
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

PROOFWALA: A Framework for Multilingual Proof Data Synthesis and
Theorem-Proving

Anonymous Authors1

Abstract
Neural networks have shown substantial promise
at automatic theorem-proving in interactive proof
assistants (ITPs) like Lean and Coq. How-
ever, most neural theorem-proving models are
restricted to specific ITPs, leaving out opportu-
nities for cross-lingual transfer between ITPs.
We address this weakness with a multilingual
proof framework, PROOFWALA, that allows a
standardized form of interaction between neural
theorem-provers and two established ITPs (Coq
and Lean). It enables the collection of multilin-
gual proof step data—data recording the result
of proof actions on ITP states—for training neu-
ral provers. PROOFWALA allows the systematic
evaluation of a model’s performance across dif-
ferent ITPs and problem domains via efficient
parallel proof search algorithms. We show that
multilingual training enabled by PROOFWALA
can lead to successful transfer across ITPs. Specif-
ically, a model trained on a mix of PROOFWALA-
generated Coq and Lean data outperforms Lean-
only and Coq-only models on the standard prove-
at-k metric. We open source all our code, in-
cluding PROOFWALA parallel proof search frame-
work, the Multilingual ITP interaction framework.

1. Introduction
Automated theorem-proving has long been considered to
be a grand challenge in artificial intelligence. Recently,
deep learning has emerged as a promising approach to this
challenge (Li et al., 2024; Yang et al., 2024). Broadly, deep-
learning methods for theorem-proving use neural models
to generate formal proof expressed in the language of an
interactive theorem prover (ITPs), e.g., LEAN (de Moura
et al., 2015), COQ (Huet et al., 1997), or Isabelle (Paulson,
1994). An ITP represents proofs as sequences of simplifi-
cation steps, or tactics, and can mechanically check such
proofs for correctness. Theorem-proving then amounts to
generating a sequence that passes the ITP’s checks.

Most deep-learning approaches to theorem-proving follow

the strategy proposed by Polu & Sutskever (2020). Here,
one first trains a generative language model (LM) that can
predict formal proof steps (tactics and their parameters)
conditioned on the goal state, from a proof-step dataset
extracted from existing formal mathematics repositories.
The learned model is then wrapped in a search algorithm
which conducts proof search (see Section 2 for more details).

While neural approaches to theorem-proving are gaining
momentum, the field remains fragmented. Existing tools
for dataset collection tend to be ITP-specific, often rely-
ing on isolated, domain-specific formats; there is also no
language-agnostic open platform for neurally guided search
over proofs. This hinders systematic comparisons and pre-
cludes potential cross-lingual and cross-domain improve-
ments from training on multilingual data.

In response to this problem, we introduce PROOFWALA1,
a multilingual framework for dataset collection, interac-
tion, training, and proof search across interactive theorem
provers and domains. PROOFWALA provides a standard-
ized pipeline for generating proof step training data, facil-
itating the creation of high-quality multilingual datasets.
It enables seamless interaction with formal systems and
supports the training of neural architectures tailored for
proof step generation. Finally, it integrates efficient search
algorithms, including a parallelized version of best-first
and beam search, allowing for end-to-end proof discovery
guided by transformer-based models.

We provide a code library combined with multilingual
datasets and multilingual fine-tuned models that facilitate
end-to-end formal proof search in LEAN 4 and COQ. Using
PROOFWALA, we demonstrate that training on multilin-
gual data can foster positive cross-lingual and cross-domain
transfer, enhancing proof generation across different formal
systems.

In summary, our work makes three key contributions:

A Standardized Framework: We propose PROOFWALA,
a unified framework for extracting and organizing training

1“Wala” is a suffix from Indic languages (often spelled “wal-
lah”), meaning “one who is associated with or provides a particular
thing.”

1

https://anonymous.4open.science/r/proof-wala-CD44/README.md
https://anonymous.4open.science/r/proof-wala-CD44/README.md
https://anonymous.4open.science/r/itp-interface-8F31/README.md

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

PROOFWALA: A Framework for Multilingual Proof Data Synthesis and Theorem-Proving

data for formal theorem proving in LEAN and COQ. The
framework supports the generation of training data for these
ITPs from any formal theorem-proving Git repository (such
as Mathlib, CompCert, MathComp, GeoCoq, & Category
Theory) and the subsequent training of LLMs for single
proof step generation. Our data collection format is stan-
dardized across ITPs, and we have created generic prompt
formatting schemes across different ITPs and domains. The
framework also helps with end-to-end proof search and col-
lection of the annotated proof trees which can be further
used for analysis and visualization (see Figure 7 in Ap-
pendix B.5). All our code is open source, the PROOFWALA
framework can be found here. The code for the multilingual
ITP interaction module can be found here.

Support for Parallel Poof Completion: Similar to Polu &
Sutskever (2020), the framework supports proof completion
using a search guided by the proof step generation model.
We improve the search by parallelizing it and making it ag-
nostic of the ITP. To the best of our knowledge, ours is the
first open-source framework that supports parallel proof-
search by adding capabilities to clone proof environments
and run tactics in parallel across those proof environments.
We further build capabilities to store, annotate, and visual-
ize the proof trees generated during the search. Figure 7
in Appendix B.5 shows the visualization of the proof-tree
generated during the proof search.

Demonstration of Cross-Lingual and Cross-Domain
Transfer: Facilitated by our PROOFWALA framework, we
investigate the effect of incorporating multilingual proof
data in the training pipeline. We demonstrate that cross-
domain and cross-lingual transfer occur for both LEAN
and COQ, in both the domains of general mathematics and
software verification. These results highlight the potential
of training across diverse formal proof assistant reposito-
ries as an effective strategy to mitigate data scarcity in this
neural theorem-proving research. We release the multi-
domain and multi-lingual training data used for training our
models, containing about 450K training data points (270M
tokens) from about 80k theorems. We also release multi-
ple PROOFWALA models trained on different data-mixes.
Our PROOFWALA-MULTILINGUAL model is the first open
proof step generation model trained on data from diverse
domains and ITPs, which can be seamlessly used for finding
proofs in formal mathematics and software verification.

2. Problem Formulation
We view a theorem-prover as a system that systematically
addresses a set of proof obligations by applying a sequence
of proof tactics. Each obligation o is a pair (g, h), where
g is the goal to be proven and h contains the hypotheses
relevant to proving g. The system starts with an initial set
of proof obligations; its ultimate goal is to reduce this set to

an empty set.

Figure 1 shows a formal proof of a theorem about
block triangular matrices —found using the PROOFWALA-
MULTILINGUAL proof-step generation model—in the
LEAN 4 language (de Moura et al., 2015).

As in Thakur et al. (2024), we treat theorem-proving as a
discrete search through the state space of an ITP. We ab-
stractly model an ITP as a proof environment consisting of a
set of states O, where each state is a set O = {o1, . . . , ok}
of obligations oi. The initial state, I, consisting of a single
obligation (gin , hin) extracted from a user-provided theo-
rem. A unique goal state QED is the empty obligation set.
A finite set of proof tactics. A transition function T (O, a),
which determines the result of applying a tactic a to a state
O. If a can be successfully applied at state O, then T (O, a)
is the new set of obligations resulting from the applica-
tion. If a tactic a cannot be applied to the state O, then
T (O, a) = O. We define the transition function Tseq over a
sequence of proof-steps (tactics), α = ⟨a1, a2, . . . , an⟩, and
proof state, O ∈ O, as:

Tseq(O,α) =

{
T (O, a1) if n = 1
T (Tseq(O, ⟨a1, . . . , an−1⟩), an) otherwise.

