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Abstract

The financial market is a mission-critical playground for AI agents due to its tem-
poral dynamics and low signal-to-noise ratio. Building an effective algorithmic
trading system may require a professional team to develop and test over the years.
In this paper, we propose an orchestration framework for financial agents, which
aims to democratize financial intelligence to the general public. We map each com-
ponent of the traditional algorithmic trading system to agents, including planner,
orchestrator, alpha agents, risk agents, portfolio agents, backtest agents, execu-
tion agents, audit agents, and memory agent. We present two in-house trading
examples. For the stock trading task (hourly data from 04/2024 to 12/2024), our
approach achieved a return of 20.42%, a Sharpe ratio of 2.63, and a maximum
drawdown of −3.59%, while the S&P 500 index yielded a return of 15.97%. For
the BTC trading task (minute data from 27/07/2025 to 13/08/2025), our approach
achieved a return of 8.39%, a Sharpe ratio of 0.38, and a maximum drawdown of
−2.80%, whereas the BTC price increased by 3.80%.

1 Introduction

From floor trading with chalkboards and open outcry to telephone order routing, and then to algo-
rithmic trading, the market microstructure has reorganized how orders are created, conveyed, and
executed [24, 3, 9]. The algorithmic trading (AT) system [24] follows a pipeline from processing
financial data, extracting trading signals, portfolio management to execution and evaluation. Design-
ing an effective AT system may require a professional team to develop and test over years. Recent
works have demonstrated the great potential of AI agents: reasoning-and-acting [29], self-teaching
for using tools [20], generative agents [19], reflection and memory [21], and multi-agent role coor-
dination [10]. The financial market is a particularly challenging playground for AI agents due to its
unique features of temporal dynamics and low signal-to-noise ratio. In particular, agentic trading
is a mission-critical task in a high-stakes domain.

In this paper, we propose an end-to-end orchestration framework for financial agents, which maps
the components of the traditional AT system to agents and democratizes financial intelligence to
the general public. First, we map each component of the AT system to agents, including planner,
orchestrator, alpha agents, risk agents, portfolio agents, backtest agents, execution agents, audit
agents, and memory agent. Second, we use the Model Context Protocol (MCP) for control messages
between the orchestrator and agents and the Agent-to-Agent protocol (A2A) for communication
among agents, while a memory agent records states, prompts, tool calls, and decisions.

Finally, we develop two homegrown trading examples. For the stock trading task backtested from
04/2024 to 01/2025 (hourly data), our agents achieve a return of 20.42%, volatility of 11.83% and
Sharpe ratio of 2.63 with max drawdown of −3.59%, while the S&P 500 index has a return of
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Figure 1: Agentic trading vs. algorithmic trading: we map the AT components to agents in our
FinAgent orchestration framework, where a memory agent provides the contexts to other agents.

15.97%; however, the equally weighted method with weekly rebalance has a return of 47.46%. For
the BTC trading task backtested from 27/07/2025 to 13/08/2025 (minute data), our agents achieve
a return of 8.39%, volatility of 24.23% and Sharpe ratio of 0.378 with max drawdown of −2.80%,
while the BTC price increased 3.80%.

2 Proposed Framework for FinAgent Orchestration
2.1 Overview
We build a FinAgent orchestration framework structured around multiple agent pools, each orches-
trating a stage (data, alpha, risk, portfolio, execution) so that the system runs end-to-end from raw
data to trading orders. We use several LLM models (e.g., GPT-4o [18, 17], Llama3 [5], FinGPT
[13]) to power different agents. Data agents pull from multiple sources (e.g., Polygon and yfinance)
[1, 23]. We compare coverage, consistency, and delay across sources and keep the better ones; we
then align time and symbols, clean errors and gaps, and form simple features [12, 28]. The cleaned
data is fed into alpha and risk agents. Alpha agents propose signal structures, while tool-based
modules compute the numerical signals, and risk agents compute exposures and limits [24, 3, 9].
We check signals with different metrics (e.g., rank-IC), rolling tests, and a walk-forward backtest
[12, 9, 28].Signal diagnostics (e.g., rank-IC) are computed by tool modules and never exposed to
LLMs. Approved signals are fed into portfolio agents.

We backtest long-only and long-short rules under capital and turnover constraints [9, 3]. The system
keeps only signals, risk rules, and portfolios that pass these checks [26, 11]. Next, we run simulated
or live trading and adjust settings by market. Evaluation and attribution agents verify equity curves,
drawdowns, contributions, and write a full log [26, 11]. The planner and the orchestrator use these
logs to update the plan for the next loop, while avoiding any use of evaluation-window outcomes in
agent prompts. And the memory module keeps the state for reuse [31, 30, 32].

