Under review as a conference paper at ICLR 2026

COMMUNICATION EFFICIENT LLM PRE-TRAINING
WITH SPARSELOCO

Anonymous authors
Paper under double-blind review

ABSTRACT

Communication-efficient distributed training algorithms have received consider-
able interest recently due to their benefits for training Large Language Models
(LLMs) in bandwidth-constrained settings, such as across datacenters and over
the internet. Despite reducing communication frequency, these methods still typ-
ically require communicating a full copy of the model’s gradients—resulting in a
communication bottleneck even for cross-datacenter links. Furthermore, they can
slightly degrade performance compared to a naive AdamW DDP baseline. While
quantization is often applied to reduce the pseudo-gradient’s size, in the context
of LLM pre-training, existing approaches have been unable to additionally lever-
age sparsification and have obtained limited quantization. In this work, we in-
troduce SparseLoCo, a communication-efficient training algorithm for LLMs that
effectively leverages error feedback with TOP-k sparsification and 2-bit quantiza-
tion to reach extreme sparsity as low as 1-3% while outperforming full-precision
DiLoCo. Our key observations are that outer momentum can be locally approxi-
mated by an error feedback accumulator combined with aggressive sparsity, and
that sparse aggregation can actually improve model performance. We empirically
demonstrate in a range of communication-constrained LLM training settings that
SparseL.oCo provides significant benefits in both performance and communication
cost.

1 INTRODUCTION

Frontier language models pre-trained on internet-scale data have led to considerable breakthroughs
in recent years. However, due to their growing parameter counts, effectively training these models
across expensive datacenter hardware while retaining efficiency—a central goal due to the resources
spent on these runs—is becoming increasingly challenging. On the other hand, due to the increasing
availability of globally distributed computational infrastructure across the world, the pre-training of
large-scale models over the internet has recently garnered increasing interest (Jaghouar et al.,[2024).
Similar to training over the internet, pre-training across multiple datacenters requires mitigating the
large communication overhead incurred by aggregating updates between workers.

In the context of LLM pre-training, several approaches have been proposed to reduce data-
parallel communication cost. Among them are DiLoCo (Douillard et al., 2023b), a variant of Lo-
calSGD (Stich| |2018}; [Reddi et al., 2020), as well as methods compressing communicated tensors
and leveraging error feedback (Peng et al.| [2024; |/Ahn & Xu, 2025; [Wang et al., |2023) to mitigate
information loss. These techniques have complementary advantages of (1) reducing the commu-
nication frequency and (2) reducing the size of communicated messages. Combining the two is
potentially advantageous for bandwidth-constrained settings like training over the internet or across
datacenters. However, existing works focused on LLM pre-training using DiLoCo (Charles et al.,
20235)) do not take full advantage of compression schemes.

Indeed, combining these approaches raises the challenge of how to incorporate error feedback with
an outer momentum, which is known to be important for DiLoCo’s performance. Our key obser-
vation is that when aggressive TOP-k sparsification is combined with error feedback on DiL.oCo
pseudo-gradients, two effects emerge: (a) error feedback naturally acts as a local approximation of
outer momentum, and (b) sparse aggregation is induced on the pseudo-gradients, a property recently
shown in model merging contexts to improve performance (Yadav et al.,[2023;|Davari & Belilovsky,

Under review as a conference paper at ICLR 2026

2024). Building on this, we introduce SparseLoCo, which replaces global outer momentum with a
single error feedback accumulator, thereby unifying infrequent and sparsified communication. This
enables aggressive TOP-k sparsification and quantization of pseudo-gradients, while outperforming
full-communication DiLoCo and frequency-compressed baselines.

Our contributions can be summarized as follows:

* We demonstrate that DiLoCo’s outer momentum can be replaced with a local momentum,
which we link to TOP-k with error feedback on pseudo-gradients.

* Leveraging this observation, we introduce SparseLoCo, a novel algorithm that blends the
benefits of multi-iteration methods like DiLoCo with TOP-k sparsification and error feed-
back without compromising on performance or communication cost.

* Through our extensive experiments, we demonstrate that SparseLoCo can significantly
reduce the communication volume compared to existing LLM training methods (e.g.,
DiLoCo and DeMo), while simultaneously outperforming them.

2 RELATED WORK

Federated Learning In the federated learning literature, communication efficiency has been a cen-
tral focus from the outset, as participating clients often operate over highly constrained and het-
erogeneous networks. A canonical example is Federated Averaging (FedAvg) (Konecny et al.,
2016; McMahan et al.l [2017), which reduces communication frequency by performing multiple
local updates before averaging model parameters. Other works explore compressed updates through
sketching or quantization in the context of federated learning (Rothchild et al.|, [2020; Reisizadeh
et al., |2020). Beyond reducing communication overhead, numerous approaches such as SCAF-
FOLD (Karimireddy et al.l [2020) and FedProx (Li et al., 2020) address the unique challenge of
data heterogeneity—where each client’s dataset may follow a different distribution—by introduc-
ing control variates or proximal terms to stabilize convergence. Related to our work Mitchell et al.
(2022) consider pseudo-gradient compression in the FL setting. While our work shares federated
learning’s emphasis on reducing communication overhead, it differs fundamentally in scope: we fo-
cus on large-scale pre-training of LLMs in settings with homogeneous data partitions (e.g., sharded
web-scale corpora), where heterogeneity-mitigation strategies are unnecessary while achieving per-
formance that can match standard data parallel schemes at equivalent FLOPs is the paramount|/Douil-
lard et al.| (2023a).

LocalSGD and extensions to LLM training Local Stochastic Gradient Descent (Lo-
calSGD) (Stichl 2018)) is a widely studied approach for reducing communication in distributed
training by allowing workers to perform multiple local updates before synchronizing. Stich| (2018)
formally introduced the method and proved its convergence, while |[Lin et al.|(2018) highlighted
that LocalSGD can lead to improved generalization compared to simply increasing the batch size.
Extensions of LocalSGD include SlowMo (Wang et al., 2019), which incorporates a slow outer mo-
mentum to stabilize training in datacenter-style environments—while still using SGD as the inner
optimizer—and meta-learning approaches (Joseph et al., 2025)) that adapt the aggregation function
for improved performance. However, these approaches were not shown to scale well to pre-training
in Ortiz et al.| (2021). More recently, DiLoCo (Douillard et al.l [2023b) adapted the LocalSGD
framework to Large Language Model (LLM) pre-training, demonstrating that replacing the inner
optimizer with AdamW and a nesterov momentum outer optimizer can yield substantial benefits.
Our work builds upon this line of research by enabling aggressive TOP-k sparsification of the com-
municated pseudo-gradients in a LocalSGD-style framework, something that prior methods have
not achieved while maintaining or improving upon state-of-the-art LLM training performance. Fi-
nally, Douillard et al.| (2025) and |[Fournier et al.| (2024) consider communicating a small subset of
model parameters more frequently instead of communicating a message the size of the model in-
frequently by allowing the models to desynchronize while still remaining relatively close to each
other (in terms of, e.g., consensus distance). SparseLoCo, on the other hand, maintains the benefit
of infrequent communication while communicating a small-sized message and maintaining model
synchronization.

Error Feedback and Compressed Updates Error feedback (EF) has been extensively studied,
particularly from a theoretical perspective, as a means to compensate for the information loss intro-
duced by various gradient compression methods (Seide et al., 2014; Karimireddy et al., [2019; |Stich

Under review as a conference paper at ICLR 2026

& Karimireddyl [2019). It has been combined with various compression techniques, including quan-
tization, sparsification (Shi et al.,[2019)), and low-rank approximation in (Vogels et al.,2019;/Ahn &
Xu,, 2025). In the single local step setting it has been applied to LLMs in recent works (Wang et al.|
2023} [Peng et al.| 2024} Zhao et al.). EF21-SGDM (Fatkhullin et al. |2023) analyzed how to com-
bine error feedback with momentum, introducing a momentum-compatible variant that requires two
accumulators and is largely focused on theoretical aspects and does not address the multi-iteration
setting or the practical challenges of LLM pre-training. QSparseLocalSGD (Basu et al.|[2019) is, to
our knowledge, one of the few works that combines multi-iteration methods such as LocalSGD with
error feedback, but its focus was on theoretical analysis with non-adaptive optimizers and without
outer momentum which is crucial to high performance in the LLM setting. In contrast, our work tar-
gets the LLM pre-training regime and develops a method to combine aggressive TOP-k compression
and error feedback with an efficient approximation of outer momentum. DeMo (Peng et al.| 2024)
considers EF with DCT encoding and TOP-k compression in the LLM setting, demonstrating it can
achieve competitive performance, but without incorporating local updates or the ability to leverage
adaptive optimizers. Similarly, CocktailSGD (Wang et al., [2023) uses error feedback with multiple
compression operators in an LLM fine-tuning setting, yet does not explore the integration of local
iteration methods. Our work studies the combination of these approaches in the context of LLMs
and more generally in the context of modern variations of multi-iteration methods that have been
shown to scale to pre-training.