The theorem-proving problem is now defined as follows:

Problem 1 (Theorem-proving) Given an initial state Oin

find a tactic sequence α (a proof) satisfying Tseq(Oin , α) =
QED.

theorem blockTriangular_stdBasisMatrix
{i j : m} (hij : b i ≤ b j) (c : R)
: BlockTriangular (stdBasisMatrix i j c) b
:= by rintro i' j' hij'

simp [stdBasisMatrix, hij, hij'.not_le]
rintro rfl rfl
exact (not_lt_of_le hij hij').elim

Figure 1: A LEAN 4 theorem and a with a correct proof us-
ing PROOFWALA-MULTILINGUAL proof-step generation
model. The theorem states that the standard basis matrix,
where c is placed in the (i, j)th entry with zeroes elsewhere
is block triangular. The first tactic rintro i’ j’ hij’
unfolds the definition of BlockTriangular and adds the
variables i’, j’, as well as the hypothesis hij’ : b j’ <
b i’ to the set of hypotheses. The proof proceeds by using
established properties of the stdBasisMatrix and resolves
by demonstrating an inconsistency with the hypothesis hij
: b i ≤ b j.

Proving with LMs. Our proof search approach reflects the
strategy described in (Polu & Sutskever, 2020), where a neu-
ral model predicts a tactic to apply given the current state,
namely p(a|O). Such a model can be implemented with a

2

https://anonymous.4open.science/r/proof-wala-CD44
https://anonymous.4open.science/r/itp-interface-8F31

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

PROOFWALA: A Framework for Multilingual Proof Data Synthesis and Theorem-Proving

language model (LM) that generates a tokenized representa-
tion of a tactic a in a token-by-token fashion: p(tok(a)|O).
For simplicity of notation, we drop references to tokeniza-
tion in the remainder of the paper, but notably, statements
from different ITPs can be tokenized into a shared LM vo-
cabulary. The learned model p is the workhorse of our
multilingual prover, which we will train using multilingual
proof data.

3. Framework Details
Now we describe the PROOFWALA framework. Our main
motivation for building this new framework is to support
theorem-proving research in a language-agnostic manner. In
particular, we aim to facilitate standardized data collection
in different ITPs and provide the necessary infrastructure
to train proof step generation models, along with efficient
parallel search algorithms for proof synthesis conditioned
on theorem specifications.

Our framework has three components: (i) the interface
module: for the execution of proof steps (tactics) on various
ITPs, (ii) the proof step generation & training module: for
generating proof step data and training proof step generation
model, and (iii) the parallel proof search module: for using
the guidance from proof step generation model to do end-
to-end the proof search. Figure 2 shows the interaction
between our different modules.

3.1. Interface Module

First, we detail the interface module, which is responsible
for facilitating interaction with the ITPs when executing
proof steps. In particular, the interface module supports
interaction with LEAN 4 and COQ (multiple versions from
10.0 - 18.0). Our COQ implementation is built on top
of coq_serapy2 (Sanchez-Stern et al., 2020), while our
LEAN 4 implementation is built on top of the REPL3 library.
Notably, neither of these libraries has the capability to do
parallel interactions with ITPs. Hence, we created a pooling
mechanism that allows us to make multiple instances of the
interface module with the same state to execute tactics in
parallel (parallelizable across multiple machines on a Ray
cluster) for the same theorem. Parallelism is essential for
searching for proofs or annotating proofs found at scale.
We also fixed some well-known bugs and limitations with
these libraries (see Appendix B.4). Our abstraction can
support any future versions of Lean and Coq since we use
the language server protocol (LSP) to further abstract out
the low-level interaction between our code and the ITP
interpreter/compiler.

One challenge in creating a unified framework is supporting

2https://github.com/HazardousPeach/coq_serapy
3https://github.com/leanprover-community/repl

the variety of state representations across these different
ITPs. We develop a standard representation consistent with
our problem formulation in Section 2 that is generic enough
to cover all supported ITPs. The collected data is stored as
json in the unified format across different ITPs; Figure 4
in Appendix A.1 shows the generalized format used for
collecting training data.

While our interface abstraction generalizes across Lean and
Coq, we also extended preliminary support to Isabelle via
the PISA server. However, due to substantial resource over-
heads—such as high memory and disk usage per PISA in-
stance—we do not officially support Isabelle in our large-
scale experiments. These limitations are discussed in detail
in Appendix B. Nonetheless, our data formats and inter-
action logic remain compatible, and we view full Isabelle
integration as a promising direction once more scalable
tooling becomes available.

3.2. Proof Step Generation and Training Module

Next, we describe our dataset collection & training module,
which is designed to support the production of the proof
step prediction model p(a|O). The first step in training a
proof step generation model is to extract (proof state, proof
step) pairs from human written proofs in various reposito-
ries. We use our interface module (Section 3.1) to interact
with the ITP and collect proof state and proof step (tac-
tic) pair data from all theorems in a given formal proof
repository such as COMPCERT, MATHLIB, etc. For a given
theorem statement and its corresponding formal proof, we
extract the sequence of tactics α = ⟨a1, a2, . . . an⟩ and
their corresponding state transitions. Namely, for each the-
orem in the repository, we extract the sequence of pairs
π = ⟨(O0, a1), . . . , (Oi−1, ai), . . . (On−1, an)⟩, such that
O0 = {(gin, hin)} (extracted from the theorem statement
itself), T (Oi, ai) = Oi+1, and T (On−1, an) = QED. Apart
from collecting the current state, proof step, and the next
state, we also collect information about other lemmas which
are referenced in the proof step. Figure 4 in Appendix A.1
shows the data extracted for a theorem in COQ and LEAN
4.

PROOFWALA includes functionality for training neural
models on the constructed proof datasets. It supports fine-
tuning any pretrained HUGGINGFACE model for proof step
generation using the data extracted from the formal proof
repositories. We support generic yet flexible input formats
(prompt formats) for supervised fine-tuning of the language
model to predict the next proof steps. The prompt is stan-
dardized across languages and different versions of ITP and
controls what aspects of the state are used for predicting
the next proof step. Figure 5 in Appendix A.1 shows the
example prompt formats used for training. Our format is
inspired by COPRA (Thakur et al., 2024) but does not use

3

https://github.com/HazardousPeach/coq_serapy
https://github.com/leanprover-community/repl

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

PROOFWALA: A Framework for Multilingual Proof Data Synthesis and Theorem-Proving

Mathlib 4

hypotheses:

["i : int64",

"m : mem"]

goal: Val.lessdef

(Vlong (Int64.shrx' i

Int.zero)) (Vlong i)

proofstep:”simpl.”

CompCert

MathComp

GeoCoq

hypotheses:

["α: Sort u_1",

"b c a : α",

"h : b = c"]

goal: "a = b a = c"

proofstep:”rw [h]”

extract proof
step data

train proof
step model

Lean

Coq

ProofWala-
Multilingual

…

theorem a_plus_b_square

: ∀ a b, (a + b)*(a + b) = a*a + 2*a*b + b*b
:= by

simp only [Nat.mul_add, add_mul, mul_two]

intro a b

ring

Theorem a_plus_b_square :forall n m : nat,

(n+m)*(n+m) = n*n + 2*n*m + m*m.

Proof.

induction n; intros m;

ring.

Qed.

Inference in Lean

Inference in Coq

proof
search

Coq

hypotheses:

["Tpoint : Type",

"A, B, C, D : Tpoint",

"H : Cong A B C D"]

goal: "Cong B A A B"

proofstep: ”apply

cong_pseudo_reflexivity

.”

Figure 2: The PROOFWALA Framework with the interaction between different modules. Using PROOFWALA’s interaction
& data-collection modules, we collect a multilingual proof dataset from existing formal mathematics repositories in LEAN
and COQ. The resulting dataset is used to train a multilingual proof step prediction model, supported by PROOFWALA’s
training module. The multilingual model is used inside PROOFWALA’s search module to conduct proof search.

error signals. To allow transfer across different ITPs, we do
not provide any information about the domain or ITP assis-
tant that produced the state mentioned in the prompt. As an
example, we choose CODET5-BASE (Wang et al., 2021) as
our pretrained model for fine-tuning in our experiments.

