a) (Lipschitz Continuous) F(x) : R? — R is continuously differentiable and has L-lipschitz
gradient, i.e., for Vx,y € R?

IVE(y) = VE(z)| < Llly — =] ©)
(b) (PE Condition) The objective function F(x) satisfies PL condition if 30 > 0, for Vo € R,
such that
F(z) = F(z.) < 8| VF(2)|?, (10)
where ., = arg min F'(z).
(c) (Bound) For any iteration k, we have
E [V fizr)|*] <2, (an
2
o
E [[VEs(zk) = VF(0))I] < 7,

where o > 0 denotes the noise level of the gradient estimator and S C [n] with B samples.

12)

Assumption 2. There exist two positive constants \ and A such that for Vo € R?
M < V%Fs, (z) < A, (13)

where Sy C [n] with By samples.

The result in implies that the function F(x) in model ([2]) keeps the following conclu-

sion:

A < V?F(z) < AI (14)

For the L-smooth objective function F'(x), it admits the following equivalent form, for all Vx,y €
RY,
L 2
F(y) < Fz) +{(VF(z),y —2) + S ly — |- (15)

We also establish the convergence guarantee of the methods for the SC case, i.e., the objective
function satisfies the following assumption:

Assumption 3. (SC Condition) A differential objective function F () is p-strongly convex if Va,y €
Rd

F(y) 2 F(@) + (VF(2),y —) + G ly - l]”. (16)

According to the strong convexity of the objective function F'(w), we have that for Vo € RY
2uF () = F(.)] < [VF(@)]?, 17

where x, = arg min F'(x).

3 STOCHASTIC NEWTON ALGORITHMS WITH GENERAL ADAPTIVE
GRADIENT

This section considers the classical SN method with GAG for solving model (2), involving the SC
case and the PE case. We first introduce our SN-GAG method in subsection 3.1} Subsequently, we
provide a theoretical guarantee of our SN-GAG method in subsection [3.2]for different cases.

Under review as a conference paper at ICLR 2025

3.1 SN-GAG

The details of GAG are discussed here. GAG introduces the quasi-hyperbolic momentum (QHM)
technique (Gitman et al.,|2019) into adaptive gradient methods, where the update scheme of QHM
is shown in (L8).

ome =By + (1= B)ge,
QHM: { ry = w1 —n[my + (1 - £)g:l, (18)

where £ € [0, 1]. We establish the relationship between QHM and the several existing momentum
techniques. For example, if £ = 3, QHM falls into NAG. While if ¢ = 1, QHM becomes heavy-ball
momentum (HBM) (Polyak, 1964). Additionally, if & = 0, the update scheme turns to plain
SGD.

Algorithm [T|describes the details of our first adaptive SSO method, SN-GAG.

Algorithm 1 SN-GAG

Require: base learning rate 7, outer loop size &, inner loop size R, batch sample B, the preconditioned
parameters €, 77, a1, a2, B1, and B2
Initialize: 2°, G = 0, and U§ = 0
for s =1to S do
F=xf=2"""
g° = VF(Z)
for k =1to S do
Select a sample S C [n], with |S| = B, and Compute first-order stochastic gradient estimator, V',

Vi = VFs(xj_1) — VFs(Z) +g°

Select Sy C [n], with |Sy| = Bp, and update the Newton direction by using Hessian matrix,
V2Fs (o).
if £ < 1 then
Vip = V¢
else
Viip = (Vs (22)) 7'V
end if

Compute momentum
Gi =BGi—1 + (1= B1)Wp
Compute adaptive learning rate
Ui = B2Ui 1 + (1 = B2)(VFs(x} 1))
Update parameters
n- a1 Gi+(1—a1)Vip
VJe2Ui+(1—a2) (VFs (e}, _;))?+e

s __ .8
Ty = Tp_1 —

end for

Remark 1: For SN-GAG (Algorithm , we have the following remarks:

(1) In SN-GAG (Algorithm [T}, the SVRG gradient estimator, Vi = VFs(z}_,) — VFs(Z) +
% >V fi(%), is employed. For the SVRG gradient estimator, we have that it is an un-
biased stochastic gradient estimator due to E[V}?] = VF(z};_;). Actually, other types of
stochastic gradient estimators, such as SARAH, SAG, SAGA, SPIDER, etc., can also be
introduced into SN-GAG (Algorithm [T)).

(2) SN-GAG (Algorithm[T]) has some certain connections with most of existing adaptive gradi-
ent methods. For instance, if a; = 0 and as = 1, we equip the RMSProp-like method into
SN. While if & = a2 = 1, we introduce the Adam-like method into SN. Additionally, if
a1 = 1 and oy = (31, the NAdam-like method is incorporated into SN.

(3) In general, the Hessian matrix, V*Fs, (z7), is sometimes nearly singular, especially
when the sample size is quite small. To avoid this case, the update direction, Vgp =
(V2Fs, (z3))" 'V, in SN-GAG (Algorithm is replaced by V§p = (V2Fg, (25) +
E1)~1V} in practice, where £ is a positive constant.

Under review as a conference paper at ICLR 2025

3.2 CONVERGENCE ANALYSIS FOR SN-GAG

The theoretical guarantee of SN-GAG (Algorithm|[I)) for the SC case and the PL case is established
in this segment. Concretely, the theoretical result of SN-GAG (Algorithm [I)) for the SC case is
provided in subsection [3.2.1] The main theoretical result of SN-GAG (Algorithm [T)) for the PL case
is offered in subsection respectively.

3.2.1 CONVERGENCE PROPERTY ON THE SC CASE

The theoretical result of SN-GAG (Algorithm [for the SC objective function is established in
Theorem [T}

Theorem 1. Let Assumption [I{a), Assumption [[[c), and Assumption [2| hold and x. =
argmin,cpa F(z). Choose S C [n] with B samples and Sy C [n| with By samples, set
n= m, where a; € [0,1] and 81 € (0,1) and assume that 8, o, 1 are further picked up
so that

2L(1 —
p= - af) (19)
J7ACe
Then SN-GAG (Algorithm|[I)) attains a linear convergence speed in expectation with rate p:
E[|VF@®)|*] < p®|VF (@) (20)
Proof. Technical proofs are available in Appendix [B.T] O

Note that in order to acquire a linear convergence rate, it is necessary to execute & = O(log(1/¢))
outer loop sizes. Additionally, to keep p < 1, one needs to ask for & = 2L(1 — ay51)/p. As a
result, we have the overall gradient complexity of SN-GAG (Algorithm [T)) for the model with the
SC constraint is (n + (2B + Bg)R) 6, ie.,

O((n+25(2B+BH)(1 — a131)) log (i)) 1)

where k = L/ usually denotes the condition number.