3 METHODOLOGY

In this section, we first review DiLoCo. We then propose replacing the global outer momentum
in DiLoCo with per-replica local outer momentum (LOM), where each replica maintains its own
accumulator, an approach that will be used to empirically analyze the need for global momentum.
Finally, we present our proposed method, SparseL.oCo, which combines TOP-k compression with
DiLoCo’s infrequent communication.

3.1 BACKGROUND AND NOTATION

Consider the DiLoCo/FedOpt (Douillard et al., 2023a;|Reddi et al., 2020) framework, which utilizes
the following basic rule on each worker or replica to produce a pseudo-gradient at each outer step,

Agt), as follows:

0 « InnerOpt (Q(t_l); DT) , Vre|[R],
AW — gt=1) _9®)
Here, H corresponds to the number of inner steps of the optimizer (typically AdamW), and R is the

number of replicas. DiLoCo, which corresponds to an instantiation of FedOpt with AdamW as the
inner optimizer and outer (server) momentum using Nesterov (Dozat, [2016)), is given as follows:

R
Al . 1 Z A
R o
r=1
m® Bm(tfl) + A(t)’ Al AWM 4 5m(t)’
O — 9= — o AW,
3.2 LocAL OUTER MOMENTUM

We first propose a variant of DiLoCo that utilizes a per-replica local outer momentum instead of the
unified global momentum. The goal of this algorithm is to provide insight into how well the outer
momentum can be locally approximated. We denote this algorithm DiLoCo-LOM (Local Outer

Under review as a conference paper at ICLR 2026

Momentum):
m® BmlD 4 AL, AL AW 4 g,

|
-

O gD _ o A®),
Here, the outer momentum is updated locally, solely based on the local pseudo-gradient, while the
final update is based on the average of the local momentum accumulators A(®). Note that typi-
cal implementations of DiLoCo store the outer momentum locally on each replica, meaning that

DiLoCo-LOM does not add any memory overhead compared to the global momentum variant. We
show that the DiLoCo-LOM update exactly matches the DiLoCo update in Appendix

Building up to SparseLoCo, we consider an additional method, denoted DiLoCo-LOM-Sub-k,
where the local momenta have their largest components removed at the end of each outer step:

mff) — m,(f) - TOP-k(mg))

This allows us to study the impact of TOP-k subtraction, used in error feedback, without sparsifying
the pseudo-gradient.

3.3 SPARSELOCO: SPARSE AGGREGATION MEETS LOCAL OUTER MOMENTUM

We now introduce SparseLoCo, which blends TOP-k sparsification and error feedback in place of
the local outer momentum. We consider error feedback, e,., applied to the pseudo-gradients, which
we denote as OuterEF:

O AW

T (s

e® Be

(s

AP @ (TOP-k(eﬁ))) et e AW

Here, () is the quantization function which allows further compression of the selected values. When
k is sufficiently small, OuterEF closely approximates the local outer momentum in LOM, since only
a few components will be subtracted from e,.. On the other hand, unlike LOM and LOM-Sub-k,
SparseLoCo only aggregates quantized sparse vectors, drastically reducing the message size needed
for communication. Throughout the paper, we refer to the communication density as the fraction
of coordinates in the pseudo-gradient that are transmitted at each outer synchronization step; for
brevity, we simply write “density” referring to the same quantity. The full algorithm for SparseLoCo
is given in Algorithm [T}

SparseLoCo uses a chunk-wise variant of the TOP-k operation inspired by Xu et al.| (2021); [Peng
et al.[(2024). To do so, we first partition each 2D parameter tensor (e.g., attention and MLP weight
matrices) into non-overlapping 64 x 64 blocks and each 1D tensor (e.g., layer-norm parameters)
into contiguous chunks of size 4096,and then apply TOP-k independently within each chunk. This
has three benefits compared to applying it at the full-tensor or global level: (a) the cost of naively
storing indices for transmission is significantly reduced as each chunk’s index space is bounded.
(b) Top-k applied to entire models or individual tensors can overemphasize correlated variables;
thus, chunking can have benefits on performance as further discussed in Appendix |B} (c) Finally,
chunking can allow for more easily integrating tensor parallelism and FSDP, which often require
sharding across tensors, thereby creating inefficiencies for TOP-k operations over entire tensors or
models.

4 EXPERIMENTS

Our experiments use 178M-, 512M-, and 2B-parameter LLaMA-style decoder-only transformer on
DCLM (Li et al.} 2024) using the LLaMA-2 tokenizer (Touvron et al.,|2023)). Following Hoffmann

Under review as a conference paper at ICLR 2026

Algorithm 1 SparseLoCo

Require: initial parameters {9&0)}, inner steps H, outer steps T, outer learning rate «, error mo-
mentum [, workers R, per worker training data D,..

1: fort < 1to T do
2: forr < 1to Rdo
Local inner loops

3: o) ol
4: for h + 1to H do > Local inner loops
5: Sample z ~ D,
6: L« f(z,00)
7: o) « AdamW (6", VL)
8: end for
9: Asf) — Gﬁt_l) — 0,@ > Pseudo-gradient
Compression + Error Feedback
0 e e el 4 A
11: AW Q(TOP—k(eg.t))) > Transmit A"
12: et e AW
Aggregate + Outer Update
13: Al LR AW
14: oLt o _ o A®
15: end for
16: end for

et al.| (2022)), we allocate a token budget equal to 20x the model size. Our experimental protocol
follows (Charles et al., [2025). Unless otherwise stated, our main results are reported on the 512M-
parameter model with R=8 workers, per-worker batch size B=256, and sequence length L=2048,
yielding a global batch of B x L x R =~ 4.19M tokens per step. For Sparse.oCo, we employ 2-bit
quantization with a chunk size of 4096 (Non-overlapping square 64 x 64 grids for 2D parameters).
We apply a short error feedback (OuterEF) freeze, where the error feedback e, is not utilized for
the first 5% of the outer steps to improve training stability and performance (ablated in Table
in Appendix [E). We further study scaling across model sizes (178M; Appendix [F] 2B; Table [3),
and number of workers R € {16,32} in Table @ and Appendix Tables and We report the
hyperparameter sweep ranges, architectural details, and selected configurations in Appendix [Hl As
baselines, we include DiLoCo and DeMo—two strong communication-efficient methods (one using
local iterations and the other using error feedback) for LLMs—as well as a DDP AdamW baseline.

4.1 BUILDING INTUITION WITH LOCAL OUTER MOMENTUM

We first use the DiLoCo-LOM and DiLoCo-LOM- Tapje 1: DiLoCo’s global outer momentum
Sub-k algorithms to empirically link the standard g well approximated by Local outer mo-
outer momentum in DiLoCo to the error feedback 1hentum.

mechanism in SparseLoCo. In DiLoCo-LOM, each

replica maintains a local outer momentum accumu- Method Loss
lator that is averaged only at synchronization. In Djil.oCo 2760
DiLoCo-LOM-Sub-k, we subtract the largest entries Di[,oCo w.o. outer momentum 2.868
of the local momentum after each synchronization, i[.oCo-LOM 2759

isolating the effect of TOP-k subtraction while keep- i 6Co-LOM-Sub-k - 25% 2761
ing the communicated pseudo-gradients dense. As
shown in Table [I] DiLoCo-LOM matches DiLoCo’s loss—consistent with Proposition [I] (Ap-
pendix [J)—and pruning 25% of the largest accumulator entries has a negligible impact, whereas
removing outer momentum entirely degrades performance.

Under review as a conference paper at ICLR 2026

To quantify how closely local outer momentum tracks the target global outer momentum in DiL.oCo,
we maintain a reference global accumulator and, over the first 20 outer steps, compute the cosine
similarity between this reference and each replica’s local accumulator at corresponding steps. The
average similarity between individual local accumulators and the global reference accumulator is
> 0.75 for DiLoCo-LOM-Sub-k (25%), indicating that removing the top components from local
accumulators each outer step still allows them to remain a strong directional proxy for the global
momentum and supporting our interpretation of SparseLoCo’s error feedback state as a local ap-
proximation of DiLoCo’s outer momentum.

Table 2: SparseLoCo compared to DiLoCo and gradient compression (DeMo). We show the size
of the pseudo-gradients sent, the number of synchronizations, quantization supported, and loss.
SparseLoCo outperforms other communication-efficient baselines in both communication efficiency
and loss. All results are reported for 512M models pre-trained on a 10B-token budget with R=8
replicas. Here, Density denotes the communication density as the percentage of coordinates in the
pseudo-gradient vectors that are non-zero (and therefore transmitter) at each synchronization step.

