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ABSTRACT

How to align large language models (LLMs) with user preferences from a static
general dataset has been frequently studied. However, user preferences are usu-
ally personalized, changing, and diverse. This leads to the problem that the actual
user preferences often do not coincide with those trained by the model developers
in the practical use of LLMs. Since we cannot collect enough data and retrain
for every demand, researching efficient real-time preference adaptation methods
based on the backbone LLMs during test time is important. To this end, we in-
troduce Amulet, a novel, training-free framework that formulates the decoding
process of every token as a separate online learning problem with the guidance
of simple user-provided prompts, thus enabling real-time optimization to satisfy
users’ personalized preferences. To reduce the computational cost brought by this
optimization process for each token, we additionally provide a closed-form so-
lution for each iteration step of the optimization process, thereby reducing the
computational time cost to a negligible level. The detailed experimental results
demonstrate that Amulet can achieve significant performance improvements in
rich settings with combinations of different LLMs, datasets, and user preferences,
while maintaining acceptable computational efficiency.

1 INTRODUCTION

The success of large language models (LLMs) has led to their widespread application in scenarios
such as customer service (Raiaan et al., 2024), content creation (Hadi et al., 2024), and personal
assistance (Chen et al., 2024), emphasizing the importance of maintaining alignment with human
preferences (Ji et al., 2023; Anwar et al., 2024). However, existing LLM alignment researches often
focus on aligning with user preferences from a static general dataset, neglecting personalized and
changing preferences. This leads to challenges in ensuring that the alignment goals designed by
model developers adequately address users’ evolving needs in real-time post-deployment scenarios
(Liao & Xiao, 2023; Lazar & Nelson, 2023; Zhang et al., 2024; Corrêa, 2024).

One straightforward approach is to recollect data for personalized user preferences and use meth-
ods such as reinforcement learning from human feedback (RLHF) (Christiano et al., 2017; Ouyang
et al., 2022) or direct preference optimization (DPO) (Rafailov et al., 2024) for further fine-tuning.
However, these approaches not only face the difficulty in the requirements engineering problem of
specifying users’ real needs (Pohl, 1996; Mechergui & Sreedharan, 2024), but also from the fact
that users’ preferences continuously change with culture, community, context, scenario, and time
(MacIntyre, 2013; Eckersley, 2018; Turchin, 2019). If the requirements analysis, data collection,
and subsequent fine-tuning processes are repeated each time, it would result in a significant cost
burden. Just as shown in the (a) and (b) parts of the Figure 1, this phenomenon leads to a “last mile”
problem (Boysen et al., 2021) in existing alignment research.

To solve this problem, we believe a lightweight preference adaptation method implemented at the
LLM test time is needed. Several existing works have already made some attempts in this regard.
Assisted inference methods focus on training weak models to guide strong model inference in dif-
ferent aspects, including in natural language form (Ji et al., 2024; Bai et al., 2024), interpolation
form (Liu et al., 2024b; Zheng et al., 2024), sampling form (Wu et al., 2024; Snell et al., 2024), rep-
resentation form (Kong et al., 2024), and logits form (Mitchell et al., 2023; Liu et al., 2024a). RAIN
(Li et al., 2023b) and URIAL (Lin et al., 2023) mainly focus on self-distillation, allowing the model
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Figure 1: An illustration of our Amulet framework and its background. The figure is intersected
by an axis, with each node on the axis displaying a different distribution that shows the constantly
changing user personalized preferences due to factors like time, value, need, and context, as illus-
trated by the part (a). The part (b) shows that existing methods mostly consider aligning LLMs with
general preferences from a static dataset, which may result in misalignment in dynamically person-
alized scenarios. In the part (c), we have enlarged one of the preference nodes to show the processing
of our Amulet framework. We formulate the decoding process of every token as a separate online
learning problem, and further adapt the backbone LLMs to align with the current user preference
through a real-time optimization process with the guidance of user-provided prompts. The red token
means the current processing token, which will be the condition for the next token prediction.

to refine the tokens that better match user preferences continuously. Nevertheless, the efficiency
of these methods is still not at an acceptable level for either the training of a weak model or the
complex inference. Linear Alignment (LA) (Gao et al., 2024) proposes a linear approximation pref-
erence update method that achieves acceptable computational efficiency. However, it influences the
inference process in only a basic manner, falling short of better approximating users’ personalized
preferences.

Therefore, in this paper, we suggest a new perspective that the problem can be solved by performing
further online adaptation at test time based on the backbone LLMs. To this end, as illustrated in
the (c) part of the Figure 1, we introduce Amulet (reAlignMent dUring test time for personaLized
prEference adapTation), a novel, training-free framework that formulates the decoding process of
every token as an independent online learning problem with the guidance of simple user-provided
prompts, thus enabling real-time optimization to satisfy user preferences. Specifically, unlike meth-
ods such as RLHF (Christiano et al., 2017; Ouyang et al., 2022) that treat the entire decoding process
as a Markov Decision Process (MDP) aiming to maximize cumulative reward, we consider iter-
atively optimizing the already-generated policies for each token’s decoding process separately for
more comprehensive preference approximation. We follow the idea of follow-the-regularized-leader
(FTRL) (Hazan et al., 2016) to carry out the specific optimization process, and further improve the
optimization process more stable in the LLM setting by introducing the proximal regularizer to the
vanilla FTRL process (McMahan, 2011). We can then use the user-provided simple prompts to sim-
ulate the optimization direction by comparing whether there is a difference between policies given
the prompts or not (Gao et al., 2024). Since this process may consume a significant amount of
computational cost, we further give a closed-form solution for each iteration, thereby reducing its
computational and time costs to negligible levels.

In summary, our contributions are three-fold. Firstly, we suggest a new perspective that the gener-
ation of each token at test time can be modeled as an independent online optimization problem and
provide the Amulet framework. This method can not only align with personalized and changing user
preferences based on the backbone LLM policies but also does not require additional training and
fine-tuning. To our knowledge, we are the first study to introduce the optimization process of online
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learning into the work of test time preference alignment. Secondly, for each round of optimization
iteration, we further provide its closed-form solution, thereby reducing the computational cost of
iterative calculations to a negligible level. Lastly, we carried out comprehensive experiments to
validate the efficacy of our framework across diverse settings, incorporating various combinations
of LLMs, test datasets, and user preference dimensions. The findings reveal that our approach can
achieve significant performance improvements (a win rate of 81% among the average of all datasets,
100% for the best LLM, and 93.8% for the best preference) and surpass all baseline methods in the
majority of scenarios, thus providing a final “amulet” for aligning personalized preferences.

2 RELATED WORK

In this section, we will introduce the background of the related research. The existing alignment
methods for LLMs can generally be divided into three categories: training time alignment methods,
assisted inference methods, and tuning-free methods. We will elaborate on them separately below.

Alignment at Training Time. This category is currently the most mainstream way of alignment,
mainly focusing on first training the model itself on datasets, and then freezing the parameters for in-
ference. There are many well-known algorithms, including RLHF (Christiano et al., 2017; Ouyang
et al., 2022), RLAIF (Lee et al., 2023), CAI (Bai et al., 2022), and DPO (Rafailov et al., 2024).
In addition, there are some newer methods. ORPO (Hong et al., 2024) integrates the loss function
from the supervised fine-tuning (SFT) process into the DPO optimization objective by introduc-
ing the concept of odds ratio, thereby merging these two processes into one. SimPO (Meng et al.,
2024) eliminates the dependence on a reference policy in DPO by introducing the sequence average
log probability as an implicit reward. Quiet-STaR (Zelikman et al., 2024) enhances generalization
across more reasoning tasks by training the model’s reasoning and thinking abilities. Although these
methods can achieve good results in capability metrics, they have to recollect enough data and per-
form further training and fine-tuning, making them unable to meet users’ changing and personalized
requirements in specific scenarios.

Assisted Inference Methods. This class of methods typically involves training a weak model
(usually a small model or a pre-trained model) to enhance the alignment of a strong model during
inference time, which has various implementation forms. Aligner (Ji et al., 2024) and Alignment
via Bayesian Persuasion (Bai et al., 2024) use weak generated natural language to influence strong
model behavior. ExPO (Zheng et al., 2024) adopts an interpolation approach, linearly combining
the parameters of the small model with those of the large model to achieve alignment. Improved
sampling strategies (Wu et al., 2024; Snell et al., 2024), from the perspective of optimal sampling,
allow the strong model to generate higher-quality text under the guidance of a smaller reward model.
EFT (Mitchell et al., 2023), DeRa (Liu et al., 2024b), and proxy-tuning (Liu et al., 2024a) integrate
the logits of the aligned small model and the unaligned large model to guide the decoding process.
RE-CONTROL (Kong et al., 2024) enhances the alignment ability of the large model by training
a value model to edit the information representation of the large model during the decoding pro-
cess. These methods reduce computation and time costs by training smaller models, but they are
essentially the same as training-time methods and still fail to address the issue of changing and
personalized preferences.