2.2 Control Messages and Agents’ Communications
Control Messages. All agent pools are controlled by the orchestrator through MCP. The orchestrator
sends small control messages that describe the task (node type, task id, declared inputs with schemas,
policy flags, timeout, retry budget) and waits for a reply (acknowledgement, status, logs, artifact ids);
it also tracks health with heartbeats and monitors completion until the tasks finish [15, 14, 26, 11].
MCP exposes each agent pool as a tool-like endpoint with a unified requestresponse schema.[15, 14].
Inside a pool, a manager agent breaks a task into subtasks and assigns them to subordinate agents
for cooperative execution; partial results are merged and returned upstream [10, 25].

Agents’ communications. After a task is issued, each agent pool uses A2A to talk with the memory
agent to read prior context and to upload logs and key results, so that state and rationale persist
across runs [31, 30, 26, 11]. Memory stores only structural summaries, not evaluation-window
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Table 1: Comparison of trading performance. Arrows indicate: ↑=higher is better; ↓=lower is better
(for Max Drawdown, less negative is better). B&H denotes a Buy & Hold strategy, where other
ETFs are purchased at the start and held for the entire evaluation period. EW refers to an equally
weighted portfolio constructed across all selected stocks or assets. Sharpe ratios are computed from
daily/weekly returns with Rf = 0 due to short evaluation horizons. MDD: maximum drawdown.

Metric Ours SPY QQQ IWM VTI EW BTC
(Ours)

BTC
(B&H)

Total Return ↑ 20.42% 16.60% 21.59% 11.45% 16.29% 47.46% 8.39% 3.80%
Annual Return ↑ 31.08% 25.07% 32.94% 17.10% 24.59% 76.07% – –
Volatility ↓ 11.83% 13.49% 18.38% 21.61% 13.72% 22.54% 24.23% 25.82%
Sharpe Ratio ↑ 2.63 1.86 1.79 0.79 1.79 3.37 0.378 0.170
MDD (%) ↑ -3.59 -8.89 -14.13 -11.60 -9.06 -16.21 -2.80 -5.26

labels. Within a pool, agents of the same or different types also coordinate over A2A to complete
the task; messages use simple types (ask, tell, propose, confirm) with role tags and context ids,
following standard agent communication patterns [6, 34]. Agents share progress at fixed intervals;
if a collaborator fails, a peer can take over or the orchestrator can reassign the job. All peer exchanges
are time-stamped and stored in memory for replay and audit [31, 30].

3 Homegrown Trading Examples
3.1 Stock Trading and Crypto Trading Tasks
Stock backtesting pipeline. We employ a unified plan graph and interface; only data sources, hori-
zons, and scheduling change. For stocks, data agents fetch hourly bars from Polygon and yfinance,
dedupe and align calendars, correct anomalies, and compute baseline features (returns, momentum,
volatility, volume ratios) [1, 23, 12, 28]. Following our prompt-design constraints, the Alpha Agents
propose factor structures based only on published literature and do not access any evaluation-window
data. All numerical signal construction and return mapping are handled by tool-based modules. Risk
agents compute exposures (market, sector, name) and enforce constraints (concentration, volatility,
drawdown). Portfolio agents test long-only and longshort rules under capital and turnover limits;
execution translates weights to orders with slippage/transaction cost models and reconciles fills.
Evaluation runs walk-forward backtesting, attribution, and metric aggregation using the same plan
graph, while keeping realized returns and performance metrics hidden from LLM agents [24, 3, 9].
Crypto backtesting pipeline. The BTC pipeline reuses the same plan graph and message schema,
but with minute-level bars and intraday prompts. Data agents ingest minute bars from Polygon
[1], dedupe and align timestamps, and aggregate features on a decision clock. Following the same
prompt-design rules, the Alpha Agents propose short-horizon microstructure factor structures (or-
der flow imbalance, spread, volume spikes) based only on prior literature and do not access any
evaluation-window data. All numerical feature transformations and signal computations are carried
out by tool-based modules. Risk agents impose stricter caps on realized volatility, position size, and
drawdown, and apply drift or volatility gates before execution. Portfolio sizing follows a long-flat
regime with turnover control. Execution sends orders only when all gates pass and logs fills con-
sidering latency. Evaluation aggregates results to daily metrics (volatility, Sharpe, drawdown) while
keeping realized returns and performance outcomes hidden from LLM agents, maintaining the same
data path as the stock pipeline [12, 26, 11].