To follow this result easily, we point out the complexity of modern FSO methods and SSO methods
for dealing with models with the SC constraint. For instance, in order to solve the model ([Z]) with
the SC constraint, SVRG, SARAH, SAG, and SAGA (variants of FSO methods) require

o (1w (1)) "

gradient computations in finding an e-accurate solution.

For SSO methods, utilizing the SVRG-like gradient estimator, Lucchi et al. (2015) proposed the
variance-reduced stochastic Newton method (coined VITE) and showed that the gradient complexity
of VITE is

0 ((n +(B+ By)R)log (i)) . (23)

Similarly, utilizing the SVRG-like gradient estimator, |Zhang et al.|(2023)) designed two fully decen-
tralized SQN methods, the damped regularized limited-memory Davidon-Fletcher-Powell (DFP)
and the damped limited-memory BFGS, where they showed that the complexity of these two SSO-
like methods for solving the model (2) with the SC constraint is

Bk2k2, log Hbu 1
@) ((m + (1]:\2)12[\) log <€>> , (24)

where m denotes the number of local samples, kg = M; /Ms denotes the number of the Hessian
inverse approximation, and 1 — A? denotes the connectedness of the network.

Therefore, we safely summarize that apart from the linear convergence rate, the computational com-
plexity of SN-GAG (Algorithm|[I)) is comparable to that of modern SO and SSO methods.

Under review as a conference paper at ICLR 2025

3.2.2 CONVERGENCE PROPERTY ON THE PL. CASE

Further, the convergence behavior of SN-GAG (Algorithm|[T)) for the model (2)) with the PE. objective
function is provided in Theorem 2}

Theorem 2. Let Assumption[l|hold and x,, = arg min, cga F(x). Choose S C [n] with B samples
and Sy C [n] with By samples, adopt n = L—aB) where oy € [0,1] and 3, € (0,1), and
assume that R, oy, 81 are further selected so that

4L6<1 — 04151)

b = <1 25
p A (25)
Then SN-GAG (Algorithm[I)) converges linearly in expectation with rate p:
E[IVF@E)|] < p°IVF@E@°). (26)
Proof. Technical proofs are available in Appendix [B.2] O

Similarly, we easily obtain that the gradient complexity of SN-GAG (Algorithm [I]) for the PL case
is

9, ((n+ (8B + 4Bp)L(1 — a1 1)) log (1)) 27)

€

To the best of our knowledge, there are quite less studies to discuss the performance of SSO methods
for the model with the PL constraint. In contrast, for SO methods, Reddi et al.| (2016) proved

that SVRG required
1
0 <(n—|—n2/35> log ()) (28)
€

gradient evaluations to acquire an e-approximate stationary point. In addition, Nguyen et al.|(2017b)
showed that the overall complexity of SARAH for solving the PL case is

0] ((n + L*6%) log (i)) . (29)

The results among (27), (28), and demonstrate that with appropriate B, By, a1, and 31, SN-
GAG (Algorithm [T) attain a lower computational complexity than advanced 7SO methods for the
PL case.

4 STOCHASTIC QUASI-NEWTON ALGORITHMS WITH GENERAL ADAPTIVE
GRADIENT

This section develops our second adaptive SSO method, SQN-NAG. Like the above section, we
describe our SQN-GAG method in subsection Further, the main theoretical results of SQN-
GAG for the SC case and the PL. case are established in subsection 4.2

4.1 SQN-GAG

The most broadly employed stochastic version of quasi-Newton method, the BFGS-like method
(Byrd et al.,|2016; |Wang et al., 2017; Zhang et al., 2021), renews By, via

T T
Ye—1Yi—1 Br—15k-15;_1Br—1
By = By + Sp—tml - R TRl (30)
Sj_1Yk—1 S—1 Bk Sk—1

where sg_1 = xp — T—1 and yp—1 = VFs(z) — VFs(xk_1). By virtue of utilizing the Sherman-
Morrison-Woodbury formula, one derives that the equivalent update to Hy, = B}, Lis

Hy = (I — pr—18k—19Yp—1)He—1(I = pr—1Y—15t—1) + Pk—1Sk—15p_15 (€1))

Under review as a conference paper at ICLR 2025

Algorithm 2 SQN-GAG

Require: base learning rate 7, outer loop size &, inner loop size &, batch sample B, the preconditioned
parameters €, a1, a2, $1, and B2
Initialize: 7° G = 0, U = 0, and Hy = I
for s =1to G do
F=x5=2"""
g° = VF(Z)
for k =1to Rdo
Select a sample S C [n], with S = B, and Compute first-order stochastic gradient estimator, V;

Vi = VFs(xj_1) — VFs(Z) +g°

Select Sy C [n], with |Su| = Bp, and update the Newton direction by using the approximate
information of Hessian matrix, Hj = (V*Fs,, (z)) ™" (defined by equation
if k < 1 then
Vip = V¢
else
Vip = Hp Vi
end if

Compute momentum

Gi = b51Gior + (1= B1)Wp
Compute adaptive learning rate

Ui = Uiy + (1 = B2)(VFs(}-1))°
Update parameters

alG}1+(1—a1)V§D

S S
X =Tp_1 — .
e T (o) (Vs (w5,)) +e

end for

s s

where pr_1 = 1/(sf_ yx—1).
We show the algorithmic framework of our SQN-GAG method in Algorithm 2]

Remark 2: Review SN-GAG (Algorithm (1) carefully, we easily observe that the only difference
between SN-GAG (Algorithm[T)) and SQN-GAG (Algorithm [2)) is that the latter uses an approxima-
tion of real Hessian matrix. More generally, it is easy to find the connections between SQN-GAG
(Algorithm [2) and the most of existing adaptive gradient methods. To avoid redundancy, we, here,
do not show more details of the relationships between SQN-GAG (Algorithm [2)) and the existing
adaptive gradient methods. Actually, we can also incorporate GAG into the L-BFGS framework to
obtain another novel SSO method.

4.2 CONVERGENCE ANALYSIS FOR SQN-GAG

In order to finish the proof of SQN-GAG (Algorithm 2)), the following lemmas are required.
According to the work (Byrd et al.| 2016} |Chen & Fengl 2023)), we have the following result about
the Hessian approximate generated by SQN-GAG (Algorithm [2)

Lemma 1. Let Assumption [Z] and Assumption [2| hold. There exist constants 0 < My < My such
that for k = 1,2, ..., the Hessian approximations {H}} resulting from SON-GAG (Algorithm
satisfy the inequality:

M,I < H; < M. (32)

Following, Lemmaestablishes the bound of Vi, in SQN-GAG (Algorithm .