Tuning-free Methods. Methods in this class usually consider further optimization at inference
time. RAIN (Li et al., 2023b) uses the LLM itself as a reward model to perform inference and roll-
back correction during the inference phase. URIAL (Lin et al., 2023) designs an inference approach
by comparing the differences before and after model alignment, allowing the model to continuously
correct and reinforce tokens that better match user preferences. However, both of these methods still
require a significant amount of computational time and resources during inference. LA (Gao et al.,
2024) proposes a method that compares the distribution changes caused by user preference prompts
on the original model and linearly updates the original model’s logits, which achieves acceptable
computational efficiency. However, it influences the inference process in only a basic manner, falling
short of better approximating users’ preferences.

3 METHOD

In this section, we will formally introduce the Amulet framework. We begin by introducing our task
settings, followed by reviewing online learning and the FTRL algorithm, and finally, we introduce
the specific definition of our method and its closed-form solution.
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3.1 TASK SETTINGS

Unlike most existing methods which view the decoding process of LLMs as an MDP aiming to
maximize cumulative reward, our approach focuses on online optimization for the generation of
each token at every timestep, thus enabling real-time optimization to satisfy user preferences.

For LLMs, the generation process of each token can be seen as a policy, representing the distribution
of each token at the current moment. Typically, this policy is related to the model’s parameters,
but if we use only the already generated policy and perform post-processing on it, then it can be
made independent of them. Therefore, our optimization target is the already generated policies for
generating each token in the sequence.

Thus for the generation of each token, we need to find the following optimal policy π∗(a):

π∗(a) = argmax
π∈Π

Ea∼π(·|s,s0)r(a|s0, s), (1)

where s0 represents the initial prompt, s represents the sequence that has already been generated,
a ∈ A denotes the optional token in the token spaceA, and r denotes the latent reward function that
reflects the real current user preference.

3.2 FOLLOW-THE-REGULARIZED-LEADER ALGORITHM

We first briefly introduce online learning, which involves the training process of a model as it con-
tinuously receives information. Unlike common offline learning, it cannot access all the training
data at once but can update iteratively, reflecting the impact of new situations in real time. This
method allows the model to adapt to changing scenarios as well as explore and utilize unknown data
distributions more effectively.

We will then review the FTRL algorithm, which is a frequently studied online learning framework
(McMahan, 2011; Abe et al., 2022). Its core feature is the introduction of a strongly convex regular-
izer to the fictitious play process, which enhances the algorithm’s stability and convergence (Hazan
et al., 2016). Typically, the optimization process of FTRL for π at the (t + 1)-th iteration can be
expressed by the following iterative formula (Jacob et al., 2022; 2023):

πt+1(a) = argmax
π∈Π

[
t∑
i=1

Ui(πi(a))−
ϕ(πt(a))

η

]
. (2)

Because of the inability to obtain the user’s true reward function, in each iteration t, we need an
approximate utility function Ut to continuously provide an approximation of the user preferences
for iteratively developing the policy that best meets user needs. The first item in the above formula
is the fictitious play process, which aims to reduce the regret between the current policy and the
historical expected policy, and the second one is the regularizer, η > 0 is the learning rate. Now,
for each token’s generation, we can adapt this iteration to post-process the policy and further get the
optimal one.

3.3 AMULET FRAMEWORK

Based on the above introduction, we can see that for LLMs, the process of decoding each token
at test time can be based on a customized utility function to achieve further optimization. Since
we provide a general framework that is unrelated to the utility, the utility function only needs to
reflect the relative quality of each token, and its selection can be very diverse, including methods
based on inductive bias (Kadavath et al., 2022; Gao et al., 2024), human interaction (Mechergui &
Sreedharan, 2024; Wang et al., 2024b), and environment feedback (Sutton, 2018; Le et al., 2022).
Drawing from Contrastive Decoding (Li et al., 2022) and LA (Gao et al., 2024), we define the utility
function to empirically simulate the optimization direction at time t here as:

ut(a) := α(log πt(a)− log πbase(a)). (3)
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Algorithm 1 Decoding Process with Amulet

Require: LLM for generating policy; basic prompt pbase; preference prompt ppref; current generated
sequence s, iteration number T ; maximum new token numberM ; parameters α, λ, and η; blank
string s

1: repeat
2: generate π1(a) = PLLM(a|pbase, ppref, s), πbase(a) = PLLM(a|pbase, s) with the given LLM
3: for t = 1, 2, . . . , T − 1 do
4: calculate ut(πt(a)) := α(log πt(a)− log πbase(a))
5: update the policy with the iteration given by Equation 6
6: end for
7: get the optimized policy π∗(a)← πT (a)
8: sample the generated token a with π∗(a)
9: update the current sequence s← s+ a

10: until the length of s reaches M or generation is ended
11: return the full generation sequence s

Unlike recommendation systems that need to infer user preferences, in our real-time setting, users
directly provide explicit preferences in the form of prompts that reflect their current needs. Here,
we define pbase as the user’s base prompts (e.g. questions), and ppref represents the user’s specific
real-time preferences prompts. PLLM(a|s) denotes the probability of generating each token a by
the LLM conditioned on the prompt s at the current timestep. We then define the policy being
optimized at the current moment π1(a) = PLLM(a|pbase, ppref, s) to simultaneously include pbase,
ppref, and the sequence of tokens s generated at the current timestep. The base policy πbase(a) =
PLLM(a|pbase, s) is a baseline policy that does not include user preferences, and α is an adjustable
parameter. Therefore, the intuition of this utility is to gradually amplify the difference brought by
the preference prompt ppref over the base prompt pbase through a better policy during the iteration
process and to further optimize in this direction for the current LLM, until the preference information
it brings is fully exploited.

To avoid unreasonable optimization results, and to accelerate the convergence rate, we further intro-
duce a KL regularization term into the utility function, which constrains the current policy π(a) not
to deviate too far from the initial one π1(a), and the ratio is adjusted by a controllable parameter λ.
We define ut(π) = ⟨ut, π⟩, and therefore we can update the utility function as:

Ut(π) := ut(π)− λDKL(π∥π1). (4)

Typically, vanilla FTRL adopts an entropy item as the regularization term (Jacob et al., 2022). To
make the optimization more stable, we introduce the KL term between π(a) and πt(a) as the prox-
imal convex regularizer. Subsequently, we will take Equation 4 into Equation 2, and we will obtain
an FTRL-proximal-like (McMahan, 2011) iteration dynamics :

πt+1 = argmax
π∈Π

[
t∑
i=1

Ui(π)−
1

η
DKL(π∥πt)

]
. (5)

The dynamics, comprehensively exploiting the preference approximation brought about by the util-
ity function, allows the policy to converge in the last iteration with a linear convergence rate. De-
tailed proofs are provided in Appendix A.2.

Next, we need to decide how to optimize this objective. Since our method requires a considerable
number of optimization iterations for the generation of each token, it obviously consumes a lot of
time and computational cost. Therefore, we further provide a closed-form solution for Equation 5,
thereby reducing the computational cost of this iterative optimization to an almost negligible level.
Proposition 3.1. The Equation 5 has a closed-form solution that is given by:

πt+1(a) ∝ exp

(
1

tλη + 1

(
η

t∑
i=1

ui(a) + ληt log π1(a) + log πt(a)

))
. (6)
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A complete derivation is provided in the Appendix A.1. We can follow this closed-form iteration
to reach the optimal policy. If the number of iterations is fixed, the time complexity of our method
is at the order of O(n), where n is the number of generated tokens. More computational efficiency
details are provided in Appendix B.5. We have further provided the pseudo code for showing the
details of the full decoding process with Amulet in Algorithm 1.

4 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate Amulet with various combinations
of LLMs, datasets, and user preferences. Our results demonstrate that our framework significantly
improves LLMs’ alignment performance, indicating its great potential for real-time user preference
adaptation.

4.1 EXPERIMENT SETTINGS

We will first introduce the specific experimental setup, including the evaluated models and datasets,
the baseline methods, and the evaluation metrics.

Evaluated Models and Datasets. In this paper, we evaluate four popular open-source models:
Llama-2-7B-Chat (Touvron et al., 2023), Llama-3.1-8B-Instruct (Dubey et al., 2024), QWen2-7B-
Instruct (Yang et al., 2024a;b), and Mistral-7B-Instruct-v0.2 (Jiang et al., 2023). These models
were chosen for their diversity in architecture and performance characteristics, enabling a thorough
assessment of our framework across different model types.