3.2 Backtesting Performance
Experimental setup. We run one orchestration pipeline across stocks and BTC. The initial assets
are all $100,000, and transactions are conducted in units of total dollar amount. The plan graph is
similar, while schedules and rebalancing methods differ by markets. For stocks we backtest on a
static seven-stock universe (AAPL, MSFT, GOOGL, JPM, TSLA, NVDA, META) from 09/2022 to
01/2025 by hourly. We use GPT-4o [18, 17] to survey prior factor studies and to draft feature lists;
in all prompts we restrict materials to published sources and do not expose any test-period market
data, so the LLM cannot leak labels or prices from the backtest window. Baselines are the S&P
500 (SPY), QQQ, IWM, VTI, and an equal-weighted portfolio (weekly rebalance). For BTC we use
minute bars from 05/2025 to 08/2025; positions update every minute, and trades trigger only when
drift and rule gates are met; the baseline is Buy&Hold.
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Figure 2: Seven-stock cumulative returns with the test window from 24/04/2024 to 31/12/2024
(within the 2022–2024 sample, the scrolling training window size is 3 months). The agentic strategy
shows lower volatility and a smaller max drawdown, while the equally-weighted benchmark attains
the highest total return. ETF baselines: SPY, QQQ, IWM, VTI. Metrics are reported in Table 1.
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Figure 3: BTC results (07/27 to 08/13 in 2025, the scrolling window is 7 days). Cumulative returns:
Buy&Hold +3.80%, Ours +8.39%, Excess +4.59%. Excess = Ours − Buy&Hold.

Stocks (multi–stock agentic portfolio). Table 1 and Fig. 2 report that the equally weighted bench-
mark attains the highest total return (47.46%, Sharpe ratio 3.37). Ours delivers total return 20.42%,
the lowest volatility (11.83%) and the smallest max drawdown (−3.59%), with Sharpe ratio 2.63
(ETF range 0.79–1.86). The profile is risk–controlled and consistent with execution gated by the
risk and portfolio pools.

Cryptocurrency (BTC, minute data). Fig. 3 and Table 1 show that, on BTC/USDT, the Buy&Hold
benchmark ends at +3.80% while our strategy finishes at approximately +8.4%. Over this short 17-
day window, the BTC strategy earns about 4.6 percentage points of excess return over Buy-and-Hold,
with lower realized volatility and smaller max drawdown. This mirrors the equity experiment, where
the agentic strategy trades off some total return for tighter risk. (Excess = Ours− Buy&Hold).

4 Conclusion
We proposed an orchestration framework for FinAgents, a paradigm shift from traditional AT system
[24, 3, 9] toward agentic trading. We map the components of the traditional AT system into agents,
with standard agent protocols and a shared memory record for auditability [15, 34, 12, 32, 30, 31,
26, 11]. Using one unified pipeline for stock and BTC tradings, we show a total return over the S&P
500 index and ETFs; on BTC minute data, ours is +8.39% versus Buy&Hold +3.80%.

Future work includes longer horizons and markets, ablations on gating/memory/messaging, adap-
tive planner updates under regime shifts [7], broader information sources for signals [4, 16], and
releasing benchmarks and logs for replication.
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A More Test Details

Crypto backtesting pipeline. The BTC experiment uses the same agent classes and DAG topol-
ogy as the equity pipeline, but runs on minute-level intraday data. Data Agents load raw OHLCV
bars, funding rates, and open interest from Polygon [1], deduplicate timestamps, align to the ex-
change calendar, and build rolling microstructure features on a fixed decision clock (e.g., k-minute
windows). All features are computed only from information available at or before each decision
time; evaluation-window labels, summary statistics, and functions that depend on future data are not
exposed to any agent.

Alpha Agents coordinate signal design. Given the feature schema and prior crypto microstructure
literature, they specify short-horizon factor structures (e.g., order-flow imbalance, bid–ask spread
and depth, volume or volatility spikes, funding-rate or open-interest signals) and issue tool calls to
construct these factors numerically. Alpha Agents do not compute predictions and do not observe
realized returns. Forecasting (directional or return-based) is performed by tool-based ML modules,
such as Ridge or tree ensembles, trained on rolling in-sample windows with adjacent validation
windows under chronological splits.

Risk Agents use tighter constraints than in the equity pipeline to reflect the higher volatility of
BTC. They impose volatility targets, position-size caps, leverage limits, and drawdown thresholds.
Additional drift and short-horizon volatility checks may block trades when intraday moves exceed
predefined bounds. The Risk Agent outputs a single risk-adjusted exposure signal, which is passed
to the Portfolio Agent.

Portfolio Agents map the risk-adjusted signal to long–flat target positions, apply smoothing to
limit turnover, and enforce minimum-change thresholds to avoid small position updates. Execu-
tion Agents simulate intraday order placement using historical best bid/ask and depth snapshots,
accounting for latency, fees, spreads, and partial fills. Orders are submitted only when all checks
from Data, Alpha, Risk, and Portfolio have passed.