3.3. Parallel Proof Search Module

The proof search module uses the proof step generation
model, trained via the proof step generation and training
module (see Section 3.2), to direct the proof search through
the sampling of possible next proof steps for a given state.
In particular, the purpose of the search module is to generate
the sequence of proof steps (tactics) α = ⟨a1, a2, . . . an−1⟩
and sequence of proof-states ω = ⟨O0, O1, . . . On⟩ where
(i) given a proof state O, we draw N samples from the proof
step generation model to get a set A(O) = {a1, . . . , ak} of
possible proof steps, (ii) and for each i ∈ [n−1] there exists
ai+1 ∈ A(Oi) such that T (Oi, ai+1) = Oi+1 and (iii) the
final state is QED: T (On−1, an) = On = QED. The proof
search module can support any custom tree search algorithm
by abstracting the node selection, generation, and expansion
logic. We implement beam search and best first search.

We maintain an annotated proof tree while searching for
the sequence of proof step(s), α, which completes the proof

for a given theorem. A fully annotated proof tree is shown
in Figure 7 in Appendix B.5, which was generated while
performing the beam search for proving a modulo arithmetic
problem. We also use these trees to analyze the proofs gen-
erated by our models (see Section 5.1). We use the negative
log-likelihood of the tokens generated by the PROOFWALA
models for deciding the node expansion order in our proof
search experiments.

Unlike other frameworks, our proof search module can run
a parallel beam search using Ray (Moritz et al., 2018) for
a given theorem. For example, frameworks like LeanDojo
(Yang et al., 2023) for LEAN 4 searches for proofs sequen-
tially for a given theorem. Parallel search improves our
throughput by trying to execute multiple possible proof
step(s) (tactics) generated by PROOFWALA models in par-
allel on the ITP. We achieve this by replicating instances of
interface module (see Section 3.1) into a custom pool of
Ray actors. The custom pool tracks ITP instances’ proof
states and uses only those matching the frontier state (states
that are being explored during search) to continue explo-
ration, adding instances as needed. The search picks up
multiple instances from this pool to execute the possible
next proof step generated in parallel, hence avoiding the
cost of sequentially running those steps one after another

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

PROOFWALA: A Framework for Multilingual Proof Data Synthesis and Theorem-Proving

Initial Fine-tuning

Data-mix Data-mix Source PROOFWALA
Models Trained Token Count

1. CompCert CompCert Repo3 - 61.6 M
2. MathComp MathComp Repo - 18.2 M
3. GeoCoq GeoCoq Repo - 91.2 M

4. COQ Data-Mixes: 1-3 COQ 171 M

5. LEAN Mathlib Repo4 LEAN 99 M

6. MULTILINGUAL Data-Mixes: 4-5 MULTILINGUAL 270 M

Further Fine-tuning

7. CategoryTheory CategoryTheory Repo

MULTILINGUAL-
CAT-THEORY &
COQ-
CAT-THEORY

1.7 M

Table 1: Different data-mixes used to extract proof-step and
proof state pair data. Various PROOFWALA models trained
on these data mixes.

on the same instance of ITP. Figure 6 (in Appendix B.1)
describes the pseudocode for parallel beam search as sup-
ported by this module. The parallel proof search module
allows our framework to scale to proof search for more chal-
lenging theorems with better efficiency in a generic way.

4. Dataset and Model Details
In this section, we explain our dataset construction and
model training choices towards our demonstration of posi-
tive transfer from multilingual training as well as adaptabil-
ity to new domains via further fine-tuning.

4.1. Dataset Details

We collect datasets across multiple languages and language
versions of Coq and Lean 4, sourcing data from existing
repositories. Our data collection approach involves collect-
ing proof states from the ITP through tactic execution. We
construct several data-mixes, of different subsets of the accu-
mulated data, to train various monolingual and multilingual
PROOFWALA models to perform proof step prediction. The
training data is formatted into prompts as shown in Fig-
ure 5 (in Appendix A.1). We collect proof-step data for the
various data mixtures as shown in Table 1.

We use different Coq and Lean repositories to generate this
proof-step data. We use well-known repositories, namely
CompCert, Mathlib, MathComp, GeoCoq, and Category-
Theory, to generate the proof-step data. For CompCert we
used the train-test split proposed by Sanchez-Stern et al.
(2020), and for Mathlib we used the split proposed by Yang
et al. (2023). Together we have 442607 proof-step pairs
derived from over 76997 theorems across Lean and Coq
(details of the split shown in Table 2). We hold out the
CategoryTheory dataset from initial training data-mixes for
experimentation with further fine-tuning for our novel do-
main adaptation experiment.

4.2. Model Details

We used the CODET5-BASE (Wang et al., 2021) pretrained
model—which has 220 million parameters—to fine-tune
models on the different data-mixes as described in Table 1.
We trained three models PROOFWALA-{MULTILINGUAL,
COQ, LEAN} with the same step count and batch sizes for
all settings. Training the models with the same number
of steps aligns with recent work on training models for
multilingual autoformalization (Jiang et al., 2023) which
ensures that each model has the same number of gradient
updates. Our models are initially trained on CompCert,
Mathlib, MathComp, and GeoCoq. The hyperparameters
used for training are described in Table 4 in Appendix B.2.

We selected CODET5 as the base model to balance our
research objectives with computational constraints. Our
goal was to investigate the benefits of multilingual train-
ing for theorem proving, which required training multiple
models (see Tables 1 and 3) across diverse ITPs using over
400k proof-step-state pairs. Larger models like DeepSeek-
Coder or Qwen-Math would have significantly increased
the computational cost, making such extensive experimen-
tation infeasible within our budget. Despite CODET5 be-
ing smaller than recent SoTA code models, it was suffi-
cient to demonstrate meaningful cross-lingual transfer ef-
fects—highlighting that gains were not simply due to in-
creased parameter count or data volume, but genuine struc-
tural generalization across formal languages.

Proof-Step & State Pairs Theorem Count

Data-mix Train Test Val Train Test Val

1. CompCert 80288 6199 - 5440 501 -
2. MathComp 34196 1378 2285 11381 536 729
3. GeoCoq 91120 12495 4928 4036 505 208
4. COQ 205604 20072 7213 20857 1542 937
5. LEAN 237003 4323 4220 56140

5
991

5
1035

5

6. MULTILINGUAL 442607 24395 11433 76997 2533 1972
7. CategoryTheory 4114 610 208 573 101 43

Table 2: Size of different data-mixes. The
PROOFWALA models were trained on the training
split of COQ, LEAN, and MULTILINGUAL data-mixes.
After extracting proof-step and state pair data, random
training, validation, and test splits are constructed with at
least 500 test theorems except for CategoryTheory. For the
LEAN and CompCert data-mix we used the same split as
proposed by Yang et al. (2023)5 and Sanchez-Stern et al.
(2020) respectively.
To demonstrate the usefulness of our models on subsequent
theorem-proving tasks, we perform further fine-tune of our

3Same as Proverbot split (Sanchez-Stern et al., 2020)
4Same as random split in ReProver (Yang et al., 2023)
5While the LeanDojo dataset (Yang et al., 2023) officially has

2000 test theorems, only 991 of these are proved using tactics
and have their tactics extracted in the dataset. Since our approach
involves generating only tactic-based proofs, our Lean dataset is
collected from those theorems with tactic-based proofs.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

PROOFWALA: A Framework for Multilingual Proof Data Synthesis and Theorem-Proving

PROOFWALA-{MULTILINGUAL, COQ} models on Catego-
ryTheory theory data. We used the same hyperparameters
as Table 4 (in Appendix B.2) but we reduce the number of
training steps to 1200 and batch size to 8.

5. Evaluation
Using our trained PROOFWALA models, we investigate
(i) the benefit of incorporating multilingual data into the
training pipeline (ii) moreover, whether further fine-tuning
multilingual models demonstrates superior adaptation to
novel domains.

In particular, we use the PROOFWALA-{MULTILINGUAL,
COQ, LEAN} models inside the search module afforded
by our framework (see Section 3.3). Our experiments run
proof search on the test split mentioned in Table 2 for
the CompCert, MathComp, GeoCoq, CategoryTheory, and
LEANdata-mixes. This enables us to study the impact of
transfer in the case of the PROOFWALA-MULTILINGUAL
model for diverse ITPs and domains.