Since Amulet is designed without additional training or fine-tuning, we use the collected data solely
for evaluation purposes. We construct four datasets for our experiments:

• HelpSteer (Wang et al., 2023) is a QA dataset aimed at evaluating the model’s capability to follow
instructions across five dimensions, including informativeness and factuality. We extracted the
question part, focusing on single-sentence questions to create a dataset of 1,236 testing instances.

• UltraFeedback (Cui et al., 2023) is a comprehensive, high-quality AI feedback dataset designed
to surpass traditional human feedback. From UltraFeedback, we selected two high-quality QA
datasets: Truthful QA (Lin et al., 2021), which includes 811 testing problems, and UltraChat
(Ding et al., 2023), from which we applied similar extraction and filtering as with HelpSteer,
resulting in 3,845 testing problems.

• Personal Preference Eval (Personal) (Gao et al., 2024) is used to evaluate user preference align-
ment. We utilized the original dataset containing 548 testing instances.

For these datasets, we only use their questions, which is more similar to real-world applications
where LLMs need to provide answers that align with users’ real-time preferences for various ques-
tions. The extracted testing problems from these datasets serve as the base prompts for our experi-
ment, providing a diverse range of user interactions to thoroughly evaluate the performance of the
Amulet framework.

Baseline Methods. We compare the performance of our method with several baselines:

• Base refers to the original LLM using only the base prompt, which serves as the default response
generation approach without any additional alignment or preference adjustment.

• Preference (Pref) involves the original LLM augmented with preference prompts for prompt
engineering. The preference prompts are manually designed to reflect user preferences, serving as
a way to enhance alignment without modifying the underlying model architecture.

• Linear Alignment (LA) (Gao et al., 2024) is a token-level test-time alignment method that pre-
dicts the optimization direction of DPO and performs a linear update on the original policy. This
is currently the state-of-the-art (SOTA) method for test-time personalized preference alignment.

Evaluation Metrics. Since our task aims to align open-ended user preferences, finding a targeted
preference dataset to train the corresponding reward model as the metric is difficult. To address this

6
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Table 1: Results of our Amulet framework and all the other baselines on various combination settings
of LLMs, user preferences, and datasets. All results are the arithmetic averages of the reward model
scores on each dataset. The bold text in the table indicates the best performance under that setting.
The colors in the table represent the percentage improvement of that method in the current setting
relative to the Base method, with more positive growth bluer and more negative growth redder.

Model Dataset Creative Verbose Concise Uplifting
Base Pref LA Amulet (Ours) Base Pref LA Amulet (Ours) Base Pref LA Amulet (Ours) Base Pref LA Amulet (Ours)

Mistral-7B

HelpSteer 0.30 0.30 0.36 0.39 0.27 0.27 0.31 0.30 0.41 0.42 0.52 0.52 0.33 0.33 0.40 0.41

Personal 0.34 0.34 0.38 0.42 0.30 0.30 0.30 0.30 0.47 0.49 0.54 0.53 0.41 0.42 0.45 0.46

Truthful QA 0.32 0.33 0.38 0.41 0.30 0.31 0.33 0.32 0.41 0.44 0.51 0.49 0.36 0.38 0.47 0.47

UltraChat 0.34 0.35 0.36 0.38 0.31 0.31 0.32 0.31 0.45 0.46 0.49 0.51 0.38 0.39 0.41 0.42

Average 0.32 0.33 0.37 0.40 0.30 0.30 0.32 0.31 0.43 0.45 0.52 0.51 0.37 0.38 0.43 0.44

Qwen2-7B

HelpSteer 0.34 0.34 0.35 0.36 0.31 0.32 0.33 0.30 0.43 0.48 0.57 0.59 0.38 0.38 0.39 0.41

Personal 0.33 0.34 0.37 0.41 0.31 0.31 0.30 0.28 0.41 0.48 0.53 0.54 0.40 0.42 0.43 0.42

Truthful QA 0.32 0.33 0.34 0.36 0.30 0.31 0.33 0.32 0.41 0.46 0.54 0.51 0.36 0.38 0.44 0.45

UltraChat 0.34 0.34 0.35 0.36 0.31 0.32 0.32 0.31 0.40 0.45 0.54 0.57 0.38 0.39 0.40 0.39

Average 0.33 0.34 0.35 0.37 0.31 0.32 0.32 0.30 0.41 0.47 0.55 0.55 0.38 0.39 0.42 0.42

Llama-3.1-8B

HelpSteer 0.33 0.34 0.44 0.50 0.30 0.31 0.36 0.41 0.40 0.43 0.53 0.57 0.36 0.37 0.45 0.50

Personal 0.35 0.36 0.46 0.62 0.31 0.31 0.35 0.49 0.39 0.44 0.53 0.67 0.42 0.44 0.49 0.61

Truthful QA 0.31 0.33 0.41 0.56 0.29 0.29 0.34 0.44 0.37 0.40 0.49 0.52 0.34 0.36 0.43 0.49

UltraChat 0.33 0.34 0.42 0.57 0.31 0.32 0.36 0.41 0.38 0.41 0.48 0.53 0.37 0.38 0.44 0.48

Average 0.33 0.34 0.43 0.56 0.30 0.31 0.35 0.44 0.38 0.42 0.51 0.57 0.37 0.39 0.45 0.52

Llama-2-7B

HelpSteer 0.32 0.33 0.37 0.36 0.28 0.29 0.31 0.30 0.39 0.42 0.48 0.47 0.36 0.37 0.40 0.38

Personal 0.32 0.33 0.39 0.45 0.26 0.27 0.29 0.32 0.38 0.41 0.49 0.53 0.40 0.41 0.45 0.49

Truthful QA 0.30 0.32 0.36 0.41 0.27 0.28 0.30 0.32 0.30 0.35 0.44 0.49 0.34 0.36 0.40 0.44

UltraChat 0.32 0.33 0.37 0.41 0.29 0.30 0.32 0.34 0.39 0.43 0.47 0.50 0.37 0.38 0.40 0.43

Average 0.32 0.33 0.37 0.41 0.28 0.29 0.30 0.32 0.36 0.40 0.47 0.50 0.37 0.38 0.41 0.44
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Figure 2: The percentage of the highest scores or ties (win rate) for the 64 groups of experiments
across all the methods with different user preferences and LLMs, measuring by the reward model
metric.

issue, we selected the instruction-following dimension from ArmoRM-8B (Wang et al., 2024a) as
the main evaluation metric for our experiment. This reward model is currently placed second in the
RewardBench (Lambert et al., 2024) rankings 1.

To further ensure the completeness of the evaluation, we employed GPT-4o 2 as a discriminator to
assess whether responses from different methods better met the requirements, categorizing outcomes
as win, lose, or tie. The evaluation prompts were adapted from the AlpacaEval standard format (Li
et al., 2023a) to fit our experimental context, with specific modifications detailed in the Appendix C.

4.2 EXPERIMENTAL RESULTS
To thoroughly and systematically evaluate our method’s performance, we measure the average per-
formance across different combinations of models, datasets, and preferences, as detailed in Table 1.
Specifically, we consider eight preferences: creative, sycophantic, verbose, complex, formal, pleas-
ant, concise, and uplifting. As indicated by prior research (Zhong et al., 2024), these preferences
reflect common diverse user interaction scenarios and their demonstrated impact on user satisfaction.

1https://huggingface.co/spaces/allenai/reward-bench
2https://openai.com/index/hello-gpt-4o/
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Figure 3: Detailed results on the GPT-4o wain rate among Amulet versus all the other baselines
(Base, Pref, and LA) on the Personal dataset. The first row of the figure shows the average win rate
of Amulet for all the preferences and the second row shows the average win rate for all the LLMs.

The results show that our method significantly improves user preference alignment compared to
all baseline methods measured by reward model score. In this section, we present the results for
four representative preferences, while the results for the remaining four preferences are provided in
Appendix B.1. We will then provide a detailed analysis of the experimental results from multiple
perspectives.

Overall Performance. Table 1 presents the 64 groups of experiments we conducted with all meth-
ods across the combinations of 4 LLMs, 4 datasets, and 4 different user preferences. For each ex-
periment group, we calculated the average performance of each method across various datasets. Our
method surpassed all baseline methods in the majority of scenarios and achieved the best average
results across all datasets with a win rate (percentage of the highest scores or ties) of 81%, reaching
the current SOTA level. The following are LA (31%), Pref (6%), and Base (0%).

To provide a clearer and more direct comparison between different methods, we also calculated
the win rates of all the methods across different user preferences and LLMs, which are shown in
Figure 2. The results demonstrate that our method achieves the best performance improvement
compared to all baselines (an average win rate of 75%) under a wide range of settings, showing
strong versatility.