A Backtest Orchestrator runs this pipeline in a walk-forward setup, the same as in the equity case.
Each block has a training window for ML tools, a validation window for hyperparameter and stability
checks, and a separate test window used only for paper trading. Evaluation turns test-window trades
into daily metrics such as realized volatility, Sharpe ratio, drawdown, and turnover [12, 26, 11].
Realized returns and performance outcomes are never given to any LLM, matching the data-flow
rules used in the equity pipeline.

B BTC/USDT Trading Strategy

This appendix gives implementation details of the BTC/USDT high-frequency trading strategy used
in our experiments. We summarize the feature design, the prediction model, the training procedure,
and the basic safeguards against data leakage.

B.1 Feature Engineering and Data Preprocessing

We build a feature set with more than 100 inputs that describe price, volume, volatility, and trend at
the 1-minute frequency. Basic price features include smoothed 5-minute returns, 15-minute realized
volatility, 60-minute exponentially weighted moving (EWM) volatility, and the difference between
the mid-price and the volume-weighted average price (VWAP). Technical indicators include relative
strength index (RSI) with windows 14 and 30, MACD (line, signal, and histogram), and Bollinger
Band features such as band position, band width, and simple overbought/oversold flags.

Momentum-related features cover multiple horizons 1/3/5/10/15/30/60/240 minutes. They in-
clude price momentum, trend strength, trend consistency, trend alignment, breakout flags, price ac-
celeration, momentum alignment, trend persistence, and a simple momentum quality score. Volatil-
ity features include proxies for volatility clustering (GARCH-style terms), volatility regime identi-
fiers, within-bar price range, and range expansion signals. Additional features encode support and
resistance levels, mean-reversion signals based on price z-scores, volume statistics, and pricevolume
divergence.
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All raw features are smoothed with an exponentially weighted moving average with decay parameter
α = 0.4. We then apply a RobustScaler transformation to reduce the influence of outliers and heavy
tails. Finally, we remove low-variance features using a variance threshold of 0.01 and keep only the
top 70% of features ranked by model importance. This reduces the number of inputs and makes the
model more stable.

B.2 Model Architecture and Training Methodology

We use an XGBoost regression model to predict the next-minute return rt+1 from a vector of lagged
features xt. The main hyperparameters are: 300 trees, maximum depth 6, learning rate 0.08, sub-
sample rate 0.8, column subsample rate 0.8, ℓ1 regularization 0.01, ℓ2 regularization 0.05, minimum
child weight 1, split penalty (gamma) 0.0, and up to 512 histogram bins.

Training follows a rolling walk-forward scheme. The model is retrained every 24 hours (1,440
minutes) using a minimum training window of 7 days (10,080 minutes), with a prediction horizon
of 1 minute. At each step, historical data are split into a training window and a validation window.
The validation window is used to monitor model performance and to adjust basic signal rules, but
not to tune the strategy on realized test outcomes.

To avoid data leakage, all input features are computed using information up to time t − 1, and the
prediction target is the forward 1-minute return rt+1, with at least a 2-minute gap between feature
timestamps and labels. We use early stopping with a patience of 20 boosting rounds based on
validation loss. At each retraining, we recompute feature importance on the training window and
again keep only the top 70% most informative features for the next model fit.

B.3 Signal Generation and Market Regime Identification

The trading signal combines two parts: a model prediction and simple price-based rules (price ac-
tion). The price-action part uses the following components:

• Short-, medium-, and longer-horizon momentum: a weighted sum of 1-, 5-, and 15-
minute returns with weights 40%, 40%, and 20%. We multiply this sum by 10 so that it has
a similar scale as other components.

• Mean reversion: a weighted sum of 20- and 60-period price deviations from a recent
average (e.g., z-scores), multiplied by 5. This term is large when price moves far away
from its recent level.

• Breakout: a discrete signal with value ±3.0 when price breaks above or below recent highs
or lows.

• Trend following: a term that combines agreement of trends across horizons (trend align-
ment) with trend strength, multiplied by 100 to reflect its importance.

• Momentum acceleration: the change in the 5-minute return from one step to the next,
multiplied by 20.

We mix the model prediction with the price-action signal based on a simple measure of model signal
quality qt (for example, the absolute value of a standardized predicted return). The weight on the
model is

wmodel(qt) =


0.10, qt < 0.05,

0.20, 0.05 ≤ qt < 0.10,

0.40, qt ≥ 0.10,

and the price-action part gets weight 1 − wmodel(qt). When the model signal is weak, we mostly
follow price action; when the model signal is stronger, we give it more weight. We also classify
simple market regimes using trend and volatility measures:

• Strong trend: trends across several horizons point in the same direction more than 75% of
the time, and the trend strength score is above 0.1%.