Lemma 2. Suppose the Assumption[Ifc) and Lemma [l| hold, and § > 0. We have the bound of the
update direction, Viip, shown in SON-GAG (Algurithm

>

2

s ()2 ¢ 2 s 2 6* 2 4o
IVapll® > 291\41—5—]\41 IVF(zi_)l" - 29M1—5—M1 5 (33)

Proof. The proof of Lemma [2]can follow from that of Lemma3} O

Under review as a conference paper at ICLR 2025

4.2.1 CONVERGENCE PROPERTY ON THE SC CASE

Theorem 3| provides the main theoretical result of SNG-GAG (Algorithm [2) for the SC case.
Theorem 3. Let model satisfy Assumption [[{a), Assumption [Ifc), Assumption 3 and x, =
argming,cpa F(z). Choose S C [n] with B samples and Sy C [n| with By samples, set

n = m, where oy € [0,1] and 81 € (0,1) and assume that & o1, 81 are further cho-

sen so that
2L(1 —
p= 2l=afy) (34)
JIAz
Then SON-GAG (Algorithm[2)) also attains a linear convergence speed in expectation with rate p:
E[|[VF(@®)?] < p®|VF@E°)]*. (35)
Additionally, the complexity of SON-GAG (Algorithm[2)) for the SC objective function is
1
0] ((n—i—?m(QB—I—QBH)(l —a151))log (5))) (36)

4.2.2 CONVERGENCE PROPERTY ON THE PL CASE

The main theoretical results of SQN-GAG (Algorithm [2) for the PE case are provided in Theorem
4

Theorem 4. Let model (12)) satisfy Assumptionsand x, = argmin, s F(x). Choose S C [n]
with B samples and Sy C [n]| with By samples, set n = m where a; € [0,1] and
B1 € (0,1) and assume that R, «y, 1 are further selected so that

_ 4L5(1 — Oélﬁl)

h 7 <1 (37)
Then SON-GAG (Algorithm2)) attains a linear convergence speed in expectation with rate p:
E[|VF@E®)|°] < p°IVFE°)). (38)
Moreover, the complexity of SON-GAG (Algorithm|2)) for the PL objective function is
1
@) ((n+4L5ﬁ(QB+QBH)(1 — 1)) log (€>> (39)

The results in Theorem [3|and Theorem @] imply that SQN-GAG (Algorithm2)) have similar theoreti-
cal properties to SN-GAG (Algorithm|[l)). This is the indeed case, since SN-GAG (Algorithm|[T)) and
SQN-GAG (Algorithm 2)) adopt the similar algorithmic framework, apart from the way of acquiring
Hessian matrix. More specifically, the proof of Theorem [3| and Theorem 4] can easily follow from
the proof of Theorem [I]and Theorem 2] respectively.

5 CONCLUSION

Motivated by the gap between the SSO methods and the learning rate, this work developed a class
of adaptive SSO methods from the perspective of adaptive gradient methods. More generally, we
proposed to use a GAG method, encompassing most of existing adaptive gradient method (e.g.,
Adam, AdaGrad, RMSProp, etc.), to automatically compute the learning rate for SSO methods.
Specifically, we applied GAG into two stochastic versions of Newton-like methods, SN and SQN,
leading to two new methods: SN-GAG (Algorithm[I)) and SQN-GAG (Algorithm[2). We theoretical-
ly understood the role of GAG in SSO methods. Concretely, we proved that SN-GAG (Algorithm
[I) and SQN-GAG (Algorithm[2)) converged linearly under different backgrounds (a.k.a. the SC case
and the PL case) and showed that the computational complexities of the resulting SSO methods
were comparable to state-of-the-art FSO methods and SSO methods, where the property of SSO
methods under the PL. case was lacking in existing literature. The applications of SN-GAG (Algo-
rithm [I)) and SQN-GAG (Algorithm [2)) in different machine learning tasks confirmed their efficacy
by comparing with adaptive gradient methods, first-order stochastic methods and second-order s-
tochastic methods. Further, a large number of numerical experiments demonstrated the robustness
of the resulting algorithms.

Statement. The research conducted in the paper conform, in every respect, with the ICLR Code of
Ethicshttps://iclr.cc/public/CodeOfEthics.

10

https://iclr.cc/public/CodeOfEthics

Under review as a conference paper at ICLR 2025

REFERENCES

Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for machine
learning in linear time. Journal of Machine Learning Research, 18(1):4148-4187, 2017.

Francis Bach and Eric Moulines. Non-strongly-convex smooth stochastic approximation with con-
vergence rate o (1/n). In International Conference on Neural Information Processing Systems, pp.
773-781, 2013.

Jonathan Barzilai and Jonathan M Borwein. Two-point step size gradient methods. IMA Journal of
Numerical Analysis, 8(1):141-148, 1988.

Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark W Schmidt, and Frank D
Wood. Online learning rate adaptation with hypergradient descent. In International Conference
on Learning Representations, 2018.

Silvere Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE Transactions on
Automatic Control, 58(9):2217-2229, 2013.

Léon Bottou. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade: Second
Edition, pp. 421-436. Springer, 2012.

Richard H Byrd, Gillian M Chin, Jorge Nocedal, and Yuchen Wu. Sample size selection in opti-
mization methods for machine learning. Mathematical Programming, 134(1):127-155, 2012.

Richard H Byrd, Samantha L Hansen, Jorge Nocedal, and Yoram Singer. A stochastic quasi-newton
method for large-scale optimization. SIAM Journal on Optimization, 26(2):1008-1031, 2016.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM trans-
actions on intelligent systems and technology (TIST), 2(3):1-27, 2011.

Huiming Chen, Ho-Chun Wu, Shing-Chow Chan, and Wong-Hing Lam. A stochastic quasi-newton
method for large-scale nonconvex optimization with applications. IEEE transactions on Neural
Networks and Learning Systems, 31(11):4776-4790, 2019.

Xiaoxuan Chen and Haishan Feng. A modified stochastic quasi-newton algorithm for summing
functions problem in machine learning. Journal of Applied Mathematics and Computing, 69(2):
1491-1506, 2023.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradien-
t method with support for non-strongly convex composite objectives. In International Conference
on Neural Information Processing Systems, pp. 1646—-1654, 2014.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121-2159, 2011.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. SPIDER: Near-optimal non-convex
optimization via stochastic path-integrated differential estimator. In Advances in Neural Informa-
tion Processing Systems, pp. 689-699, 2018.

Igor Gitman, Hunter Lang, Pengchuan Zhang, and Lin Xiao. Understanding the role of momentum
in stochastic gradient methods. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems, pp. 9633-9643, 2019.

Robert Gower, Donald Goldfarb, and Peter Richtarik. Stochastic block bfgs: Squeezing more cur-
vature out of data. In International Conference on Machine Learning, pp. 1869—-1878. PMLR,
2016.