Method Density Loss Pseudo-Grad Size # of Syncs Quantization
AdamW DDP 100% 2.69 1.02 GB 2445 16-bit
DiLoCo (H=15) 100% 2.76 51240MB 163 8-bit
DeMo 0.78% 2.83 10.01 MB 2445 8-bit
DeMo 3.12% 2.86 40.03 MB 2445 8-bit
SparseLoCo (H=15) 0.78% 2.79 425 MB 163 2-bit
SparseLoCo (H=15) 3.12% 2.70 17.01 MB 163 2-bit

4.2 SPARSELOCO

Table 2] compares SparseLoCo at H=15 against existing methods. We utilize 2-bit quantization for
SparseLoCo with no observed loss degradation, while using the prescribed quantization settings for
baselines (Douillard et al., 2023a; Peng et al.,|[2024). We observe that SparseL.oCo obtains lower final
loss than DiLoCo and DeMo baselines, while enjoying the simultaneous communication benefits of
aggressively sparsified pseudo-gradients and reduced synchronization frequency. As SparseLoCo

Communication Frequency (H): 15 Communication Frequency (H): 30
--- DiLoCo - SGD Outer (2.87) 2.951 ===DiLoCo.- SGD OUter(2.68)
3.0 --- DiLoCo - Nesterov Outer (2.76) -== DiLoCo - Nesterov Outer (2.78)
—e— SparseLoCo 2.90 —e— SparseLoCo
T O . ey
& 2.85
-
2.80
2.751
0.1% 0.4% 0.8% 1.6% 3.1% 6.2% 12.5% 25% 50% 04% 0.8% 1.6% 3.1% 62% 125% 25% 50%
Communication Density Communication Density
Communication Frequency (H): 50 Communication Frequency (H): 100
-== DiLoCo - SGD Outer (2.90) 3.2 --- DiLoCo - SGD Outer (2.91)
3.0 —--- DiLoCo - Nesterov Outer (2.81) —-- DiLoCo - Nesterov Outer (2.87)
—e— SparseLoCo 3.1 —e— SparseLoCo
2
530
P B e e e e e e
0.4% 0.8% 1.6% 3.1% 6.2% 12.5% 25% 50% 0.4% 0.8% 1.6% 3.1% 62% 12.5% 25% 50%
Communication Density Communication Density

Figure 1: SparseLoCo outperforms DiLoCo for H € {15,30,50,100} communication inter-
vals. We evaluate SparseLoCo, DiL.oCo, and DiLoCo without Nesterov for different communica-
tion intervals and at different sparsity levels for SparseLLoCo. We report the best performance in each
case. Crucially, SparseLoCo can outperform DiL.oCo while communicating significantly less. We
also observe that the optimal density grows with higher communication intervals. All experiments
were conducted with R = 8 workers and 512M model size.

Under review as a conference paper at ICLR 2026

u n
2.90 1 = 2.90 1 =
u]
A (] . Lo . A .
2.851 7S - . o -
%) o ° *
n ° A m DiLoCo SGD Outer ° A
Q 2801, A DiLoCo Nesterov Outer 2.80 1 ¢
= ° ° A & DeMo ¢ o © A
° ® SparseLoCo
2751 o o0 4 2.751 * o o
o ® o ©
° °
2.70 A e 2.70 1 e
102 103 10* 10! 102

Comms Volume (Gbits)

Comm Volume (Gbits)

(a) Ring Communication (b) Parameter Server

Figure 2: SparseLoCo lies on the Pareto frontier between loss and communication volume.
We report communication volume (outbound) for two settings (A) ring communication topology
(ring all-gather for SparseLoCo and DeMo, ring all-reduce for DiLoCo) (B) Parameter server. The
points consider different H for DiLoCo, different densities for DeMo, and combinations of both
for SparseLLoCo using 512M models. We observe that, in both cases, SparseL.oCo is at the Pareto
frontier.

inherently utilizes error feedback, SparseLoCo further reduces communication size by quantizing
the sparsified values. We further compare the performance on simple downstream tasks relevant at
this model scale in Table |3} demonstrating that the performance improvements are consistent.

SparseLoCo performance at different sparsity levels and communication intervals In Figure[T]
we further demonstrate the performance improvements of SparseL.oCo across TOP-k densities and
increasing H € {15, 30,50, 100} values compared to well-tuned DiLoCo and DiLoCo without outer
momentum baselines. We observe a trend that aligns with the hypothesis that SparseLoCo’s Out-
erEF can provide similar benefits to DiLoCo’s outer momentum. In particular, we first observe that
not using outer momentum in DiLoCo leads to significant performance degradation and that this
setting corresponds exactly to the fully dense case for TOP-k (e.g., k = 100%). With SparseLoCo,
we observe that (i) extreme sparsity levels (when nearly nothing is sent, e.g., 0.05%) degrade perfor-
mance. (ii) With increasing density (while remaining sparse), performance improves and eventually
exceeds DiLoCo for all values of H. At this density levels, the EF buffer remains relatively dense
and accumulates residual gradients, resembling a sparsified outer momentum in accumulating gradi-
ents (iii) Finally, as k approaches dense communication, the EF buffer becomes more sparse (due to
line 12 in Algorithm [}, trending towards the performance of DiLoCo with no outer momentum and
again degrading performance. The same three regimes appear across all inner steps H. Furthermore,
in Figure] we observe that this phenomenon happens with DeMo (Peng et al.l 2024) as well, while
the overall performance being inferior to SparseL.oCo.

SparseL.oCo can outperform DiLLoCo Across all settings of the inner steps H, we observe regimes
where SparseLoCo outperforms DiLoCo. A plausible explanation is that sparse aggregation at a
well-chosen k emphasizes high-saliency components and reduces interference among updates, echo-
ing intuitions from recent model-merging work in multi-task fine-tuning (Yadav et al., 2023} |Davari
& Belilovsky, 2024).

Higher sparsity is needed with fewer inner steps We observe through Figure|[I]a systematic pattern
that the optimal value of SparseLoCo is reached at a higher sparsity level with fewer inner steps.
This is consistent with the fact that higher inner steps communicate information from a larger total
number of samples. Indeed, we would expect that a trajectory with more steps would have a larger
support.

SparseLoCo is at the Pareto frontier in communication volume In Figure [2] we compare the
communication volume of SparseL.oCo to DiLoCo, DiLoCo w.o. outer momentum, and DeMo.
The exact communication setting and the underlying implementation of the aggregation can have

Under review as a conference paper at ICLR 2026

Table 3: Benchmark (0-shot) accuracy (%; higher is better), Best is bold. We evaluate the same
512M pretrained models as in Table [2] using the 3.12% and 0.78% communication densities for
SparseLoCo and DeMo, respectively, which correspond to the best performing configruations for
each method in that table. We observe that SparseLoCo outperforms the DeMo and DiL.oCo base-
lines across all benchmarks.

Method ARC-Easy HellaSwag PIQA
AdamW DDP 44.99% 36.08% 65.34%
DiLoCo 4428% 3450% 64.96%
DeMo 41.92% 3237% 64.09%

SparseLLoCo 45.24% 36.49% 65.23%

a significant impact on the communication volume. We consider two common setups from the
literature—methods utilize either ring all-reduce or ring all-gather (Fig. A), or a parameter server
(Fig. B). We observe that in both cases, SparseLLoCo lies on the Pareto frontier while other methods
have a strictly worse trade-off. We note that the results in Fig. A assume aggregation using a naive
all-gather operation for implementation, while there is further potential to exploit the structure of the
problem, for example, by summing overlapping indices along steps in the all-gather ring or utilizing
specially designed all-reduce (Li & Hoefler, [2022). In Section [A]of the Appendix, we also discuss
the communication measured during a live deployment of collaborative learning over the internet
using SparseLoCo.

SparseLoCo can be used with Ring All-Reduce as a drop-in for DiLoCo Although our analy-
sis and motivation in the work focuses on aggressively compressing the per-iteration message size
we note that in communication settings where efficient all-reduce is already available and preferred,
SparseLoCo still provides significant benefit over DiLoCo while incurring no additional memory
or compute overhead. Concretely, the aggregation step in Algorithm 1 Line 13 can be performed
directly by an all-reduce over a sparse vector. This has two significant benefits over DiLoCo with
all-reduce (AR): (1) As observed in Table [0 and Figure[T] the performance when k is optimally se-
lected is improved over DiLoCo and (2) the Outer error feedback naturally supports more aggressive
quantization than the naive DiL.oCo, allowing for 2-bit quantization to be used without an additional
accumulator, unlike [Thérien et al.| (2025)).

SparseL.oCo scales across model sizes, communication intervals, and number of replicas In
Table 4} we evaluate scaling of DiLoCo and SparseLoCo with number of workers R € {8, 16,32}
using a 512M-parameter model scale and communication interval H=50. Scaling beyond 8§ repli-
cas without significant degradation is a known challenge [Charles et al.| (2025). We observe that
SparseLoCo consistently outperforms DiLoCo with higher number of workers across all settings
and across a number of densities, showing that it can help address the challenge of scaling the num-
ber of replicas. We also observe that with higher number of workers a lower density can sometimes
be supported. In the Appendix [I2]we also study the impact of the number of replicas at 178M model
size. We also evaluate SparseLoCo in the highest communication intervals (H=250), for this we
follow |Charles et al.| (2025) using an overtraining regime with a doubled token budget, where we
see again SparseLoCo is able to achieve competitive performance with DiLoCo while improving
communication. Finally, we run a larger scale model of size 2B-parameter model scale with R=16
workers and communication interval H=>50, where SparseLoCo with 6.25% density outperforms
DiLoCo (Table[5). We can see that the benefits of SparseLoCo are maintained at this scale.