• Breakout: price moves above or below a recent 20-period high or low.
• Sideways: trend strength is below 0.05% and a ratio of short-horizon to long-horizon

volatility is above 1.2, suggesting choppy but directionless movement.
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• High volatility: short-term volatility is more than 1.5 times long-term volatility.

Each regime uses a different mix of signal components. In strong-trend regimes, we emphasize
momentum and trend signals and scale them by 1.5. In breakout regimes, we emphasize breakout
and momentum-acceleration signals and double the breakout term. In sideways regimes, we put
more weight on mean reversion and momentum and multiply the mean-reversion term by 1.2. In all
other cases, we use a fixed mix of 70% momentum and 30% trend.

B.4 Position Sizing and Risk Management

Position size depends on the market regime we detect. We use a base size factor of 1.8 in strong-
trend regimes, 2.5 in breakout regimes, 0.7 in sideways regimes, and 0.8 in high-volatility regimes.
When the momentum score is higher than 70% of its past values, we increase this base size by up
to 30%. Before trading, we first center and scale the raw signals using median absolute deviation
(MAD), which measures how far values are from the middle, and then apply the hyperbolic tangent
(tanh) function to keep very large values in a reasonable range. Entry thresholds are different in
each regime: we use approximate percentile levels of the signal (45th percentile for trend regimes,
50th for breakout, 35th for sideways, and 40th for mixed regimes). Position limits keep each single
position between 3% and 5% of capital and limit total leverage to 4.0.

Risk control combines fixed limits with rules based on cumulative loss (drawdown). We reduce
positions when realized drawdowns grow: if drawdown goes beyond 1%, 2%, and 3%, we cut
position sizes by 20%, 30%, and 50%, respectively. In addition, we check drawdowns at each step:
if drawdown is above 1.5% or 2.5%, we immediately cut 50% or 75% of the current position. Each
trade has a volatility-based stop-loss centered at −0.8%, scaled between 0.5 and 1.5 times this level
depending on current volatility. A maximum drawdown limit of −3.0% closes all positions when it
is reached. To reduce trading frequency and avoid reacting to very short-lived noise, we smooth the
final trading signal in two steps with exponentially weighted moving averages with decay parameters
α1 = 0.25 and α2 = 0.15. We also use a band of width 0.08 where small changes do not change the
position, and we require a minimum holding time of 8 minutes before reversing or closing positions.

B.5 Backtesting Results and Performance Evaluation

We test the strategy over a 17-day window on BTC/USDT (about 23,500 one-minute observations).
Over this period, the strategy reaches a cumulative return of 8.39%, while a Buy-and-Hold bench-
mark gains 3.80%, so the excess return is +4.59 percentage points. On common risk measures, the
strategy also improves on the benchmark. It has a Sharpe ratio of 0.380 versus 0.168 for Buy-and-
Hold and a Calmar ratio of 166.06 versus 23.30. The maximum drawdown is smaller: −2.80% for
the strategy versus −5.26% for Buy-and-Hold. The annualized volatility is slightly lower at 24.23%
(Buy-and-Hold: 25.82%).

Trading activity is moderate for a high-frequency setting: there are 17 trades in total, or about 1.04
trades per day. The average holding time per trade is 16.07 hours, and the median holding time is
0.65 hours. The win rate is 64.7% (Buy-and-Hold: 58.8%), and the average daily return is 0.48%
(Buy-and-Hold: 0.23%). Over the 17-day test window, the strategy achieves 8.39% cumulative
return versus 3.80% for Buy-and-Hold, with lower volatility and max drawdown.

C Agentic Trading Projects

Table 2 shows that several open-source agent-based trading systems have attracted notable developer
interest. The two multiagent frameworks TradingAgents and AI Hedge Fund have about 24,800 and
42,300 GitHub stars and 4,600 and 7,500 forks, compared with smaller projects such as QuantAgent
(306 stars, 71 forks) and ContestTrade (465 stars, 124 forks). All six projects have recent commits
in late 2025, so they are being maintained rather than left idle.

Projects with more community activity also tend to use more agent-style designs. TradingAgents,
AI Hedge Fund, and ContestTrade all include multiagent analysis in their trading types and expose
orchestration as a clear module; five of the six repositories provide some form of persistent memory.
These higher-usage projects also cover several markets (equities, crypto, and derivatives) and are
released as reusable frameworks or applications rather than single-use examples. Table 2 shows that
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Table 2: Comparative Attributes of Financial Agent Projects. Key: 3 means the attribute is present;
7 means it is not.