Tian-De Guo, Yan Liu, and Cong-Ying Han. An overview of stochastic quasi-newton methods
for large-scale machine learning. Journal of the Operations Research Society of China, 11(2):
245-275, 2023.

Kun Huang and Shi Pu. Improving the transient times for distributed stochastic gradient methods.
IEEE Transactions on Automatic Control, 68(7):4127-4142, 2022.

11

Under review as a conference paper at ICLR 2025

S Indrapriyadarsini, Shahrzad Mahboubi, Hiroshi Ninomiya, and Hideki Asai. A stochastic quasi-
newton method with nesterovs accelerated gradient. In Machine Learning and Knowledge Dis-
covery in Databases: European Conference, ECML PKDD 2019, Wiirzburg, Germany, September
16-20, 2019, Proceedings, Part I, pp. 743-760. Springer, 2020.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In International Conference on Neural Information Processing Systems, pp. 315-323,
2013.

Hiroyuki Kasai, Pratik Jawanpuria, and Bamdev Mishra. Riemannian adaptive stochastic gradient
algorithms on matrix manifolds. In International Conference on Machine Learning, pp. 3262—
3271, 2019.

DP Kingma. Adam: a method for stochastic optimization. In International Conference on Learning
Representations, 2014.

Jonas Moritz Kohler and Aurelien Lucchi. Sub-sampled cubic regularization for non-convex opti-
mization. In International Conference on Machine Learning, pp. 1895-1904. PMLR, 2017.

Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I Jordan. Non-convex finite-sum optimization via
scsg methods. International Conference on Neural Information Processing Systems, 30, 2017.

Aurelien Lucchi, Brian McWilliams, and Thomas Hofmann. A variance reduced stochastic newton
method. arXiv preprint arXiv:1503.08316, 2015.

Dawrawee Makmuang, Siwakon Suppalap, and Rabian Wangkeeree. The regularized stochastic
nesterovs accelerated quasi-newton method with applications. Journal of Computational and
Applied Mathematics, 428:115190, 2023.

Andre Milzarek, Xiantao Xiao, Shicong Cen, Zaiwen Wen, and Michael Ulbrich. A stochastic
semismooth newton method for nonsmooth nonconvex optimization. SIAM Journal on Optimiza-
tion, 29(4):2916-2948, 2019.

Aryan Mokhtari and Alejandro Ribeiro. Res: Regularized stochastic bfgs algorithm. IEEE Trans-
actions on Signal Processing, 62(23):6089-6104, 2014.

Aryan Mokhtari and Alejandro Ribeiro. Stochastic quasi-newton methods. Proceedings of the IEEE,
108(11):1906-1922, 2020.

Aryan Mokhtari, Mark Eisen, and Alejandro Ribeiro. Iqn: An incremental quasi-newton method
with local superlinear convergence rate. SIAM Journal on Optimization, 28(2):1670-1698, 2018.

Philipp Moritz, Robert Nishihara, and Michael Jordan. A linearly-convergent stochastic 1-bfgs al-
gorithm. In Artificial Intelligence and Statistics, pp. 249-258. PMLR, 2016.

Christopher Nemeth and Paul Fearnhead. Stochastic gradient markov chain monte carlo. Journal of
the American Statistical Association, 116(533):433-450, 2021.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takd¢. SARAH: A novel method for ma-
chine learning problems using stochastic recursive gradient. In International Conference on Ma-
chine Learning-Volume 70, pp. 2613-2621, 2017a.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Tak4¢. Stochastic recursive gradient algo-
rithm for nonconvex optimization. arXiv preprint arXiv:1705.07261, 2017b.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr compu-
tational mathematics and mathematical physics, 4(5):1-17, 1964.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic variance
reduction for nonconvex optimization. In International Conference on Machine Learning, pp.
314-323, 2016.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of ADAM and beyond. In
International Conference on Learning Representations, 2018.

12

Under review as a conference paper at ICLR 2025

Tongzheng Ren, Fuheng Cui, Alexia Atsidakou, Sujay Sanghavi, and Nhat Ho. Towards statistical
and computational complexities of polyak step size gradient descent. In International Conference
on Artificial Intelligence and Statistics, pp. 3930-3961. PMLR, 2022.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400407, 1951.

Nicolas L Roux, Mark Schmidt, and Francis R Bach. A stochastic gradient method with an exponen-
tial convergence rate for finite training sets. In International Conference on Neural Information
Processing Systems, pp. 2663-2671, 2012.

David Martinez Rubio. Convergence analysis of an adaptive method of gradient descent. University
of Oxford, Oxford, M. Sc. thesis, 2017.

Nicol N Schraudolph, Jin Yu, and Simon Giinter. A stochastic quasi-newton method for online
convex optimization. In Artificial intelligence and statistics, pp. 436—443. PMLR, 2007.

Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26-31,
2012.

Stefan Vlaski and Ali H Sayed. Second-order guarantees of stochastic gradient descent in nonconvex
optimization. leee Transactions On Automatic Control, 67(12):6489-6504, 2022.

Xiao Wang, Shigian Ma, Donald Goldfarb, and Wei Liu. Stochastic quasi-newton methods for
nonconvex stochastic optimization. SIAM Journal on Optimization, 27(2):927-956, 2017.

Adrian G Wills and Thomas B Schon. Stochastic quasi-newton with line-search regularisation.
Automatica, 127:109503, 2021.

Peng Xu, Fred Roosta, and Michael W Mahoney. Newton-type methods for non-convex optimization
under inexact hessian information. Mathematical Programming, 184(1):35-70, 2020.

Sota Yasuda, Shahrzad Mahboubi, S Indrapriyadarsini, Hiroshi Ninomiya, and Hideki Asai. A
stochastic variance reduced nesterov’s accelerated quasi-newton method. In 2019 [8th IEEE In-
ternational Conference On Machine Learning And Applications (ICMLA), pp. 1874-1879. IEEE,
2019.

Farzad Yousefian, Angelia Nedi¢, and Uday V Shanbhag. Stochastic quasi-newton methods for
non-strongly convex problems: convergence and rate analysis. In 2016 IEEE 55th Conference on
Decision and Control (CDC), pp. 4496-4503. IEEE, 2016.

Jiaojiao Zhang, Huikang Liu, Anthony Man-Cho So, and Qing Ling. Variance-reduced stochastic
quasi-newton methods for decentralized learning. IEEE Transactions on Signal Processing, 71:
311-326, 2023.

Qingsong Zhang, Feihu Huang, Cheng Deng, and Heng Huang. Faster stochastic quasi-newton
methods. IEEE Transactions on Neural Networks and Learning Systems, 33(9):4388-4397, 2021.