5.1. Experiments

Setup. All our experiments use the PROOFWALA proof
step models for single-step prediction and then use
PROOFWALA to conduct proof search. In our experiments
we employ beam search as the search algorithm. We use
the negative log-likelihood of the tokens generated by the
PROOFWALA proof step prediction model to direct the
search. Figure 7 in Appendix B.5 shows one such search
result. Hyperparameters used in our search algorithm are
listed in Table 5 in Appendix B.3. We employ a timeout
of 600 seconds for most of our experiments. However, for
the GeoCoq data-mix, we set a higher timeout of 1200 sec-
onds to accommodate the appreciably longer ground-truth
proofs, which require more time to execute all generated
proof steps.

We conduct ablations to study the impact of training
PROOFWALA models on different data-mixes. We also
run paired bootstrap hypothesis testing to better understand
the significance of transfer happening between different
data-mixes, and whether PROOFWALA-MULTILINGUAL
has a significant edge over other monolingual mod-
els (PROOFWALA-COQ and PROOFWALA-LEAN) while
searching for proofs.

Aggregate Results. Table 3 summarizes pass@k re-
sults (1 ≤ k ≤ 5) across all data-mixes—LEAN,
CompCert, MathComp, GeoCoq, and CategoryThe-
ory—using various PROOFWALA models. PROOFWALA-
MULTILINGUAL consistently outperforms the monolingual

6The results are statistically significant using a paired bootstrap
test if pvalue < 0.05.

variants (PROOFWALA-COQ and PROOFWALA-LEAN), and
surpasses the prior SoTA (Proverbot (Sanchez-Stern et al.,
2020)) on the CompCert dataset.

Paired bootstrap significance testing confirms that these
improvements are statistically significant on the largest data-
mix (Mathlib/LEAN), while other gaps are either smaller or
based on limited test sets. Overall, the multilingual model
offers superior proof search capabilities compared to single-
ITP models.

To assess generalization, we fine-tuned PROOFWALA-
MULTILINGUAL and PROOFWALA-COQ on CategoryThe-
ory data. As shown in Table 3, the multilingual variant out-
performed the Coq-only model by nearly 8%, highlighting
improved adaptability to new domains. This suggests that
multilingual training, especially when combined with task-
specific fine-tuning, is more effective for assisting emerging
formal repositories.

Additional Benchmarking and Scalability Analysis. We
further evaluated our models on the MiniF2F bench-
mark. PROOFWALA-MULTILINGUAL achieved a pass@5
of 26.23%, exceeding PROOFWALA-LEAN’s 25.41%. This
reinforces our broader findings on multilingual training ben-
efits.

To study scalability, we varied the number of CPUs during
parallel search. Increasing parallelism from 8 to 20 CPUs
improved MiniF2F pass@5 from 22.54% to 26.23%, while
reducing average proving time from 83.32s to 74.56s. These
gains arise from faster exploration and earlier pruning of
unpromising paths, demonstrating the practical impact of
our parallel search infrastructure.

Cross-Lingual Transfer in Category Theory. On the Cat-
egoryTheory benchmark, PROOFWALA-MULTILINGUAL-
CAT-THEORY surpassed the Coq-only variant by 8%—the
largest observed gain in our study. This improvement
stems from strong cross-lingual transfer: many Lean theo-
rems in Category Theory (e.g., involving uncurry, counit,
adjunction) resemble Coq counterparts. Our multilingual
model succeeded on Coq theorems that had analogs in its
Lean training data, whereas the monolingual model failed.
Table 6 in Appendix C presents concrete examples of such
theorem pairs, highlighting cases where only the multilin-
gual model found a valid proof.

Interestingly, this contradicts common patterns in multi-
lingual NLP. For example, XLM-R (Conneau et al., 2019)
shows that multilingual training can lead to negative trans-
fer in low-resource settings, where out-of-language tokens
dilute performance. In contrast, we observe that training
on mixed-language proof data (M > N tokens) yields gen-
uine gains over smaller monolingual datasets (N tokens),
suggesting that formal languages offer stronger structural
alignment for transfer.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

PROOFWALA: A Framework for Multilingual Proof Data Synthesis and Theorem-Proving

Data-Mix Pass-at-k %

Name # Theorems Proof Step Model Pass@1 Pass@2 Pass@3 Pass@4 Pass@5 pvalue
(α: 0.05)6

LEAN 991 PROOFWALA-LEAN 24.92 26.64 27.54 28.05 28.25
PROOFWALA-MULTILINGUAL 26.84 28.56 29.67 29.97 30.58 0.018

MathComp 536 PROOFWALA-COQ 28.28 28.65 29.4 29.59 30.15
PROOFWALA-MULTILINGUAL 27.9 29.21 29.59 30.15 30.52 0.355

GeoCoq 505 PROOFWALA-COQ 32.87 33.66 33.86 34.06 34.46
PROOFWALA-MULTILINGUAL 30.89 33.66 34.65 35.64 35.84 0.135

CompCert 501 PROOFWALA-COQ 17.56 18.76 19.16 19.76 20.76
PROOFWALA-MULTILINGUAL 17.96 19.76 20.56 21.16 21.96 0.191

CategoryTheory 101 PROOFWALA-COQ-CAT-THEORY 36.63 42.57 44.55 44.55 45.54
PROOFWALA-MULTILINGUAL-CAT-THEORY 44.55 51.49 52.48 53.47 53.47 0.008

Table 3: Comparison between various PROOFWALA models and the PROOFWALA-MULTILINGUAL model on different
data-mixes. We can see that transfer happening between Lean and Coq on all data-mixes from various domains in math
and software verification. We observe that the MULTILINGUAL model outperforms the LEAN and COQ models on all
data mixes. The performance improvement is also statistically significant on the biggest data-mix LEAN (Mathlib). We
also observe that after further fine-tuning, the MULTILINGUAL model significantly outperforms the COQ model on the
CategoryTheory dataset.

Analysis of Specific Proofs. To further investigate multilin-
gual benefits, we analyzed search trees constructed during
proof attempts (proof trees; see Figure 7 in Appendix B.5).
These trees include only compilable edges, ensuring each
node corresponds to a valid state.

We find that proof trees generated by multilingual models
have more nodes and edges (Table 7), indicating broader
exploration. Figures 8 and 9 (in Appendix C.1) illustrate
these trends. Moreover, multilingual models utilize the full
timeout more often, while monolingual models frequently
stall early. Table 8 and fig. 11 show time comparisons.

Multilingual models also produced higher-degree nodes
(Figure 3), suggesting a greater diversity of correct, compil-
able proof steps per state. They often found multiple distinct
proofs for a single theorem (Figure 10). These results reflect
the enhanced search capacity of multilingual models and
underscore the utility of our framework in analyzing such
patterns.

6. Related Work
Previous open-sourced tooling has been developed for in-
teraction with formal proof assistants, but individually only
using a single language. Oftentimes, this tooling also con-
tains data extraction features, compiling proof datasets from
popular formalization repositories such as Mathlib (mathlib
Community, 2020) for Lean, CompCert (Leroy, 2009) and
Mathcomp (Mathcomp, 2015) for Coq. LeanDojo (Yang
et al., 2023) provided open-source tooling for interaction
with Lean 3 and extracted a proof step dataset from Mathlib.7

NTP Toolkit (Zhu et al., 2023) supports extracting training
data from arbitrary Lean repositories. CoqGym (Yang &

7LeanDojo now supports Lean 4, which is not backwards com-
patible to Lean 3.

Deng, 2019) is a framework for interaction and data collec-
tion with Coq up to versions 8.12.0 (because of dependency
on SerAPI library8). Proverbot (Sanchez-Stern et al., 2020)
introduced Coq-Serapy, an interaction tool in Coq from
which our Coq support is derived. CoqPyt (Carrott et al.,
2024) is a framework for interaction and data generation
from Coq with emphasis on supporting LM-based methods.
COPRA (Thakur et al., 2024) introduces a framework for
interaction with Lean 3 and Coq, but without tooling for
data extraction or support for heavy parallelism during proof
search. Aniva et al. (2024) introduced Pantograph, an inter-
action and data collection framework for Lean 4. We remark
that one of our main contributions is an unified framework
for interacting with and collecting data from both Coq and
Lean 4, with support for training and parallel search, hence
affording automated theorem-proving researchers a com-
mon tool in the presence of multiple popular proof assistant
languages.