Attribute

Quant
Agent
[27]

Alpha
Arena
[2]

Trading
Agents
[26]

AI Hedge
Fund
[22]

Contest
Trade
[33]

Stock
Agent
[8]

Repository Attributes
GitHub Stars 306 549 24800 42300 465 402
GitHub Forks 71 126 4600 7500 124 89
Last Update 11/09/2025 10/20/2025 10/09/2025 10/11/2025 10/13/2025 11/02/2025
License MIT MIT Apache-

2.0
MIT Apache-

2.0
MIT

Project Specifications
Markets Equities,

Forex,
Crypto,
Commodi-
ties

Crypto
(Bitcoin,
Ethereum)

Equities
(Any
Ticker)

Equities
(Any
Ticker)

Equities
(CN, US
Markets)

Equities
(Any
Ticker)

Trading Types Technical
Analysis,
Pattern
Recog-
nition,
Trend
Analysis

Long
Trading,
Paper
Trading

Multi-
Agent
Analysis,
Funda-
mental,
Technical,
Sentiment

Multi-
Agent
Analysis,
Valuation,
Risk Man-
agement

Event-
Driven,
Multi-
Agent
Analysis,
Factor
Portfolio

LLM-
Based
Trading
Simu-
lation,
Real-
World
Events

Agents 4 2-6 6 18 2+ 1
Tech Stack Python

3.10,
conda,
Lang-
Graph

Python,
LangChain,
Streamlit

Python,
LLM,
ReAct

Python,
Poetry,
Type-
Script,
Ollama

Python,
LLM, Re-
act Loop

Python
3.9, conda

Project Type Framework Benchmark Framework Application Framework Application

Agent Capabilities
Memory 3 7 3 3 3 3
Orchestration 3 7 3 3 3 7

several open-source projects with higher community activity already adopt multi-agent designs and
some form of persistent memory.
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D Prompt Design, Context Protocols, and Memory Integration

Data Agent Stocks
Prompt:
You are the Data Agent for US equities. Your task is to fetch, clean, align, and normalize
training-window market data from approved providers (Polygon, yfinance). You may not infer
or reference any future information beyond the requested end date. You may not compute
returns on the evaluation window. Return only cleaned features, metadata, and data-quality
diagnostics.

Context:
role=DataAgent, assetType=equity, frequency="1h", lookbackDays=180

Input:
"symbols":["AAPL","MSFT","GOOGL",...],
"sourceHints":["polygon","yfinance"],
"requiredFields":["open","high","low","close","volume"]

Output (JSON):
{

"cleanedDataRef": "s3://.../stocks_1h_clean.csv",
"featureSummary": {

"missingPct": 0.02, "outlierEvents": 14, "alignedCalendars": true
},
"qualityFlags": {
"latencyChecked": true,
...
}

}

Data Agent BTC
Prompt:
You are the Data Agent for BTC intraday data. Fetch, clean, deduplicate, and timestamp-align
minute-level bars. You may not reference future data. Return training-window features only;
do not compute P&L or returns beyond the provided lookback. BTC data typically comes from
Polygon or Binance public APIs.

Context:
role=DataAgent, assetType=crypto, frequency="1m", lookbackDays=30

Input:
"symbols":["BTCUSDT"],
"sourceHints":["polygon","binance"],
"requiredFields":["open","high","low","close","volume"]

Output (JSON):
{

"cleanedDataRef": "s3://.../btc_1m_clean.csv",
"featureSummary": {

"missingPct": 0.004, "dupTicksRemoved": 182, "timestampAligned": true
},
"qualityFlags": {

"latencyChecked": true,
...

}
}
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Alpha Agent Stocks (Momentum)
Prompt:
You are the Alpha Agent for a daily US equity momentum strategy. Propose factor struc-
tures and signal formulations using only training-window feature summaries and published
academic or industry priors. Do not use any evaluation-window data. Do not tune parameters
based on Sharpe, IC, t-statistics, or any performance metric from the evaluation horizon. All
numerical evaluation and backtesting are delegated to tools. Provide factor intuition, mathe-
matical form, and expected direction only.

Context:
role=AlphaAgent, assetType=equity, horizonDays=5, family="momentum"

Input:
"featureSummary":"returns_20d":"std":0.18,
"returns_60d":"std":0.30,
"universe":["AAPL","MSFT","AMZN", ...],
"regimeHint":"calm"

Output (JSON):
{

"factors": [
{

"name": "mom20_over_60",
"family": "momentum",
"type": "time_series",
"horizonDays": 5,
"lookbackDays": [20, 60],
"formula": "returns_20d - returns_60d",
"requiredInputs": ["returns_20d", "returns_60d"],
"expectedDirection": "positive"

},
{

"name": "cross_sectional_momentum",
"family": "momentum",
"type": "cross_sectional",
"horizonDays": 5,
"lookbackDays": [120],
"formula": "rank(returns_120d)",
"requiredInputs": ["returns_120d"],
"expectedDirection": "positive"

}
],
"notes": {

"usesTrainingWindowOnly": true,
"noSharpeTuning": true,
"leakageChecked": true

}
}
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Alpha Agent BTC (Microstructure)
Prompt:
You are the Alpha Agent for BTCUSD intraday trading. Propose microstructure-style factors
(order-flow imbalance, realized volatility, spread, volume spikes) using only training-window
summaries and tool-provided statistics. Do not use test labels, realized P&L, or backtest met-
rics. Do not search for the best Sharpe factor. Output factor definitions and expected direction
only.