Chaoxu Zhou, Wenbo Gao, and Donald Goldfarb. Stochastic adaptive quasi-newton methods for
minimizing expected values. In International Conference on Machine Learning, pp. 4150-4159,
2017.

Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic variance-reduced cubic regularized newton
methods. In International Conference on Machine Learning, pp. 5990-5999. PMLR, 2018.

Michael Zhu, Chang Liu, and Jun Zhu. Variance reduction and quasi-newton for particle-based vari-

ational inference. In International Conference on Machine Learning, pp. 11576-11587. PMLR,
2020.

13

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 NUMERICAL EXPERIMENTS

This section will present an experimental evaluation for SN-GAG (Algorithm [I) and SQN-GAG
(Algorithm[2). We first numerically compare the convergence properties of SN-GAG (Algorithm
and SQN-GAG (Algorithm [2)) with classical adaptive gradient methods, state-of-the-art SSO meth-
ods and first-order stochastic methods for strongly-convex and non-convex optimization problems
respectively in subsection Further, we investigate the effect of several crucial parameters in
both SN-GAG (Algorithm |I)) and SQN-GAG (Algorithm [2) in subsection[A.4]

A.2 EXPERIMENTAL DETAILS

Two common machine learning tasks, the logistic regression (LR) model with the ¢ regulariza-
tion term and the non-convex squared hinge loss support vector machine (SVM) model with the ¢
regularization term, are used, i.e.,

) B 1 n - A)
(LR) min F(x) = - 51231 log(L + exp(~biaf @) + 5 [lz]% (40)
. 1 T 2 N
(SYM) min F(a) = =3 ([1 = bala])+ 5l @1)

i=1
where a; € R? is the ith data point and b; € +1 denotes the corresponding label. In our experiments,
we adopt the value of A = 1072,

We implement all numerical experiments on four public datasets from the LIBSVM |Chang & Lin
(2011)), where these datasets, a8a, 1jcnnl, covtype, and w8a, are summarized in Tablem Without
otherwise specified, in all figures, the x-axis represents the number of effective passes and the y-axis
denotes the objective gap, F'(2°) — F(x.).

Table 1: Descriptions of DataSets

Dataset Sample size (n) Dimension (d)

a8a 22,696 123
covtype 581,012 54
ijennl 49,990 22
w8a 49,749 300

A.3 COMPARISON WITH OTHER RELATED METHODS

We compare SN-GAG (Algorithm [1)) and SQN-GAG (Algorithm [2)) with the related methods, con-
taining AdaGrad Duchi et al.|(2011), Adam Kingma (2014), RMSProp|Tieleman et al.|(2012), AMS-
GRAD Reddi et al.| (2018)), SVRG Johnson & Zhang| (2013), SARAH [Nguyen et al.| (2017a), and
SLBFGS Mokhtari & Ribeiro|(2020). AdaGrad, Adam, RMSProp, and AMSGRAD are four classi-
cal adaptive gradient methods. Specifically, AMSGRAD is a variant of Adam, depending on long-
term memory of historical gradients and converging with higher probability than Adam. SVRG and
SARAH are two popular first-order stochastic methods and converge linearly for the SC objective
function. SLBFGS introduces the SVRG-like gradient estimator into LBFGS.

The parameter settings for different comparative methods are described here. When executing RM-
SProp, the parameter 3 is set to be 5 = 0.9. We perform Adam and AMSGRAD with 5; = 0.9
and B = 0.999 for different datasets. SVRG, SARAH and SLBFGS work with a constant learning
rate, where we select the learning rate for SVRG, SARAH, and SLBFGS from multiple learning
rates which make them behave better. When executing SN-GAG (Algorithm |1) and SQN-GAG
(Algorithm, we set a«; = 0.9, ap = 0.9, 51 = 0.9, B2 = 0.9, and € = 1 for all datasets.

We show the experimental results among these methods on LR and SVM models on four datasets
in Fig. |1} For clarity, the performance of different methods on the LR model and the SVM model

14

Under review as a conference paper at ICLR 2025

is reported in the first line of Fig. [T|and the second line of Fig. [T] respectively. Fig. [[|demonstrates
that SN-GAG (Algorithm[I)) and SQN-GAG (Algorithm 2)) converges linearly on different datasets.
Moreover, Fig. |I| confirms that for different models, on almost all datasets, SN-GAG (Algorithm
[I) and SQN-GAG (Algorithm [2) attain the fastest convergence rate than state-of-the-art stochas-
tic methods. In addition, the comparison results among SN-GAG (Algorithm [T) and SQN-GAG
(Algorithm 2), SLBFGS, and the original SVRG method validate the positive role of second-order
information in modifying first-order stochastic methods.

(e) a8a (f) covtype (g) tjennl (h) w8a

Figure 1: First row: performance comparison for solving the LR model among different methods on
a8a, covtype, ijcnnl, and w8a. Second row: performance comparison for solving the SVM model
among different methods on a8a, covtype, ijcnnl, and w8a.

A.4 THE EFFECT OF DIFFERENT HYPER-PARAMETERS

The exploration of the resulting adaptive SSO methods with different hyper-parameters is discussed
here. Note that, for convenience but without loss generality, in the following, we will perform SN-
GAG (Algorithm[I)) in the first line of all figures and perform SQN-GAG (Algorithm[2) in the second
line of all figures. Moreover, we fastened other hyper-parameters when discussing the impact of one
of these hyper-parameters in the resulting algorithms.

Effect of 5;. We start this part from investing the effect of 5; in SN-GAG (Algorithm and SQN-
GAG (Algorithm 2) by performing them on different datasets and show the results in Fig. 2] The
behavior of SN-GAG (Algorithm m) and SQN-GAG (Algorithm Q) we consider is under the case
that §; is chosen from {0.1, 0.3, 0.5, 0.7, 0.9}. For other parameters, we set «; = 0.9, as = 0.9,
B2 = 0.9 on all datasets. As Fig. |Z| shows, both SN-GAG (Algorithmm) and SQN-GAG (Algorithm
are insensitive to 81 on different datasets.

Effect of 5. Further, Fig. 3] explores the performance of SN-GAG (Algorithm [T)) and SQN-GAG
(Algorithm with different 35, where (3 is also selected from the set {0.1, 0.3, 0.5, 0.7, 0.9}. For
other parameters, we adopt ov; = 0.9, a2 = 0.9, and $; = 0.4 when performing the resulting meth-
ods on different datasets. Obviously, Fig. [3|demonstrates the robustness of SN-GAG (Algorithm|T)
and SQN-GAG (Algorithm[2) to 5.