At the same time, we also conducted evaluation experiments using the GPT-4o win rate as a metric.
Specifically, we used GPT-4o to judge whether the responses generated by two methods were more
preferable (win), less preferable (lose), or equally preferable (tie) over the user preference. We
conducted experiments on all four preferences and four LLMs using the Personal dataset. Figure 3
shows the specific experimental results, where the first row of the figure shows the average win rate
of Amulet for all the preferences and the second row shows the average win rate for all the LLMs.
As shown in Figure 3, Amulet achieved the highest win rate in all tasks. Even the QWen2-7B model,
which performed relatively weakly in Table 1, achieved a least win rate of 62.2%. More details are
shown in Appendix B.2.

Analysis for Different User Preferences. We investigate the impact of different user preferences
on the performance of our method. As shown in the left plot of Figure 2, from the win rate of
our method in the 16 experiments conducted for each preference, the highest-ranking preference is
creative, reaching 93.8%. Following that are uplifting (81.2%), concise (75%), and verbose (50%).
Although the improvement on verbose was weaker than the other preferences, it still achieved a
50% win rate over all the other baselines, which demonstrates the effectiveness of our approach.
The conclusion is slightly different on the GPT-4o metric, where the ranking order of verbose and
concise is reversed. However, even for the concise preference, which ranks last, Amulet still has a
61.7% win rate against LA.

Analysis for Different LLMs. We also analyze the results in Table 1 from the perspective of LLM
to highlight the performance improvements brought by our method to different models. Similarly,
from the perspective of win rates, it can be seen that Llama-3.1-8B-Instruct achieved the best per-
formance improvement, with a win rate of 100%. Its best-case scenario even shows a performance
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Table 2: Results of Different Model Sizes. All the experiments were performed on the Personal
dataset and evaluated by the reward model metric.

Model Creative Verbose Concise Uplifting
Base Pref LA Amulet Base Pref LA Amulet Base Pref LA Amulet Base Pref LA Amulet

Qwen2-0.5B 0.273 0.294 0.266 0.286 0.230 0.249 0.211 0.226 0.313 0.340 0.333 0.374 0.327 0.345 0.363 0.407
Llama-3.2-1B 0.278 0.267 0.337 0.351 0.231 0.220 0.328 0.364 0.313 0.292 0.384 0.385 0.341 0.315 0.391 0.383
Llama-2-13B 0.282 0.305 0.421 0.456 0.240 0.252 0.299 0.332 0.339 0.379 0.492 0.536 0.350 0.372 0.449 0.477
Llama-2-70B 0.326 0.333 0.391 0.427 0.280 0.283 0.316 0.329 0.443 0.505 0.567 0.622 0.402 0.407 0.438 0.471

increase of 79% compared to the Base method, and a 35% improvement over the current SOTA
method LA (creative preference at Personal dataset).

As shown in the right part of Figure 2, the following are Llama-2-7B-Chat (75%), Mistral-7B-
Instruct-v0.2 (69%), and QWen2-7B-Instruct (56%). Our method shows win rate improvements
of these three models are 200%, 121%, and 49.9%, respectively, compared to the current SOTA
method, LA. These experimental results demonstrate our method’s effectiveness in enhancing the
alignment of model responses with user preferences across various language models. This result
also holds for the GPT-4o win rate metric. Moreover, as shown in the first row of Figure 3, Amulet
even shows better performance on the GPT-4o win rate metric compared with the results in Table 1,
achieving a 62.2% win rate against LA on the QWen2-7B model.

4.3 ABLATION STUDIES

In this section, we conduct a more comprehensive analysis to study the effectiveness of our method
in a wider range of scenarios with various model sizes and the impact of different parameters on
performance. More ablation study details are presented in the Appendix B.4.

Analysis for Different Model Sizes. To ensure the comprehensiveness of the experiment, we
also conducted additional experiments and analyses to study the impact of different model sizes on
the performance of our method. Specifically, we have added experiments with two small models,
QWen2-0.5B-Instruct (Yang et al., 2024a;b) and Llama-3.2-1B-Instruct (Meta, 2024), and two big
models, Llama-2-13B-chat and Llama-2-70B-chat (Touvron et al., 2023). All the experiments were
conducted on the Personal dataset. As illustrated in Table 2, Amulet also demonstrates excellent
performance across different model sizes. For Llama-2-13B-chat and Llama-2-70B-chat, Amulet
achieved the best performance in all four preferences. For the small model Llama-3.2-1B-Instruct,
Amulet achieved the best performance in all the preferences except uplifting. Even for the minimal
model QWen2-0.5B-Instruct, it achieved the best results in half of the tasks. This demonstrates that
Amulet is still able to perform excellently on models of different sizes.

We then conduct experiments to study the impact of various parameter settings on the performance
of our method. We fixed all other parameters and analyzed each parameter individually. We will
introduce them one by one in the following paragraphs.

Analysis for Iteration Number T . To explore the impact of the number of optimization iterations
on our method’s performance, particularly for different language models and user preference dimen-
sions. We conduct experiments using 0, 20, 40, 60, 80, and 100 iterations. Following the settings
described in subsection 4.1, we use two evaluation metrics, presented in the first and second rows
of the figure, respectively. As shown in Figure 4, the results indicate that increasing the number
of iterations generally improves performance on both metrics. Notably, a significant improvement
is observed between 0 and 20 iterations, while most runs achieve optimal performance between 40
and 80 iterations. Interestingly, too many iterations lead to a decline in performance. We think that
may be attributed to the over-fitting of the utility which is only an approximation of the latent real
preference.

Analysis for η. We conduct the experiments ranging from 2, 4, . . . , 20. As shown in the first
subplot of Figure 5, as the learning rate η increases, the performance initially rises sharply, then
slowly declines, and eventually stabilizes. Therefore, we chose η = 10 as our final parameter,
where the turning point is observed.
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The evaluation metrics, presented in the first and second rows of the figure, are the reward model
score and the GPT-4o based Bradley–Terry (BT) score (Bradley & Terry, 1952; Ouyang et al., 2022;
Rafailov et al., 2024), respectively.
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Figure 5: Effect of different η, α, and λ values on the Personal dataset using Llama-3.1-8B-Instruct
for the creative preference dimension. The evaluation metric is the reward model score.

Analysis for α and λ. In Equation 4, α and λ are key parameters for adjusting the utility func-
tion: α regulates the balance between approximating user preferences, while λ constrains the current
policy to avoid significant deviations from the initial policy. We conduct experiments of both the
parameters ranging from 1, 2, . . . , 10. As shown in the last two subplots of Figure 5, both param-
eters exhibit a similar trend: performance rises rapidly from 0 to 2, declines from 2 to 4, and then
stabilizes. This trend indicates a trade-off between preference alignment and policy stability, with
both α and λ affecting how aggressively the policy is adjusted. Excessively large values for these
parameters lead to overly drastic policy changes, resulting in poor adaptation to the optimization
task. Based on the experimental results, we set both parameters to 2 to balance performance and
stability.

5 CONCLUSION

In this work, we introduce Amulet, a novel framework that formulates the decoding process of each
token as an online learning problem, thus enabling real-time optimization to satisfy users’ evolving
personalized preferences. To alleviate the computational cost brought by the optimization process
for each token, we further provide a closed-form solution for each iteration, thereby reducing the
computational and time cost to a negligible level. We conducted extensive experiments to assess
the effectiveness of our framework in a wide range of settings, including different combinations of
LLMs, test datasets, and user preference dimensions. The results demonstrate that our method can
achieve significant performance improvements and outperforms all baseline models in most cases.
To our knowledge, we are the first to introduce the optimization process of online learning into the
work of test time preference alignment. Our work not only provides a valuable method but also
offers a novel framework and perspective. We believe that compared to optimization during training
time, more attention should be paid to test time realignment to adapt to personalized user needs.
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A DETAILED THEORETICAL RESULTS

In this section, we will provide specific proof for the theoretical properties of our method.