Context:
role=AlphaAgent, assetType=crypto, horizonMinutes=30,
family="microstructure"

Input (example):
featureSummary: {

"ret_5m": {"std": 0.45},
"ret_30m": {"std": 0.80},
"of_imbalance_1m": {"mean": 0.02},
"spread_bp_1m": {"mean": 3.1},
...

}
regimeHint: "highVol"

Output (JSON example):
{

"factors": [
{

"name": "short_term_momentum_5m",
"family": "momentum",
"type": "time_series",
"horizonMinutes": 15,
"lookbackMinutes": 5,
"formula": "ret_5m",
"requiredInputs": ["ret_5m"],
"expectedDirection": "positive"

},
{

"name": "order_flow_imbalance_5m",
"family": "microstructure",
"type": "time_series",
"horizonMinutes": 15,
"lookbackMinutes": 5,
"formula": "buy_volume_5m - sell_volume_5m",
"requiredInputs": ["buy_volume_5m", "sell_volume_5m"],
"expectedDirection": "positive"

}
],
"notes": {

"usesTrainingWindowOnly": true,
"noSharpeTuning": true

}
}
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Risk Agent Stocks
Prompt:
You are the Risk Agent for an equity portfolio. Interpret exposures and volatility signals using
tool-provided covariance matrices and factor models. You may not access evaluation-window
returns or future prices. You may not modify alpha signals directly; only produce risk reports
and binary gates.

Context:
role=RiskAgent, assetType=equity, targetVol=0.15, maxLeverage=1.5

Input:
"alphaRef":"s3://.../us_alpha.parquet",
"sigmaRef":"s3://.../us_Sigma.parquet",
"exposureRef":"s3://.../us_B.parquet",
"constraints":"sectorLimit":0.30,"singleNameLimit":0.05

Output (JSON):
{

"riskReport": {
"forecastVol": 0.13,
"grossLeverage": 1.20,
"netBeta": 0.02,
"sectorBreaches": []

},
"gates": {

"vol_ok": true,
"beta_ok": true,
"sector_ok": true,
"leakageChecked": true

}
}

Risk Agent BTC
Prompt:
You are the Risk Agent for BTC intraday strategies. Using realized-vol and drawdown esti-
mates from tools, check whether the proposed exposure satisfies volatility, position-size, and
intraday drawdown limits. You may not compute P&L or see evaluation-window returns.

Context:
role=RiskAgent, assetType=crypto, targetVol=0.80, maxPositionPct=0.8

Input:
"positionPct":0.60,
"realizedVolEstimate":0.70,
"intradayDrawdownEstimate":0.18

Output (JSON):
{

"riskReport": {
"realizedVolEstimate": 0.70,
"intradayDrawdownEstimate": 0.18

},
"gates": {

"vol_ok": true,
"dd_ok": true,
"position_ok": true,
"leakageChecked": true

}
}
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Portfolio Agent Stocks
Prompt:
You are the Portfolio Agent for US equities. Combine admissible alpha signals and risk diag-
nostics into portfolio weights under the constraints provided by the orchestration plan. Do not
perform backtests or access realized returns. All numerical optimization is delegated to tools
(e.g., convex solvers). You only specify the optimization problem and return the resulting
weight vector and metadata.

Context:
role=PortfolioAgent, assetType=equity, turnoverLimit=0.20, tcModel="linear"

Input:
"alphaRef":"s3://.../us_alpha.parquet",
"riskGates":"vol_ok":true,"beta_ok":true,
"capital":100000

Output (JSON):
{

"weights": {
"AAPL": 0.12,
"MSFT": 0.10,
"GOOGL": 0.08,
"others": "..."

},
"exposure": {

"gross": 1.05,
"net": 0.15

},
"notes": {
"turnoverRespected": true, "riskGatesPassed": true
}

}

Portfolio Agent BTC
Prompt:
You are the Portfolio Agent for BTC intraday trading. Adjust BTC exposure based on admissi-
ble microstructure signals and risk gates. No returns or P&L may be accessed. Output a single
BTC weight or position percentage.