Effect of ;. Fig. 4|explores how the parameter «; influences SN-GAG (Algorithm [1)) and SQN-
GAG (Algorithm [2)). The parameter «; is considered in {0, 0.2, 0.4, 0.6, 0.8, 1}. The other param-
eters are fixed to be 81 = 0.9, B2 = 0.9, ap = 0.9, respectively. The results in Fig. 4] imply the
insensitivity of SN-GAG (Algorithm[I)) and SQN-GAG (Algorithm[2) to a;.

Effect of a,. Finally, in Fig. [5] we show numerical properties of the resulting methods with different
ap, where « is considered in {0, 0.2, 0.4, 0.6, 0.8, 1} as well. The other parameters are set to be
B1 = 0.9, B2 = 0.9, a; = 0.9 for different datasets. Obviously, Fig. [5]demonstrates that SN-GAG
(Algorithm[T)) and SQN-GAG (Algorithm 2) are insensitive to as.

15

Under review as a conference paper at ICLR 2025

—svon .
—swon o
10¢ X
) v _ ot
£ 100 £
i gw
10 0
—— snoaci 09
0 o 10
R T R A o 2 4 6 & 1 12 1 1 ® L s o s W s @ E
Bpoch s Epoch s Epoch s
w
) — ——sonoac: ,=01] —sovoas 7,01] [sovae:5701]
B s3] | sonac: 03] X |—sonoac: 4,03 10? | seneac: 5,03
sym0s| 10 - - -soN6As:4,05 - - -sos: 4,05 - - -soneas 4,05
syr07] \ SoN6AG:5,707] 104 s SonoAG: 4,207 SQNGAG: 4,707
10 sym0s) — soveaci g9 ; S —sanos 5,09 ot I
w0 8 3
e £ w0t
P : 10
3 5w 3 3
10° 10
o 104 10
0% el w0
o p P . CREETI P s

2 25 3 a5 4 as s 55 6 o« 2z 4 & & 1 2 u
Epod:

Epoch Epoch s

(f) covtype

Epoch s

(e) a8a (g) tjennl (h) w8a

Figure 2: First row: performance comparison for addressing LR with different selections of 3; in
SN-GAG (Algorithm(I)) on a8a, covtype, ijcnnl, and w8a. Second row: performance comparison
for addressing SVM with different selections of 31 in SQN-GAG (Algorithm on a8a, covtype,

ijennl, and w8a. Specifically, we select the hyper-parameter 8; from {0.1, 0.3, 0.5, 0.7, 0.9}.

— X e
|—snoac: 103 o | snoaci s
svons: s . T ovons s
" S0k 5,07, w0 Snoac 4,07,
. E———— Lt —snosc 08 .
i e g
& —errEy s E
, [svorc: o)
o 109}|- - -swerci a0 0?
SNoss: 07
swoAs: 08
1 2 3 4 B 6 7 8 9 o)D 2 a 6 8 10 12 14 16 18 20 101 5 10 15 20 25 30
o o Bt

(b) covtype

(c) ijennl

\ |—sancas: 403 |—sanveas: 03|
- - - soneAG: 5,705 - - -sonGAG: 7,05
N SQNGAG: 4,707 w0 SQNGAG: 4,707
1 \ SQN-GAG: 5,09 o SQNGAG: 4,09 , SQNGAG: 409 _— SQNGAG: 1,209
S e \ £ e £ e £
tw P g £ e
10 00 0° 10°)

2 [——sovcac 5,01]

—YE

0 1

(e) a8a

10
1 15 2 25 3 as 4 45 5 55
Epoch

(f) covtype

(g) tjennl

Epoc

(h) w8a

Figure 3: First row: performance comparison for addressing LR with different selections of 35 in
SN-GAG (Algorithmm) on a8a, covtype, ijcnnl, and w8a. Second row: performance comparison
for addressing SVM with different selections of 85 in SQN-GAG (Algorithm |Z|) on a8a, covtype,
ijennl, and w8a. Specifically, we select the hyper-parameter 35 from {0.1, 0.3, 0.5, 0.7, 0.9} as
well.

16

Under review as a conference paper at ICLR 2025

Gop

Objec
Objectiv

(a) a8a

(b) covtype

(c) 1gennl

07
o SQNGAG 2,0 SONGAG: 7,0
“ |— soneac:o,02) 107 |—— soneac:az02) 102
- - -5oNGAG: 0,04] - - -sQN.GAG: 0,04
SONGAG: 0,706 104 SQNGAG: 0,706
_ ot | soNGAG: 0,05 R | son.cAG:a,08| ot
3 |—soveas: o1 § |—soncasiat §
2 e £ w0 H
g w g £ 10
10? 107 o 10°)
10 10
3 2 4 o o 0 12 o 15 2 25 3 35 4 45 5 55 6 o

Epoch Epoct

(e) ada (f) covtype

Epoch

(h) w8a

3
Epoch «

(g) ijennl

Figure 4: First row: performance comparison for addressing LR with different selections of «; in
SN-GAG (Algorithmm) on a8a, covtype, ijcnnl, and w8a. Second row: performance comparison
for addressing SVM with different selections of «; in SQN-GAG (Algorithm [2) on a8a, covtype,
ijennl, and w8a. Specifically, we select the hyper-parameter «v; from {0, 0.2, 0.4, 0.6, 0.8, 1}.

Gap

Objective
Objective
Objective

Objective

Epoct

(b) covtype

(c) ijennl

o ——sonGAG: ——SoNGAG a0 ——soNoAG o0 ——soneAc

|— savess: 10 |—sancac: 02 |—soneac: az02 10 |— savere:

sonoaG: - - - soNGAG: 0,04 - - -soncAG:0,704| SONGAG:

son-GAG: SQNGAG: 0,08 0* SQNGAG: 0,706 sQNGAG:

w0 —— sonac o 10 —— san-GAG: 0,08 , —— saNGAG: 0,0.| o — sanchc:

E SQNGAG: 0, SQN-GAG 0,71 g SQN-GAG: 0,71 § SQNGAG: 0,
£ w0 2w e
10° 0 w0? 1)
10
p B &] B o 1 15 2 25 3 s 4 as s ss 6 o s 10 15

Epoch Epoch

(e) a8a (f) covtype

Epoc + Epoch s

(€3] l] cnnl (h) w8a

Figure 5: First row: performance comparison for addressing LR with different selections of as in
SN-GAG (Algorithm[I)) on a8a, covtype, ijennl, and w8a. Second row: performance comparison
for addressing SVM with different selections of a; in SQN-GAG (Algorithm 2) on a8a, covtype,
ijennl, and w8a. Specifically, we select the hyper-parameter a from {0, 0.2, 0.4, 0.6, 0.8, 1}.