Under review as a conference paper at ICLR 2026

Table 4: The final evaluation loss of scaling number of replicas R € {8,16,32} for a 512M-
parameter model with communication interval =50 under different communication densities.
SparseLoCo consistently outperforms DiLoCo as R increases. Best and second best results are
presented in bold.

Method Density Loss (R=8) Loss (R=16) Loss (R=32)

AdamW 100.00% 2.69 2.69 2.69

DiLoCo 100.00% 2.81 2.87 2.93
0.78% 2.97 3.00 3.09
1.56% 2.89 2.92 3.00

S LoC 3.12% 2.83 2.86 2.92

PaArSELOL0 6 25% 2.79 2.82 2.88
12.50% 2.78 2.80 291
25.00% 2.78 2.84 3.02

Table 5: Evaluation loss and benchmark (0-shot) accuracy of 2B-parameter LLMs with =16 con-
tributing peers. Best in bold.

Method Val Loss ARC-Easy ARC-Challenge HellaSwag PIQA WinoGrande
AdamW DDP 2.34 58.42% 32.00% 56.87% 72.25% 56.59%
DiLoCo 237 60.48% 3055% 5495% 72.85% 5556%
SparseLoCo 2.36 59.05% 32.17% 55.49 % 72.85% 58.56 %

4.3 ABLATIONS

We now highlight key design choices of SparseLoCo through a series of ablations.

Outer Momentum + QuterEF A natural way to combine DiLoCo with OuterEF is by adding
an error feedback while keeping the Nesterov outer optimizer. This has been attempted by |Thérien
et al.| (2025), who showed it can provide benefits for quantization but that performance degrades
quickly, despite using EF, with sparsification. This approach requires an additional accumulator.
In contrast, our finding is that, in the case of high sparsification, using a global outer momentum
can be detrimental to performance. This is illustrated in Table [6] where we equip SparseLoCo’s
outer optimizer with Nesterov outer momentum. This significantly degrades performance at high
sparsity. We hypothesize that this is due to the conflicting directions of the error feedback and the
outer momentum, since the largest components become amplified by the outer momentum but not
the error feedback.

Random-K We ablate the choice of TOP-k compared to the Table 6: Naively combining
alternative Random-£ (Shi et al.l [2019; Wang et al., 2023) in DiLoCo’s standard Nesterov outer
Table[7] We observe that performance is significantly degraded ~optimizer yields poor results. We
when using random-% for the same number of indices selected, use 3.12% communication density
emphasizing the importance of this design choice. in both settings.

Quantization As discussed, SparseLoCo benefits from Method
stronger quantization than non-EF methods and supports up
to 2-bit quantization and was generally observed to give re- SparseLoCo 2710
sults very close to full precision. In Table[/| we show the per- SparseLoCo+Nesterov ~ 3.39
formance at different quantization values, showing that 2-bit
quantization can be achieved at almost no performance cost.

Loss

Under review as a conference paper at ICLR 2026

Table 7: Ablation Studies (Left): SparseLoCo with Random-£ vs. TOP-k sparsification; TOP-k
significantly outperforms Random-k across all communication densities. (Right): Effect of quanti-
zation on loss (lower is better); 2-bit shows almost no degradation vs. full precision.

Density Random-k Loss ToP-k Loss Quant.

bits 1 2 3 4 32
1.56% 3.05 2.74
3.12% 2.98 2.70 Loss 479 270 270 270 270
6.25% 2.93 2.71

5 CONCLUSION

We have proposed an algorithm that can blend multi-iteration LLM pre-training methods with Top-k
sparsification and quantization, enabling aggressive compression of DiLoCo’s pseudo-gradients.
Our work establishes that the outer momentum in DiLoCo can be replaced by local momentum
accumulators without losing performance. Connecting local momentum with error feedback, we
leverage this insight to develop SparseLoCo. Our extensive experiments confirm that SparseLoCo
significantly reduces communication while outperforming strong baselines such as DiLoCo and
DeMo, placing it on the Pareto frontier of loss versus communication volume. Additionally, our
experiments reveal that sparse aggregation may actually be useful for improving the performances,
opening the possibility of studying more sophisticated aggregation methods in the pre-training set-
ting.

6 REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we share the complete codebase with step-by-step instructions to repli-
cate results for both our proposed method and the baselines, in the supplementary materials. Fur-
thermore, in Appendix [H| and Tables [14] and we report the hyperparameter sweep ranges and
model architectural details in depth, with the selected configurations highlighted.

REFERENCES

Kwangjun Ahn and Byron Xu. Dion: A communication-efficient optimizer for large models. arXiv
preprint arXiv:2504.05295, 2025. URL https://arxiv.org/abs/2504.05295,

Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. Qsparse-local-sgd: Distributed sgd
with quantization, sparsification, and local computations, 2019.

Zachary Charles, Gabriel Teston, Lucio Dery, Keith Rush, Nova Fallen, Zachary Garrett, Arthur
Szlam, and Arthur Douillard. Communication-efficient language model training scales reliably
and robustly: Scaling laws for diloco, March 2025. URL https://arxiv.org/abs/2503.
09799.

Ziheng Cheng and Margalit Glasgow. Convergence of distributed adaptive optimization with local
updates. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=VNg7srnvDI.

MohammadReza Davari and Eugene Belilovsky. Model breadcrumbs: Scaling multi-task model
merging with sparse masks. In European Conference on Computer Vision, pp. 270-287. Springer,
2024.

Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
Kuncoro, Marc’Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-
communication training of language models. arXiv preprint arXiv:2311.08105, 2023a.

Arthur Douillard, Qixuang Feng, Andrei A. Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
Kuncoro, Marc’ Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-
communication training of language models. CoRR, abs/2311.08105, 2023b. URL https:
//doi.org/10.48550/arXiv.2311.08105.

10

https://arxiv.org/abs/2504.05295
https://arxiv.org/abs/2503.09799
https://arxiv.org/abs/2503.09799
https://openreview.net/forum?id=VNg7srnvD9
https://doi.org/10.48550/arXiv.2311.08105
https://doi.org/10.48550/arXiv.2311.08105

Under review as a conference paper at ICLR 2026

Arthur Douillard, Yanislav Donchev, Keith Rush, Satyen Kale, Zachary Charles, Zachary Gar-
rett, Gabriel Teston, Dave Lacey, Ross Mcllroy, Jiajun Shen, Alexandre Ramé, Arthur Szlam,
Marc’ Aurelio Ranzato, and Paul Barham. Streaming diloco with overlapping communication:
Towards a distributed free lunch, January 2025. URL https://arxiv.org/abs/2501.
18512.

Timothy Dozat. Incorporating Nesterov Momentum into Adam. In Proceedings of the 4th In-
ternational Conference on Learning Representations, Workshop Track, 2016. URL https:
//openreview.net/pdf?1d=0MO0jvwB8 JIp57Z2JJtNEZ.

Ilyas Fatkhullin, Alexander Tyurin, and Peter Richtdrik. Momentum provably improves error feed-
back! In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey
Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Conference on
Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/
hash/f0bl1515be276f6ba82b4£f2b25e50befO0-Abstract-Conference.htmll

Louis Fournier, Adel Nabli, Masih Aminbeidokhti, Marco Pedersoli, Eugene Belilovsky, and
Edouard Oyallon. Wash: Train your ensemble with communication-efficient weight shuffling,
then average. arXiv preprint arXiv:2405.17517, 2024.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Sami Jaghouar, Jack Min Ong, Manveer Basra, Fares Obeid, Jannik Straube, Michael Keiblinger,
Elie Bakouch, Lucas Atkins, Maziyar Panahi, Charles Goddard, Max Ryabinin, and Johannes
Hagemann. INTELLECT-1 technical report. CoRR, abs/2412.01152, 2024. URL https://
doi.org/10.48550/arXiv.2412.01152.

Charles-Etienne Joseph, Benjamin Thérien, Abhinav Moudgil, Boris Knyazev, and Eugene
Belilovsky. Meta-learning optimizers for communication-efficient learning. Trans. Mach. Learn.
Res., 2025, 2025. URL https://openreview.net/forum?id=uRbf9ANAns.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian U. Stich, and Martin Jaggi. Error feedback
fixes signsgd and other gradient compression schemes. In Proceedings of the 36th International
Conference on Machine Learning (ICML), pp. 3252-3261, 2019. URL https://arxiv.
org/abs/1901.09847.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132-5143. PMLR, 2020.

Jakub Konec¢ny, H Brendan McMahan, Daniel Ramage, and Peter Richtarik. Federated optimization:
Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527, 2016.

Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not the
main factor behind the gap between sgd and adam on transformers, but sign descent might be.
arXiv preprint arXiv:2304.13960, 2023.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hri-
tik Bansal, Etash Kumar Guha, Sedrick Scott Keh, Kushal Arora, Saurabh Garg, Rui Xin,
Niklas Muennighoff, Reinhard Heckel, Jean Mercat, Mayee F. Chen, Suchin Gururangan,
Mitchell Wortsman, Alon Albalak, Yonatan Bitton, Marianna Nezhurina, Amro Abbas,
Cheng-Yu Hsieh, Dhruba Ghosh, Josh Gardner, Maciej Kilian, Hanlin Zhang, Rulin Shao,
Sarah M. Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis Daras, Kalyani Marathe, Aaron
Gokaslan, Jieyu Zhang, Khyathi Raghavi Chandu, Thao Nguyen, Igor Vasiljevic, Sham M.
Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer,
Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie Wang, Dirk
Groeneveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alex Dimakis, Yair
Carmon, Achal Dave, Ludwig Schmidt, and Vaishaal Shankar. Datacomp-lm: In search of
the next generation of training sets for language models. In Amir Globersons, Lester Mackey,

11

https://arxiv.org/abs/2501.18512
https://arxiv.org/abs/2501.18512
https://openreview.net/pdf?id=OM0jvwB8jIp57ZJjtNEZ
https://openreview.net/pdf?id=OM0jvwB8jIp57ZJjtNEZ
http://papers.nips.cc/paper_files/paper/2023/hash/f0b1515be276f6ba82b4f2b25e50bef0-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/f0b1515be276f6ba82b4f2b25e50bef0-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2412.01152
https://doi.org/10.48550/arXiv.2412.01152
https://openreview.net/forum?id=uRbf9ANAns
https://arxiv.org/abs/1901.09847
https://arxiv.org/abs/1901.09847

Under review as a conference paper at ICLR 2026

Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.),
Advances in Neural Information Processing Systems 38: Annual Conference on Neural In-
formation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10
- 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/
hash/19%9e4ea30dded58259665db375885e412-Abstract—-Datasets_and_
Benchmarks_Track.html.

Shigang Li and Torsten Hoefler. Near-optimal sparse allreduce for distributed deep learning. In
Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pp. 135-149, 2022.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. In Inderjit S. Dhillon, Dim-
itris S. Papailiopoulos, and Vivienne Sze (eds.), Proceedings of the Third Conference on
Machine Learning and Systems, MLSys 2020, Austin, TX, USA, March 2-4, 2020. ml-
sys.org, 2020. URL https://proceedings.mlsys.org/paper_files/paper/
2020/hash/1f5fe83998a09396ebe6477d9475balc—-Abstract.htmll

Joel Lidin, Amir Sarfi, Evangelos Pappas, Samuel Dare, Eugene Belilovsky, and Jacob Steeves.
Incentivizing permissionless distributed learning of llms. arXiv preprint arXiv:2505.21684, 2025.

Tao Lin, Sebastian U. Stich, and Martin Jaggi. Don’t use large mini-batches, use local SGD. CoRR,
abs/1808.07217, 2018.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273-1282. PMLR, 2017.

Nicole Mitchell, Johannes Ballé, Zachary Charles, and Jakub Kone¢ny. Optimizing the
communication-accuracy trade-off in federated learning with rate-distortion theory. arXiv preprint
arXiv:2201.02664, 2022.

Jose Javier Gonzalez Ortiz, Jonathan Frankle, Mike Rabbat, Ari Morcos, and Nicolas Ballas. Trade-
offs of local sgd at scale: An empirical study. arXiv preprint arXiv:2110.08133, 2021.

Bowen Peng, Jeffrey Quesnelle, and Diederik P Kingma. Decoupled momentum optimization. arXiv
preprint arXiv:2411.19870, 2024.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konecny,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani.
Fedpaq: A communication-efficient federated learning method with periodic averaging and quan-
tization. In Silvia Chiappa and Roberto Calandra (eds.), The 23rd International Conference on
Artificial Intelligence and Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily,
Italy], volume 108 of Proceedings of Machine Learning Research, pp. 2021-2031. PMLR, 2020.
URLhttp://proceedings.mlr.press/v108/reisizadeh20a.html.

Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braverman,
Joseph Gonzalez, and Raman Arora. Fetchsgd: Communication-efficient federated learning with
sketching. In Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Re-
search, pp. 8253-8265. PMLR, 2020. URL http://proceedings.mlr.press/v119/
rothchild20a.htmll

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent
and its application to data-parallel distributed training of speech dnns. In Haizhou Li, Helen M.
Meng, Bin Ma, Engsiong Chng, and Lei Xie (eds.), I15th Annual Conference of the Interna-
tional Speech Communication Association, INTERSPEECH 2014, Singapore, September 14-18,
2014, pp. 1058-1062. ISCA, 2014. URL https://doi.org/10.21437/Interspeech.
2014-2774.

12

http://papers.nips.cc/paper_files/paper/2024/hash/19e4ea30dded58259665db375885e412-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/19e4ea30dded58259665db375885e412-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/19e4ea30dded58259665db375885e412-Abstract-Datasets_and_Benchmarks_Track.html
https://proceedings.mlsys.org/paper_files/paper/2020/hash/1f5fe83998a09396ebe6477d9475ba0c-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2020/hash/1f5fe83998a09396ebe6477d9475ba0c-Abstract.html
http://proceedings.mlr.press/v108/reisizadeh20a.html
http://proceedings.mlr.press/v119/rothchild20a.html
http://proceedings.mlr.press/v119/rothchild20a.html
https://doi.org/10.21437/Interspeech.2014-274
https://doi.org/10.21437/Interspeech.2014-274

Under review as a conference paper at ICLR 2026

Shaohuai Shi, Xiaowen Chu, Ka Chun Cheung, and Simon See. Understanding top-k sparsification
in distributed deep learning. CoRR, abs/1911.08772, 2019.

Sebastian U Stich. Local sgd converges fast and communicates little. arXiv preprint
arXiv:1805.09767, 2018.

Sebastian U. Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for
SGD with delayed gradients and compressed communication. CoRR, abs/1909.05350, 2019. URL
http://arxiv.org/abs/1909.05350.

Benjamin Thérien, Xiaolong Huang, Irina Rish, and Eugene Belilovsky. Muloco: Muon is a practi-
cal inner optimizer for diloco, 2025. URL https://arxiv.org/abs/2505.23725,

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gra-
dient compression for distributed optimization. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Ad-
vances in Neural Information Processing Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pp. 14236-14245, 2019. URL |https://proceedings.neurips.cc/paper/2019/
hash/d9fbed9da256e344clfad6bb46c34cS5f-Abstract.htmll

Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael G. Rabbat. Slowmo: Improving
communication-efficient distributed SGD with slow momentum. CoRR, abs/1910.00643, 2019.

Jue Wang, Yucheng Lu, Binhang Yuan, Beidi Chen, Percy Liang, Christopher De Sa, Christopher
Re, and Ce Zhang. CocktailSGD: Fine-tuning foundation models over 500Mbps networks. In An-
dreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pp. 36058-36076. PMLR, 23-29 Jul 2023.

Hang Xu, Chen-Yu Ho, Ahmed M. Abdelmoniem, Aritra Dutta, El Houcine Bergou, Konstantinos
Karatsenidis, Marco Canini, and Panos Kalnis. Grace: A compressed communication framework
for distributed machine learning. In 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS), pp. 561-572, 2021. doi: 10.1109/ICDCS51616.2021.00060.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models. arXiv preprint arXiv:2306.01708, 2023. URL
https://arxiv.org/abs/2306.01708.

Hanzhen Zhao, Xingyu Xie, Cong Fang, and Zhouchen Lin. Separate: A simple low-rank projec-
tion for gradient compression in modern large-scale model training process. In The Thirteenth
International Conference on Learning Representations.

13

http://arxiv.org/abs/1909.05350
https://arxiv.org/abs/2505.23725
https://proceedings.neurips.cc/paper/2019/hash/d9fbed9da256e344c1fa46bb46c34c5f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d9fbed9da256e344c1fa46bb46c34c5f-Abstract.html
https://arxiv.org/abs/2306.01708

Under review as a conference paper at ICLR 2026

A REAL-WORLD DEPLOYMENT FOR COLLABORATIVE PERMISSIONLESS
DISTRIBUTED TRAINING OVER THE INTERNET

SparseLoCo has been deployed in a real-world setting and is being used to collaboratively train mod-
els up to 8B and 70B with permissionless global participants using an incentive scheme [Lidin et al.
(2025)) that rewards participants purely based on analysis of their compressed pseudo-gradients. This
was done on top of an existing blockchain. The addition and coordination of peers and their rewards
were handled through the blockchain. Communication of pseudo-gradients was routed through
globally distributed, S3-compliant object storage—specifically Cloudflare R2—which enabled rapid
dissemination of model updates worldwide. This setup allowed updates to be time-stamped and ver-
ified as part of the reward mechanism |Lidin et al.| (2025). Each peer maintained their own storage
bucket, posting read credentials to a blockchain so that both other peers and the reward mechanism
could access their compressed pseudo-gradients.