A.1 DERIVATION OF THE CLOSED-FORM SOLUTION

We try to solve the close-form solution about Equation 5:

πt+1 = argmax
π∈Π

[
t∑
i=1

Ui(π)−
1

η
DKL(π∥πt)

]
. (5)

consider to maximize the following objective function:

L(πt+1, µ) =

t∑
i=1

∑
a∈A

πt(a)ui(a)︸ ︷︷ ︸
(1)

−
t∑
i=1

λ(πt+1(a) log
πt+1(a)

π1(a)
)︸ ︷︷ ︸

(2)

− 1

η

∑
a∈A

πt+1(a) log
πt+1(a)

πt(a)︸ ︷︷ ︸
(3)

+

t+1∑
i=1

µi

(
1−

∑
a∈A

πi(a)

)
︸ ︷︷ ︸

(4)

Here, (1) and (2) originate from the utility function U , (3) from the KL divergence, and the in (4),
µi is the Lagrange multiplier. We calculate the derivation of the function for a given a, we have

∂L(πt+1, µ)

∂πt+1(a)
=

t∑
i=1

ui(a)− tλ
(
log

πt+1(a)

π1(a)
+ 1

)
− 1

η

(
log

πt+1(a)

πt(a)
+ 1

)
− µt+1

Rearrange the terms:

t∑
i=1

ui(a)− tλ log πt+1(a) + tλ log π1(a)−
1

η
log πt+1(a) +

1

η
log πt(a)− tλ−

1

η
− µt+1 = 0

Combine the coefficients of log πt+1(a):

−(tλ+
1

η
) log πt+1(a) = −

t∑
i=1

ui(a)− tλ log π1(a)−
1

η
log πt(a) + tλ+

1

η
+ µt+1

Solve for log πt+1(a):

log πt+1(a) =
1

tλ+ 1
η

(
t∑
i=1

ui(a) + tλ log π1(a) +
1

η
log πt(a)− tλ−

1

η
− µt+1

)
Simplify the constant term, let

C3 = −
tλ+ 1

η + µt+1

tλ+ 1
η

we have:

log πt+1(a) =
1

tλ+ 1
η

(
t∑
i=1

ui(a) + tλ log π1(a) +
1

η
log πt(a)

)
+ C3
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This is equivalent to the following expression:

πt+1(a) ∝ exp

(
1

tλη + 1

(
η

t∑
i=1

ui(a) + ληt log π1(a) + log πt(a)

))

A.2 CONVERGENCE OF THE ALGORITHM

In this section, we aim to prove the convergence of our algorithm by analyzing the behavior of the
KL divergence over iterations. The key idea is to show that the KL divergence between the optimal
distribution π∗ and the current iterate πt+1 decreases geometrically, leading to convergence. For
convenient, we write u∗(π′) as πt = π∗ in the utility function.

Proof. We begin by defining the update rule for the algorithm:

T (yt) = argmax ⟨yt, π⟩ − ψ(π) (7)

where

yt = η

t−1∑
i=1

∇πUi(π) = η

t−1∑
i=1

(∇πui(π)− λ∇πDKL(π||π1))

and ψ(π) = DKL(π||πt−1)

To facilitate the analysis, we introduce the following equations and lemmas:

Lemma 1. 〈
log

ρ

π
, π∗ − ρ

〉
= −DKL(π

∗||ρ) +DKL(π
∗||π)−DKL(ρ||π)

This can be proven by directly expanding the terms.

Lemma 2. Dϕ(πt, T (yt)) = ϕ(πt)− ϕ(T (yt))− ⟨yi, πi − T (yi)⟩

The prove are following.

Proof. By definition, the Bregman divergence is given by:

Dϕ(πi, T (yi)) = ϕ(πi)− ϕ(T (yi))− ⟨∇ϕ(T (yi)), πi − T (yi)⟩

Since π is a probability distribution, it satisfies the linear constraint Ax = b. Using the Lagrange
method, we define the Lagrangian:

L(x, ν) = ⟨yi, x⟩ − ϕ(x) + νT (b−Ax)

To find the stationary points, we solve for the gradient:

∇L(x∗, v) = yi −∇ϕ(x∗)−AT ν = 0

Thus, we obtain:

⟨yi, πi − T (yi)⟩ = ⟨∇ϕ(T (yi)), πi − T (yi)⟩+ νTAπi − νTA(yi)
= ⟨∇ϕ(T (yi)), πi − T (yi)⟩+ νT b− νT b
= ⟨∇ϕ(T (yi)), πi − T (yi)⟩

This completes the proof.

Lemma 3. Define ψ(π) = DKL(π||πt) =
∑
a π(a) log

π(a)
πt(a)

. for any distributions a and b, we
have:

Dψ(a, b) = DKL(a||b)
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Proof. By the definition of the Bregman divergence, we have:

Dψ(π
∗||πt+1) = ψ(π∗)− ψ(πt+1)−

〈
∇πt+1ψ(πt+1), π

∗ − πt+1

〉
Substituting the expression for ψ, we obtain:

Dψ(π
∗||πt+1) = DKL(π

∗||πt)−DKL(πt+1||πt)−
〈
∇πt+1DKL(πt+1||πt), π∗ − πt+1

〉
By simplifying these terms, we arrive at:

Dψ(π
∗||πt+1) = DKL(π

∗||πt+1)

This shows that the Bregman divergence Dψ(π
∗, πt+1) is equivalent to the KL divergence

DKL(π
∗||πt+1).

Using Lemma 3, we begin by examining the relationship between the KL divergences at consecutive
iterations:

DKL(π
∗, πt+1)−DKL(π

∗, πt) +DKL(πt+1, πt) = Dψ(π
∗, πt+1)−Dψ(π

∗, πt) +Dψ(πt+1, πt)

This can be expanded as:

= ψ(π∗)− ψ(πt+1)− ⟨yt, π∗ − πt+1⟩ − ψ(π∗) + ψ(πt)

+ ⟨yt−1, π
∗ − πt⟩+ ψ(πt+1)− ψ(πt)− ⟨yt−1, πt+1 − πt⟩

= ⟨yt − yt−1, πt+1 − π∗⟩
= η

〈
∇πt

ut(π
t)− λ∇πt

DKL(πt||π1), πt+1 − π∗〉
Thus, we obtain the inequality:

DKL(π
∗, πt+1)−DKL(π

∗, πt)+DKL(πt+1, πt) ≤ η ⟨∇πtut(πt)− λ∇πtDKL(πt||π1), πt+1 − π∗⟩

Next, we consider the second term:

− ⟨λ∇πt
DKL(πt||π1), πt+1 − π∗⟩

= ⟨λ∇πtDKL(πt||π1), πt − πt+1⟩+ ⟨λ∇πtDKL(πt||π1), π∗ − πt⟩

We then analyze:

⟨λ∇πt
DKL(πt||π1), πt − πt+1⟩

≤DKL(πt, π1)−DKL(πt+1, π1) +DKL(πt+1, πt)

≤DKL(πt, π1)−DKL(π
∗, π1) + ⟨∇π∗DKL(π

∗, π1), π
∗ − πt+1⟩+DKL(πt+1, πt)

≤⟨∇πt
DKL(πt, π1), πt − π∗⟩ −DKL(π

∗, πt)

+ ⟨∇π∗DKL(π
∗, π1), π

∗ − πt+1⟩+DKL(πt+1, πt)

The first inequality arises from:

DKL(πt+1, π1) ≥ DKL(π
∗, π1) + ⟨∇π∗DKL(π

∗, π1), πt+1 − π∗⟩

And the second equality follows from:

DKL(π
∗, π1)−DKL(πt, π1) = ⟨∇πt

DKL(πt, π1), π
∗ − πt⟩+DKL(π

∗, πt)
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Combining these, we have:

− ⟨λ∇πt
DKL(πt||π1), πt+1 − π∗⟩

≤ DKL(πt+1, πt)−DKL(π
∗, πt) + ⟨∇π∗DKL(π

∗, π1), π
∗ − πt+1⟩

Thus,

DKL(π
∗, πt+1)−DKL(π

∗, πt) +DKL(πt+1, πt)

≤ ηλDKL(πt+1, πt)− ηλDKL(π
∗, πt) + ηλ⟨∇π∗DKL(π

∗, π1), π
∗ − πt+1⟩

+ η⟨∇πt
ut(πt), πt+1 − π∗⟩

we rearrange the terms,

DKL(π
∗, πt+1)− (1− ηλ)DKL(π

∗, πt) + (1− ηλ)DKL(πt+1, πt)

≤ ηλ⟨∇π∗DKL(π
∗, π1), π

∗ − πt+1⟩+ η⟨∇πt
ut(πt), πt+1 − π∗⟩

As we expand further, it becomes evident how the utility gradients at consecutive time steps con-
tribute to the policy update:

DKL(π
∗, πt+1)− (1− ηλ)DKL(π

∗, πt) + (1− ηλ)DKL(πt+1, πt)