A number of proof search methodologies have been pro-
posed in the recent literature. GPT-f (Polu & Sutskever,
2020) employed a best-first search approach with a trained
transformer-based architecture for proof synthesis. Le-
anDojo (Yang et al., 2023) similarly employs a best-first
search, though augments the neural prediction model with
a retrieval model which predicts relevant premises. Hyper-
Tree Proof Search and ABEL (Lample et al., 2022; Gloeckle
et al., 2024) introduces an online variant of Monte Carlo
Tree Search for the theorem-proving task. PACT (Han et al.,
2021) introduces auxiliary training objectives derived from
proof state data to learn a better prediction model for search.
COPRA (Thakur et al., 2024) uses large LMs as proof step
prediction models, which can be conditioned on additional
information such as retrieved lemmas, definitions, and ex-

8https://github.com/rocq-archive/coq-serapi

7

https://github.com/rocq-archive/coq-serapi

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

PROOFWALA: A Framework for Multilingual Proof Data Synthesis and Theorem-Proving

Figure 3: Distribution of degree of nodes in the proof trees across various data mixes found by different PROOFWALA
models. Across all data mixes, PROOFWALA-MULTILINGUAL models tend to have higher degrees per node. This indicates
that PROOFWALA-MULTILINGUAL often find more compilable tactics given a particular proof state, this can increase the
chances of eventually finding a proof.

ecution information, for search. Graph2Tac (Blaauwbroek
et al., 2024) learns online hierarchical representations of
definitions and theorems, and is used for proof search in Tac-
tician (Blaauwbroek et al., 2020). Several tools have been
developed to help with live formalization efforts; these in-
clude LLMStep and LeanCopilot for Lean (Welleck & Saha,
2023; Song et al., 2024), and CoqPilot for Coq (Kozyrev
et al., 2024).

Previous work has explored providing effective support
for measuring models across various interactive theorem
provers. miniF2F (Zheng et al., 2021) is a multi-language
benchmark of high-school competition math problems for-
malized in Lean 3, HOL Light, Isabelle, and Metamath,
though not in Coq. PutnamBench (Tsoukalas et al., 2024) is
a collegiate-level benchmark for competition math in Lean 4,
Coq, and Isabelle. We do not include evaluations on Putnam-
Bench as our work is not targeted towards olympiad-style
theorem-proving. MMA (Jiang et al., 2023) demonstrates
that models trained on data from both languages yield down-
stream performance improvements for autoformalization in
both languages, compared to models trained on just one lan-
guage of data. In our experiments, we demonstrate that such
transfer also occurs for neural models trained to perform
proof step prediction.

7. Conclusion
We introduced a unified framework for standardized data
collection across ITPs like Lean and Coq, which supports
proof completion by generating training data, training LMs
for proof step prediction, and guiding search algorithms. Us-
ing this framework, we produced a multilingual proof step
dataset and train the first multi-domain model across multi-
ple ITPs, demonstrating improved transferability between
Lean and Coq in mathematics and software verification. Be-
yond its technical contributions, the framework serves as
a foundation for uniting and advancing theorem-proving

research communities by providing a shared platform for ex-
perimentation and collaboration. In particular, by leveraging
this framework, we established that multilingual training not
only enables cross-language proof step completion but also
outperforms monolingual models, underscoring the benefits
of integrating data from diverse formal systems.

In future work, we propose exploring the integration of
advanced search algorithms specifically tailored to our stan-
dardized framework. This could include developing adap-
tive search methods that dynamically adjust based on the
complexity and characteristics of the theorem being proven.
Additionally, further research could focus on optimizing the
interaction between the LM and search algorithms to en-
hance proof efficiency and accuracy. Expanding the dataset
to include more diverse ITPs and domains could also im-
prove the model’s generalizability and robustness. Finally,
investigating the use of reinforcement learning to continu-
ously improve the model based on feedback from successful
and failed proof attempts could provide significant advance-
ments in formal theorem proving.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

PROOFWALA: A Framework for Multilingual Proof Data Synthesis and Theorem-Proving

References
Aniva, L., Sun, C., Miranda, B., Barrett, C., and Koyejo, S.

Pantograph: A machine-to-machine interaction interface
for advanced theorem proving, high level reasoning, and
data extraction in lean 4, 2024. URL https://arxiv.
org/abs/2410.16429.

Blaauwbroek, L., Urban, J., and Geuvers, H. The Tacti-
cian: A Seamless, Interactive Tactic Learner and Prover
for Coq, pp. 271–277. Springer International Pub-
lishing, 2020. ISBN 9783030535186. doi: 10.1007/
978-3-030-53518-6_17. URL http://dx.doi.org/10.
1007/978-3-030-53518-6_17.

Blaauwbroek, L., Olšák, M., Rute, J., Massolo, F. I. S.,
Piepenbrock, J., and Pestun, V. Graph2tac: Online repre-
sentation learning of formal math concepts, 2024. URL
https://arxiv.org/abs/2401.02949.

Carrott, P., Saavedra, N., Thompson, K., Lerner, S., Fer-
reira, J. F., and First, E. Coqpyt: Proof navigation
in python in the era of llms. In Companion Pro-
ceedings of the 32nd ACM International Conference
on the Foundations of Software Engineering, volume
21612 of FSE ’24, pp. 637–641. ACM, July 2024. doi:
10.1145/3663529.3663814. URL http://dx.doi.org/
10.1145/3663529.3663814.

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V.,
Wenzek, G., Guzmán, F., Grave, E., Ott, M., Zettlemoyer,
L., and Stoyanov, V. Unsupervised cross-lingual represen-
tation learning at scale. arXiv preprint arXiv:1911.02116,
2019.

de Moura, L., Kong, S., Avigad, J., Van Doorn, F., and von
Raumer, J. The Lean theorem prover (system description).
In Automated Deduction-CADE-25: 25th International
Conference on Automated Deduction, Berlin, Germany,
August 1-7, 2015, Proceedings 25, pp. 378–388. Springer,
2015.

Gloeckle, F., Limperg, J., Synnaeve, G., and Hayat, A.
ABEL: Sample efficient online reinforcement learning for
neural theorem proving. In The 4th Workshop on Math-
ematical Reasoning and AI at NeurIPS’24, 2024. URL
https://openreview.net/forum?id=kk3mSjVCUO.

Han, J. M., Rute, J., Wu, Y., Ayers, E. W., and Polu, S. Proof
artifact co-training for theorem proving with language
models. arXiv preprint arXiv:2102.06203, 2021.

Huet, G., Kahn, G., and Paulin-Mohring, C. The coq proof
assistant a tutorial. Rapport Technique, 178, 1997.

Jiang, A. Q., Li, W., and Jamnik, M. Multilingual mathe-
matical autoformalization, 2023. URL https://arxiv.
org/abs/2311.03755.

Kozyrev, A., Solovev, G., Khramov, N., and Podkopaev,
A. Coqpilot, a plugin for llm-based generation of
proofs. In Proceedings of the 39th IEEE/ACM Inter-
national Conference on Automated Software Engineer-
ing, ASE ’24, pp. 2382–2385. ACM, October 2024. doi:
10.1145/3691620.3695357. URL http://dx.doi.org/
10.1145/3691620.3695357.

Lample, G., Lacroix, T., Lachaux, M.-A., Rodriguez, A.,
Hayat, A., Lavril, T., Ebner, G., and Martinet, X. Hyper-
tree proof search for neural theorem proving. Advances
in Neural Information Processing Systems, 35:26337–
26349, 2022.

Leroy, X. Formal verification of a realistic compiler. Com-
munications of the ACM, 52(7):107–115, 2009.

Li, Z., Sun, J., Murphy, L., Su, Q., Li, Z., Zhang, X., Yang,
K., and Si, X. A survey on deep learning for theorem
proving, 2024. URL https://arxiv.org/abs/2404.
09939.