SparseLoCo is particularly advantageous in this communication setup, as cloud providers have large
bandwidth for peer downloads and are able to rapidly distribute and mirror files across the globe.
For upload, a peer only sends their pseudo-gradient through the cloud provider. Therefore, their
outbound communication (and required upload bandwidth) is kept low. They then download the
pseudo-gradients from the cloud provider, which is able to easily handle the high bandwidth con-
straints. An example of a practical communication time measured with an 8B model is on average
12 seconds, including sending their compressed pseudo-gradients and downloading other workers’
messages with the test node never exceeding 500 Mb/s. Compared to processing with 8x H200,
which takes around 4.5 minutes, leading to minimal wall-clock time degradation despite traffic over
the internet. For reference, Jaghouar et al.[(2024), which trained a similarly sized model (10B) with
8-bit DiLoCo, reports a globally distributed all-reduce synchronization time of 8.3 minutes on aver-
age for a peak of R=14 nodes participating and processing time of 38 minutes. We also performed
test measurements of communication time for a 70B model with the same setup as above (R=20
peers), measuring a total communication time of 70 seconds on average, with the test node never
reaching more than 500 Mb/s downlink and 110 Mb/s uplink.

70B LLM training We have deployed SparseLoCo on the live system discussed above to train a
72B model, the largest collaborative foundational model training run ever considered. The deploy-
ment uses R=20 replicas each associated to a peer, H=30 inner steps and a global batch size of
~8M tokens per inner step. Although the system design allows peers to use any target hardware
that can achieve reasonable throughput, the suggested hardware requirements targeted an 8 x B200.
Preliminary results on several benchmarks after an estimated 120B tokens have yielded bpb of 0.798
and Hellaswag (0-shot) downstream of 71.2% consistent with expectations at this scale, though no
existing benchmarks at similar token budgets are available due to the scale of training.

B EFFECT OF CHUNKING, DCT, AND INNER STEPS

A recently introduced method Peng et al.[(2024) considered the single-step setting with error feed-
back, using a compression function that first applies a discrete cosine transform (DCT) on tensor
chunks and then selects the TOP-k values in the DCT domain. It further employed sign descent on
the final aggregated update Kunstner et al.| (2023). Without the DCT transform, this approach can
be seen as a special case of SparseLoCo when H = 1, the inner optimizer is plain SGD, and the
outer optimizer utilizes sign descent. Since the effect of the DCT transform, designed for data with
sequential structure where the order of elements matters, is not well understood in this context, and
given the additional uncertainty about the role of chunking, in this section we disentangle the contri-
butions of both for DeMo, as well as in the multi-step (H > 1) setting. The ablations of these three
factors, evaluated purely in terms of loss, are presented in Table Here, the ToP-k EF baseline
is a simplified DeMo that applies TOP-k selection globally to the entire tensor (rather than within
chunks) while still utilizing sign descent.

We observe that in the setting with no local steps (ToP-k EF, DeMo) the impact of chunking is
very significant and the performance of DeMo can be nearly recovered without resorting to the
DCT. When using the local setting (H>1), we observed that DCT actually degrades performance;
however, we also find that the impact of chunking is more limited than in the setting of H=1. We
hypothesize that chunking and DCT both serve to reduce the effect of outlier values on the scale of

14

Under review as a conference paper at ICLR 2026

individual workers’ contributions, which may be less critical in the case of SparseLoCo due to its
adaptive inner optimizer.

Notably, DeMo does not have a natural way to incorporate adaptive optimization, and in practice,
the sign descent is used to approximate the benefits of the Adam optimizer Peng et al.|(2024)). A sig-
nificant advantage of SparseLLoCo is that operating on the pseudo-gradients allows easy integration
of adaptive optimizers like Adam in the inner loop.

Table 8: Ablation of tensor chunking and DCT (lower loss is better). We observe that chunking is
critical for the performance of DeMo. With H>1, DCT degrades performance. All runs use full
precision (FP32).

Method NoDCT DCT

SparseLoCo (H > 1, Chunking, TopP-k EF) 2.72 2.75
SparseLLoCo w/o Chunking (H > 1, Top-k EF) 2.73 2.76
DeMo (Chunking, Top-k EF w/ Sign Descent) 2.87 2.83
Topr-k EF (w/ Sign Descent) 3.48 2.84
DiLoCo 2.76 -

C OVERTRAINING REGIME WITH LARGE COMMUNICATION INTERVAL

Following|Charles et al.|(2025), we put SparseLoCo to the test in an overtraining regime by doubling
the token budget to 20B and using a larger communication interval of =250. Our observations
are consistent with the trends in Figure [T} and SparseLoCo outperforms DILOCO at this setting
(Table9).

Table 9: Overtraining on 2x data (20B token budget) with communication interval H=250.

Method Density Loss

DiLoCo 100% 2.77
SparseLoCo 50% 2.73
SparseLoCo 25% 2.74
SparseLoCo 12.5% 2.79
SparseLoCo 3.12% 2.97
SparseLoCo 1.56% 3.00

D STREAMING SPARSELOCO

In this section, we verify that Streaming DiLoCo [Douillard et al.| (2025) and SparseLoCo can be
combined. Streaming DiL.oCo is an orthogonal direction to SparseLoCo for reducing peak com-
munication volume by hiding it. SparseLoCo reduces the absolute number of bits communicated
per step through compression, thus indirectly reducing peak communication. Streaming DiLoCo
directly reduces peak bandwidth by only communicating subsets of the model’s parameters at a time
but does not reduce the absolute number of bits communicated.

Table [I0] reports results for combining SparseLoCo with Streaming DiLoCo to reduce peak com-
munication volume. We train 18-layer 1B-parameter transformers (hidden dimension 2048) in this
ablation. The model is partitioned into three even subsets of 6 hidden layers, with the first and third
subsets containing the embedding and unembedding layers, respectively. We train the 1,055M pa-
rameter model for a chinchilla-optimal 21B tokens|/Hoffmann et al.| (2022). We use a communication
interval of H = 15 for the full model (Streaming communicates every 5 steps) and 8 workers. We
observe that both models reach the same final validation loss (it differed only in the 4th decimal),
while Streaming SparseLoCo reduces peak communication volume by a factor of 3.

15

Under review as a conference paper at ICLR 2026

Table 10: We combine SparseLoCo with Streaming DiL.oCo to reduce peak communication volume
when training an 18-layer 1B parameter transformer. The model is partitioned into three even subsets
of 6 hidden layers, with the first and third subsets containing the embedding and unembedding
layers, respectively. We use a communication interval of I = 15 for the full model (Streaming
communicates every 5 steps) and 8 workers. We observe that both models reach the same final
validation loss (it differed only in the 4th decimal), while Streaming SparseLoCo reduces peak
communication volume by a factor of 3.

Method Density Comm. Volume/Step Peak Comm. Volume Loss
SparseLoCo 3.125% 35.03 MB 35.03 MB 2.51
Streaming SparseLoCo 3.125% 35.03 MB 11.68 MB 2.51

E FREEZING ERROR FEEDBACK

We apply a short error feedback (OuterEF) freeze at the beginning of training: for the first few
outer steps, the error feedback e, is not utilized. Concretely, during the freeze we don’t use nor
accumulate in the EF buffer. We find that freezing the OuterEF for the first few outer steps slightly
improves training stability and overall performance (see Table[TT).

Table 11: Freezing error feedback for the first few outer steps improves training. The final validation
loss for 512M models trained with SparseLoCo (3.12% density), R=8 replicas, and communication
interval H=15 is reported.

EF Freeze Loss

0% 2.704
5% 2.699

F SCALING REPLICAS ACROSS DIFFERENT DENSITIES AND
COMMUNICATION INTERVALS

We compare DiLoCo and SparseLoCo while varying the number of workers R € {8, 16, 32}, com-
munication intervals H € {15,50,100} using model sizes 178M and 512M, and report the final
validation loss in Tables [12} [T3] and @] We observe that SparseLoCo outperforms DiLoCo with
higher number of parallel workers.

16

Under review as a conference paper at ICLR 2026

Table 12: Final validation loss for the 178M model while varying the number of workers (R €
{8, 16, 32}) and the communication interval (H € {15, 50,100}). Best is bold.