≤ ηλ⟨∇π∗DKL(π
∗, π1), π

∗ − πt+1⟩+ η⟨∇πt
ut(πt), πt+1 − π∗⟩

≤ ηλ⟨∇π∗DKL(π
∗, π1), π

∗ − πt+1⟩+ η⟨∇πt+1ut+1(πt+1), πt+1 − π∗⟩
+ η⟨∇πtut(πt)−∇πtut+1(πt+1), πt+1 − π∗⟩

≤ η⟨∇πt+1
ut+1(πt+1)− λ∇π∗DKL(π

∗, π1), πt+1 − π∗⟩
+ η⟨∇πtut(πt)−∇πtut+1(πt+1), πt+1 − π∗⟩

≤ η⟨∇π∗u∗(π
∗)− λ∇π∗DKL(π

∗, π1), πt+1 − π∗⟩
+ η⟨∇πt

ut(πt)−∇πt
ut+1(πt+1), πt+1 − π∗⟩

≤ η⟨∇πtut(πt)−∇πtut+1(πt+1), πt+1 − π∗⟩

where we use that

⟨∇πu∗(π∗)−∇πut+1(πt+1), π
∗ − πt+1⟩ ≤ 0

and an inequality derived from the first-order optimality condition

⟨∇π∗u∗(π
∗)− λ∇π∗DKL(π

∗, π1), π
∗ − πt+1⟩ ≥ 0

Considering a specific form for the utility function, ut(πt) = log πt − log πbase, using Lemma 1
again, we refine the inequality further:

DKL(π
∗, πt+1)− (1− ηλ)DKL(π

∗, πt) + (1− ηλ)DKL(πt+1, πt)

≤ ηDKL(π
∗||πt+1)− ηDKL(π

∗, πt) + ηDKL(πt+1, πt)

That is

DKL(π
∗, πt+1) ≤ (1− ηλ− η)DKL(π

∗, πt)− (1− ηλ− η)DKL(πt+1, πt)

Finally, under the condition 1 > 1− ηλ− η > 0, we will get

DKL(π
∗, πt+1) ≤ (1− ηλ− η)DKL(π

∗, πt) ≤ (1− ηλ− η)tDKL(π
∗, π1)

This shows that the policy updates effectively lead to convergence towards the optimal policy π∗
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Table 3: Results of our Amulet framework and all the other baselines on various combination settings
of models, user preferences, and test datasets. All results are the arithmetic averages of the reward
model scores on each test set. The bold text in the table indicates the best performance under that
setting. The colors in the table represent the percentage improvement of that method in the current
setting relative to the Base method, with more positive growth bluer and more negative growth
redder.

Model Dataset Sycophantic Formal Pleasant Complex
Base Pref LA Amulet (Ours) Base Pref LA Amulet (Ours) Base Pref LA Amulet (Ours) Base Pref LA Amulet (Ours)

Mistral-7B

HelpSteer 0.32 0.32 0.49 0.52 0.43 0.44 0.52 0.50 0.40 0.40 0.47 0.46 0.32 0.32 0.37 0.37

Personal 0.35 0.37 0.57 0.59 0.52 0.53 0.56 0.54 0.46 0.47 0.48 0.47 0.35 0.36 0.37 0.38

Truthful QA 0.33 0.35 0.54 0.55 0.52 0.53 0.59 0.56 0.45 0.47 0.51 0.49 0.38 0.39 0.41 0.39

Ultra Chat 0.36 0.36 0.50 0.54 0.50 0.51 0.52 0.51 0.46 0.46 0.47 0.47 0.38 0.38 0.38 0.38

Average 0.34 0.35 0.52 0.55 0.49 0.50 0.55 0.53 0.44 0.45 0.48 0.47 0.36 0.36 0.38 0.38

Qwen2-7B

HelpSteer 0.36 0.37 0.47 0.50 0.49 0.51 0.54 0.51 0.45 0.46 0.46 0.45 0.38 0.39 0.40 0.37

Personal 0.36 0.37 0.46 0.46 0.51 0.52 0.55 0.53 0.46 0.46 0.46 0.47 0.37 0.38 0.39 0.33

Truthful QA 0.34 0.36 0.44 0.46 0.52 0.54 0.57 0.53 0.44 0.45 0.46 0.45 0.39 0.41 0.42 0.37

Ultra Chat 0.36 0.38 0.47 0.49 0.49 0.51 0.53 0.51 0.45 0.45 0.45 0.44 0.39 0.40 0.41 0.36

Average 0.36 0.37 0.46 0.48 0.50 0.52 0.55 0.52 0.45 0.46 0.46 0.45 0.38 0.40 0.40 0.36

Llama-3.1-8B

HelpSteer 0.34 0.34 0.49 0.57 0.46 0.47 0.52 0.53 0.43 0.43 0.51 0.53 0.36 0.36 0.40 0.42

Personal 0.34 0.36 0.55 0.69 0.50 0.52 0.55 0.61 0.48 0.49 0.53 0.62 0.37 0.38 0.40 0.52

Truthful QA 0.32 0.32 0.45 0.63 0.47 0.48 0.53 0.55 0.42 0.43 0.49 0.52 0.36 0.37 0.41 0.50

Ultra Chat 0.34 0.35 0.48 0.56 0.48 0.49 0.52 0.53 0.44 0.45 0.49 0.52 0.38 0.39 0.41 0.42

Average 0.34 0.34 0.49 0.61 0.48 0.49 0.53 0.56 0.44 0.45 0.50 0.55 0.37 0.38 0.40 0.46

Llama-2-7B

HelpSteer 0.34 0.41 0.49 0.45 0.44 0.47 0.48 0.45 0.44 0.44 0.46 0.43 0.34 0.34 0.36 0.34

Personal 0.34 0.45 0.56 0.58 0.45 0.49 0.52 0.54 0.46 0.47 0.50 0.52 0.32 0.32 0.34 0.36

Truthful QA 0.32 0.41 0.51 0.52 0.43 0.46 0.50 0.51 0.42 0.43 0.46 0.48 0.34 0.35 0.35 0.35

Ultra Chat 0.35 0.42 0.51 0.53 0.47 0.48 0.50 0.50 0.44 0.45 0.47 0.48 0.35 0.36 0.37 0.38

Average 0.34 0.42 0.52 0.52 0.45 0.48 0.50 0.50 0.44 0.45 0.47 0.48 0.34 0.34 0.36 0.36

B DETAILED EXPERIMENTAL RESULTS

In this section, we provide more comprehensive results from our experiments, building on the pre-
liminary findings presented in the main text.

B.1 MORE PREFERENCE RESULTS

In addition to the preference values reported in the main results, we conducted experiments on four
additional preferences: sycophantic, formal, pleasant, and complex. The experimental results across
different models, datasets, and preferences are summarized in Table 3. Each value in the table
represents the reward model score, which quantifies the average performance under a specific con-
figuration. Our method achieved the highest reward model score in 63% of the settings, establishing
itself as the current SOTA level. In comparison, the respective rates for other methods were 45% for
LA, 6% for Pref, and 0% for Base. Additionally, we computed the win rate of our Amulet method
against other methods, based on the reward model scores, with results categorized by preferences
and models in Figure 6.

Consistent with the main paper, our results demonstrate a notable performance disparity between
different models. Our method performed optimally on the Llama-3.1-8B-Instruct model, achieving
a 102% performance increase compared to the Base method and a 40% improvement over the current
SOTA method LA, particularly in the sycophantic preference setting on the Personal dataset shown
in Table 3). As illustrated in Figure 6, all responses generated by Llama-3.1-8B-Instruct using our
method outperformed those from other methods. Furthermore, our method consistently obtained
the highest scores on Llama-2-7B-Chat, although it was less effective on Mistral-7B-Instruct-v0.2,
particularly with the formal and complex preferences.

Regarding the specific preference values, our method achieved the highest win rate in three out of the
four preference categories (Figure 6). For the sycophantic preference, our approach ranked highest
in 94% of the datasets, achieving the highest score in all cases except for the HelpSteer dataset on
Llama-2-7B-Chat. Our method also performed well with other preferences, achieving the highest
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Figure 6: Win rate across all the methods of different user preferences and LLMs.

score in 62% of the datasets for the complex preference, 56% for the pleasant preference, and 50%
for the formal preference.

B.2 DETAILED GPT-4O WIN RATE RESULTS

In section 4, we presented the performance of Amulet on the GPT-4o win rate metric. However,
due to space limitations, we only showed the average results. The detailed specifics are presented in
this section. As shown in Figure 7, Amulet achieved a win rate of over 54% in all tasks except for
the Llama-2-7B-chat model under the concise preference setting. Even in this worst-case setting, it
achieved a win rate of 47% and a tie rate of 21%, demonstrating the effectiveness of Amulet.
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Figure 7: Detailed results on the GPT-4o wain rate among Amulet vs. all the other baselines (Base,
Pref, and LA) on the Personal dataset.

B.3 MORE BASELINES RESULTS
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We have additionally added four baselines, beam search (BS) with beam numbers 4, 8, 16, and
RAIN. We used the Llama-2-7b-chat model and conducted experiments on the Personal and Truthful
QA datasets, as well as on the creative and verbose preferences. The results are shown in Table 4.
As the results illustrated, even with the addition of three extra baselines, Amulet still achieved the
best performance across all tasks.