Mathcomp. GitHub - math-comp/math-comp: Mathemati-
cal Components — github.com. https://github.com/
math-comp/math-comp, 2015. [Accessed 01-06-2024].

mathlib Community, T. The lean mathematical li-
brary. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and
Proofs, POPL ’20. ACM, January 2020. doi: 10.
1145/3372885.3373824. URL http://dx.doi.org/10.
1145/3372885.3373824.

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R.,
Liang, E., Elibol, M., Yang, Z., Paul, W., Jordan, M. I.,
et al. Ray: A distributed framework for emerging {AI}
applications. In 13th USENIX symposium on operating
systems design and implementation (OSDI 18), pp. 561–
577, 2018.

Paulson, L. C. Isabelle: A generic theorem prover. Springer,
1994.

Polu, S. and Sutskever, I. Generative language model-
ing for automated theorem proving. arXiv preprint
arXiv:2009.03393, 2020.

Sanchez-Stern, A., Alhessi, Y., Saul, L., and Lerner, S. Gen-
erating correctness proofs with neural networks. In Pro-
ceedings of the 4th ACM SIGPLAN International Work-
shop on Machine Learning and Programming Languages,
pp. 1–10, 2020.

Song, P., Yang, K., and Anandkumar, A. Towards large
language models as copilots for theorem proving in lean,
2024. URL https://arxiv.org/abs/2404.12534.

9

https://arxiv.org/abs/2410.16429
https://arxiv.org/abs/2410.16429
http://dx.doi.org/10.1007/978-3-030-53518-6_17
http://dx.doi.org/10.1007/978-3-030-53518-6_17
https://arxiv.org/abs/2401.02949
http://dx.doi.org/10.1145/3663529.3663814
http://dx.doi.org/10.1145/3663529.3663814
https://openreview.net/forum?id=kk3mSjVCUO
https://arxiv.org/abs/2311.03755
https://arxiv.org/abs/2311.03755
http://dx.doi.org/10.1145/3691620.3695357
http://dx.doi.org/10.1145/3691620.3695357
https://arxiv.org/abs/2404.09939
https://arxiv.org/abs/2404.09939
https://github.com/math-comp/math-comp
https://github.com/math-comp/math-comp
http://dx.doi.org/10.1145/3372885.3373824
http://dx.doi.org/10.1145/3372885.3373824
https://arxiv.org/abs/2404.12534

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

PROOFWALA: A Framework for Multilingual Proof Data Synthesis and Theorem-Proving

Thakur, A., Tsoukalas, G., Wen, Y., Xin, J., and Chaud-
huri, S. An in-context learning agent for formal theorem-
proving. In First Conference on Language Modeling,
2024.

Tsoukalas, G., Lee, J., Jennings, J., Xin, J., Ding, M.,
Jennings, M., Thakur, A., and Chaudhuri, S. Putnam-
bench: Evaluating neural theorem-provers on the put-
nam mathematical competition, 2024. URL https:
//arxiv.org/abs/2407.11214.

Wang, Y., Wang, W., Joty, S., and Hoi, S. C. Codet5:
Identifier-aware unified pre-trained encoder-decoder mod-
els for code understanding and generation. In EMNLP,
2021.

Welleck, S. and Saha, R. Llmstep: Llm proofstep sug-
gestions in lean, 2023. URL https://arxiv.org/abs/
2310.18457.

Yang, K. and Deng, J. Learning to prove theorems via inter-
acting with proof assistants. In International Conference
on Machine Learning, pp. 6984–6994. PMLR, 2019.

Yang, K., Swope, A. M., Gu, A., Chalamala, R., Song, P.,
Yu, S., Godil, S., Prenger, R., and Anandkumar, A. Le-
andojo: Theorem proving with retrieval-augmented lan-
guage models. arXiv preprint arXiv:2306.15626, 2023.

Yang, K., Poesia, G., He, J., Li, W., Lauter, K., Chaudhuri,
S., and Song, D. Formal mathematical reasoning: A new
frontier in ai, 2024. URL https://arxiv.org/abs/
2412.16075.

Zheng, K., Han, J. M., and Polu, S. Minif2f: a cross-system
benchmark for formal olympiad-level mathematics. arXiv
preprint arXiv:2109.00110, 2021.

Zhu, T., Clune, J., and Welleck, S. Neural theorem prov-
ing toolkit, 2023. URL https://github.com/cmu-l3/
ntp-toolkit.

A. Appendix
A.1. Training data for proof step prediction modules

The training data is extracted in generic JSON format as
shown in Figure 4. We create prompts to train the proof
step generation model as demonstrated in Figure 5 from the
collected raw data.

B. ITP Versioning and Support
Version Compatibility. Our framework supports multi-
ple versions of Coq (v8.12–v8.18) and Lean 4 (v4.7.0-rc2
and v4.17.0), including those used in MiniF2F and other
benchmarks. This flexibility is enabled through standard-
ized JSON-based representations and a language-agnostic
prompt format.

Isabelle Integration. We also provide support for Isabelle
via the PISA server, which offers a JSON-RPC interface
for interaction. However, we did not conduct large-scale
training or evaluation with Isabelle due to substantial system-
level constraints. Each PISA instance requires a full copy of
Isabelle and its heap images (~35 GiB), which scales poorly
in parallel settings (e.g., >1 TiB for 50 servers). In addi-
tion, memory usage per server can exceed 400 GiB, making
distributed parallelism impractical on shared infrastructure.
Unlike Lean’s lightweight REPL—which we optimized with
custom restart logic—PISA is a heavyweight service, and
similar fixes are nontrivial. Still, our interface abstractions
and data formats already accommodate Isabelle, and future
work may enable scalable experiments as tooling improves.

B.1. Parallel Proof Search Beam Algorithm

Figure 6 shows the parallel beam search pseudocode. We
utilize the interface module’s capabilities to create multiple
instances of the proof environment and parallel run tactics
to efficiently run search which can be scaled across nodes.

B.2. Hyperparameters used for training PROOFWALA
models

We trained our model in a distributed way via PYTORCH
and HUGGINGFACE libraries. We used a cluster with 16
Nvidia GH 200 GPU nodes to train PROOFWALA models.
The training lasted for approximately 3 days. For further
fine-tuning on CategoryTheory data we used the same pa-
rameters as shown in Table 4, except we ran only for 1200
steps with a smaller batch size of 8 (the checkpoint step was
also accordingly reduced to 1200). Running all our training
for various models for a fixed number of steps and the same
batch size ensures that every model gets the same number
of gradient updates.

10

https://arxiv.org/abs/2407.11214
https://arxiv.org/abs/2407.11214
https://arxiv.org/abs/2310.18457
https://arxiv.org/abs/2310.18457
https://arxiv.org/abs/2412.16075
https://arxiv.org/abs/2412.16075
https://github.com/cmu-l3/ntp-toolkit
https://github.com/cmu-l3/ntp-toolkit

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

PROOFWALA: A Framework for Multilingual Proof Data Synthesis and Theorem-Proving

(a)

{
"theorem_name": "nat_plus_0_is_n"
"start_goals": [

{
"hypotheses": [],
"goal": "forall n : nat, n + 0 = n",
"# ... extra metadata"

}
],
"proof_steps": ["intros n."],
"end_goals": [

{
"hypotheses": ['n: nat'],
"goal": "n + 0 = n",
"# ... extra metadata"

}
],
"# ... extra metadata"
}

(b)

{
"theorem_name": "nat_plus_0_is_n"
"start_goals": [

{
"hypotheses": [],
"goal": "∀ (n : Nat), Nat.add n 0

= n",↪→

"# ... extra metadata"
}

],
"proof_steps": ["intro n"],
"end_goals": [

{
"hypotheses": ['n : Nat'],
"goal": "Nat.add n 0 = n",
"# ... extra metadata"

}
],
"# ... extra metadata"
}

Figure 4: An excerpt from the extracted training data sequence, π = ⟨(O0, a1), . . . , (Oi, ai), . . . (On−1, an)⟩ (see Section 2),
for a given theorem in COQ and LEAN 4. The training data extracted here is used to train PROOFWALA proof step
generation models. Here, Oi i.e. set of obligations is extracted under start_goals key while Oi+1 is represented under
end_goals. The action ai is extracted as the value of proof_steps key. There are more fields other than the ones shown in
the figure. (a) Shows an example of a Coq proof step, and (b) shows an example of a Lean proof step.