H=15 H=50
Method Density Loss Method Density Loss
R=8 R=32 =8 R=32
AdamW 100.00% 291 291 AdamW 100.00% 291 291
DiLoCo 100.00% 2.99 3.10 DiLoCo 100.00% 3.05 3.20
0.78% 296 3.02 0.78% 3.09 3.13
1.56% 293 3.00 1.56% 3.03 3.07
3.12% 291 299 312% 299 3.09
SparseLoCo 6.25% 2.94 3.00 SparseLoCo 6.25% 298 3.09
12.50% 296 3.04 12.50% 3.00 3.14
25.00% 296 3.14 25.00% 3.04 3.25
50.00% 3.03 3.29 50.00% 3.12 342
H=100
Method Density Loss
R=8 R=32
AdamW 100.00% 291 291
DiLoCo 100.00% 3.12 3.29

0.78% 320 3.29

1.56% 3.12 3.26

3.12% 3.05 3.19

SparseLoCo 6.25% 3.03 3.17
1250% 3.03 3.21

25.00% 3.07 3.32

50.00% 3.17 3.48

17

Under review as a conference paper at ICLR 2026

Table 13: Final evaluation loss of scaling number of workers R € {8, 16,32} for different com-
munication interval H € {15,100} using different communication densities for SparseLoCo using
512M model size. Best results in each communication interval are presented in Bold.

Method Density Loss (R=8) Loss (R=16) Loss (R=32)
AdamW 100.00% 2.69 2.69 2.69
H=15
DiLoCo 100.00% 2.76 2.77 2.82
C078% 279 281 284
1.56% 2.74 2.76 2.79
SoarseLoC 3.12% 2.70 2.74 2.77
ParseLoto ¢ 159, 2.71 2.76 2.78
12.50% 2.76 2.78 2.82
25.00% 2.77 2.78 2.93
H=100
DiLoCo 100.00% 2.87 2.94 3.05
S 078% 309 314 329
1.56% 3.02 3.06 321
3.12% 2.96 3.03 3.12
SparseLoCo (2 g 2.94 2.97 3.03
12.50% 2.85 2.88 3.02
25.00% 2.82 2.89 3.11

G COMPRESSION OF INDICES IN ToP-k

In TopP-k methods, the indices of the selected values need to be transmitted alongside the values.
When values are aggressively quantized (as in SparseLoCo), this index-transmission overhead be-
comes significant. In SparseL.oCo, we utilize chunk sizes of C'=4096, so, naively, we can transmit
indices in 12 bits per transmitted value. However, with 2-bit quantization, this overhead becomes
significant, motivating further index compression. Assuming a chunk size of C' and TOP-k selection,
we observe that the information-theoretic limit is log, (f) bits. For practical cases considered in this
work (C=4096 and k € {32,128,256}), this corresponds to 8.3, 6.3, and 5.3 bits per transmitted
value, respectively. In practice, we designed a custom compression algorithm based on sub-chunking
and coding that achieves 8.9, 6.6, and 5.6 bits per value for these cases.

H HYPERPARAMETER SELECTION DETAILS

Table [T5] reports the hyperparameter search spaces for the 512M model size. We tune all methods
at communication interval =15 and reuse the best configurations for other settings; General and
model architecture settings are fixed across all runs unless stated otherwise. In Table[T4] we provide
architectural details for 178M and 2B model sizes. For 178M, we reduce the batch size to 32 lead-
ing to an effective batch size of 524, 288, and repeating the hyper-parameter sweeps as Table[I3] we
observe the same optimal settings. For the 2B model size, we increase warmup to 800 and perform
a small sweep of learning-rates lower than the optimal setting of 178M and 500M models. Specif-
ically, for DiLoCo we search cvinner € {8e—4, 6e—4} and aoyer € {0.6, 0.4}, finding cvjpper=8e—4,
Qouter=0.6 optimal; for SparseLoCo we search cjpper € {1e—3, 8e—4} and aoyer € {0.8, 0.6}, find-
ing Qinner=1e—3, aouer=0.8 optimal. For number of workers R > 8 experiments, we ensure the
same effective batch size used for R=8 by scaling the batch size accordingly.

18

Under review as a conference paper at ICLR 2026

Table 14: Model settings for 178M (left) and 2B (right) model scales.

Value

Total Parameters 177,622,016
Number of Layers 9

Hidden Size 1,024
Intermediate Size 2,688
Attention Heads 8
Vocabulary Size 32,000

FFN Activation SwiGLU

Parameter

Parameter Value

Total Parameters 1,972,759,040
Number of Layers 24

Hidden Size 2,560
Intermediate Size 7,680
Attention Heads 20

Key-Value Heads 5

Vocabulary Size 32,000

FFN Activation SwiGLU

Table 15: Hyperparameter search spaces for the 512M-parameter model scale. Bold entries indicate
the best settings. Model and general settings (top) are fixed across all runs. We tune all methods
at H=15 and reuse the best hyperparameters when varying H. With higher number of workers
R, DiLoCo’s optimal setting remained the same whereas SparseLoCo enjoys slightly lower outer

learning rate. The effective batch size is given per inner step across all workers.

General Settings Value Parameter Value
Token Budget 10.26B Total Parameters 512,398,848
Effective batch size 4,194,304 Number of Layers 12
Sequence length 2048 Hidden Size 1536
Local batch size 256 Intermediate Size 5,440
Workers R 8 Attention Heads 12
Warmup steps 500 Vocabulary Size 32,000
Inner gradient clipping 1.0 FFN Activation SwiGLU
LR Decay Cosine
Inner optimizer AdamW

Setting Hyperparameter Search Space

AdamW Baseline « 4e-4, 6e-4, 8e-4, 1e-3

2e-3, 3e-3, 4e-3, 6e-3

H=15,R € {8,16,32}

. tinner 43-4, 66-4, 86-4, 16-3
PiLoCo - Nesterov Outer Couter 0.2,0.4, 0.6, 0.8, 1.0
momentum 0.9
H=15, R=8
linner 6e-4, 8e-4, 1e-3, 2e-3, 3e-3
aouter 0.4, 06, 0.8, 1.0
SparseLoCo (Density=0.78%) error momentum (5) 0.9, 0.95, 0.999
H=15, R=16
aouter 0.6, 0.8, 1.0
H=15, R=32
Qouter 0.4, 0.6, 0.8
Olinner 66-4, 1e-3
DiLoCo - SGD Outer Souter 0.8, 1.0
momentum 0.0
Olinner 66—4, 89'4, le-3
DiLoCo-LOM Qlouter 04,0.6,0.8,1.0
momentum 0.9
« 8e-4, 1e-3, 3e-3
DeMo error momentum (3) 0.95, 0.999

19

Under review as a conference paper at ICLR 2026

I CONVERGENCE

‘We now show a convergence guarantee for SPARSELOCO with inner Local Adam and error feedback
(EF). Our argument builds directly on the high—probability analysis of Local Adam in (Cheng &
(2025) and uses standard EF techniques for contractive compressors [Karimireddy et al.

(2019).

Recall the Local Adam setup of (Cheng & Glasgow|(2025)): there are M workers, R communication
rounds, and K local steps per round, so each worker computes 7' := K R stochastic gradients. We
adopt their notation (z, ;, H,) for the synchronized iterates and diagonal preconditioners, and write
V f(2r.) for the population gradient.

SparseLoCo + Local Adam + EF. At the end of round 7, worker m has a Local-Adam direction

Ag,:) = H;L}T,um,r, Hy, = diag(q/vmm—i—)\?)?

with U, ., Uy, the first/second moment accumulators as in Algorithm 1 of (Cheng & Glasgow|
(2025). In SPARSELOCO, workers apply classical EF (5 = 1) before communication:

AD = (el 4 ALY, el = o) 4 A A,

with 652) = 0. The all-reduce computes

1 & 1 & 1 &
0 = =3 AR, A0 = LS A w0 = 3)
s . M m : M m € : M €m’>
m=1 m=1

and the global iterate is updated as in Alg. 1:

Zr41,0 = Zr0 — 775(”,

with the same outer stepsize 7 and all other hyperparameters as in (Cheng & Glasgow, 2025, Thm. 3
/ Thm. C.3).

Lemma 1 (EF telescoping identity). For every round r,

s = AW g) g g,

Lemma 2 (EF residual bound for contractive compressors). Assume the compressor C is w-
contractive in mean square:

Ellc(v) —o|* < A —w) o], we(0,1].

(For deterministic TOP-k, w = %.) Then there exist absolute constants Ce, C¢ > 0 such that, for all
horizons R > 1,

R-1) 1 wR—l 1 M)
E[le™]]” < Co—5= > 57 2L EIARI
; w? r=0 M m=1
R-1 l—wR_l 1 M
S B < CiE Y 5 Y BRI im0 —et,
r=0 r=0 m=1

Lemma [2]is the standard EF estimate for contractive compressors: the EF residuals are controlled,

up to a factor (1 — w)/w?, by the same quadratic budget >~ < > ||A7(£) ||? that already appears
in the Local Adam analysis of [Cheng & Glasgow| (2025).

We now recall Cheng—Glasgow’s Local Adam bound in a compact notation. Let

—1)

2l
1 A <TA LA LAo? (LAG)?/3 (LAJQ/(Q1)> Sa—2) "

Ga = 3O\ 7 * kr "V kR T xiAnes KR

where the (’5() hides the same logarithmic factors and dimension dependence as on the right-hand
side of (Cheng & Glasgow}, [2025] Eq. (4.9), Thm. 3/ Thm. D.3).