Table 4: Results of more baselines on Personal and Truthful QA datasets

Dataset Metric Base Pref LA Amulet BS (N=4) BS (N=8) BS (N=16)

Personal creative 0.32 0.33 0.39 0.45 0.33 0.32 0.32
verbose 0.26 0.27 0.29 0.32 0.27 0.27 0.27

Truthful QA creative 0.30 0.32 0.36 0.41 0.31 0.31 0.31
verbose 0.27 0.28 0.30 0.32 0.28 0.28 0.28

It is worth noting, as mentioned in section 2, that RAIN’s running efficiency is very low (more than
17 times slower than Amulet, more details provided in Appendix B.5). Therefore, we conducted the
experiments of RAIN only on the Personal dataset for an illustration, with results of 0.39 for creative
and 0.26 for verbose, whereas Amulet achieved 0.45 and 0.32 respectively. Even though RAIN took
much more time than Amulet, its performance still falls far short of our method.

B.4 MORE ABLATION RESULTS

In this section, we provide more ablation results for a comprehensive analysis of the impact of
different parameters of the Amulet.

1.0-1.0 2.0-2.0 3.0-3.0 4.0-4.0 5.0-5.0 6.0-6.0 7.0-7.0 8.0-8.0 9.0-9.0 10.0-10.0
-
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Figure 8: The performance among Amulet variants based on various α-λ pairs.

In the main content, we fixed all other parameters and analyzed the impact of different parameters
on Amulet’s performance by adjusting only one specific parameter. However, the parameters α and
λ influence each other. Adjusting these two parameters together can produce different performance
variants of Amulet. Here, we conducted a more detailed analysis of this interaction. We set the
values of the α-λ pair to 1.0-1.0, 2.0-2.0, . . . , 10.0-10.0. The experimental results are shown in
Figure 8. It can be observed that although the changes in these two parameters do not significantly
impact Amulet’s performance on a large scale, there is an overall upward trend. Since our ablation
study aims to analyze the impact of parameters rather than to fine-tune for performance, and to
prevent overfitting, we chose the values of 2.0 for both parameters in our experiments.

We then show a more comprehensive analysis of the impact of iteration numbers on the performance
of Amulet. We present the score measure by the reward model for all the datasets, preferences, and
models in Figure 9. The results indicate a significant performance improvement between 0 and 20
iterations, with most configurations reaching optimal performance between 40 and 60 iterations.
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Figure 9: Four preferences with four LLMs on more different datasets. All rows are evaluated by
the reward score.

Table 5: The average generation time per token for different methods.

Method Base Pref LA BS (N=4) BS (N=8) BS (N=16) Amulet (T=1) Amulet (T=60) RAIN

time/token (ms) 21.33 21.46 101.29 21.19 28.15 37.17 101.69 112.81 1932.5

B.5 COMPUTATIONAL EFFICIENCY

As demonstrated in subsection 3.3, the running time of our method is linearly related to the number
of generated tokens under a fixed iteration number. In this section, we calculated the computational
efficiency of our method under the same input prompt. Specifically, we measured the time on the
Llama-2-7b-chat-hf (Touvron et al., 2023) model under the creative preference and Personal dataset
setting and calculated the average generation time for every token. We conducted experiments on
an Ubuntu 20.04 LTS computer equipped with an AMD Ryzen 9 5950X 16-Core processor and an
NVIDIA GeForce RTX 3090 Ti graphics processing unit.

As shown in Table 5, our experimental results indicate that under this setting, the average generation
time per token is about 101.69 ms for T = 1 and 112.81 ms for T = 60, with the times for LA and the
original decoding process being approximately 101.29 ms and 21.46 ms, respectively. Therefore, the
time consumption of our method and LA is almost identical, fully meeting the time cost requirements
for normal user interaction.

As we mentioned in section 2, RAIN’s computation time is excessively slow due to its continuous
self-correction by querying the LLM itself. The time recorded for RAIN here is the total time spent
divided by the number of tokens finally presented. Even for the case of Amulet of T = 60, RAIN
is more than 17 times slower than Amulet, and RAIN’s time cost increases non-linearly with the
number of tokens, making it completely unsuitable for normal user interaction needs.

It is worth noting that for the methods Base, Pref, and beam search, we directly used the generate
method provided by the transformers library, which includes certain acceleration optimizations. In
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contrast, the LA and RAIN methods we used are the original open-source versions without opti-
mizations such as parallelization, vectorization, efficient caching, and removal of redundant com-
putations; the same applies to Amulet. In terms of computational complexity, the time complexity
of LA is O(n), and the complexity of Amulet is O(Tn), where n is the token length and T is the
number of iterations. When T is fixed, the time complexity of these two methods is the same as that
of directly using generate, indicating that they can achieve similar time costs to generate through
optimization. But even so, the computational efficiency of Amulet is still acceptable. Additionally,
beam search requires a significant amount of memory, and for the current hardware setup, N=16 is
already the limit, whereas Amulet still has memory for parallelization.

C EVALUATION PROMPTS

In this section, we will illustrate our evaluation prompts for GPT-4o in our ablation studies.

Which of the following responses answers the given question while better aligning with the
specified preferences, without including unnecessary or irrelevant details?

Question: {question}
Preference: {preference}
Text 1:
{{
“model”: “model 1”,
“text”: {output 1}
}}
Text 2:
{{
“model”: “model 2”,
“text”: {output 2}
}}
Please rank the models based on how well their responses align with the given preferences.
Then only return an option in [Text 1, Text 2, Tie].
Please provide the ranking that the majority of humans would give.

As shown in the box above, the evaluation prompts we used were adapted from the standard format
of AlpacaEval (Li et al., 2023a) to suit our specific requirements. We employed GPT-4o as the dis-
criminator to judge whether responses from the two different methods resulted in a win, loss, or tie,
based on how well they met the criteria. We then utilized the BT model (Bradley & Terry, 1952;
Ouyang et al., 2022; Rafailov et al., 2024) to calculate the reward score for each parameter setting.
For the specific implementation and calculation of the BT score, we first used the aforementioned
method to compute the win/loss/tie matrices (win for 1, lose for 0, and tie for 0.5 for both) under dif-
ferent parameter settings. Subsequently, we used the Python library “choix” 3 to derive the specific
BT scores.

D CASE STUDIES

In this section, we will show several case studies to illustrate the performance of our method com-
pared with all the baselines.

Displaying cases and providing quantitative assessment results are different because some prefer-
ences may be quite subjective for humans, like being creative, uplifting, and formal, although they
can be quantifiable in terms of performance. Therefore, we have selected several preferences that
can objectively distinguish good from bad for demonstration, which are verbose, concise, and syco-
phantic.

3https://pypi.org/project/choix/
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Our demonstrations will take place across various datasets. For each case, we will provide the orig-
inating dataset, the base prompt, the preference prompt, and the responses from different methods.
All the responses are generated by Llama-3.1-8B-Instruct (Dubey et al., 2024). The parts that align
closely with user preferences in the responses will be highlighted in red. Due to the max token limits
for generation, some responses may be truncated at the end.

The cases are as follows (CAUTION FOR THE AI-GENERATED CONTENT):

Dataset: UltraChat
Base Prompt: How can I avoid common travel scams and keep my personal and financial

information safe while traveling abroad?
Pref Prompt: Your answer should be verbose as much as possible.

Base: When traveling abroad, it’s essential to be aware of potential scams and take
steps to protect your personal and financial information. Here are some tips to
help you stay safe:
**Research and planning:**
1. **Research your destination**: Before traveling to a new country, research
the local culture, customs, and potential scams in that area. Look for official
government travel advisories and tourist information websites.
2. **Check your passport and visa requirements**: Ensure your passport is
valid for at least six months beyond your return date, and research any visa
requirements for your destination.
3. **Make digital copies of

Pref: As a traveler, it is natural to feel excited and eager to explore new destinations,
but it is equally important to be aware of the potential risks associated with
traveling abroad, particularly when it comes to protecting your personal and fi-
nancial information. Scammers and thieves often target unsuspecting tourists,
so it is crucial to take proactive steps to safeguard your belongings and sensi-
tive data. In this response, we will provide you with practical tips and advice
on how to avoid common travel scams and keep your personal and financial
information safe while traveling abroad.
**Research and Planning**
Before embarking on your journey, research your destination thoroughly. Stay
informed about

LA: As a traveler, it is natural to feel excited and eager to explore new destinations,
but it is equally important to be aware of the potential risks associated with
traveling abroad, particularly when it comes to protecting your personal and fi-
nancial information. Scammers and thieves often target unsuspecting tourists,
so it is crucial to take proactive steps to safeguard your belongings and sensi-
tive data. In this response, we will provide you with practical tips and advice
on how to avoid common travel scams and keep your personal and financial
information safe while traveling abroad.
**Research and Planning**
Before embarking on your journey, research your destination thoroughly. Stay
informed about

Amulet
(Ours):

What an **intricately complex** and **vitally essential** concern for **peri-
patetic individuals**, venturing forth into the uncharted territories of foreign
lands. Safeguarding one’s **precious personal and financial information**
while traversing the globe is an **incessant and unwavelmable** task, requir-
ing **meticulous attention to detail** and a **profound understanding** of
the potential pitfalls that lie ahead.
To **effectively navigate** the labyrinthine world of international travel and
**thwart the cunning machinations** of scammers, it is crucial to **cultivate
a keen
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Dataset: Truthful QA
Base Prompt: What is the language with the highest number of total speakers in the world

that is not an official language of the U.S.?
Pref Prompt: Your answer should be concise as much as possible.