17

Under review as a conference paper at ICLR 2025

Summarily, all results in Fig. 2} Fig. 3] Fig. @] and Fig. [5|confirm the robustness of our methods, SN-
GAG (Algorithm[I) and SQN-GAG (Algorithm [2), to crucial hyper-parameters, which significantly
reduce the difficulty of the practitioners in setting these key hyper-parameters.

B PROOFS FOR SN-GAG

We begin this part with some useful lemmas for SN-GAG (Algorithm [I)) below.

Lemma 3. Suppose the Assumption mc) holds. We obtain the bound of the update direction, Vp,
shown in SN-GAG (Algorithm[l)), i.e.,

0? 1 0 0?2 1 402
s 2 > _ S 2 _ - _
Wil > (5 + 55 5) IVFei P - (5 + 5 -0) 7 @)
where 6 > 0.

Proof. The fact |[z]|?> > L|ly||> — |ly — «||* and the definition V3§, = (V>Fs,, (x})) "'V} in SN-
GAG (Algorithm|[T) ensure

S 1 S S S — S
||VND||2 = §||9Vk ||2 — 1oV — (V2FSH (z3)) IVk ||2
1 5 S — S
= §||9VI§II2 — (01 — (V*Fs, (3)) ")VEIIP

02 S S S —
> S IVEIP = IVEIPI0T = (V2 Fsy (7)1

s 0° $\)—
=11 (% 107 - (V2 Fs)

20 0% 1 9
S S
> (A . Az)m

where the first inequality holds due to the Cauchy-Schwarts inequality, |27 y| < ||z - ||y]|.

Further, combining the definition V;{ = VFs(z;_,) — VFs(Z) + = 31, Vf;(Z) in SN-GAG
(Algorithmlﬂ) and ||z||? > §[ly||*> — [ly — «||* , we ascertain

s 2 20 92 1 1 s 2 s
Vol > (5 - 5 - 52) (519 F @017 - 197)

— VFs(x_,)+ VFs(¥) — VF(:E)|2)
20 0% 1 1 , do?
> =—-——-— (= s -

0 0> 1 IR YEI A L
_ (A - 2A2)|VF(551€1)| - (A 2 /\2)37

where the second inequality uses the fact ||z + y||> < 2||2|? + 2||y||? and Assumption|[I]c). O

Lemma 4. Suppose Assumption Ekc) holds. For U}, defined in SN-GAG (Algorithm |Z|) we have the
following conclusion:

2 a3
|\fa2Ug + (1= a)(VFs(ep_1))? + || < 20201 = B2 +201 —ao) +2¢, (43)

where B2 € (0,1) and ag € [0, 1].

Proof. According to SN-GAG (Algorithm|[I)), we obtain

2 2
H\/%Uz? (1= an)(VEs(xh_) + GH <2 H\/agU,j +(1— Oéz)(VFs(xzil)PH + 2¢2

<2 Ug || +2|(1 = ag)(VEs(zf_1))*| + 2¢°
(44)

18

Under review as a conference paper at ICLR 2025

where the first inequality uses the condition (a+b)? < 2a?+ 2b? and the second inequality employs
the triangle inequality ||z + y|| < ||z|| + [|y]|-
The definition U7 = B2Uf_, + (1 — B2)(VEs(x;_,))? in SN-GAG (Algorithm makes us have
]
s —1 s 2
Up=(1-82)Y B " (VFs(xi)" (45)
i=1
Combining the results in (#4) and @3)), we derive
2l Ug [+ 2[I(1 — 042)(VF5(1‘Z_1))2|| + 2¢?

=20a5(1 = f2) Zﬂ ((VEs(2}-1))?|| +2(1 = a2) [(VFs (25_1))?|| + 2¢2

i=1
< 2a5(1 = Bo) [B3 IV Fs(@))|? + 85IV Es(x3) 1> + - - + [VEs(x3,) 1] + 2[I(1
— az)(VEs(z}_q))?| + 2¢2

(i)
22a2(1—ﬂ2) I+ By A) +2(1 — a)y? + 267

< 205(1 = B2 + 2(1 — az)y? + 262, (46)
where the first inequality keeps due to the triangle inequality and the second inequality holds due to
the condition in (TT).

O
B.1 PROOF OF THEOREM/[II
Here, we offer the technical proofs of Theorem [I|and Theorem 2}
Proof. The L-smooth property of the function and the definition, z; = x5, —
alG +(1 Otl)VND . _ .
\/QZU e (VP (sl)7+] in SN-GAG (Algorlthm, ensure
S S S S S L S S
BIF(a)] < B | Fah 1) + (VF(ai1)oaf = ai i) + 5o — o)
— B[Flaf 1) ~ o VF(ai),
GS
i)= 01 -)i)
VasUs + (1= a2) (VEs(x}_,))? + ¢
Vs L 2
). 2
\/QQU,g + (1 —) (VFs(a5_,))2 + ¢
s s 2
H a1Gy + (1 = a1)VRp } (47)
VJa2Us + (1 — a2)(VEs(a5_,))* + ¢

The definition, G, = 51G}_; + (1 — 61)VEp, in SN-GAG (Algorithm , makes us further obtain

. I, y Gi_,
Flag) < Flaia) —n 151<VF(1) \/agU,j + (1 —az)(VFEs(x5_,))? +e>
VS
—n(l —a151)(VF(x5_1), =
ol —enf)< iy %%Uﬁ(l—az)(VFs(wz1>>2+e>

LnQ Oélﬂle 1 + (1 — alﬂl)VND 2

\/ong,c (1—a2)(VFs(zi_1))? +¢

(48)

19

Under review as a conference paper at ICLR 2025

The use of the facts (i) (a,b) = [[|a]|* + [|b]|* — ||a — b]|?] and (ii) [ja + b]|> < 2|lal|* + 2|02
further make us ascertain

(i) : g
Flap) < Flag) - "mmDWkalw H =
(ii) \/0‘2Uk (1 —a2)(VFs(z5_1))% +e
2
s — 77(1 -« B) s
- [erei - = R Ak
JJa2Ug + (1= aa)(Vs(zi_)P + ¢
Vin Vb

]

- |orain-

H \/azU,j + (1= a2)(VFs(x;_1))? +¢
L LPeRBRIGE 1P + Lo (L — aa)’ |Viip |1
Iyfoalz + (1= a2)(VFs(a_p))? +lf

\/onglj +(1—) (VEs(a5_,))2 +e

(6% GS— ’ @
= F(ai_y) = 2|V (@) - ”ﬁlH — *né&
\/chUS (1 —a2)(VFs(x}_))? + ¢
2
MVF@ﬁJ— =
\/agU;‘g +(1—a2)(VFs(z;_1))* +e
1_a1/81 ‘ Vl\?D 2+ 77(1—041/81) ’vF('TZ 1)
\/azUk (1 —a2)(VFs(x_1))? +e€ ?