20

Under review as a conference paper at ICLR 2026

Theorem 1 (SparseLoCo + Local Adam + EF preserves Cheng—Glasgow’s rate). Adopt the as-
sumptions and hyperparameter conditions of Theorem 3 (full Theorem D.3) in|Cheng & Glasgow)
and let the compressor C be w-contractive. Run SPARSELOCO with inner Local Adam and
EF as above, using the same outer stepsize n. Then there exists an absolute constant Cgp > 0
(independent of M, R, K and of all problem parameters) such that

R-1K-1

1 1-
%R Z Z EHV.}C(ZT,IV)HZ;l < (1 + Cgr w2w> Gra- (2)

r=0 k=0

In particular, the dependence on (M, R, K) and on all problem parameters is the same as in the
Local Adam bound of Theorem 3Cheng & Glasgow| (2025), up to the multiplicative factor 1 +
Crri=2. Whenever Gin — 0as R, K grow (e.g., in the weakly convex regime of]Cheng & Glasg0w|
), the EF-augmented SPARSELOCO iterates satisfy the same vanishing-gradient guarantee.

Proof sketch. The Local Adam proof of |(Cheng & Glasgow| (2025) establishes a one-step descent
inequality for the generalized Moreau envelope f?IT:

P Grino) < 1 (2r0) = conl|Vih (zr0)|[5s + U,

where ¢y > 0 and U, collects the stochastic, clipping, and local-discrepancy terms. In their analysis,
the update direction is the uncompressed average A("). In SPARSELOCO, the update uses the EF
direction 5" = A 4+ £ from Lemma Substituting 5(") into the same descent step only
changes the alignment term and the quadratic smoothness term. Using Cauchy—Young inequalities
together with the bounds on H, from (Cheng & Glasgow} [2025] Lem. D.4, Eq. (D.32)), we obtain
an EF-modified one-step inequality of the form

P i) < 31 (o) — exn| VF7 (o) [+ Us

£ amle)P + Con? (A + [j)).

for some absolute constants ¢1, Cy, Cy > 0.

Summing over 7 = 0, ..., R — 1 on the same high—probability event as in (Cheng & Glasgow} 2025
Sec. 5, App. D) yields extra EF terms of the form

R—1

> (eI + 2l AT + 12 Col|E 1),

r=0

By Lemma[2] the EF residuals satisfy

R—1) 1—0.)R_1 ~)
S E[e) < 0l S B|a0),
r=0 r=0

so the total EF contribution is bounded by

1—w i
—— > rElA0,

2
w
r=0

C’E F

for some absolute Cgr > 0 (absorbing C, Cy and the fixed stepsize 1 used in [Cheng & Glasgow|

(2025)).

The Local Adam proof already shows that the sum > 7?E||A)||? is controlled by exactly the
same quantity that yields the bound Gy, 4 (see the derivation of (Cheng & Glasgowl, [2023] Eq. (4.9))
and its full version in their Theorem D.3). Thus, the EF contribution simply scales Gy, o by the factor
1+Crrize, leading to (IZ[) after translating back from the envelope gradient to V f (2, 1) via

Ll

& Glasgow! [2025] Lem. D.4).

21

Under review as a conference paper at ICLR 2026

J EQUIVALENCE OF LOM AND GLOBAL OUTER MOMENTUM

We show that DiLoCo-LOM iterates are actually equivalent to DiLoCo.

Proposition 1. Suppose identical initialization m()= m©® =90 Sor all r € [R], and fixed outer-
momentum coefficient 3 € [0,1). Then, for all t > 0,

m® =m® and A® = A®),

where () = L Z -1 mS«) denotes the average of local momentum buffers, AW = % Zfil A&“

the averaged LOM Nesterov direction, and m™® and A® the global momentum and Nesterov direc-
tion in DiLoCo, respectively. Consequently, the parameter updates of DiLoCo-LOM and DiLoCo
are identical at every time step.

Proof. We first show m(Y) = m® by induction, then obtain A® = A by linearity.
Base case (t = 0). With m{”) = 0 and m(® = 0, we have m(®) = L =3, m® =0 =m®,

Inductive step. Assume M= = m=1 for some ¢ > 1. Averaging the local recursion,
mt) :%Z ﬁm(t 1)+At) Zm +%ZAT(ﬂt):/8m(t71)+A(t).
r=1 r

By the global recursion, m(*) = fm(=1 + A® hence m(") = m®). For the Nesterov directions,

A _ 1 Z AD 4 Bm®) = A0 1+ 5(4 T m®) = A0 4 gm® = A® 4 gm® = A®,
r=1 T

K GPT-2 EXPERIMENTS

To verify that SparseLoCo applies beyond LLaMA-style models, we also evaluate a 512M-
parameter GPT-2 model. We reuse the best hyperparameters from the 512M LLaMA setting for
both DiLoCo and SparseLoCo and train with H=15 inner steps on the same dataset and token
budget.

Table 16: SparseL.oCo vs. DiLoCo on a 512M-parameter GPT-2 model. We report the final
validation loss.

Method Density Loss
SparseLoCo 3.12% 2.89
DiLoCo 100% 2.92

L. CoMPUTE UTILIZATION VS. BANDWIDTH

Tcompule
>
Teompute +Teomms

in pure computation and T¢omms is the time spent in communication. We first estimate Tyeqtcompute
considering the FLOPs profile of the model, assuming 8 xB200 GPUs per worker with R=16 work-
ers, a theoretical FP16/BF16 throughput of 4.5 x 101> FLOPs/s per GPU, and a reasonable machine
FLOP utilization (MFU) of 40%. Then, we simulate training calculating 7¢omms under different
bandwidth constraints considering the pseudo-gradient message sizes of each method (Figure [3).
At low bandwidths, SparseLoCo achieves substantially higher utilization than DDP, DeMo, and
DiLoCo. For instance, at 1 Gbit/s, SparseLoCo exceeds 95% utilization, significantly outperform-
ing the baselines.

We estimate the compute utilization of each method as where T¢ompute 18 the time spent

22

Under review as a conference paper at ICLR 2026

Compute Utilization vs Bandwidth

Parameter server

Ring topology

1.0 A
E 0.8
=}
©
N
T 0.6
>
]
2 0.4
g = DDP
O 0.2 —— DeMo-Topk=3.12%
. === DiLoCo
=== SparseLoCo-Topk=3.12%
0.0 T T T T T T T T T T T T
107t 10° 10! 102 103 104 107t 10° 10t 102 103 104

Bandwidth [Gbit/s] Bandwidth [Gbit/s]

Figure 3: Compute utilization vs. bandwidth for DDP, DeMo, DiLoCo, and SparseLoCo under ring
(left) and parameter-server (right) topologies. Compute utilization is calculated as total time spent
in computation over full training time (including communication). We simulate a 70B LLaMA-2
model trained with R=16 replicas each with 8x B200, assuming a reasonable 40% MFU under
different bandwidth settings.

M SPARSITY ABLATIONS FOR DEMO AND SPARSELOCO
In Figure ff] we compare DeMo and SparseLoCo at different sparsity levels with DiLoCo, and
DiLoCo without outer momentum. We train 512M models with R=8 replicas, and for the multi-step

baselines, we use a fixed communication interval of H=15.

DeMo vs SparseLoCo across Densities

3.34 === DiLoCo - SGD Outer
=== DiLoCo - Nesterov Outer
32 —o— DeMo
3.1 == SparseloCo
o
9 3.0
291 NNl
2.8
2.7

.'0 .'O .'0 .'O .'O .'0 .'O .'O '0 '0
0.1% 0.2% 0.4% 0.8% 1.6% 3.1% 6.2% 12.5% 25% 50%
Communication Density

Figure 4: DeMo and SparseLoCo across varying communication densities. We compare DeMo

and SparseLoCo across varying sparsity levels using the same settings as Figure [T} multi-step meth-
ods use a communication interval of H=15.

N LLM USAGE DISCLOSURE

We used large language models solely for language editing (grammar, vocabulary, and phrasing).
All suggested edits were carefully reviewed by the authors before incorporating to the main text.

23

	Introduction
	Related Work
	Methodology
	Background and Notation
	Local Outer Momentum
	SparseLoCo: Sparse Aggregation meets Local Outer Momentum

	Experiments
	Building intuition with Local Outer Momentum
	SparseLoCo
	Ablations

	Conclusion
	Reproducibility Statement
	Real-World Deployment for Collaborative Permissionless Distributed Training over the Internet
	Effect of Chunking, DCT, and inner steps
	Overtraining Regime with Large Communication Interval
	Streaming SparseLoCo
	Freezing Error Feedback
	Scaling Replicas Across Different Densities and Communication Intervals
	Compression of indices in Top-k
	Hyperparameter Selection Details
	Convergence
	Equivalence of LOM and Global Outer Momentum
	GPT-2 Experiments
	Compute Utilization vs. Bandwidth
	Sparsity Ablations for DeMo and SparseLoCo
	LLM Usage Disclosure