B.3. Parameters used for proof search

For all our experiments the beam width is 32 (see Table 5),
and the temperature for the proof step prediction model is
0.75. We also have a timeout of 600 seconds for each proof
attempt for all data mixes except GeoCoq where the timeout
was 1200 seconds. Since the proofs in GeoCoq were long
(sometimes more than 100 tactics), giving more time for the
search to finish was important.

B.4. Bug Fixes in existing framework

Our framework built on top of coq_serapy9 (Sanchez-Stern
et al., 2020), while our LEAN 4 implementation is built on
top of REPL10 library. We have enhanced these libraries by
adding a common abstraction so that data can be collected
across multiple languages. We also added ray actors (Moritz
et al., 2018) to make it work across clusters on multiple ma-
chines. We also fixed some issues with these libraries, for
example, REPL has a bug that allows it to accept incomplete
and incorrect proofs11. We also fixed some memory issues

9https://github.com/HazardousPeach/coq_serapy
10https://github.com/leanprover-community/repl
11https://github.com/leanprover-community/repl/issues/44

which can arise when the REPL library keeps clones of
proof-state to allow easy backtracking which leads to ex-
ponential memory increase. These fixes were essential for
making the framework scalable and run on multiple nodes.

B.5. Proof Tree annotations

Figure 7 shows a visualization generated using our tool. We
can use these annotated trees to do qualitative analysis or
train models for expert iteration.

C. Examples of Cross-Lingual Transfer in
Category Theory

To better understand the cross-lingual transfer discussed in
Section 5.1, we examined specific theorems in the Cate-
gory Theory dataset. We identified Coq theorems that the
multilingual model successfully proved, while the Coq-only
model failed. For these cases, we found structurally analo-
gous Lean theorems in the training data, particularly those
involving categorical notions such as adjunctions, monicity,
and currying.

Table 6 shows representative examples. These qualitative

11

https://github.com/HazardousPeach/coq_serapy
https://github.com/leanprover-community/repl
https://github.com/leanprover-community/repl/issues/44

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

PROOFWALA: A Framework for Multilingual Proof Data Synthesis and Theorem-Proving

(a)
`Goals to prove:`
`[GOALS]`
`[GOAL] 1`
S (n + 1) = S (S n)
`[HYPOTHESES] 1`
`[HYPOTHESIS]` IHn : n + 1 = 1 + n
`[HYPOTHESIS]` n : nat
`[END]`

(c)
`[RUN TACTIC]`
auto.
`[END]`

(b)

`Goals to prove:`
`[GOALS]`
`[GOAL] 1`
a + x ∈ [a + b-[K]a + c] ↔ x ∈ [b-[K]c]
`[HYPOTHESES] 1`
`[HYPOTHESIS]` K : Type u_1
`...`
`[HYPOTHESIS]` π : ι → Type u_6
`[HYPOTHESIS]` inst†5 : OrderedRing K
`...`
`[HYPOTHESIS]` a x b c : E
`[END]`

(d)

`[RUN TACTIC]`
simp [segment_eq_image']
`[END]`

Figure 5: Prompt format for training the proof step generation model. (a) shows the prompt format for COQ , (b) shows the
prompt format for LEAN 4, (c) shows the response format used for COQ, and (d) shows the response format used for LEAN
4. We adopted a format similar to the one used in COPRA (Thakur et al., 2024) but without any error context. It is important
to note that we do not mention any information about the domain or ITP assistant in the prompt. The prompt format is the
same for both languages.

results illustrate the model’s ability to leverage shared cate-
gorical abstractions across ITPs and reinforce our hypothesis
about effective structural transfer.

C.1. Qualitative Analysis: Proof Tree Properties

Across various data mixes we observe that proof trees found
using the MULTILINGUAL model tend to have more nodes,
edges, and higher degrees per node (see Table 7). Figure 8,
Figure 9, and Figure 3 show the distribution of nodes, edges,
and degrees respectively. Figure 10 shows that MULTILIN-
GUAL often found more proofs for the same theorem during
the search.

We observe that MULTILINGUAL model usually searches
longer for proofs across the different data mixes. The av-
erage time taken to search for proof is summarized in the
Table 8 and the distribution of proof search time is shown
in Figure 11.

Data Mix PROOFWALA Model Avg

LEAN MULTILINGUAL 2.0363
LEAN 2.0679

CompCert MULTILINGUAL 4.7913
COQ 5.0270

MathComp MULTILINGUAL 2.4940
COQ 2.4759

GeoCoq MULTILINGUAL 9.2486
COQ 10.6954

CategoryTheory MULTILINGUAL 3.4909
COQ 3.0426

Table 9: Summary of average proof lengths across various
data mixes. The proof lengths are not very different for the
two approaches.

Interestingly, we see that there is no significant difference
in the size of the proof (number of tactics used) found via
the two approaches. Table 9 summarizes the length of the
proofs found during the search.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

PROOFWALA: A Framework for Multilingual Proof Data Synthesis and Theorem-Proving

PARALLELBEAMSEARCH(O0, model , t , width)
1 � Set the pool of ITPINTERFACE instances to state O0

2 pool ← ITPINTERFACEPOOL.INITIALIZE(O0)
3 frontier ← {O0}
4 proof _tree ← ϕ
5 while frontier ̸= ϕ
6 do
7 if TIMEELAPSED(t)
8 � Proof not found within the timeout
9 then return FALSE, proof _tree

10 else O← ϕ� To store next possible states
11 for O ∈ frontier
12 do A← GENERATEPROOFSTEPS(O,model ,width)
13 � Filter a sub-pool from ITPINTERFACE instances which are initialized to state O
14 pool ′ ← pool .FILTER(O)
15 if pool ′ is empty
16 then pool ′ ← ITPINTERFACEPOOL.INITIALIZE(O)
17 pool .MERGE(pool ′)� Merge the new instances to the pool
18 � Execute generated possible proof step(s), A, in parallel using the pool ′

19 O← O ∧ pool ′.EXECUTEPARALLEL(A)
20 � Add all A edges in the proof _tree with O as parent
21 if QED ∈ O
22 then return TRUE, proof _tree
23 frontier ← O
24 � Filter the top width states based on some heuristic
25 � for example log-likelihood of proof step leading to the state.
26 frontier ← frontier .TOPK(width)
27 return FALSE, proof _tree

Figure 6: Pseudocode for the parallel proof search module utilizing Beam Search with the Ray framework (Moritz et al.,
2018). This approach enables concurrent exploration of multiple proof steps (tactics) generated by the PROOFWALA model,
improving efficiency and throughput. Unlike frameworks such as LeanDojo (Yang et al., 2023) for LEAN 4, which operate
sequentially, this module replicates instances of the interface module (see Section 3.1) as a custom pool of Ray actors. The
custom pool keeps track of ITP instances’ proof state. It only uses those instances whose proof state matches the frontier
state to continue the exploration (with the occasional overhead of adding more instances to the pool). Each instance in the
pool executes potential proof steps in parallel, allowing the search to proceed across various states simultaneously, avoiding
the sequential overhead of executing steps one after another on the same ITP instance.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

PROOFWALA: A Framework for Multilingual Proof Data Synthesis and Theorem-Proving

Hyperparameter Value

Pretrained Model Name CODET5-BASE (220 M)
Learning Rate 2× 10−4

Learning Scheduler Type cosine
Warmup Ratio 0.03
Weight Decay 0.001
Max Grad Norm (Gradient Clipping) 0.3
Optimizer adamw_torch
Gradient Accumulation Steps 1
Max # Steps (Gradient Updates) 34000
Batch Size 128
Checkpoint # Steps 20000
Max # Tokens 2048

Table 4: Hyperparameters used for training our
PROOFWALA-{LEAN, COQ, MULTILINGUAL}. In line
with recent work on training multilingual models for aut-
oformalization (Jiang et al., 2023), we used the same step
count and batch sizes to train all our models on different
data mixes ensuring our ablation studies about the transfer
were fair and were not merely a result of training more on
bigger data-mixes.