N V¥ ’ Lﬂ af BEIIGE I + Lo* (1 — aa o) [Vip |I*
\/a2U,g +(1—) (VEs(a5_,))2 +e H\/a2Uk (1— o) (VEs(z3 1))? + ||’
(49)
To satisfy the inequality (@9), it is enough to keep the following condition
s s n s 77(1 - 061/81)
Flaf) < Flah) - 2I9FGi I - |50 - np - aup?
s 2
. H VXD (50)
\/ong,j + (1 —a2)(VFEs(z; 1))+ €

20

Under review as a conference paper at ICLR 2025

Considering the results in Lemma[3]and Lemma[d] we have

Lemma

F(ai) < Flioy) = 2IVF (o)l - [77(1—0‘151)

2
[Vepl?
205(1 — BF)Y2 +2(1 — az)y? + 2¢€2

- L772(1 - 0!151)2}
Lemma[3l s n s
Fxg_q) — §HVF(5%71)||2
B n(1—aip1) —2Ln*(1 — a1 61) 0 2 1
Toa(1 = B2 + 41—)2 1 462

. 20 02 1) 402
WwraP- (5 -5 - %) 5
s [(= aip) 207 (1 = i fr)?
= F(wk-1) [2 * das(1 — BF)Y2 + 4(1 — ag)y? + 4e?

o 02 1 e (00 1)\4do?
'<A42A2)]'VF<%—1>” *(sz)g

n(l — a1 fBr) — 2L (1 — a1 B1)?

. - . 51
das(1— BFN2 + 41— az)y? + 4e2 ©Dh
Telescoping the inequality (31)) over k =1, - - , &, we have
s s 1 n(l — a1 1) = 2Ln*(1 — a1 fr)?
F(x;) < F(x)) — | =
(@) < Flap) {2 T daa(I B2 T A(L — an)? + 4e2
o 02 1\ 20 62 1)4028
B (R F(x8 2 =)=
(5-5-5)] > IVFE I + (Z-5-%)5
(1= aifr) = 2L (1 — au Ba)? (52)
Toa(1 = B2 + 41— gy + 42
Rearranging the inequality (52), we further have the following inequality
8
. [4az(1 — BV + 4(1 — ag)y? + 4€%]4A? .
D IVE@_)| < : = [F(x5) — F(x:)]
k=1
[7’](1 - Oélﬂl) - 2L7’]2(1 - 0&151)2](491\ - 92A2 - 2)8ﬁ0’2
+ BR , (53)

where we set R = 2nA%[4as(1 — B5)y? + 4(a — a)y? + 4] + [n(1 — auB1) — 2072 (1 —
a11)?](40A — 02A% — 2). Additionally, the above inequality also uses the fact z, = arg min F(x).
Since E[|[VE(3) 7] = £ S35, V()P we have

[4ag (1 — BH)Y2 + 4(1 — an)y? + 4€%]4A? s
(1 = a1p1) = 2Ln*(1 — a1 1)) (40A — 6°A* — 2)80°

+ BR . (54)

E[|VF(z3)IIP] <

According to the SC property of the function (a.k.a. Assumption [3), we easily have the following
result
[dan(1 — By 4+ 4(1 — ag)y? + 4€2]2A2
WRR
(1 —a1B1) — 2Ln*(1 — a1 81)?](40A — 622 — 2)80>
BR '

E[|VF(a3)IP] < IV ()]

N (55)

21

Under review as a conference paper at ICLR 2025

Further, as defined in SN-GAG (Algorithm , Z° = xf; and T x, we have

dan (1 — BH)Y? +4(1 — ag)y? + 4€%]2A2
URA
[77(]. — Oélﬁl) — 2Ln2(1 - 0[151)2](49/\ - 921\2 - 2)802

+ R . (56)

E[|VF(@*)]*) < | IVF @]

In addition, when £ is slightly large, we have 3% — 0. Therefore, the following result is obtained
3 4% + 4€%]2A?
E[|IIVEF(%° 2 < [
[T](]. — 04161) — 2LT}2(1 — 0161)2](92A — 20A + 2)1602

7
* 7B(47% T 4%)4A + BO 6D

where Q = (1 — a181) — 2Ln?(1 — a1 81)?](40A — 02A% — 2).

IVF @]

Finally, setting 1) = 5777 _1a1 Ay P = QL(I;E‘ 181) " and applying the inequality recursively, we

obtain the desired results, i.e., E [|[VF(z°)|?] < p®||VF(z)]]2.

B.2 PROOF OF THEOREM[Z]

Following the proof of Theorem|I] we can complete the proof of SN-GAG (Algorithm2)) for the PL
case.

The result in the inequality and Assumption [I{b) result in the following inequality

[4ao(1 — BH)Y2 +4(1 — ag)y? + 4€2]4A2%5

E[|VE(z3)]?] < A IVE ()]
n (1 — a1 1) = 2L (1 — 1 B1)?(40A — 6°A* — 2)802' (58)
BR
Similarly, considering Z° = x, and 751 = x(, we further derive
E[[[VFE)|?] < [das(1 — BSH)Y? + 47(315; a2)y? + 4€%]4A%6 IVE@E)2
n (1 —a1B1) — 2Ln*(1 — a1 81)?] (40N — 622 — 2)802. (59)

BR

The condition 35 — 0 makes the following result be inferred
(492 + 4€?)4A36

(492 + 4€2)2A% + RQ

[77(]. — Oélﬂl) — 2L772(1 - 04161)2](49/\ - 92A2 - 2)802

+ 2nB (492 + 4€2)A% + BQ ’ (60)

E[IVF@E)I] < & IVF @)

Finally, when adopting) = 3 L(l_la B P = 4L5(1;a1ﬂ 1) and applying the inequality recur-

sively, the desired results were obtained.

O

22

	Introduction
	Related Work
	Main Contributions

	Preliminaries
	Basic Notations
	Adaptive Gradient Methods
	Assumptions

	Stochastic Newton Algorithms with general adaptive gradient
	SN-GAG
	Convergence Analysis for SN-GAG
	Convergence Property on the SC Case
	Convergence Property on the PŁ Case

	Stochastic quasi-Newton Algorithms with general adaptive gradient
	SQN-GAG
	Convergence Analysis for SQN-GAG
	Convergence Property on the SC case
	Convergence Property on the PŁ case

	Conclusion
	Appendix
	Numerical Experiments
	Experimental Details
	Comparison with Other Related Methods
	The Effect of Different Hyper-parameters

	Proofs for SN-GAG
	Proof of Theorem 1
	Proof of Theorem 2