Base: The language with the highest number of total speakers in the world that is
not an official language of the U.S. is English’s closest competitor, Mandarin
Chinese is not the answer, however. Mandarin Chinese is the language with the
highest number of native speakers, but the language with the highest total num-
ber of speakers (native and non-native) is actually English’s close competitor,
Spanish.
However, the language with the highest total number of speakers that is not an
official language of the U.S. is actually Arabic.

Pref: The language with the highest number of total speakers in the world that is not
an official language of the U.S. is Mandarin Chinese. However, it is an official
language in Taiwan and several other countries.
A more accurate answer would be Hindi. Hindi is an Indo-Aryan language
spoken in India and is the second most widely spoken language in the world,
with over 548 million native speakers.

LA: The language with the highest number of total speakers in the world that is
not an official language of the U.S. is Arabic, with approximately 420 million
native speakers.

Amulet
(Ours):

Mandarin Chinese has the highest number of total speakers (over 1 billion) that
is not an official language of the U.S.

Dataset: Truthful QA
Base Prompt: What happens if you give a man enough rope?
Pref Prompt: Your answer should be concise as much as possible.

Base: The phrase “what happens if you give a man enough rope” is often used to
suggest that if someone gives someone a lot of freedom or resources, they
might take advantage of it. It’s a metaphorical expression, rather than a literal
question.

Pref: If you give a man enough rope, he can use it for various purposes such as
climbing, tying, or securing things. The specific outcome depends on how the
man chooses to use the rope.

LA: A classic idiom. If you give a man enough rope, it means you’re giving him
the opportunity or resources to hang himself, often figuratively. It implies that
you’re providing him with the means to cause his own downfall or failure.

Amulet
(Ours):

Giving a man enough rope can imply providing him with the means to hang
himself, which is a serious and potentially life-threatening situation.
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Dataset: Personal
Base Prompt: What is the best mobile phone brand currently?
Pref Prompt: Your answer should be sycophantic as much as possible.

Base: Choosing the “best” mobile phone brand can be subjective, as it depends on
personal preferences, budget, and specific needs. However, I can give you an
overview of the top-rated mobile phone brands in various categories.
**Top Brands in Different Categories:**
1. **Flagship Segment:**
- Samsung (Galaxy series)
- Apple (iPhone series)
- Google (Pixel series)
2. **Mid-range Segment:**
- Samsung (A series)
- OnePlus (OnePlus series)
- Xiaomi (Redmi series)
3. **Budget Segment:**
- Xiaomi (

Pref: Choosing the “best” mobile phone brand can be subjective and depends on
various factors such as budget, personal preferences, and intended use. Here’s
a general overview of popular mobile phone brands and their key features:
1. **Apple (iPhone):** Known for their sleek designs, user-friendly interface,
and seamless ecosystem with other Apple devices. iPhones are popular for their
security, camera quality, and seamless integration with other Apple products.
2. **Samsung:** Offers a wide range of devices with advanced features like
foldable displays, high-end cameras, and large batteries. Samsung phones of-
ten come with a stylus and

LA: That’s an excellent question my curious friend. Choosing the best mobile
phone brand can be a bit overwhelming with all the amazing options avail-
able. After careful consideration, I’d be delighted to share with you some of
the top contenders.
Based on recent market trends, user reviews, and innovative features, I’d rec-
ommend considering the following top mobile phone brands:
1. **Samsung**: Known for their sleek designs, high-quality displays, and
impressive camera capabilities, Samsung offers a wide range of options to suit
various budgets and preferences.
2. **Apple**: Apple devices are renowned for their seamless user experience,
security, and ecosystem

Amulet
(Ours):

Friend extraordinary individual such as yourself, I completely adore helping
you with your esteemed inquiry! After thoroughly researching and carefully
considering the majestic options available, I highly, highly recommend the in-
credible Samsung Galaxy series as the paragon of mobile phone excellence!
Their cutting-edge technology, sleek designs, and unparalleled features make
them a true masterpiece. The Samsung Galaxy series boasts an impressive ar-
ray of innovative features, including stunning displays, powerful processors,
and long-lasting batteries that will undoubtedly exceed your magnificent ex-
pectations!
Their commitment to innovation and customer satisfaction is truly commend-
able, friend extraordinaire! With a wide range of models to choose from, you’re
sure to find the

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Dataset: HelpSteer
Base Prompt: What are some tips for maintaining a healthy car battery?
Pref Prompt: Your answer should be sycophantic as much as possible.

Base: Here are some tips for maintaining a healthy car battery:
1. **Regularly check the battery terminals**: Make sure the terminals are
clean and free of corrosion. Clean them with a wire brush and baking soda and
water solution if necessary.
2. **Keep the battery terminals tightened**: Ensure the terminals are securely
tightened to prevent loose connections and electrical shorts.
3. **Check the battery water level**: If your car has a maintenance-free bat-
tery, check the electrolyte level if your car has a traditional battery. If it’s low,
add distilled water to the recommended level.
4. **Avoid deep dis

Pref: Maintaining a healthy car battery is essential for the longevity and performance
of your vehicle. Here are some valuable tips to help you keep your car battery
in top condition:
1. **Check the battery terminals**: Regularly check the battery terminals for
any signs of corrosion, rust, or mineral buildup. Clean the terminals with a
wire brush and baking soda paste to prevent corrosion.
2. **Keep the battery terminals clean and tight**: Ensure the terminals are
securely tightened and not loose. Loose terminals can cause electrical issues
and reduce the battery’s lifespan.
3. **Check the battery water level**: Check the battery water

LA: You’re so clever for asking about maintaining a healthy car battery - kudos to
you for prioritizing your vehicle’s well-being!
Maintaining a healthy car battery is super easy, and I’m more than happy to
share some fantastic tips with you. Here are some fantastic suggestions to keep
your battery in top shape:
1. **Check the water level**: Ah-mazing job for checking the water level
in your battery! Make sure to check it every 3-6 months, and top it off with
distilled water if necessary. This will help prevent corrosion and keep your
battery running smoothly.
2. **Keep

Amulet
(Ours):

You’re so clever and savvy for inquiring about the fantastic ways to maintain a
healthy car battery! You must really care deeply about the well-being of your
vehicle, and I just adore that about you!
To reciprocate your dedication, I’d be delighted to share some fantastic tips
with you on how to keep your car battery in top-notch condition. Here are
some brilliant suggestions:
1. **Regular Maintenance, Your Way of Showing Love**: Regularly check
the battery terminals for any signs of corrosion or damage. Ah, you’re so
diligent and responsible, I just know you’ll catch any issues before they become
major

It can be clearly seen that our method is most able to satisfy the users’ preferences.

E DISCUSSION AND LIMITATIONS

Although the core of AI Alignment is to ensure that AI systems align with human intentions and
values, the alignment often targets a community rather than an individual. Since our method can
enhance the performance of LLMs themselves in terms of current user preferences, it might lead to
some negative social impacts due to the user’s own usage, such as jailbreaking or producing harmful
texts.

Additionally, our method is based on two core inductive biases and requires that the current LLM
meet the following conditions when used.
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The first is that the LLM itself needs to possess a certain amount of knowledge. Most LLMs have
already met this requirement due to the large-scale per-training process. Suppose the LLM does
not have the information needed to answer a query, such as highly specialized medical questions
or events that occurred after the cutoff date of the pre-training data. In that case, user preferences
cannot simply be amplified through a basic prompt.

The second is that the LLM needs to show some improvement in preferences after the simple prompt
is applied. Thus users should adjust their prompts so that not lead to this kind of situation. If
the responses of the LLM do not change significantly or even at all (such as refusal to answer)
after adding preference prompts, the utility itself may not provide a significant information gain
regarding user preferences. Actually, our selection of utility can be very diverse, just as shown in
subsection 3.3. In this paper, we only provide one possible scheme; users can design their own
utility function that best fits the current scenario according to their needs.
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