Context:
role=PortfolioAgent, assetType=crypto, turnoverLimit=0.50

Input:
"signalRef":"s3://.../btc_signal.parquet",
"riskGates":"vol_ok":true,"dd_ok":true,
"capital":100000

Output (JSON):
{

"positionPct": 0.55,
"exposure": {

"gross": 0.55,
"net": 0.55

},
"notes": {

"turnoverRespected": true, "riskGatesPassed": true, ...
}

}
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Backtest Agent Stocks
Prompt:
You are the Backtest and Evaluation Agent for a daily equity strategy. Using stored signals
and executed orders, compute portfolio-level metrics over the evaluation window. You are the
only component that touches evaluation-window returns. Do not expose per-timestamp labels
or raw P&L to any LLM agent; return only aggregated metrics and diagnostics.

Context:
role=BacktestAgent, assetType=equity, evalWindow="2024-05-01:2024-12-31"

Input:
"ordersRef":"s3://.../orders.parquet",
"priceRef":"s3://.../prices.parquet",
"metrics":["vol","sharpe","maxdd","turnover"]

Output (JSON):
{

"metrics": {
"vol": 0.1183,
"sharpe": 2.63,
"maxDrawdown": -0.0359,
"turnover": 0.21

},
"notes": {

"noTimestampPnL": true,
"leakageChecked": true

}
}

Backtest Agent BTC
Prompt:
You are the Backtest Agent for BTC minute-level strategies. Evaluate the strategy over the
given intraday evaluation window. No timestamp-level P&L or trade-by-trade returns may be
exposed; only aggregated metrics are allowed.

Context:
role=BacktestAgent, assetType=crypto, evalWindow="2025-07-27:2025-08-13"

Input:
"ordersRef":"s3://.../btc_orders.parquet",
"priceRef":"s3://.../btc_prices.parquet",
"metrics":["vol","sharpe","maxdd"]

Output (JSON):
{

"metrics": {
"vol": 0.412,
"sharpe": 0.174,
"maxDrawdown": -0.0091

},
"notes": {

"noTimestampPnL": true,
"leakageChecked": true

}
}
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E Context Protocols

The orchestration system uses structured context messages to pass information between agents. All
contexts are serialized as JSON and follow the schema

C = {task_id, agent_role, run_mode, time_window, universe, inputs, tool_outputs, diagnostics, uuid}.
(1)

Here run_mode ∈ {train, test, live} and time_window records the lookback and horizon for the
current step.

Each context message excludes:

• any raw price or return series from the test period;
• any labels or targets from future timestamps;
• any optimization objective that is tied directly to the evaluation window (for example,

Sharpe ratio on the test set).

Numerical arrays are not sent directly. Instead, they are stored in data files or tables and referred to
by identifiers (for example, data paths or dataset IDs). Only the Backtest Agent is allowed to load
data that belong to the evaluation window. Contexts are written through the Memory Agent together
with their uuid so that runs can be reproduced, checked, and replayed later.

F Memory Integration and UUID Protocols

The Memory Agent stores long-term states indexed by deterministic UUIDs. Each UUID is com-
puted as a cryptographic hash of the agent role, task description, parameter configuration, and times-
tamp:

UUID = SHA256(role∥task∥params∥time). (2)
This connects each memory record to a specific prompt and run setup, which helps with reproducibil-
ity and safety.

The UUID design supports:

• immutability: once written, memory entries are referred to only by their hash ID;
• identity matching: runs with the same configuration can look up compatible past states

across orchestration cycles;
• safe retrieval: downstream agents query by UUID and receive only summarized metadata,

not raw test-set values;
• isolation: training and evaluation memories use separate UUID namespaces to avoid mix-

ing information.

A typical stored memory entry has the form

M = {uuid, agent_role, plan_step, features_hash,metrics_summary, timestamp}, (3)

where features_hash is a non-invertible checksum of the input data and metrics_summary con-
tains only aggregated statistics (for example, average IC by bucket or gate pass rates). Memory
entries never store raw prices, raw returns, or full P&L paths, so they cannot be used to reconstruct
evaluation-period labels.

G Leakage Prevention Summary

Across all agents, prompts and context protocols enforce a clear separation between LLM-based
reasoning and numerical computation. LLM agents never receive evaluation-window returns, prices,
or labels. Optimization and backtesting are implemented as deterministic tools behind the orchestra-
tion layer, and their outputs are filtered before any feedback is used in LLM prompts. UUID-based
memory records make it easy to tell which run a record belongs to and to repeat the same run later,
while storing only simple summaries that cannot be turned back into raw test data. These design
choices lower the chance of data leakage and help keep our agentic trading experiments valid under
walk-forward evaluation.
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