Parameter Value

Search Algorithm Beam Search

Heuristic

Guided by
Neg. Log-Likelihood
of proof steps predicted
by PROOFWALA models

Beam Width 32
Timeout 600 seconds
PROOFWALA
model Temp 0.75

Table 5: Parameters used for searching for the complete
proof using PROOFWALA models for guidance. We use
beam search similar to GPT-f (Polu & Sutskever, 2020).

C.2. Qualitative Analysis: Proofs found by
MULTILINGUAL model

Figure 12 shows some of the LEAN 4 and COQ proofs found
by MULTILINGUAL model.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

PROOFWALA: A Framework for Multilingual Proof Data Synthesis and Theorem-Proving

Coq Theorem Lean 4 Equivalent Multilingual Coq-Only
counit_fmap_unit
∀ x, ε ◦ fmap[F] η ≈
id[F (x)]

adjointify_η_ε (X : C)
F.map((adjointifyη,ε).hom.app(X)) ≫
ε.hom.app(F.obj(X)) = ⊮(F.obj(X))

✓ ✗

id_monic
∀ x, Monic(idx)

cancel_mono_id (f : X -> Y)
g ≫ f = f ⇔ g = ⊮X

✓ ✗

eval_first
eval ◦ first(f) ≈ uncurry(f)

uncurry_id_eq_ev (A X : C)
uncurry(⊮A⇒X) = (exp.ev(A)).app(X)

✓ ✗

Table 6: Examples of Category Theory theorems in Coq and their Lean equivalents. The multilingual model succeeds, while
the Coq-only model fails.

Data-Mix PROOFWALA Model Avg. Proof Tree Stats

Nodes # Edges # Degree
LEAN LEAN 3.989 3.536 1.536

MULTILINGUAL 4.729 4.689 1.983
MathComp COQ 2.534 1.739 1.167

MULTILINGUAL 2.576 1.822 1.207
GeoCoq COQ 15.358 14.457 1.180

MULTILINGUAL 17.144 15.75 1.353
CompCert COQ 8.048 7.480 1.404

MULTILINGUAL 8.318 8.200 1.584
CategoryTheory COQ-CAT-THEORY 5.674 5.804 2.301

MULTILINGUAL-CAT-THEORY 7.056 7.130 2.193

Table 7: Comparison between the average number of nodes, edges, and degree of the proof trees generated on various
PROOFWALA models over different data-mixes.

Data Mix PROOFWALA Model Avg

LEAN MULTILINGUAL 30.5296
LEAN 20.7370

CompCert MULTILINGUAL 59.9424
COQ 70.3282

MathComp MULTILINGUAL 8.9993
COQ 7.5634

GeoCoq MULTILINGUAL 107.1999
COQ 74.3914

CategoryTheory MULTILINGUAL 39.2182
COQ 27.4105

Table 8: Summary of average proof times (in seconds)
across various data mixes. We can see that PROOFWALA-
MULTILINGUAL usually searches for longer and hence the
average time is higher. Since the proof trees generated are
larger for MULTILINGUAL approach, it is reasonable that
overall proof search time will be higher.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

PROOFWALA: A Framework for Multilingual Proof Data Synthesis and Theorem-Proving

(a)

(b)

Figure 7: Visualization of the proof trees generated via the Proof Search Module (see Section 3.3) for Lean 4 theorems
stating: (a) ∀(a : N), a % 4 = 2 → a ∗ a % 4 = 0, and (b) ∀(a : N), a % 2 = 0 → a ∗ a % 2 = 0. The proof tree can
be annotated with the correct proof path, and scores for each edge (proof step) and node (proof-state). This tree has been
generated through Beam Search guided by the PROOFWALA-MULTILINGUAL model, the framework also supports best first
search. The tree only includes proof steps (edges) that can be applied to the given proof-state (node) without any error. The
numbers within the $ symbols are the negative log-likelihood of the tokens generated by the PROOFWALA-MULTILINGUAL
proof step generation model.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

PROOFWALA: A Framework for Multilingual Proof Data Synthesis and Theorem-Proving

Figure 8: Distribution of proof-tree nodes across various data-mixes found by different PROOFWALA models. It is
interesting to note that across all data-mixes, the PROOFWALA-MULTILINGUAL model tends to produce more nodes per
proof tree. This indicates that PROOFWALA-MULTILINGUAL often constructs larger proof trees during search.

Figure 9: Distribution of proof-tree edges across various data-mixes found by different PROOFWALA models. It is
interesting to note that across all data mixes, PROOFWALA-MULTILINGUAL models tend to have more edges per proof
tree. This indicates that PROOFWALA-MULTILINGUAL often find more compilable tactics while searching to complete the
proof.

Figure 10: Distribution of the number of proofs found for the same theorem across various data-mixes found by different
PROOFWALA models. It is interesting to note that across all data mixes, the PROOFWALA-MULTILINGUAL model tends
to produce more proofs for the same theorem.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

PROOFWALA: A Framework for Multilingual Proof Data Synthesis and Theorem-Proving

Figure 11: Distribution of the time taken to find proofs across various data-mixes found by different PROOFWALA models.
We can see that across all data mixes, the PROOFWALA-MULTILINGUAL model tend to run longer proof searches, and thus
effectively search more.

(a)

theorem lapMatrix_toLin'_apply_eq_zero_iff_forall_reachable (x : V → R) :
Matrix.toLin' (G.lapMatrix R) x = 0 ↔ ∀ i j : V, G.Reachable i j → x i = x j := by
rw ←[(posSemidef_lapMatrix R G).toLinearMap2'_zero_iff, star_trivial,

lapMatrix_toLinearMap2'_apply'_eq_zero_iff_forall_adj]
refine ⟨?_, fun h i j hA 7→ h i j hA.reachable⟩
intro h i j ⟨w⟩
induction' w with w i j _ hA _ h'
rfl
exact (h i j hA).trans h'

(b)

theorem interval_average_symm (f : R → E) (a b : R) :
∫
(x in a..b, f x) =

∫
x in b..a, f

x := by
simp only [intervalIntegral, setAverage_eq, smul_sub]
obtain rfl | hab := eq_or_ne a b
rfl
rw [uIoc_comm a b, uIoc_comm b a]

(c)

Theorem coplanar_perm_11 : forall A B C D,
Coplanar A B C D -> Coplanar B D C A.

Proof.
intros A B C D HCop.
destruct HCop as [X H]; exists X.
induction H; try (induction H); spliter; Col5.

Qed.

(d)

Theorem coprimepP: forall p q ,
reflect (forall d, d %| p -> d %| q -> d %= 1) (coprimep p q).
Proof.

rewrite /coprimep; apply: (iffP idP) => [/eqP hs d dvddp dvddq | h].
have/dvdp_eqp1: d %| gcdp p q by rewrite dvdp_gcd dvddp dvddq.
by rewrite -size_poly_eq1 hs; exact.
by rewrite size_poly_eq1; case/andP: (dvdp_gcdlr p q); apply: h.

Qed.

Figure 12: Some proofs discovered by PROOFWALA-MULTILINGUAL in our experiments on theorems from Mathlib,
GeoCoq, and MathComp.

18

	Introduction
	Problem Formulation
	Framework Details
	Interface Module
	Proof Step Generation and Training Module
	Parallel Proof Search Module

	Dataset and Model Details
	Dataset Details
	Model Details

	Evaluation
	Experiments

	Related Work
	Conclusion
	Appendix
	Training data for proof step prediction modules

	ITP Versioning and Support
	Parallel Proof Search Beam Algorithm
	Hyperparameters used for training ProofWala models
	Parameters used for proof search
	Bug Fixes in existing framework
	Proof Tree annotations

	Examples of Cross-Lingual Transfer in Category Theory
	Qualitative Analysis: Proof Tree Properties
	Qualitative Analysis: Proofs found by Multilingual model

